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Abstract 

Polymers of Intrinsic Microporosity (PIMs) are an emerging polymeric material class for 

molecular sieving applications. This study focuses on PIM-1, an alternating copolymer of 

5,5’,6,6’-tetrahydroxy-3,3’,3,3’-tetramethyl-1,1’-spirobisindane and 

tetrafluoroterephthalonitrile synthesized via nucleophilic aromatic substitution. PIM-1 

been widely studied as a gas separating material and filtering membrane, but in this case, 

it is studied as a battery separator material. PIM-1’s microporous (pore diameters less 

than 2 nm) structure allows smaller favorable ions to transport while preventing larger 

ions and compounds from transporting. Two synthesis methods, round bottom flask 

synthesis and ball mill synthesis, of PIM-1 are compared to see any improved 

characteristics. The primary goal of this study is to observe an increase in molecular 

weight, but other properties are evaluated as well. The calculated yield was higher for 

ball milled PIM-1 (51.5% round bottom flask vs. 62.8% ball mill). Size-exclusion 

chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and Brunauer- 

Emmett-Teller (BET) analysis were used to characterize each synthesized batch. Both 

PIM-1s had the same overall molecular weight (98,468 round bottom flask vs. 97,331 

ball mill), but the ball milled PIM-1 had a lower polydispersity (2.372 round bottom flask 

vs. 1.728 ball mill). The ball-milled PIM-1 also revealed broader peaks and fewer 

impurities than RBF PIM-1 with NMR analysis. BET analysis revealed that both PIM-1s 

had similar expected porosities (658 m2/g vs. 642 m2/g). More research is needed to 

affirm that ball milling is a superior method.  
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Introduction 

Current battery technology has allowed devices to retain plenty of energy while 

being able to last for hundreds of charge cycles. This is because lithium-based 

electrochemistry is employed in portable electronics. Lithium is the third element in the 

periodic table, meaning that its small size allows for high energy densities. However, 

current Li-ion technology only has a specific energy (energy capacity per unit mass) of 

up to 200 W-h/kg. Lithium-sulfur (Li-S), an emerging battery technology, can reach 

specific energies up to 500 W-h/kg in practice1. Therefore, Li-S may become the next 

battery technology to come into the commercial realm.  

The four main components of a Li-S cell (anode, cathode, electrolyte, and 

separator) all interact with lithium ions in different ways to comprise a functioning Li-

based energy storage device. In a typical Li-S cell, the cathode is made of sulfur, the 

anode is pure lithium, the electrolyte is an organic solution containing a lithium salt, and 

the separator is a polymeric material with mesopores. During discharging, lithium ions 

dissociate from the anode and forms polysulfide salts on the cathode, while upon 

charging, the lithium transports back to the anode and plates it. In theory, there would be 

no side reactions that could compromise the battery’s operation.  

The separator plays an important role because it insulates the cathode from the 

anode, while allowing ions to transport across the electrolyte. However, most separators 

in use today have large pores that allow unwanted compounds to traverse the electrolyte 

and degrade the battery, thereby limiting the cycling life. In Li-S cells, polysulfide 

compounds that form on the sulfur cathode can transport through the electrolyte and 

separator to parasitically attack the lithium anode2. This reaction decreases the lifetime of 
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the Li-S battery and a size-sieving separator must be employed to prevent this. 

Fortunately, microporous separators, with pores less than 2 nm in diameter, have been 

developed to prevent polysulfide compounds from transporting while allowing the 

lithium cation and the bis(trifluoromethylsulfonyl)imide anion to transport through the 

electrolyte.  

Fortunately, such materials are being investigated. PIM-1 (Polymer of Intrinsic 

Microporosity 1), a copolymer of 5,5’,6,6’-tetrahydroxy-3,3’,3,3’-tetramethyl-1,1’- 

spirobisindane and tetrafluoroterephthalonitrile synthesized via nucelophilic aromatic 

substitution, as shown in Figure 1, is a microporous (pores of less than 2 nanometers in 

diameter) material that sieves out unwanted compounds, such as polysulfies and 

manganese ions3. This is because the polymer has a rigid structure that cannot rotate via 

sp3-hybridized bonds, thereby sustaining microporosity due to frustrated packing during 

post-solution casting. PIM-1 has been established as a material for gas separation4 and 

solvent nanofilration5, but new research has been exploring it as a battery separator 

material6,7.  

The challenge right now is increasing the molecular weight of the PIM-1 using 

various synthesis methods. A greater molecular weight will improve the mechanical 

strength of the separator because more entanglement between the polymer chains 

increases strength and elastic modulus. This experiment compares two syntheses method 

for differences in polymer characteristics: standard round bottom flask heating and ball 

milling. Round bottom flask synthesis is widely used to synthesize polymers, whereas 

ball milling is an unconventional method that mechanically promotes a chemical reaction. 

During ball milling, the surface area of starting materials via impact and friction from 
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balls and heating due to friction improves the kinetics. Ball milling is part of a wider field 

of study called mechanochemistry8,9. The goal of this study is to evaluate whether ball 

milling is a viable synthesis process for PIM-1. 

 

 

Figure 1. Step-growth mechanism for PIM-1 synthesis. The reaction is an iterative process that 
results in long polymeric chains.  
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Materials and Methods 

Materials used to produce PIM-1 include 97% 5,5,66-tetrahydroxy-3,3,3,3-tetramethyl- 

1,1’-spirobisindane (TTSBI) supplied by Alfa Aesar, tetrafluoroterephthalo-nitrile 

(TFTPN) supplied by Oakwood Chemical, cesium carbonate (Cs2CO3) supplied by 

Oakwood Chemical, N,N-dimethylacetamide (DMAc) supplied by Sigma-Aldrich, and 

dimethylformamide (DMF) supplied by Fischer Scientific.  

 

Round Bottom Flask Synthesis  

1.7732 g of TTSBI, 1.007 g of TFTPN, 3.26 g of Cs2CO3, and 39 mL of DMF in 

150 mL round bottom flask was used as the reaction vessel. A stir bar was added to the 

round bottom flask to ensure proper dispersion. As the materials were added to the round 

bottom flask, nitrogen gas was pumped into the vessel to ensure an inert environment. 

The reaction was initiated by being placed into an oil bath heated to 65 ̊C while stirring 

and ran for 19 hours (Figure 2). Once completed, the solution was quenched with 20 mL 

of water. 

 
Figure 2. Synthesis occurring in round bottom flask dipped into an oil bath maintained at 65 ˚C.  
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Ball Mill Synthesis  

For ball milling, the first step in this process is to place all the materials into the 185 mL 

ball mill vessel (Figure 3). For each method, 1.7729 g (5 mmol) of TTSBI was weighed 

out and placed into the vessel, using DMA used to wash it in. 1.006 g (5 mmol) of 

TFTPN, 6.5166 (20 mmol) of cesium carbonate, and the remaining DMA (10 mL total) 

were placed into the vessel. Then, 285.50 g of tungsten carbide balls were placed into the 

vessel. The ball-milling vessel was taken to a ball miller and allowed to spin for 3 hours. 

The milling action heated the vessel, initiating the reaction. After milling, the vessel was 

cooled for 30 minutes, and then taken back to the lab for working up. No quenching was 

required for this batch. 

 

 
Figure 3. Vessel containing synthesis reactants and balls for ball milling procedure. 
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Workup Procedure  

Both the round bottom flask and ball milled synthesized PIM-1 underwent a 

similar post-synthesis workup procedure. The workup consists of a series of steps using 

solvents to remove unwanted materials, such as salts, oligomers, and cyclic polymers, 

from the desired product. First, the reactant is placed into a 5:1 (500 ml:100 ml) 

water:ethanol mixture, and heated it to boiling for one hour while stirred. Then, the 

mixture was filtered out and the remaining PIM was dried over the filter. Next, the 

polymer was dissolved into 200 mL of chloroform and heated the solution until boiling 

for 2 hours. New chloroform was added to the boiling solution during this process, and 

400 mL of chloroform remained. The solution was then filtered into 400 mL of methanol 

to catch any insoluble compounds. Given the diluteness of the new mixture, the solution 

was rotary evaporated to drive off excess methanol and chloroform.  

Once the polymer came out of solution, the rotary evaporator was turned off and 

the constituents were filtered. The PIM-1 batches were dried under vacuum at 65 ̊C for 

one hour. A second step of boiling the PIM in a 5:1 (250 ml:50 ml) water:ethanol mixture 

was employed to remove any remaining water-soluble compounds. This was done for 30 

minutes while stirring. Once complete, the mixture was filtered off and the samples were 

dried overnight in a heated vacuum chamber. Dried samples are shown in Figures 4 and 

5. 



	 10	

          
Figure 4. PIM-1 product from round bottom flask synthesis. 

 

 
Figure 5. PIM-1 product from ball milling procedure. 
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Results and Discussion 

After synthesis, yields were calculated for each product. The round bottom flask 

synthesis produced a yield of 51.5%, whereas the ball mill synthesis produced a yield of 

62.8%. The difference in yield may be due to lower oligomer and cyclic polymer 

production in the ball mill, which are mostly filter off during workup.  

Size-exclusion chromatography (SEC) was used to measure the molecular weight and 

polydispersity of PIM molecules. As shown in Figures 6 and 7, both PIM-1 batches had 

similar molecular weights (98,468 g/mol round bottom flask vs. 97,331 ball mill, 

displayed as Mw), but a lower polydispersity was observed in ball milled PIM-1 (2.372 

round bottom flask vs. 1.728 ball mill, displayed as Mw/Mn). The possible explanation 

for similar molecular weights is that an excess starting material, either TTSBI or TFTPN, 

limited the step-growth mechanism during synthesis. For polydispersity, the different 

environments promoted different kinetics, and ball milled PIM-1 may have been less 

disperse because the ball mill vigorously mixes the starting materials and the temperature 

during ball milling becomes much hotter than 65 ̊C, thereby promoting faster kinetics and 

equalizing the molecular weights of the polymer chains.  

The bimodal distribution observed in the right-angle light scattering plot for ball 

mill batch is a peculiar observation because most PIM-1 distributions are unimodal. The 

first peak was excluded from calculations because it wasn’t recorded by the refractive 

index curve, which could indicate an error from the machine. This observation can serve 

as a basis for further investigation.  
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Figure 6. Fume hood synthesized PIM-1, displaying a molecular weight of 98,468 and a 
polydispersity of 2.372.  
 

 

 
Figure 7. Ball Milled PIM-1 with a molecular weight of 97,331 and polydispersity of 1.728.  
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Proton NMR spectroscopy of was used to qualitatively evaluate the molecular structures 

of each synthesized PIM-1. As seen in figures 8 and 9, the leftmost peaks indicate 

protons associated with aliphatic carbons, and the rightmost peaks indicate protons 

associated with aromatic carbons. The spread in polymeric peaks is due to interactions 

between neighboring repeat units. In Figure 8, there are several linear peaks, indicating 

that some starting material, specifically TTSBI, ended up in the final batch. In Figure 9, 

all peaks shown are broad, indicating undetected starting material and high pureness.  

 

Figure 8. Proton NMR Spectra of Round Bottom Synthesized PIM-1. Broad peaks indicate 
hydrogen on polymer, and straight peaks indicate hydrogen on small molecular impurities, 
specifically the TTSBI precursor. 
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Figure 9. Proton NMR of Ball Mill synthesized PIM-1. Absense of straight peaks indicates high 
purity. 

Brunauer-Emmett-Teller (BET) analysis was also employed to evaluate the 

porosity of each PIM-1 batch. For this characterization method, porosity is measured in 

terms of surface area per unit mass (m2/g). Isothermal plots show sample 

absorption/desorption of nitrogen gas at 77 K (sample tube immersed in liquid nitrogen) 

over the course of several hours, as seen in Figure 10. BET analysis data derived from 

isothermal data are shown in Figure 11. The BET surface areas came out to 642 m2/g for 

the round bottom flask synthesis and 658 m2/g for ball mill synthesis. These values are 

consistent with the literature range of 600-750 m2/g for PIM-13. Also, these 

measurements are similar enough to warrant that both batches have porous structures 

expected of PIM-1. The most important observation is that ball milled PIM-1 still retains 

high porosity, important for Sepion Technologies’ prescribed application.  
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a)  

b)  
Figure 10. Isothermal plots of round bottom flask (a) and ball mill (b) PIM-1 batches. The y-axis 
is quantity of nitrogen gas absorbed per unit mass of sample (mmol/g) and the x-axis is relative 
pressure (P/Po).  



	 16	

a)  

b)  
Figure 11. BET surface area plots of round bottom flask (a) and ball mill (b) PIM-1 used to derive 
surface area. Round bottom flask synthesis yielded 642 m2/g while ball mill synthesis yielded 
658 m2/g.  
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Conclusion 

PIM-1 is a polymer used as a microporous separator in battery applications. The polymer 

can sieve out larger particles in order to increase cycle life by preventing electrode 

degradation. Two synthesis methods, solution mixing in a heated round bottom flask and 

ball milling, were compared to observe any differing properties. Both syntheses involved 

mixing, but the ball mill synthesis used friction and impact to promote the reaction 

instead of only heat. After workup and characterization, Ball milling had a higher yield 

(51.5% round bottom flask vs. 62.8% ball mill). The molecular weights appeared the 

same (98,468 g/mol round bottom flask vs. 97,331 g/mol ball mill), but ball mill 

synthesis PIM-1 had a lower polydispersity (2.372 round bottom flask vs. 1.728 ball 

mill). NMR revealed that some starting material might have remained in the round 

bottom flask PIM-1. BET analysis indicated that both batches had similar porosities (642 

m2/g round bottom flask vs. 658 m2/g ball mill). So far, ball milling is indicated as a 

promising synthesis method, but more research is needed to affirm this.  
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Future Work 

Besides studying synthesis methods, Sepion Technologies is evaluating structural 

derivatives of PIM-1. TFTPN can be replaced with another organic molecule with four 

halide groups, and this structurally similar alternative may provide properties more 

appropriate for battery applications. Copolymers of TFTPN and another structurally 

similar organic molecule are considered as well to tune the separator properties. Given 

that PIM-1 was first mentioned as a battery separator material in literature in 20156, more 

research is needed to establish this application for PIM-1. The ultimate goal for Sepion is 

to bring a viable molecular-sieving battery separator material to market, and adjusting the 

chemistry of PIM-1 can warrant a favorable outcome.  
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