
X-Beam Alignment System

Sponsored by

Joseph Falcao

jfalcao@calpoly.edu

Robert Tam

rotam@calpoly.edu

Advisor:
Professor Eileen Rossman
erossman@calpoly.edu

Overseer:
Ian Davison

iandavison@microvu.com

Team X:

Whittaker Hamill

whamill@calpoly.edu

Date: Jun 08, 2017

mailto:erossman@calpoly.edu
mailto:iandavison@microvu.com

Statement of Disclaimer

Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the

course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information

in this report is done at the risk of the user. These risks may include catastrophic failure of the device or

infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and

its staff cannot be held liable for any use or misuse of the project.

ii

Table of Contents
List of Figures .. xii

List of Tables .. xiii

1. Introduction ... 1

2. Background .. 1

2.1. Senior Project .. 1

2.2. Sponsor Background and Needs ... 2

2.3. Existing Products and Specifications .. 4

2.3.1. FARO Laser Tracker ... 4

2.3.2. Keysight Technologies Interferometer .. 4

2.3.3. Heidenhain Metro .. 6

3. Objectives .. 7

3.1. Problem Statement ... 7

3.2. Customer Requirements .. 7

3.2.1. Rails Must Be Straight ... 7

3.2.2. Rails Must Be Parallel to Each Other ... 7

3.2.3. Automated Rail Alignment ... 7

3.2.4 Automated Torqueing of the Screws .. 8

3.2.5. Fast ... 8

3.2.6. Low-Skill Level .. 8

3.2.7. Must Fit on a Table ... 8

3.2.8. Must have a Length to Accommodate X-Beam ... 8

3.2.9. Scalability .. 8

3.2.10. Must Use Power Available at the Site .. 9

3.2.11. Beam Must Be Sufficiently Constrained ... 9

3.2.12. Basic Safety .. 9

3.2.13. Must Convey Error to Operator .. 9

iii

3.2.14. Reusable .. 9

3.2.15. Repeatable .. 9

3.2.16. Cost .. 10

3.3: Engineering Specifications ... 10

3.3.1. Straightness ... 12

3.3.2. Parallelism ... 12

3.3.3. Automated Rail Alignment ... 12

3.3.3. Automated Torqueing of Screws .. 12

3.3.4. Fast ... 12

3.3.5. Low-Skill Level .. 13

3.3.6. Must Work on a Table ... 13

3.3.7. Must Fit the X-Beam ... 13

3.3.8. Must Use Power Available at the Site .. 13

3.3.9. Beam Must Be Constrained ... 14

3.3.10. Basic Safety .. 14

3.3.11. Lifetime ... 15

3.3.12. Reliability ... 15

3.3.13. Cost .. 15

3.3.14. Loading ... 15

3.4. Quality Function Deployment ... 15

3.5. Comparison of Specifications ... 15

4. Design Process ... 17

4.1. Ideation and Selection of Design .. 17

4.1.1. Concept Generation .. 17

Brain writing ... 17

Brainstorming ... 18

SCAMPER .. 18

iv

4.1.2. Design Concepts ... 18

Design 1. Fixed Position Feedback Actuators ... 19

Design 2. Moving Gantry with Actuators and Two Sensors .. 19

Design 3. Moving Sensor Gantry with Fixed Actuators .. 20

Design 4. Moving Beam with Fixed Actuators and Sensors .. 20

Design 5. Moving Gantry with Actuators and Three Sensors ... 20

Design 6. Moving Floating Sensor Gantry .. 21

Design 7. Moving Actuator Gantry with gauge Blocks ... 22

Design 8. Moving Actuator Gantry with Fixed Gauge Blocks .. 22

Design 9. Fixed Actuators with Probes and Gantry ... 23

4.1.3. Idea Selection .. 23

Sponsor Meeting ... 23

Pugh Matrices ... 24

Design Matrix .. 24

Selected Final Concept ... 27

Design Benefits .. 28

Design Drawbacks .. 28

4.2. Final Design Overview ... 28

4.2.1. Granite Subassembly .. 28

Granite Base Plate ... 29

Granite Parallel Gauge Blocks .. 29

Hardstop .. 29

Line Constraint .. 29

Gantry Linear Rails ... 29

4.2.2. X-Beam Leveling Actuator Subassembly .. 30

4.2.3. Gantry Actuator Subassembly .. 30

4.2.4. Housing and Electronics Subassembly ... 30

v

4.2.5. Gantry Subassembly ... 30

Gantry Top .. 30

Gantry Legs ... 30

Bearings and Bearing Attachment Plate .. 31

Heidenhain Probe and Housing ... 31

Screwdriver sub-subassembly ... 31

Rail Actuators .. 31

4.3. Detailed Design and Assemblies ... 31

4.3.1. Analysis ... 31

Gantry X-Axis Movement Actuator... 32

Linear Rail Actuator .. 32

Gantry Structural Analysis ... 32

Tolerance Stackup ... 33

X-Beam Leveling Actuator ... 33

4.3.2. Parts Selection and Design ... 33

4.3.3. Full Assembly Summary... 34

4.3.4. XBAS Functions .. 34

Assembling the X-Beam .. 35

Calibration .. 36

5. Manufacturing, Assembly, Programming, and Testing ... 36

5.1. Manufacturing ... 36

5.1.1. Manufacturing Plan .. 36

5.1.2. Part Job Planners .. 36

5.1.3. Manufacturing ... 37

5.2. Design Inspections .. 37

5.2.1. Parts Inspection ... 37

5.2.2. Safety.. 37

vi

5.2.3. Power Source ... 38

5.3. Assembly ... 38

5.3.1. Mechanical Assembly .. 38

5.3.2. Electrical Assembly ... 39

5.4. Programming ... 39

5.4.1. Programming Language and Board ... 39

5.4.2. Stepper Driver Codes .. 39

__init__(): ... 40

GoTo() .. 40

GetStatus().. 40

GoUntil() ... 40

ReleaseSW() .. 40

isStalled() .. 40

HardHiZ() .. 41

5.4.3. Programming Architecture .. 41

Class Quad_Encoder .. 41

task_share.py .. 41

Probe.Probe(Limit = False, UpperLimit = 0, LowerLimit = 0) .. 41

Probe.Home() .. 42

Import.Song() .. 42

Import.Calibration() ... 42

Import.BoltPattern() .. 43

Gantry.Move(Destination,Probe = False) .. 43

BeamActuator.Move(Destination,Probe = False) ... 44

5.5. Testing the Design .. 47

5.5.1. Survey Testing .. 47

Loading by User ... 48

vii

Learning Time ... 48

Ease of Use ... 48

5.5.2. Iterative Testing ... 48

Rail Straightness .. 48

Rail Parallelism .. 48

XBAS Speed ... 49

Rail Screw Torque .. 49

System Automation Reliability ... 49

5.5.2. Other tests .. 49

Error Conveyance .. 49

6. Management Plan ... 49

6.1. Administrative Roles ... 50

6.1.1. Communications Officer .. 50

6.1.2. Treasurer ... 50

6.1.3. Secretary ... 50

6.1.4. Manager.. 50

6.2. Subsystem Design ... 50

6.2.1. Structure Design Lead ... 50

6.2.2. Controller Software Lead ... 51

6.2.3. Controller Hardware Lead ... 51

6.2.4. Motor Implementation Lead .. 51

6.2.5. Manufacturing Lead .. 51

6.2.6. CAD .. 51

6.4. Key Events and Deadlines .. 51

6.5. Gantt Chart .. 52

7. Tear Down ... 52

7.1. What Worked... 52

viii

7.2. What Did Not Work and What Should Change ... 53

7.3. Proposed Solutions ... 54

8. What’s Next?.. 55

8.1. Necessary Adjustments for Full Functionality ... 55

8.2. Future Recommendations ... 55

References .. 57

Table of Appendices ... 58

Appendix A: Customer Requirements ... 62

Appendix B: QFD .. 63

Appendix C: Pugh Matrices .. 64

Appendix D Table of Contents .. 67

Appendix D1: Gantry X-Axis Movement Actuator.. 68

Appendix D2: Linear Rail Actuator Calculations .. 70

D2.1. Case 1 .. 71

D2.2. Case 2 .. 72

D2.3. Case 3 .. 74

Appendix D3: Gantry Structural Analysis .. 76

Appendix D4: Tolerance Stack up .. 89

Appendix D5: X-Beam Leveling Actuator .. 91

Appendix F: List of Subassembly and Parts Drawings .. 93

Appendix F1: Full Assembly .. 94

Appendix F2: Granite Subassembly ... 95

Appendix F3: Housing Subassembly .. 96

Appendix F4: Beam Actuator Subassembly .. 97

Appendix F5: Gantry Subassembly .. 98

Appendix F6: Gantry Actuator Subassembly ... 99

Appendix F7: Screwdriver Actuator Subassembly ... 100

ix

Appendix F8: Bearing Attachment Plate Configuration 1 ... 101

Appendix F9: Bearing Attachment Plate Configuration 2 ... 102

Appendix F10: Solenoid Pullout Pin ... 103

Appendix F11: Electronics Housing ... 104

Appendix F12: Gantry Leg Configuration 1 ... 105

Appendix F13: Gantry Leg Configuration 2 ... 107

Appendix F14: Gantry Probe Covering ... 109

Appendix F15: Gantry Top ... 110

Appendix F16: Gearbox Housing ... 113

Appendix F17: Granite Parallel Gauge Block Constraints .. 114

Appendix F18: Granite Plate ... 115

Appendix F19: Hardstop .. 118

Appendix F20: Leadscrew Raiser ... 119

Appendix F21: Line Constraint .. 120

Appendix F22: Leadscrew Raiser Drawing .. 121

Appendix G: Manufacturing Plan .. 122

Appendix H: List of Part Job Planners .. 123

Appendix H1: Bearing Attachment Plate Configuration 1 ... 124

Appendix H2: Bearing Attachment Plate Configuration 2 ... 125

Appendix H3: Gantry Leg Configuration 1 .. 126

Appendix H4: Gantry Leg Configuration 2 .. 127

Appendix H5: Gantry Top ... 128

Appendix H6: Hardstop ... 129

Appendix H7: Lead Screw Support Raiser ... 130

Appendix H8: Line Constraint ... 131

Appendix I: Gantt Chart ... 132

Appendix J: DVPR ... 133

x

Appendix K: Table of Inspection Sheets ... 134

Appendix K1: Bearing Attachment Plate Configuration 1 ... 135

Appendix K2: Bearing Attachment Plate Configuration 2 ... 136

Appendix K3: Gantry Top ... 137

Appendix K4: Hardstop .. 146

Appendix K5: Leadscrew Support Raiser .. 147

Appendix K6: Line Constraint ... 148

Appendix L: Electronics Basic Schematic .. 149

Appendix M: Bill of Materials ... 150

Appendix N: Electronics Diagram.. 153

Appendix O: Final Program Flow Chart List .. 154

Appendix O1: BeamActuator.Home() .. 155

Appendix O2: BeamActuator.Move() ... 156

Appendix O3: Gantry.Home() ... 157

Appendix O4: Gantry.Move().. 158

Appendix O5: Import.BoltPattern() ... 159

Appendix O6: ImportCalibration ... 160

Appendix O7: Import.Song() ... 161

Appendix O8: main.Assembly_Mode()... 162

Appendix O9: main.Calibration_Mode() .. 163

Appendix O10: main.ErrorHandler() .. 164

Appendix O11: main.Home() .. 165

Appendix O12: main.Leveling_Mode() ... 166

Appendix O13: main.Lights_Sound_Action() .. 167

Appendix O14: main.Sleep_Mode()... 168

Appendix O15: main.TorqueDown() .. 169

Appendix O16: Probe.Home() ... 170

xi

Appendix O17: Probe.Probe() ... 171

Appendix O18: RailAct.Move() .. 172

Appendix O19: RailAct.Home() ... 173

Appendix O20: setup.FileCheck() .. 174

Appendix P: Final Program Script.. 175

Appendix P1: BeamActuator.py .. 176

Appendix P2: encoder.py ... 180

Appendix P3: Gantry.py ... 182

Appendix P4: Import.py ... 186

Appendix P5: l4670nucleo.py ... 192

Appendix P6: main.py .. 204

Appendix P7: Probe.py .. 222

Appendix P8: RailAct.py ... 225

Appendix P9: setup.py ... 228

Appendix P10: task_share.py ... 237

Appendix Q: User Manual.. 239

Appendix R: Reference Documents ... 256

xii

List of Figures

Figure 1: The Design Process flowchart. .. 2

Figure 2: Micro-Vu Excel Machine. .. 3

Figure 3: The X-Beam in the Micro-Vu Excel machine. .. 3

Figure 4: FARO Laser Tracker for linear rail alignment. ... 5

Figure 5: Keysight 5530 Laser Calibration System setup ... 5

Figure 6: The Heidenhain Metro Probe’s section view. .. 6

Figure 7: Assembled X-Beam with labels. .. 14

Figure 8: Fixed position feedback actuator CAD model .. 19

Figure 9: Moving gantry with actuators and two sensors CAD model 19

Figure 10: Moving sensor gantry with fixed actuators CAD model.................................... 20

Figure 11: Moving beam with fixed actuators and sensors CAD model 20

Figure 12: Moving gantry with actuators and three sensors CAD model 21

Figure 13: Moving actuator and sensor gantry CAD model .. 21

Figure 14: Moving actuator and gauge blocks gantry CAD model 22

Figure 15: Moving actuator gantry with multiple fixed gauge blocks 22

Figure 16: Selected Concept CAD model. .. 23

Figure 17. Selected Final Concept. .. 27

Figure 18. Assembly of XBAS. ... 39

Figure D2.1. Linear Rail Actuator Calculation Diagram 1. .. 71

Figure D2.2. Linear Rail Actuator Calculation Diagram 2. .. 72

Figure D2.3. Linear Rail Actuator Calculation Diagram 3. .. 74

Figure D4.1. Schematic of tolerance stack up for beam to rail analysis showing beam 89

Figure D4.2. Schematic of tolerance stack up for beam to rail analysis showing rail 90

Figure D5.1. X-Beam Leveling Actuator Calculation Diagram. ... 91

xiii

List of Tables

Table 1. Engineering Specifications derived from customer requirements. 11

Table 2. Comparison of proposed specifications with current products 17

Table 3. Design Matrix for the XBAS project .. 26

Table 4. Summary of Analysis. .. 32

Table A1. Customer Requirements. ... 62

Table C1: Pugh Matrix of systems for moving the gantry or carriage along the x-axis 64

Table C2: Pugh Matrix of systems for adjusting the rails along the y-axis 65

Table C3: Pugh Matrix of systems for measuring and aligning the rails. 65

Table C4: Pugh Matrix of systems for torqueing the screws on the rail 66

Table C5: Pugh Matrix of gantry or carriage frame styles ... 66

Table D1.1. Calculated Time required to torque down the screws 68

Table D1.2. Calculated time spent making the gantry stop or go. 69

Table D1.3. Calculation of the velocity required to fulfill time constraint 69

Table D1.4. Calculation of motor rpm to fulfill velocity requirement 69

Table D2.1. Linear Rail Actuator Constant Values. .. 70

Table D2.2. Calculation of the force required actuator force output for Case 1 71

Table D2.3. Calculation of the force required actuator force output for Case 2 73

Table D2.4. Calculation of the force required actuator force output for Case 2 75

Table D4.1. Tolerance stack up results for beam to rail analysis for straightness 89

Table D4.2. Tolerance stack up results for rail to rail analysis for parallelism 90

Table D5.1: Calculation for the stroke length needed. .. 92

Table D5.2. Calculation of force output necessary to level the X-Beam 92

Table G1: List of Manufactured Parts ... 122

1

1. Introduction
The X-Beam Precision Rail Alignment project is a 2016-17 California Polytechnic State University of
San Luis Obispo (Cal Poly) Mechanical Engineering (ME) senior project sponsored by Micro-Vu,
producer of high precision measurement systems. Both Ian Davison, who represents Micro-Vu,
and Professor Eileen Rossman of the Cal Poly Mechanical Engineering Department at Cal Poly, will
oversee the project. The ME senior project advisors’ committee has selected three Cal Poly
students (Team X) to complete this project which will be presented at Cal Poly’s Engineering
Project Expo in Spring Quarter of 2017.

The goal of the project is to design, build, and test an automated machine for Micro-Vu that will
align a pair of rails to the necessary precision as to reduce manual labor and human error. This
paper will henceforth refer to this project as the X-Beam Alignment System or XBAS for short. This
report will relay relevant background research, explicitly state our objectives, and explain how we
plan to complete them.

2. Background
This section details information about Cal Poly’s ME Senior Project and our sponsor Micro-Vu,
especially what their problem is and what they are expecting of us. Additionally, this section has
information about existing products we found which could assist and expedite our sponsor’s
current process, helping solve their problem.

2.1. Senior Project
Cal Poly’s ME Senior Project is a three-quarter long project in which a team of students design,
source, manufacture, and test a prototype design in order to address their sponsor’s needs. In
Figure 1 is a flowchart depicting the design process and how the project is divided up over three
quarters for this Senior Project for Micro-Vu.

2

Figure 1: The Design Process flowchart. The base image of the
design process is courtesy of sciencebuddies.org. The edits are by
Robert Tam

2.2. Sponsor Background and Needs
Micro-Vu is a company that specializes in high accuracy and precision machines for measuring the
dimensions of parts, materials, and objects. Micro-Vu has a number of these machines for sale
ranging from non-contact visual comparators to contact probes that perform high precision 2D
and 3D measurements, namely the Micro-Vu Excel (Figure 2). Micro-Vu is an internationally
recognized brand; however, their machines are highly sensitive and their assembly can affect their
performance significantly. Micro-Vu has asked Cal Poly’s ME Senior Project Program to assist with
this issue, specifically helping with the assembly of their X-Beam and rails subassembly, which
Micro-Vu uses in many of their machines.

The X-Beam is an integral part of the Micro-Vu Excel series machines; an example of which is
included in Figure 3. It is on this beam that the gantry, consisting of measuring equipment, rides
on. The X-Beam is a steel tube that is machined to specific dimensions and then powder coated to
accommodate a pair of hardened steel precision linear rails and a linear encoder for the x-axis
motor. For the axis, please refer to Figure 3. For further information on the X-Beam and the
machines that use the X-Beam, please look at Reference [1].

3

Figure 2: Micro-Vu Excel Machine. The Micro-Vu Excel is one of their
best-selling precision measurement machines. It performs precise and
accurate measurements using a camera and light system.

Figure 3: The X-Beam in the Micro-Vu Excel machine.

Due to the low production yield of precision linear rail machines, a high-skill assembly technician
manually performs the alignment as these machines are ordered. During this process, Micro-Vu
technicians first constrain the X-Beam with a point and a line on top of a granite micro-flat table
that doubles as a datum for taking reliable measurements. Then the technician cleans the rail
surfaces and installs linear rails on either side loosely with the screws inserted in their holes. Next,
the technician checks the parallelism of the X-Beam itself to the micro-flat surface by running a
dial indicator across the linear encoder surface and adjusting the X-Beam until either end of the
beam reads 0 on the dial probe, disregarding sag in the center of the X-Beam. This measurement
has an added error of 0.5μm due to the dial probe’s resolution error. After this, the technician
torques the first screw on one end of the rail down so that the screw is about center to the center
hole of the rail. After that, the technician proceeds to torque down every other screw along the
rail, applying force to the top or bottom of the rail above the screw so that the dial probe reads

4

zero to the first screw. The reason why Micro-Vu has its technicians torque down every other
screw is to prevent the rail warping and creating high-order waveforms. The technician repeats
this process until the end of the rail and runs back along the beam, making sure the rail stays
within the ±1μm range. If not, the technician will loosen bolts from the point where the rail
deviates more than the tolerance all the way to the nearest end of the beam and repeats the
process of torquing the screws down. The technician then performs the same alignment for the
rail on the opposite side of the X-Beam. By decreasing the variation of height along the rails, he
ensures the rails’ parallelism inherently.

When we visited Micro-Vu on October 22, 2016, we assembled an X-Beam with the help of onsite
assembly technicians. While we took around 45 minutes to assemble the X-Beam, the technician
completed the assembly in five minutes due to years of experience. This highlighted to us that
while the speed of the machine will be important, the skill level involved in assembly of the beam
creates the biggest difference in time.

2.3. Existing Products and Specifications
Beyond Micro-Vu, many companies employ linear rails in their Computer Numerically Controlled
(CNC) systems. Due to the necessity for these systems to be aligned and the low production runs
of these companies, the methods applied generally involve manual correction of the rails while
measuring them. Team X has decided to compare various measurement systems with Micro-Vu’s
current process detailed above and our upcoming design.

2.3.1. FARO Laser Tracker
FARO has developed a laser metrology system that utilizes a secondary laser tracking
mechanism to measure the parallelism and positional tolerances of linear rail when it is set
up on a machine. This system is incredibly portable because the laser scanner is self-
contained and battery powered. This allows the user to transport the laser tracker unit
between various locations with ease. A demonstration of the rail is on Figure 4 displayed
on the next page. While this system is still relatively accurate for most CNC machines, the
accuracy of 150μm is simply not accurate enough for our system to use. Still, it is the
easiest to use, as it requires relatively no knowledge to run the tests. Refer to Reference
[4] for detailed information pertaining to the FARO Laser Tracker.

2.3.2. Keysight Technologies Interferometer
In terms of precision measuring, Keysight Technologies has a laser-based metrology
system currently on the market with impressive specifications, which makes it an ideal
competitor for our upcoming design. The Keysight 5530 Dynamic Laser Calibrator is used
to measure machine tool positioning accuracy for CNC lathes and mills with the use of a
laser that measures a broad variety of geometric dimensions and tolerances. This includes

5

straightness and parallelism, which are the two tolerances that our design must measure.
Although the process of collecting measurements for this device is automated, the process
of realigning the part being inspected still must be done manually with human interaction.
The general setup and usage of this device can be seen in Figure 5 on the next page.

Figure 4: FARO Laser Tracker for linear rail alignment. The blue cylinder
is the actual laser system while the device the subject in the photo is
holding is the other part of the system for measurement. This image is
courtesy of FARO.

Figure 5: Keysight 5530 Laser Calibration System setup for measuring
vertical straightness along the x-axis of a mill. This requires an
operator to adjust the part and/or laser precisely measure the

6

straightness using the Keysight 5530. This image is courtesy of
Keysight Technologies.

The data sheets provided from Keysight state that their product has a straightness
measuring resolution of 0.01μm for short ranges (0.1m - 3m) and 0.1μm for long ranges
(1m - 30m). These are extremely accurate tolerances that our design may not be able to
compete with, but our design will be much more automated in that the rail adjustment
process and possibly the screw tightening process as well will be completed with no
human interaction. Some other interesting key features about the Keysight 5530 Dynamic
Laser Calibrator that are good to take note of are portability with a lightweight of 5.5 kg
for the laser itself and laser reliability with a lifetime of 50,000 hours mean-time-between-
failures (MTBF). If needed, Reference [3] contains more information about the Keysight
5530 Dynamic Laser Calibrator.

2.3.3. Heidenhain Metro
While not directly related to rail precision, the Heidenhain Metro is well known in the
metrology industry as a reliable and accurate length gauge. In function, the MT60 Probe is
similar to a dial indicator, but displays its values via an electrical signal to an LCD. Figure 6
below details the internal workings of the Metro length gauge which allow for such
accurate measurements such as the ball-bush guide that allow for these measurements.
While the gauge is small and accurate, it still requires an operator to correct the rail and
move the probe to each point along the rail.

Figure 6: The Heidenhain Metro
Probe’s section view. It should be
noted that this system is just the
sensor for measuring rails; the user is
still required to correct the
measurements. This image is courtesy
of Heidenhain

7

The datasheets provided by Heidenhain state that the Metro has a positional tolerance of
0.2μm for all distances the plunger is actuated to. Some of the advantages of the
Heidenhain Metro include its reliable measurements, its small footprint, and its ease of
use for measuring. Further data can be found in the data sheet in Reference [4].

3. Objectives
This section details the problem presented by Micro-Vu, their wishes as well as the engineering
requirements we derived from their requests, our research, and careful considerations.

3.1. Problem Statement
Technicians at Micro-Vu need a high precision way to automate the assembly and validation of
their X-Beam because the current process is time consuming, manual, and inconsistent.

3.2. Customer Requirements
As this is a project for Micro-Vu, there are several requirements and requests that they asked us to
complete. For a comprehensive list of Micro-Vu’s requests and wishes, please refer to Appendix A.

3.2.1. Rails Must Be Straight
The first requirement specified by the customer is that the rails must be straight to some
tolerance. Specifically, when measured from the granite flat top surface datum that the
rail is assembled upon, there cannot be a change in elevation at any point from one end of
the rail to the other greater than the defined amount which is further discussed in Section
3.3.1.

3.2.2. Rails Must Be Parallel to Each Other
The next customer requirement is that the rails are parallel. This requirement is
paramount to the customer as the rail parallelism affects the bearing’s lifetime, machine
accuracy, and the time needed to assemble the camera and Z-axis assembly onto the X-
Beam.

3.2.3. Automated Rail Alignment
The third requirement by Micro-Vu is that we design and prototype an automated system
to align the rails. This is because currently the process is time consuming as detailed in

8

Section 2.1: Sponsor Background and Needs.

3.2.4 Automated Torqueing of the Screws
This was not a requirement set forward by Micro-Vu as Micro-Vu is primarily interested in
the rail alignment system. That said, Micro-Vu has stated that it would appreciate it if we
could add a feature to our automation of the rail alignment to tighten and torque the
screws.

3.2.5. Fast
Another of Micro-Vu’s wishes is that the machine operates within reasonable limits. While
they would be very happy with the XBAS performing as fast as or faster than their
technicians do (five to six minutes), Micro-Vu is happy if the machine takes “10 to 15
minutes” as that would allow an operator to walk away and complete other tasks during
that time.

3.2.6. Low-Skill Level
Another requirement that Micro-Vu has is to lower the skill level required for the
alignment of the rails on the X-Beam. This requirement is mentioned in the previous
section about the speed of the machine in that Micro-Vu would like to remove this
assembly from the list of activities their technicians must complete. Lowering the skill level
of aligning the rails would allow a technician to do more important tasks, leaving the
operation of the XBAS to an intern for example.

3.2.7. Must Fit on a Table
While Micro-Vu mentioned that they do have room in their assembly area for the XBAS,
they did say that they prefer it not take up floor space. This is because Micro-Vu has many
other machines, parts, and materials to store as well as a lot of foot traffic. Therefore, they
would like the completed XBAS to sit on a table and out of the way.

3.2.8. Must have a Length to Accommodate X-Beam
This requirement states that the XBAS must be able to work only for their 500mm X-Beam.
While Micro-Vu did mention that they might scale up the XBAS to fit their larger X-Beams
and possibly even convert the system to work with their Z-beams, they decided that those
goals were outside of this project’s purview.

3.2.9. Scalability
As previously mentioned, if the XBAS performs well Micro-Vu may use the design and

9

extrapolate it to fit their other X-Beams. This was hinted to us and as such we have added
it here as Micro-Vu’s wish for us to design the XBAS in a way that would make future
attempts to scale the XBAS up easy or downright obvious.

3.2.10. Must Use Power Available at the Site
Micro-Vu says that the site they will place the XBAS in has access to both shop air and
electricity. It is an implied requirement that our machine uses those resources, as it would
save Micro-Vu trouble maintaining the XBAS. This is a requirement.

3.2.11. Beam Must Be Sufficiently Constrained
This requirement states that our setup must fully restrain the X-Beam during the process
of aligning the rails via kinematic restraints. This is to ensure accurate and precise
measurements.

3.2.12. Basic Safety
Our sponsor has stated that the machine must maintain the same level of safety as
traditional manufacturing machines so that a trained technician can use the XBAS with
minimal risk. To elaborate, the technician should face no direct hazards to their health or
wellbeing if the technician has been informed of the XBAS’ hazards and the proper use of
the machine.

3.2.13. Must Convey Error to Operator
Another wish is some sort of error signal conveyed to the operator via a visual or auditory
que when the machine encounters a fatal error that prevents it from completing the X-
Beam’s assembly.

3.2.14. Reusable
This is an implied requirement that the machine must be able to work many times. We
decided to quantify the prototype’s lifetime once we started working on the engineering
specifications.

3.2.15. Repeatable
As the XBAS is to be an automated process, it is implied that the XBAS must be repeatable.
In other words, the machine must be able to achieve the same accuracy in alignment and
parallelism repeatedly.

10

3.2.16. Cost
The last of the customer requirements, which we received from Micro-Vu, was an
estimation of the funding. Of course, it is a true requirement that we spend within the
budget set forward for us by Micro-Vu.

3.3: Engineering Specifications
From the customer requirements detailed above, we determined a few engineering specifications
that characterize the most important of the customer requirements. Below, we will detail each of
these engineering specifications. This entails three things.

First, each specification has a target and tolerance that the machine should achieve. Second, each
specification is assigned a risk rating of high, medium, or low-risk parameter depending on how
important said parameter is to Micro-Vu and the design of the XBAS. Finally, we will name how we
will verify that the XBAS has reached its target within tolerance which is also called compliance.
Additionally, in Table 1 on the next page, we have tabulated and summarized engineering
specifications and their risk levels and compliance.

11

Table 1. Engineering Specifications derived from customer requirements. From left to right, there
is the specification number, the parameter, the requirement, the tolerance, the risk, and the
compliance. Risk is denoted with H, M, or L for High, Medium, and Low respectively and
represents the importance of the parameter to the design. Compliance is denoted as an A, I, T, or S
that stands for analysis, inspection, testing, and similarity respectively. Compliance is how we will
validate the parameters to check whether or not they reach target within tolerance.

Spec Parameter Requirement or Target Tolerance Risk Compliance

1 Straightness Rails must be straight ±1μm H I

2 Parallelism Rails must be parallel to each other ±1μm H I

3 Automated Minimal to no human interaction. n/a H T

4 Automated Torqueing of
the Screws

Torque the screws with no human
interaction to 2Nm

±0.2Nm L T

5 Fast Rails should be installed within 15
minutes

maximum M T

6 Low-Skill Level 10min needed to teach new technician maximum M T/S

7 Must Work on Table 2m x 1.2m x 0.9m table with a 1.83m
gap between the table and ceiling

±0.25m M I

8 Must Fit X-Beam 150mm x 895 mm, 33.5kg beam minimum M I/A

9 Must Use Power at the
Given Location

Electricity: 110V, 220V,
Air: 100-115 psi

n/a L A

10 Beam Must be
Constrained

Constrained n/a H I

11 Must be Reusable five years lifetime Minimum
one year.

M A

12 Repeatable 99.95% reliability ±0.05% M T

13 Cost $6000 ±$1000 M I

14 Loading OSHA and NIOSH standards n/a M I/T

12

3.3.1. Straightness
Rail straightness is a high-risk parameter. In fact, among all our specifications, it is second
only to the parallelism between the two rails for Micro-Vu. As previously stated, from one
end of the beam to the other, the change in elevation cannot exceed ±1μm. This will be
checked via inspection of the full assembly of the X-Beam and rails after the XBAS has
finished putting them together using Micro-Vu’s current setup to run dial indicators across
the rail’s length to check that the rail straightness is within tolerance.

3.3.2. Parallelism
Rail parallelism is the other high-risk parameter. This matter is of huge concern for Micro-
Vu; however, they do not have a way of measuring this currently. We propose to measure
both rails at the same time and make sure that the measurements are within ±1μm. Rail
parallelism will be checked via inspection similarly to straightness using a pair of dial
indicators at the same time and make sure that the measurements do not vary from each
other by more than the tolerance.

3.3.3. Automated Rail Alignment
Our third specification is that the XBAS must receive minimal to no human assistance after
the operator has cleaned and placed the X-Beam, rails, and screws in their respective
initial positions. This does not include instances where a critical error has occurred at
which time an error signal will notify the operator asking for assistance. The automation
will be checked for compliance by testing the XBAS via multiple runs. This is a high-risk
specification.

3.3.3. Automated Torqueing of Screws
The manufacturer data sheet for the rail and bearings has stated that a good torque for
the screws would be about 2Nm. We initially estimate that this has a tolerance of ±0.2Nm.
We will check that the XBAS can torque screws to the target via testing as it goes hand in
hand with testing the automation of the rail alignment. This is a low-risk specification as it
is not required by Micro-Vu. Further information and a datasheet on each rail can be
found in Reference [5]

3.3.4. Fast
This is a medium-risk rated specification that describes how fast the machine should
operate. An experienced Micro-Vu technician can take five minutes to align rails to the X-
Beam while it took inexperienced users 45 minutes to complete a fraction of what the
technician was able to do. While Micro-Vu understands that we will not be able to
automate this process to finish within five minutes, they do expect that the automation

13

process not take “a long time”. The goal is the machine to finish assembling the X-Beam in
less than 15 minutes. This will be checked by testing along with both automation
processes.

3.3.5. Low-Skill Level
Currently, our goal for skill level is to make the machine an easy to use automated process,
which should take no more than 15 minutes to teach to a new engineering intern at Micro-
Vu. This can be checked for compliance in one of two ways. First, we can test this
specification by asking several Cal Poly students to participate in an experiment in which
we teach them how to run the machine in a set time and ask them to run the machine. We
would see how many students can run the machine with no assistance past the first
lesson. The second method is to compare the XBAS to other devices in terms of complexity
and user skill. This is a medium rated risk specification due to the arbitrary nature of which
the compliance is validated.

3.3.6. Must Work on a Table
This specification has been rated as a medium-risk specification as we have the option of
designing the XBAS to sit on the floor. However; we have chosen to design the XBAS to fit
on a table at Micro-Vu, which is about 2m in length, 1.2m in width, and .9m tall with a
working space about 1.8m tall between the table surface and ceiling. Another part of this
specification is that the XBAS cannot exceed the weight limit of the table, the value of
which has yet to be determined. The size of the XBAS will be checked by inspection of
whether or not the machine can sit on the surface of a table with the given dimensions.
The weight of the XBAS will be tested by analysis of the table

3.3.7. Must Fit the X-Beam
The 500mm X-Beam actually refers to the length of the beam that the gantry with the
measuring device runs. The beam itself is 895mm long, 149.15mm wide, and 99mm tall. In
addition to accommodating the dimensions of the X-Beam, we also are adding an
additional specification that the XBAS must be able to support the X-Beam’s mass of
33.2±0.5kg. This specification is rated as a medium-risk spec. Compliance will be checked
by inspection of if the XBAS fits around the 500mm X-Beam and by analysis to check the
XBAS can hold the X-Beam.

3.3.8. Must Use Power Available at the Site
Micro-Vu has access to both 110V and 220V AC voltage outlets and 100-115 psi shop air.

14

Our design should be able to use one of these power sources to run itself for Micro-Vu’s
convenience. Validation of this low-risk specification will be analysis of the design,
checking the various parts and circuits for compatibility with the chosen energy source.

3.3.9. Beam Must Be Constrained
This is a high-risk specification as the constraining of the beam has a significant effect on
the alignment of the rails. For fully constraining the X-Beam, we propose using the same
set-up as Micro-Vu shown on the below in Figure 7. This consists of the line and point
restraint, to restrain the X-Beam, constraining the X-Beam in three directions; linear
translation in the y-axis, rotation about the x-axis, and rotation about the line created by
the line restraint. Additionally, we will add two more point restraints to restrain and
prevent linear translation and rotation of the X-Beam in the z-axis. This would allow us to
ensure that the probes, which would replace the dial indicators in Figure 7, remain on top
of the rail. The set-up of the X-Beam’s constraints will be checked via inspection of the
XBAS’s setup.

Figure 7: Assembled X-Beam with labels. The X-Beam with rails and
bearings affixed in its three-dimensional constrained setting used by
Micro-Vu during assembly.

3.3.10. Basic Safety
In terms of safety, we aim to make the XBAS no more dangerous than a 3D printer. This is
because the XBAS will definitely have pinch points and moving parts. That said, the XBAS
should prove to be much safer than many shop machines that Micro-Vu owns, so we

15

believe it will not be required to follow as many regulations as a CNC machine for
example. This is a medium-risk specification and will be checked via a thorough inspection
for hazards on the XBAS.

3.3.11. Lifetime
Our goal is for the XBAS to have a lifetime of five years and one-year minimum without the
need to replace parts. This is a rated as a medium-risk specification and will be checked
through analysis.

3.3.12. Reliability
In the spirit of Micro-Vu, we want this machine to be repeatable with a reliability of
99.95% over the course of its lifetime. This has a medium-risk rating and will be validated
through testing.

3.3.13. Cost
This is a medium-risk specification as Micro-Vu has expressed that we have some play
room with the budget they gave us as they prioritize functionality over cost. Currently our
budget is $6000 with maybe a $1000 margin to play with.

3.3.14. Loading
The X-Beam is a heavy and large piece of steel, and this is the smallest one they have. As
such, the XBAS must be easy to load for average employees. For this specification, we will
be following the standards set forward by both NIOSH and OSHA. We consider this a
medium-risk specification as we do not wish our machines to cause health issues and we
will check this through both inspection and testing.

3.4. Quality Function Deployment
We used Quality Function Deployment (QFD) to refine our requirements. QFD is a method used to
quantify customer requirements, evaluate existing products, determine engineering specifications,
and assess the relative importance of each objective. The QFD process is represented graphically
by a chart known as a “house of quality” which can be seen in Appendix C. Building a QFD diagram
allowed us to systematically develop engineering specifications that can be measured in order to
ensure that a product meets customer needs. Our QFD generated a comparison between current
rail alignment systems from competitors and Micro-Vu and our rail alignment system.

3.5. Comparison of Specifications
On the next page in Table 2 we compared our proposed engineering specifications with those of
the existing products discussed earlier. This will allow us to benchmark our design against

16

established products while developing unique solutions to satisfy our engineering specifications.
By comparing our design to others with engineering specifications, we can generate a relatively
accurate rating system for the relative importance of various features.

17

Table 2. Comparison of proposed specifications with current products

Competitor Cost
Accuracy

(μm)
Speed

(cm/hr)
Automation Ease of Use

FARO Laser
Tracker

$80,000-
$120,000

150 Instantaneous
Requires user
to correct rail
straightness.

User places machine
down on floor and runs

the test.

Keysight
Technologies

Interferometer
$7,000 0.1 Instantaneous

Requires user
to correct rail
straightness.

User must set up system
according to specified

requirements.

Heidenhain
Metro

$500 0.3 50
Requires user
to correct rail
straightness.

User must understand
how to read signal from

sensor.

Project
Proposed

Specs

$5,000-
$6,000

2 600
Runs without
user contact.

User has no input to
machine once it runs.

4. Design Process
This project will be completed by following a formal design process that consists of planning,
design, and production phases. Fall quarter of 2016 focused on planning and ideation. Winter
quarter of 2017 consisted of detail design, design so that we can order parts.

4.1. Ideation and Selection of Design
Ideation and selection of design is a long process which took the majority of our fall quarter to
complete. The process involves defining the problem, doing background research, specifying
requirements, and brainstorming potential solutions. The research and work for the first three
blocks can be reviewed in Sections 4.1.1. to 4.1.3. Here, we will detail the bulk of the work done
this quarter which was brainstorming and choosing a design concept as our final design which is
covered in 4.1.4.

4.1.1. Concept Generation
Over the course of two weeks, we had three sessions in which we generated ideas for the
XBAS. This included a number of different brainstorming methods and simple prototyping.

Brain writing

Brain writing is a process for generating ideas in which each member writes down their

18

own ideas separately. After a certain amount of time, each member passes his or her ideas
onto the next member, expanding on their team member’s ideas or generating new ones.
This allowed us to develop a huge quantity of designs that we could evaluate later on.

Brainstorming

Brainstorming involved the group discussing and developing new ideas as a group as
opposed to brain writing where the ideation process was mostly done in silence on paper.
Brainstorming allows team members to bounce ideas off of each other quickly, helping
each other think of the problem in new, innovative ways.

SCAMPER

SCAMPER is an acronym which stands for Substitute, Combine, Adapt, Modify, Put to
another use, Eliminate, and Reverse. This process is a tool to look at a problem and/or
solutions from different angles. For example, substituting one system for another,
combine system functions, changing the system orientation, and so forth.

4.1.2. Design Concepts
Over the course of the concept generation, we came up with a lot of ideas. We condensed
these ideas down to eight design concepts detailed below. The following figures have
been color-coded to assist with component visibility: green refers to the position sensors
used while yellow refers to the linear actuators that move the gantry in the x-direction
(along the length of the beam). Red refers to the linear actuators that move the linear rail
in the y-direction.

19

Design 1. Fixed Position Feedback Actuators

This design involves the X-Beam placed in a fixture where position feedback actuators are
used every other screw. A single touch probe runs the length of the beam measuring the
displacement of the linear encoder surface, allowing the actuators to correct the rail
position to be parallel to the encoder surface. A SolidWorks CAD model of this prototype
has been included below (Figure 8).

Figure 8: Fixed position feedback actuator CAD model

Design 2. Moving Gantry with Actuators and Two Sensors

This design features a U-shaped gantry that moves the length of the X-Beam and corrects
the rail height by measuring the position with the touch probes mounted above the linear
actuators. One of these touch probes would rotate up at first to measure the linear
encoder strip surface, reducing the number of sensors required. The CAD work is below in
Figure 9.

Figure 9: Moving gantry with actuators and two sensors CAD model

20

Design 3. Moving Sensor Gantry with Fixed Actuators

This design features a U-shaped gantry that moves the length of the X-Beam and corrects
the rail height by measuring the position with the touch probes mounted above the linear
actuators. One of these touch probes would rotate up at first to measure the linear
encoder strip surface, reducing the number of sensors required. The design can be seen in
Figure 10 on the next page.

Figure 10: Moving sensor gantry with fixed actuators CAD model

Design 4. Moving Beam with Fixed Actuators and Sensors

Design 4 (Figure 11) moves the beam through a fixed structure to measure the
displacement of the linear rail and correct itself using fixed actuators and touch probes.

Figure 11: Moving beam with fixed actuators and sensors CAD model

Design 5. Moving Gantry with Actuators and Three Sensors

Design 5 (Figure 12) functions identically to Design 3 by having actuators on a moving

21

gantry except that it uses three sensors instead of two, increasing the rigidity of the
system.

Figure 12: Moving gantry with actuators and three sensors CAD model

Design 6. Moving Floating Sensor Gantry

We designed the moving floating gantry to traverse the beam by simply correcting the
rails to the linear encoder surface, eliminating the need to align the beam or use the
granite table. The design’s CAD model is below in Figure 13.

Figure 13: Moving actuator and sensor gantry CAD model

22

Design 7. Moving Actuator Gantry with gauge Blocks

Two of our designs (Figures 7 and 8) use gauge blocks instead of touch probes to achieve
the positional tolerance required for this project. Design 7 has gauge blocks attached to
the moving actuator gantry, allowing the actuators to press the linear rail to be parallel
with the micro-flat table. The design is below in Figure 14.

Figure 14: Moving actuator and gauge blocks gantry CAD model

Design 8. Moving Actuator Gantry with Fixed Gauge Blocks

Design 8 uses gauge blocks positioned under various points of the linear rail to ensure the
rail is straight when the moving actuator gantry pushes the linear rail down onto the
gauge blocks. This forces the linear rail to be parallel with the micro-flat table. The design’s
CAD model is below in Figure 15.

Figure 15: Moving actuator gantry with multiple fixed gauge blocks

23

Design 9. Fixed Actuators with Probes and Gantry

Design 9 features two fixed actuators at the ends of the rails. These actuators adjust the
rails using a position feedback control system using two probes which move along the rails
via a gantry.

Figure 16: Selected Concept CAD model. This is the fixed end, fixed Actuator,
U-gantry design constructed and rendered in SolidWorks.

4.1.3. Idea Selection
This section talks about how we selected our ideas. This includes the meeting we had with
our sponsor, the QFD, Pugh matrices, and design matrices.

Sponsor Meeting

Our sponsor proposed meeting during the ideation phase of our project once we had
narrowed our ideas to five main designs so that we could discuss alternate ideas and
comments to further our idea selection process. This was an informal video conference
where we presented CAD models of our main designs and explain their basic functions and
setups with our sponsor and one of his co-workers. We obtained valuable feedback from
our sponsor regarding what they speculated to be the strengths and weaknesses of each
design. This not only narrowed down the list of ideas that we had, it also brought up new
ideas that our sponsor suggested we consider, such as using a single long gauge block to
assist in precisely aligning the rails similar to design 8 in section 4.1.2. This meeting with
our sponsor allowed us to continue with our ideation process as we grew closer to
evaluating our designs in greater detail.

24

Pugh Matrices

Pugh Matrices are invaluable design tools that allowed us to evaluate the various
functions of different designs with reference to a datum. We created Pugh Matrices for
each function of our design and compared various ways to accomplish these functions to
the current setup and method that Micro-Vu uses to align linear rails. Our Pugh Matrices
can be viewed in Appendix C where we developed a Pugh Matrix for each function. The
functions that we examined include x-direction movement, y-direction movement,
measurement, screwdriver, and gantry style. Each function had a unique set of concept
options that were analyzed for different criteria. Criteria that were evaluated for each
function’s concept options include rigidity, repeatability, speed, scalability, projected cost,
complexity, ease of maintenance, and a few other criteria since it varied for each function.
Each function had several concept options that were given either a “+”, “-“, or “S” for each
criterion. The “+” means that the concept option performed better than the datum for
that criteria, the “-“ means that the concept option performed worse than the datum for
that criteria, and the “S” means that the concept option performed roughly the same as
the datum for that criteria. To summarize our results for each function, it appears that
using ball and leadscrews will be the best option for moving the gantry in both the x and y
directions. For obtaining precise measurements, it seems that both gauge blocks and
touch probes can be viable options. Either the screwdriver will be an automated torque
feedback controlled screwdriver or a DC motor with torque screw since they both
performed well in the matrix. We also noted the gantry style would have to be a U shape
going over the x-beam. The results from these Pugh Matrices were then used to finalize
our designs even further so that we could then generate complete system designs to
analyze.

Design Matrix

After our Pugh matrices, we developed a design matrix to compare all our system designs
with each design specification. This allowed us to evaluate each design in complete detail
so that we could narrow it all down to one final design. The design matrix is on the next
page in Table 3.

The first column on the left is the list of design specifications that we rated the designs
against when scoring them. The second category to the right of the design specifications is
“Weight” in which we scored each specification on a scale from 1 to 5, averaging each
person’s input (left column) and normalized that value (right column).

Then we took an average of each person’s rating from 1 to 5 on each design for each
specification where 1 is the worst and 5 is the best. After that, we multiplied the score by
the normalized weight and summed each design’s total score displayed on the bottom row
of the matrix.

25

There were many considerations; however, these are the highlights. Systems that include
a moving gauge block or actuator introduce another degree of freedom and source of
error. As such, these designs scored badly on measurement validity.

Systems using gauge blocks scored badly, especially in the areas regarding maintenance.
This was because we found the idea of having to validate the gauge blocks themselves at
regular intervals to be undesirable. This is especially true for designs that have multiple
gauge blocks on either side of the beam as this would require a large amount of work to
validate all the blocks, a task with exponentially scaling difficulty as the X-Beams increase
in length.

Finally, systems that use arrays of measurement systems scored low with regards to cost.
As previously stated, multiple gauge blocks under the rails on either side of the X-Beam
would cost a lot in terms of time, but also money as they would have to be replaced on
top of the initial cost of buying ten or more gauge blocks of the necessary accuracy. This is
why the “multiple gauge blocks” design did so poorly in the cost category.

Similarly, the position feedback actuator array design would cost a lot in the beginning to
buy all the actuators and, while they won’t need to be replaced or checked as often, they
will take more time to program. That is why this design scored so badly in both cost and
complexity of assembly.

In conclusion, the design with the highest score was the fixed end, fixed actuator, U-gantry
with a score of 4.271. The fixed end, moving actuator, U-gantry was close by achieving the
second highest score with 4.045. The other three system designs scored poorly with scores
below 4.

26

Table 3. Design Matrix for the XBAS project

Design Specifications Weight

System Designs

Fixed end,
Fixed

Actuator, U-
gantry

Fixed end,
moving

Actuator, U-
gantry

Multiple
position
feedback
Actuator

array

Singular
gauge Block

and Actuator
moving on a

gantry

Multiple
gauge Blocks
with moving

Actuator

Measure Straightness 5.000 0.170 5.0 4.3 4.8 3.7 4.0

Measure Parallelism 5.000 0.170 5.0 4.3 4.7 3.7 3.3

Speed of Task
Completion

2.667 0.091 3.3 2.8 3.8 3.5 4.0

Properly Constrains
Beam for valid
measurements

4.000 0.136 5.0 4.3 5.0 3.8 3.7

Scalability for beams
of different lengths

1.667 0.057 3.3 4.5 1.5 4.0 2.3

Ease of Loading 3.333 0.114 4.0 4.3 3.3 3.3 3.0

Projected Cost
estimated by number
of actuators, probes,
and motors needed

1.333 0.045 4.3 4.3 1.7 4.3 3.2

Complexity of
Assembly

4.000 0.136 3.0 3.8 2.0 4.0 3.7

Ease of Maintenance 2.333 0.080 4.2 3.2 4.0 2.2 1.0

Sum 1.000 4.271 4.045 3.780 3.612 3.311

27

Selected Final Concept

After much deliberation, we decided that, despite our design matrix evaluation, the best
design would be to use a single gauge block for each rail and have a moving gantry to
press the rails down on the gauge block. This concept can be seen below in Figure 17. We
chose this design due to the fact we believed our previous analysis did not reflect the
simplicity and ease of execution for this design. Additionally, several assumptions we had
made, such as the gauge block lifetime, were wrong and corrected during meetings with
our sponsor and other consultations. As such, we chose to use a design that used gauge
blocks under the rails for aligning the rails.

Figure 17. Selected Final Concept. This design uses fixed gauge blocks that the rails are pressed
onto to achieve tight enough tolerances.

28

Design Benefits

The number one benefit of our chosen design is simplicity. This system is simpler than the
other system in terms of assembly, programming, and it has lower in costs because it has
less expensive parts. For example, our selected design has one probe whereas most others
have two to three. These probes cost over $3000 each, so reducing the number used went
a long way to reducing costs.

Additionally, less complex and sensitive parts such as the probes means less chance of
failure.

Another benefit of this design makes it that it is easy to confirm the rails are both straight
and parallel to each other due to the fact that the rails are parallel by virtue of the two
gauge block top surfaces are manufactured to be parallel to each other. This means that to
straighten the rails, we only need press them down onto the gauge block surfaces. This in
turn leads to another benefit which is ease of programming since we don’t need to add a
micro controller to check the position of the rail to ensure straightness.

Design Drawbacks

The first major drawback of the design is calibration of various parts. The gantry rails must
be measured so any variation in the y direction can be calibrated out of the X-Beam’s
leveling. We plan to design the machine to have two set ups, one for calibrating, and the
other for assembling the X-Beam.

Another part that needs to be calibrated is the gauge blocks which must be checked and
changed out as they degrade. This is not a huge issue though as the granite gauge blocks
are checked monthly.

4.2. Final Design Overview
The XBAS is broken down into five subassemblies. In this section, we will talk about each
subassembly, sub-subassembly, and part of interest. For the drawing depicting the full XBAS
assembly drawing as well as drawing for all mentioned parts and assemblies, please refer to
Appendix F: Table of Subassemblies and Parts Drawings. The XBAS loaded with the X-Beam can
also be viewed in Figure 17: Selected Final Concept.

4.2.1. Granite Subassembly
The purpose of the granite subassembly is to act as the base and datum for measurements
for the XBAS. This subassembly consists of the XBAS’s base which is comprised of a granite
block or base plate, two granite parallel gage blocks, a hardstop, a line constraint, two
linear rails, and around 60 bolts.

29

Granite Base Plate

The granite base plate is a large 1050x400x100 mm block of granite which serves as the
base of the XBAS and the datum for which all measurements are taken; ensured to be
within a micrometer by a flatness tolerance of 0.005 micrometers. The granite is
GRANITE_JINAN_BLACK, GRADE_0_JB/T7975-1999.

Granite Parallel Gauge Blocks

The granite parallel gauge blocks are made to have parallel top and bottom as well as
parallel to each other with a surface finish of 0.001 micrometer. This allows us to create a
verifiable datum on the top of both granite parallels based on the granite base plate,
allowing for accurate results when the rail is straightened against the granite parallels. The
granite is GRANITE_JINAN_BLACK, GRADE_0_JB/T7975-1999.

Hardstop

The hardstop is a part we will be manufacturing ourselves from stock metal rods. Its
purpose is to support the X-Beam after loading and protect the X-Beam leveling actuator
from unnecessary until the XBAS begins to run or impact from the X-Beam as the user
loads the XBAS. This will improve the lifetime of the X-Beam leveling actuator. The plan for
manufacturing the hardstop can be seen in section 5.1. The hardstop will be made of
Aluminum 6061.

Line Constraint

The line constraint is a small half cylinder piece meant to replicate a line in supporting the
X-Beam. The line constraint, in conjunction with the point constraint provided by the X-
Beam actuator, kinematically and fully constrains the X-Beam, ensuring accurate
measurements. The line constraint is a part we plan to make; the description of our
manufacturing plan can be seen in section 5.1. The line constraint will be made of
Aluminum 6061.

Gantry Linear Rails

The linear rails in the granite subassembly are not to be confused with the rails on the X-
Beam and as such will be referred to as the gantry linear rails. The gantry’s linear rails
were chosen for their high reliability, low friction, and Micro-Vu’s familiarity with IKO rails.
These rails we be made of carbon steel.

30

4.2.2. X-Beam Leveling Actuator Subassembly
The X-Beam leveling actuator subassembly consists of stock parts from Misumi and it has
two purposes. The first is to act as a point constraint and constrain the X-Beam in
conjecture with the line constraint mentioned in section 4.2.1. This subassembly's second
purpose is to lift and lower the end of the X-Beam and level the X-Beam in conjunction
with the Heidenhain MT-60M Probe on the Gantry Subassembly (see section 4.2.5). This
subassembly consists of a non-captive rail and NEMA14 motor supported by an L-Bracket,
double bushing bearing, and precision linear shaft.

4.2.3. Gantry Actuator Subassembly
The gantry actuator subassembly was designed to move the gantry back and forth along
the X-Beam. It consists of all stock parts from Misumi, consisting of a NEMA23 Motor,
flexible coupling, double stepped linear screw, linear rail end support, anti-backlash nut,
and a part we machine called the Leadscrew raiser. Calculations and analysis were
discussed in section 4.3.2 while the manufacturing plan for the lead screw raiser can be
found in section 5.1.

4.2.4. Housing and Electronics Subassembly
The housing’s purpose is to provide an area for the gantry to be stored for protection as
well as provide area to mount electronics such as the processor, power supply, buttons,
and indicators.

4.2.5. Gantry Subassembly
The gantry subassembly carries a number of parts in order to fulfill its purpose which is
measuring and straightening the X-Beam and rails. This subassembly consists of a number
of parts, starting with a three-part frame, bearings and their attachments, MT-60
Heidenhain probe and housing, screwdriver subassembly, and rail actuators.

Gantry Top

The top of the gantry is where the actuators and probe will be fixed to. Calculations for the
deflections, stresses, and fatigue lifetimes are all in the relevant section of section 4.3.1.

Gantry Legs

The gantry legs connect the gantry top part to the bearings, bearing attachment plates,
and gantry rails mentioned in the next paragraph. One of the gantry legs is also connected
to the gantry actuator’s anti-backlash nut.

31

Bearings and Bearing Attachment Plate

The bearings are matched to the gantry’s linear rails, allowing the gantry subassembly low
friction guided movement. The bearing attachment plates will be manufactured by us and
are used to connect the bearings to the bottom of the gantry legs.

Heidenhain Probe and Housing

The Heidenhain probe is a MT-60M Metro probe used in conjunction with the X-Beam
leveling actuator to level the X-Beam to the granite base plate. It is protected by bent
sheet metal due to its importance.

Screwdriver sub-subassembly

The screwdriver sub-subassembly consists of a number of stock parts including gears, a DC
motor, solenoids, and a friction slip plate torque limiter. This assembly only has two parts
we manufacture, the solenoid pins and the gearbox housing. Details for the manufacturing
can be found in section 5.1.

Rail Actuators

These are the actuators used to press the linear rails of the X-Beam down into the granite
parallels, straightening them. Calculations used to spec them can be found in section 4.3.1.

4.3. Detailed Design and Assemblies
After the selection of our design, we went onto doing calculations, analysis, and sourcing parts

from various suppliers. This section summarizes the mentioned subjects.

4.3.1. Analysis
Below are the results of the different major analysis we did. These calculations were for

checking the design’s feasibility as well as for sizing parts which is discussed further in the

section 4.3.2. Additionally, below in Table 4 is a summary of our analysis.

32

Table 4. Summary of Analysis. This table summarizes the results of the analysis listed
on the left column and lists the Appendix where the calculations can be found.

Analysis Result Appendix #

Gantry Actuator Motor Speed 430 rpm D1

Linear Rail Straightening Actuator Force Output 417 N D2

Gantry Deflection Analysis 0.88 μm D3

Gantry Plastic Deformation None D3

Gantry Fatigue Analysis Infinite Life D3

Tolerance Stack up 0.1mm D4

X-Beam Leveling Actuator Force Output 167 N D5

X-Beam Leveling Actuator Stroke Length 5 mm D5

X-Beam Leveling Actuator Resolution 0.1 μm D5

Gantry X-Axis Movement Actuator

The actuator for driving the motor as well as the lead screw used was calculated using the

time design specification of completing the X-Beam assembly in 10 minutes as the defining

factor. A sample calculation is shown in Appendix D1. In summary, for a lead screw with a

2mm step and a NEMA23 triple stack motor with a 1.8 degree step, we need the motor to

run at 430 rpm to achieve the speed necessary for the XBAS to complete the X-Beam

assembly in 10 min.

Linear Rail Actuator

In order to size the actuators for pressing the rails down onto the granite parallel gauge

blocks, we needed to know what the force output was necessary for the worst-case

scenario to ensure we could pick a motor that would always straighten the rail against the

gauge blocks. We modeled the rail as a cantilever beam in three different configurations.

The conclusion was that we needed a motor that could output 417 N of force. The

calculations are displayed in Appendix D2.

Gantry Structural Analysis

The gantry, which consists of three bolted parts, was modeled as a single uniform piece of

1018 cold drawn steel in order to analyze the structural integrity under various load cases.

The applied load we considered was the weight of all the components attached to the

gantry, the weight of the steel gantry frame, and the maximum forces exerted from both

of the linear rail actuators. A quick deflection calculation was performed which showed

that the maximum deflection or the gantry is 0.88 μm.

33

Further calculations show that the maximum stress the gantry will experience is 0.54 MPa

which is significantly lower than the yield strength of the steel being 370 MPa. From these

results, we conclude that the gantry should not undergo any plastic deformation.

Fatigue calculations were also performed according the ASME-elliptic formula with infinite

life. We calculated the endurance limit of the steel to be 340 MPa with an alternating

strength of 251 MPa. The maximum stress that the gantry will experience does not exceed

the endurance limit of the steel which supports our earlier conclusions that the gantry will

not fail due to fatigue. This concludes the structural analysis for the gantry. The

calculations are displayed in Appendix D3.

Tolerance Stackup

In order to satisfy the 1 μm straightness and parallelism requirements for the rails, a

tolerance stackup analysis was performed to determine the allowable tolerances for the

granite parallel and line constraint. The analysis was performed by identifying a loop from

beam to rail to check the straightness requirement and rail to rail to check the parallelism

requirement. The results show that the granite parallel can have a maximum height linear

tolerance of 0.1 mm and the line constraint can have a height linear tolerance of 0.1 mm

as well. The calculations are displayed in Appendix D4.

X-Beam Leveling Actuator

The X-Beam actuator has to level the X-Beam to within a micrometer with the help of a

probe which would measure the X-Beam’s height and check for straightness by comparing

rail height at two different points. The actuator had a couple constraints that needed to be

calculated before being chosen. These were calculated in Appendix D5. To summarize, the

actuator for leveling the X-Beam to within a tenth of a micrometer must have a force

output of 167N, a stroke length of 5mm, and a minimum resolution of 0.1 micrometer.

4.3.2. Parts Selection and Design
The XBAS is designed with both stock parts and parts we manufacture. We tried to

minimize the number of parts we had to manufacture due to the precision needed for our

project; however, there were some we had to make ourselves. The parts we must

manufacture ourselves are:

1. The three parts of the gantry’s frame

34

2. The hardstop

3. The line constraint

4. The bearing attachment plates

5. Lead screw support raiser

6. Housing and Electronics housing

7. Heidenhain probe housing

These are further detailed in section 4.2 and 5.1 where we discuss these parts purposes

and manufacturing plan respectively.

When it came to selecting parts for the design, we wanted to keep a few points in mind.

1. Use wholesalers that Micro-Vu was familiar with. There are two reasons for this.

a. Some parts such as the IKO rails we are using are kept en masse by Micro-

Vu, so if it needed to be replaced, Micro-Vu already has a warehouse of

related parts.

b. These wholesalers already have a working relationship with Micro-Vu

which makes it convenient for Micro-Vu in a number of ways.

2. Sourcing parts from the same company for easier part ordering.

3. Wholesalers had to have abundant supplies of the stock we were ordering as to

limit lead times for ordering if parts needed to be replaced by Micro-Vu in the

future.

4. Parts had to fulfill design specifications.

5. Wholesalers had to be reputable and have good documentation on where the

parts came from.

4.3.3. Full Assembly Summary
In summary, our current design of the XBAS costs $9,648.11 and consists of 297 parts (66

unique parts) sourced from 11 sources with a vast majority of parts coming from Misumi

USA. The XBAS and how it functions is described in the next section. It should be noted

that this is the ideal cost estimate based on assembling the entire XBAS with no need to

reorder damaged or wrong parts.

4.3.4. XBAS Functions
Below are the functions that the XBAS’ current design can currently perform and how the

XBAS performs those functions. Remember, all parts and assemblies can be viewed in

Appendix F.

35

Assembling the X-Beam

Once the user has set up the XBAS as shown in Figure 17, the user can turn on and activate

the assembly mode of the XBAS. This will begin the first “mode” of the Assembly function

of the XBAS.

The first mode of the Assembly function is the leveling of the X-Beam. The gantry first

moves out to measure the height of the X-Beam at the linear encoder strip area nearest to

the XBAS gantry housing, further referred to as the near side. Then it moves to the

opposite end (the far side) of the X-Beam and measures the height of the X-Beam at the

linear encoder strip over the line constraint. From this, it calculates the X-Beam’s level to

the granite base plate and actuates the X-Beam leveling actuator to correct the X-Beam’s

level. After that, it measures at the far side of the X-Beam, runs back to the near side and

measures the X-Beam’s height again, confirming whether or not the X-Beam is leveled to

the micrometer. If it is not, it will repeat the entire process until the X-Beam has been

leveled to tolerance. If the beam has been leveled, the X-Beam will switch to the next

mode

The second mode of the XBAS Assembly functions is straightening the rails on the X-Beam

and torqueing them down. This is achieved by the gantry moving to the first screw on the

X-Beam’s long rail, pressing the rail down with the actuators on the gantry, and torqueing

the bolt down with the screwdriver subassembly. It then moves two bolts over and

repeats the process to torque down the rail. This is done until the XBAS gantry reaches the

X-Beam’s short rail’s first bolt. It straightens and torques down that side before moving

over one bolt and torqueing the longer rail’s bolt. The gantry then proceeds to alternate

between the rails, torqueing one on each side until it reaches the third from last bolt on

the shorter rail. The gantry at this point straightens and torques both rails at this bolt,

moves two bolts over, and again aligns and torques both rails. The gantry then moves over

one bolt on the longer rail and torques that bolt down before moving to the last bolt on

the longer rail and bolting that down as well. After that, it runs back along the X-Beam,

torqueing all remaining bolts down.

Once it finishes, it returns to the housing where the machine will signal the operator that

the XBAS has finished assembling the X-Beam.

36

Calibration

The XBAS’ calibration mode is designed to calibrate variations of the rail’s change in height

in the vertical direction out of the measurements taken by the gantry’s probe at the two

ends of the X-Beam in the initial part of the Assembly function. To do this, the user mounts

the probe in one of two calibration spots and runs the calibration mode. The XBAS will

move the gantry to the near and far side of the X-Beam to take measurements of height

based on the granite parallel surfaces. The gantry then runs back to the other side at

which time the operator mounts the probe on the second position and runs the calibration

again. These two values are stored and used for the probe calibration until someone

reruns the calibration function, overwriting the data stored.

5. Manufacturing, Assembly, Programming, and Testing
Spring quarter of 2017 was comprised of everything after the brainstorming block on Figure 1.
During spring quarter, we assembled the machine, assembled the electronics, and designed a
program to run the machine. After all of that was completed, we debugged the program, tested
the XBAS, and finally presented the XBAS during the spring 2017 Senior Project expo. We will
summarize our manufacturing, programming, and testing process.

5.1. Manufacturing
In this section, we talk about the manufacturing that was completed for the XBAS.

5.1.1. Manufacturing Plan
The table displayed in Appendix G was developed to list all the parts that were
manufactured along with all other additional manufacturing processes that were needed.
The table shows all eighteen parts that were made along with each part’s corresponding
stock material, material cost, part size, and source of who made the part. The total cost for
all stock material is $1,736.67. We verified with one of the Supervising Directors of the ME
machine shops that the shops do have all the appropriate tooling and equipment needed
to make our parts in metric units. Most of the parts were completed by us in the ME
machine shops on the Cal Poly campus while other parts such as the gantry top and legs
were made by Micro-Vu and the granite parts were made by a granite supplier. The Gantt
Chart in Appendix H shows the time estimates for each phase along with all major
manufacturing tasks that were accomplished for this project.

5.1.2. Part Job Planners
Part job planners were developed for each part that was manufactured using the manual

37

mill to clearly specify what operations must be completed along with all necessary tooling
selections, setup, equipment, and operation selections. Each planner shows all the
necessary operations in chronological order from setup to polishing along with estimated
times and tools needed for each operation so that any user can easily follow them. The
user making these parts would have a copy of both the part drawing and part job planner
to facilitate the manufacturing process of all parts. All part job planners can be seen in
Appendix H.

5.1.3. Manufacturing
All manufacturing operations for the parts that we were responsible for were completed
in the ME machine shops on the Cal Poly campus with the use of a manual mill, drill press,
and manual sheet metal bender. The bearing attachment plates, line constraint, hard stop,
and lead screw support raiser were all made on a manual mill from the stock material
acquired using the part job planners developed to manufacture each part accordingly. All
sheet metal parts were bent from stock sheet metal using the manual sheet metal bender
to achieve all the necessary dimensions and features as seen in the corresponding part
drawings. The additional manufacturing processes that were needed were drilling holes
into the gear box covers and applying taps where needed.

5.2. Design Inspections
In this section, we talk about the inspections we performed on the XBAS over the course of the
machine’s assembly and testing.

5.2.1. Parts Inspection
The inspection of all the manufactured parts we made consisted of checking the hole
positions and critical dimensions using the optical comparator, a caliper, drop height
indicator, and test type indicator. If any hole or dimension was not to tolerance, then that
part would have failed inspection and would need to be redone. Parts inspections have
been detailed in Appendix K. Please refer to Appendix K: Table of Inspection Sheets to find
individual part’s inspection plans. All manufactured parts passed inspection and were
ready for assembly in early Winter quarter.

5.2.2. Safety
This inspection was completed on 05/04/17 by Professor Rossman. After all safety
considerations were considered and discussed, it was determined that our design was safe
and could operate at the senior expo if a few sheet metal edges were sanded down.
Failure would be if the ME department declared the XBAS as unsafe and hazardous in
which case we would need to modify our design to remove the safety issue.

38

5.2.3. Power Source
This inspection is very simple and consisted of checking whether or not there was a viable
wall socket for the XBAS to plug into. If there was no suitable wall socket, then the XBAS
would have failed the inspection.

5.3. Assembly

5.3.1. Mechanical Assembly
While various subassemblies such as the gantry and actuator subassemblies were started

to be put together as soon as parts arrived in early Winter quarter, the complete assembly

of the XBAS was officially started once the granite parts were received. The granite plate

was carefully loaded onto the table with the use of a forklift so that all the components of

the XBAS could then be assembled on top of it. The granite plate and granite parallel

constraints were properly cleaned following basic maintenance procedures for granite to

ensure that the assembly of the XBAS would be done correctly. The linear rails were then

bolted onto the granite plate along with the various constraints, subassemblies, and

housing components of the XBAS. Pictures of the XBAS during assembly can be seen in

Figure 18. With most of the mechanical components assembled onto the granite plate, the

electrical components could then be assembled.

39

Figure 18. Assembly of XBAS. The various subassemblies and constraints can be
seen being assembled onto the granite plate.

5.3.2. Electrical Assembly
Electronics assembly began late Winter quarter with the assembly of the microcontroller
stack and the wiring of the power supply. Further assembly was completed as parts came
in, however nothing could be fully assembled until the sheet metal housing was
completed. As such, electronics were put on a hold until late April at which point the
layout for components in the housing were finalized and assembly began. We ran into
further issues in late May where a stepper driver board was fried due to a grounding issue.
This was easily rectified but set us back a week because it took a while to debug the issue.
Once electrical assembly was completed, we were ready to test our programming.

5.4. Programming
In this section, this report will address the major design decisions we made concerning the
programming for the XBAS. This includes the our choice in programming language, what we did for
connecting to the hardware, and the overall architecture of the code.

5.4.1. Programming Language and Board
For this senior project, we decided to use the micropython computer language for four
major reasons.

1. Robert already had python programming experience.
2. Whittaker and Robert were both in a Mechatronics class which was taught in both

python and micropython. So we were both very familiar with these languages
applied to robotics.

3. The Mechatronics class had a good set up of a pyboard (microprocessor designed
for micropython), motor shield, and a custom foot attachment for the board
which we wanted to use for its convenience and it would save lots of time we
would otherwise have to spend picking a board and customizing it to our project.

4. Python is an object orientated programming language which made it much easier
to program the driver codes for the four motors we are using.

5.4.2. Stepper Driver Codes
The stepper driver code was written as a joint effort from Whittaker and Sam Artho-Bentz,
based on code provided to them by John Ridgely, John Barry, and Anthony Lombardi. Dr.
Ridgely provided the base driver code which formed the beginnings of our SPI
communication protocol. Because we communicated to the stepper drivers over SPI, we
needed code that would take care of processing commands into bytes and transmitting
them between the board and the drivers. After the SPI communication protocol was
correctly configured, we implemented John Barry and Anthony Lombardi’s Command
dictionaries to read and write to the drivers. These dictionaries processed incoming data

40

and contained the address of registers to write to when reading and writing from the
stepper boards, respectively. Because the stepper driver boards were daisy chained
together, communication was completed through a single SPI port with different chip
select pins.

Dual6470 was written as a class and is detailed briefly below. The main commands used
were GoTo(), GetStatus(), GoUntil(), ReleaseSW(), isStalled(), and HardHiZ().

__init__():

__init__() is called every time a new object is created using the Dual6470 class. This sets
up the SPI lines for whichever pins are selected as the SCK and nCS pins as well as the SPI
channel selected. It then resets the board to check for communication and writes stepper
motor parametrization values to the drivers.

GoTo()

The GoTo() command initiates a move by a number of steps specified by the user for a
specified motor (1 or 2). This command is executed at full speed and is performed using
absolute positioning. Motor microsteps at specified microstepping until full speed is
reached, at which point driver switches to full stepping.

GetStatus()

This command retrieves values from the status register of the microcontroller and parses
them to determine the status of the stepper driver. It then prints the status register in an
easily readable format. This command also resets the status register for both drivers on a
single board., a useful command to clear any error flags during startup.

GoUntil()

This command executes a move at a specified speed in steps/sec for the motor given.
When an external switch is closed for this board, the absolute position register is zeroed
and a hard stop is initiated, effectively homing the actuator.

ReleaseSW()

ReleaseSW() moves at minimum speed until the external switch is no longer pressed,
ensuring the stepper actuator is at the same home position every time.

isStalled()

This command checks if the stall flag has been raised and returns a true/false depending
on if the flag has been raised. It performs this check by reading the status register and
checking a specific bit through bit shifting.

41

HardHiZ()

HardHiZ() de-energizes the coils in the stepper motor specified, effectively turning that
stepper motor off.

5.4.3. Programming Architecture
Immediately after we bought parts, we proceeded to programming. This was done
through a series of state diagrams which transitioned into a very extensive series of flow
charts. Then we would write the code, compare them, and make revisions. This process
was repeated several times in addition to numerous checks for logic and syntax errors
during the time we were assembling the XBAS. For the sake of efficiency, we have only
included the final version of the flowcharts and script file in Appendix O and P respectively.

In this section, we will talk about significant functions and classes; their purpose, inputs,
outputs, and the important design decisions of that function that one should be aware of.
The stepper driver codes are addressed separately as they were both written separately
and by different people as the following program.

Class Quad_Encoder

This class is used by the probe to operate the quadrature encoder. The class requires two
pins for channel A and B of the encoder as well as a Timer channel for those two pins. This
class has two class members, read and zero.

Class member read updates and returns the current encoder value; however, it must be
run often so that the encoder does not roll over more than twice.

Class member zero zeroes out the encoder’s position value as well as other values used in
calculating position.

task_share.py

This file and all of its class objects were written by Doctor John Ridgley, a professor at Cal
Poly. This function creates buffers which can be used like global variables; however, these
buffers also come with multithreading in case of interrupts which is why we chose to use
this if we needed to handle interrupts. While this turned out to be unnecessary, we left
the buffers as it would take time to remove and replace the buffers as well as check that
the other functions are not affected by this change.

Probe.Probe(Limit = False, UpperLimit = 0, LowerLimit = 0)

Probe() is a function of the Probe.py python module. It has three inputs and two outputs.

42

The inputs are Limit, UpperLimit, and LowerLimit. If Limit = True, then the function Probe
will compare its readings to the given UpperLimit and LowerLimit. If Limit = False, then it
ignores this check.

The outputs are either a probe reading or “Error Occurred” if the probe read a value
outside of the limits given during the check.

Probe() has one design consideration of note, the ability to check the readings and throw
an error if the reading is outside of the limits. This was implemented to prevent incorrect
readings from situations such as the user stopping the probe prematurely (with their hand
or another object) or if the X-Beam the probe is measuring is just not there.

Probe.Home()

This Home() is a function of the Probe.py python module. It has no inputs or outputs. This
function homes the Probe.

Notable design choice, due to lack of time at the end of senior project, we implemented a
time out for the probe’s homing. This is because the Heidenhain probe’s reference tick
was not being read, so we created this temporary solution.

Import.Song()

Song() is a function of the Import.py python module. It takes no inputs and outputs either
“No Error” or “Error Occurred”.

It reads a piano switchboard and places an ID code (an integer) corresponding to the
combination of on and off switches on the board into a buffer object called XBeam for use
by other Import functions.

Design consideration of note, this function was created as is to accommodate for more X-
Beam lengths in case Micro-Vu does size up this design.

Import.Calibration()

Calibration() is a function of the Import.py python module. It takes no inputs and outputs
an “Error Occurred” in the case of a list of values which was imported from the Calibration
file corresponding to the ID in the XBeam buffer provided by Import.Song().

This function uses the ID in XBeam to figure out the name of the Calibration csv file it
needs to access and checks if that file is present. If the file is present, it reads the values,
processes them into a list, and checks the values to make sure they are valid. If they are
invalid, the function reports which value is wrong and where it is. This function also writes

43

to an “Error Report.txt” file the information about which data points are invalid.

Design consideration of note, as with Import.Song(), this function is designed to work with
Import.Song() to be able to accommodate many different X-Beams in case Micro-Vu scales
this project up.

Import.BoltPattern()

BoltPattern() is a function of the Import.py python module. It takes no inputs and outputs
an “Error Occurred” in the case of a list of values which was imported from the BoltPattern
file corresponding to the ID in the XBeam buffer provided by Import.Song().

This function uses the ID in XBeam to figure out the name of the BoltPattern csv file it
needs to access and checks if that file is present. If the file is present, it reads the values,
processes them into two lists (one for each of in the BoltPattern file), and checks the
values to make sure they are valid. If they are invalid, the function reports which value is
wrong and where it is and writes this information to the “Error Report.txt” file.

Design consideration of note, as with Import.Song(), this function is designed to work with
Import.Song() to be able to accommodate many different X-Beams in case Micro-Vu scales
this project up.

Gantry.Move(Destination,Probe = False)

This Move() function is a function in the Gantry.py python module file. This function
controls the gantry, moving it along the length of the X-Beam.

Move() takes two inputs. First, Destination is the position in mm along the X-Beam the
gantry is to move to. Second, Probe indicates if the function will call the Probe.Probe()
function after if finishes moving the gantry. Probe defaults to False as we decided that the
user should consciously declare using the probe in the function call.

Move() has one of three outputs. If there was an error, it returns “Error Occurred” in case
an error occurred. If it took a valid probe reading, it returns the value of the probe
reading. Otherwise, it returns a “Done”.

This function has no significant design considerations.

 Gantry.Home()

This Home() function is a function in the Gantry.py python module file. It has no inputs and
outputs either a “Done” or “Error Occurred” if there were or were no errors during the
function respectively. The function homes the gantry to a position just off its limit switch.

44

This function has no significant design considerations.

BeamActuator.Move(Destination,Probe = False)

This Move() function is a function in the BeamActuator.py python module file. The
function controls the beam actuator to move the end of the X-Beam up and down in order
to level the X-Beam.

Move() takes two inputs. First, Destination is the position in mm the beam actuator is to
lift the X-Beam above the hardstop. Second, Probe indicates if the function will call the
Probe.Probe() function after if finishes moving the gantry. Probe defaults to False as we
decided that the user should consciously declare using the probe in the function call.

Move() has one of three outputs. If there was an error, it returns “Error Occurred” in case
an error occurred. If it took a valid probe reading, it returns the value of the probe
reading. Otherwise, it returns a “Done”.

This function has no significant design considerations.

BeamActuator.Home()

This Home() function is a function in the BeamActuator.py python module file. It has no
inputs and outputs either a “Done” or “Error Occurred” if there were or were no errors
during the function respectively.

The function homes the beam actuator to a position just off its limit switch.

This function has no significant design considerations.

RailAct.Home(Side)

This Home() function is a function in the RailAct.py python module file. It has one input
indicating which rail actuator is to be homed and outputs a “Done” when finished. As with
the other Home functions, this function homes the selected rail actuator.

Design consideration of note, stall is not checked in this Home function because the rail
actuators are retracting and pose no chance or crushing an object, thus the stall check was
not programmed into this function.

RailAct.Move(Side, Destination,stall = 90)

This Move() function is a function of the RailAct.py python module file. This function
moves the selected actuator to the destination at a given stall threshold.

It has three inputs. Side indicates which motor is being moved while Destination indicates

45

position the actuator will move to in steps. Stall is a variable that defaults to 90 and
determines the stall threshold of the rail actuator for this move. The default of 90 is strong
enough to pinch bodily parts, but not crush anything.

Design consideration of note, stall is set at 90 so that the user must specify a higher stall
threshold if they want higher torque. This was done to prevent the chance of the system
being damaged due to the rail actuator crashing on an object.

setup.py

This python module file that when imported does the following:
1. Define FIleCheck and zero_flags
2. Check files using FIleCheck
3. Create buffer objects from task_share.py
4. Zeroes buffers using zero_flags
5. Define pins
6. Create boards for stepper drivers
7. Parameterize stepper driver boards
8. Define functions to run the DC motors and solenoids
9. Define a Mode() function to read the 3 position switch

The functions in setup are simple and only FIleCheck will be covered here. For further
details, consult the script file of setup.py in Appendix P9.

setup.FileCheck()

FileCheck is a function of the setup.py python module file. It checks for system critical files
and has its set of code to handle an error. The function has no inputs and outputs a string
if an error occurred.

Design consideration of note, because this function can throw an error before any error
flag buffers are or can be created (ie if task_share.py is missing), this function has its own
error handling section which is identical to the one in main.Lights_Sound_Action().

main.py

This is the main program which is run upon the board’s initialization. This file contains a
number of functions which will be discussed in the following sections. The main program
itself basically initializes the machine and then waits in a while loop checking the three
position switch using Mode() from setup.py and executing the selected function. Due to
time constraints, this part of the program was replaced with a test version which operated
in the same way except instead of running the function Calibration_Mode(),
Sleep_Mode(), Leveling_Mode(), and Assembly_Mode(), the test version ran test1(),
Sleep_Mode(), and test2().

46

main.Lights_Sound_Action()

Lights_Sound_Action is a function in main.py which toggles the LEDs and buzzer according
to the buffer objects used as error flags. It determines which error flag is raised, sets some
internal variables, and then alternates the LEDs for that error and the buzzer between on
and off at 1 second intervals. If the user hits the green go button once, the buzzer turns
off. If the user hits the Go button again, the function finishes. If there is no error, the
function will turn on the green LED and turn the buzzer on for one second.

This function has a sister function Lights_Sound_Off() which turns off all the LEDs and
buzzer. Both functions have no inputs or outputs, however both utilize the error buffer
flags.

Design consideration of note, this function is pretty complex in order to make it easier to
input new combinations of LED patterns for different errors. It only takes 5 lines of code at
most where as how I originally had it could take 30+ lines of codes.

Additionally, this function does not cover the error from setup.FileCheck() since that
function has to be handled separately.

main.ErrorHandler()

ErrorHander() is a function in the main.py file which writes error messages to the “Error
Report”.txt file depending on the buffer error flags raised before calling the
Lights_Sound_Action() function. It has no inputs or outputs otherwise. There are four error
states which are not covered by ErrorHandler as those errors handle themselves. Those
exceptions are missing files, incorrect piano switchboard combination, and errors
importing the BoltPattern or Calibration csv files.

main.Home(*arg)

This Home function in the main.py file utilizes the other Home() files from different
modules to home the system. It take as many inputs as you want, checking the inputs for
strings indicating which object you want homed. For example, if “All” were one of the
inputs, the function would home the entire system. This design choice was chosen to
make it easier to home various motors, solenoids, and the probe.

main.Calibration_Mode()

This function in the main.py utilizes the previous functions to to calibrate the X-Beam by
running the gantry to one of two spots, taking a measurement, and calculating the
difference. This is supposed to calibrate difference in heights along the rails the gantry
runs along out of the system.

This function has no inputs or outputs. It utilize error flag buffers and the csv files for

47

information and writes to the Calibration csv file for the X-beam being worked on.

main.Sleep_Mode(Input)

This function of the main.py homes the system and does nothing until the user has
selected a different mode on the three position switch. It is effectively the machine’s off
mode. It has an input which is the time the machine spent checking the three position
switch; however, it was never really used in the program as intended and might be
obsolete. The same can be said for it only output which is the time spent in sleep mode.

main.Leveling_Mode()

This function of the main.py levels the X-Beam. It has no inputs or outputs.

main.Assembly_Mode()

This function moves the gantry to a position along the X-Beam as per the information
supplied in the BoltPattern csv file for the X-Beam being worked on and calls the
TorqueDown function. It repeats itself until it's moved to every position indicated in the
csv file.

main.TorqueDown(Input)

This function in the main.py is used by the Assembly mode to bolt down the rails. It uses
the rail actuators to press down on the rails, activates the screwdriver, torques the bolt,
and homes the actuator and screwdriver. The function has one input which indicates the
side that is being torqued down. This determines which rail actuator and screwdriver is
used.

5.5. Testing the Design
After the XBAS was assembled and inspected, various aspects were tested to validate whether or
not the design fulfilled the engineering specifications we set forth. It should be noted that our
screwdriver actuators failed to function because the solenoids were far too underpowered. Also,
the SPI communication protocol kept messing up the stepper boards so that only one board could
be used per controller run. The list of all the testing is listed in Appendix J as the DVPR.

5.5.1. Survey Testing
In this test, we planned to ask a number of engineering students to help test the machine
by using it, the results of which would be used to check multiple specifications such as
how easy the XBAS is to load, how easy it is to teach a new user to use the XBAS, and how
easy the XBAS is to operate. We were unable to reach this stage of development and
recommend that this be done in the future if possible.

48

Loading by User

One test that we had planned was to ask volunteers to do is load the X-Beam into the
machine. This would allow us to see how easy it is for a user to load the X-Beam onto the
constraints and hardstop as well as check for awkward loading positions which could lead
to injury. A failure would be considered to be awkward loading positions, injury during
loading, or inability to load the X-Beam into position without assistance. While we did not
find any students to help us test the machine, loading the machine ourselves proved
difficult as the X-Beam could not always be pushed up the hardstop.

Learning Time

Another test that we wanted to do during the survey was to see how long it takes to teach
someone to use the X-Beam. A failure would have been if it takes more than 10 minutes to
teach someone to operate the XBAS. We were unable to complete this test because we
ran out of time trying to make our machine functional.

Ease of Use

Another survey that we wanted to ask volunteers to do is rate how easy they found the
machine to use on a one to five scale with five being easy and one being hard. A failure
would be an average below three. We were unable to complete this test because we ran
out of time trying to make our machine functional.

5.5.2. Iterative Testing
In this series of tests, we would run the XBAS multiple times to check specifications not
checked during the survey such as reliability and how long the XBAS takes to complete
assembly of one X-Beam. We did not reach this stage of testing due to time constraints.

Rail Straightness

After every run, we would have checked the straightness of each rail individually by hand
using a dial probe in the same setup as how Micro-Vu checks their rails as shown in Figure
7. As stated in the design specifications, a failure was if the rails vary in straightness by
more than two micrometers in total. We were unable to complete this test because we
were unable to run the rail actuators and finish the Assembly section of the program.

Rail Parallelism

After every run, we would have checked the parallelism of the rails by measuring two
spots on both rails. If the change in straightness for the two had differed more than 1
micrometer, then the machine failed. We were unable to complete this test for the same
reason as we could not check the Rail straightness.

49

XBAS Speed

During every run, we planned to time the XBAS to see if it completed its task within 10
minutes of starting the machine. Failure was if the XBAS took longer than 10 minutes to
assemble the X-Beam. While we were unable to perform the test, we know that the XBAS
would have failed to pass this test because our gantry’s actuator was unable to move the
gantry quickly and took a good 2 minutes just to travel the length of the X-Beam.

Rail Screw Torque

After every run, we would have used a torque wrench to check that the torques of each
bolt is within specification. Failure would have been if any one of the bolts is not within
the specified torque limits. While we were able to use the torque limiters and verify they
worked correctly, because the solenoids did not function we were unable to fully test the
torques of the bolts.

System Automation Reliability

After every run, we would have recorded the results. After we finished all the runs, we
would have checked how many times the XBAS failed. If it had failed more than once in 20
tries, than we will consider it as the XBAS has failed to achieve the goal set forth. Due to a
number of hardware and software issues, we were unable to finish the prototype and
achieve the full system automation necessary to test this specification.

5.5.2. Other tests
The following test is one we can complete outside of doing a survey or iterative testing.

Error Conveyance

For this test, we purposefully caused an error to occur and check to see if the XBAS does
signal the operator or personnel in the vicinity that an issue has occurred. This signal was
conveyed through both a visual and auditory alarm. If the XBAS did not successfully convey
error at the appropriate time, then it would have failed this test. All errors when tested
successfully conveyed their errors through the flashing of lights, sound, and error
messages written by the controller. Therefore, our prototype passed this test.

6. Management Plan
This section details how the team functions and what steps are required take to complete the
project. Critical administrative roles are listed along with which team member is responsible for
accomplishing it and what duties that team member must fulfill. Each member will be able to
delegate his responsibilities to other members at his discretion if necessary. We also intend to
switch roles throughout the course of this project for the sake of allowing each team member the
opportunity to experience the responsibilities of each position. Additionally, we have included a

50

general timeline of key events and deadlines pertaining to the project.

6.1. Administrative Roles
These are roles that we have assigned for the fall quarter and are focused mostly on team
dynamics, resources, communication, and documentation.

6.1.1. Communications Officer
Robert Tam is the main point of contact between the project team and the project
sponsor, Ian Davison at Micro-Vu. Robert facilitates meetings with the project sponsor and
with lab advisor, Eileen Rossman, Professor in the Cal Poly ME Department. In case Robert
cannot complete his duty, Joseph has volunteered to take his place.

6.1.2. Treasurer
Whittaker Hamill manages the team’s funds. He allocates the team’s funds for build
materials and travel as necessary and reviews part orders before they are made. If
Whittaker cannot complete his duty, Joseph has volunteered to take his place.

6.1.3. Secretary
Joseph Falcao maintains an information repository for the team. Most of this information
is saved on Google Drive, in a folder shared with the rest of the team. Joseph also takes
detailed notes during interactions with advisors and sponsors. Joseph will be the last
person to review and edit the team’s documents and outgoing emails. Joseph will be
assisted and replaced if necessary by Whittaker.

6.1.4. Manager
Whittaker Hamill is in charge of managing the team progress which includes making the
weekly progress reports for our lab advisor. Robert has volunteered to take his place if
Whittaker cannot complete his duties.

6.2. Subsystem Design
These roles are more focused on the actual responsibilities for development of the X-Beam.
However, because development is still far away, these are more tentative roles that we will re-
evaluate when we begin the design process of the XBAS.

6.2.1. Structure Design Lead
Joseph ensures the structural integrity of the machine. He has performed material

51

selection and sized mechanical parts for sufficient strength and stiffness. He is assisted by
Whittaker.

6.2.2. Controller Software Lead
Robert will supervise the code on which the XBAS runs. He will be the first member
proficient with each of the software packages required to program the robot. When
necessary, he will instruct the other team members on how to use these packages and
assign them software-related tasks. Whittaker will assist Robert in this.

6.2.3. Controller Hardware Lead
Whittaker is in charge of designing and specifying parts of the electrical hardware for the
XBAS. This includes circuit design, selection of parts used in those circuits, selection of
controllers and motor shields, and wire management. He is assisted in this by Robert.

6.2.4. Motor Implementation Lead
Robert selects appropriate motors and actuators using data from calculations, motor
specifications, and recommendations from engineers. Joseph will assist Robert with the
implementation of the motors.

6.2.5. Manufacturing Lead
Joseph decides which manufacturing processes will be used to make the product. He will
arrange dates for purchasing materials and working in the machine shops. Robert will
assist Joseph in deciding the method of manufacturing.

6.2.6. CAD
Whittaker heads the CAD for both the mechanical and electrical systems, delegating work
to both Joseph and Robert who will focus on the mechanical and electrical CAD work
respectively, leaving Whittaker to oversee the integration of the two systems.

6.4. Key Events and Deadlines
Below in Table 4, we summarized the key events and deadlines for the X-Beam Precision Rail
Alignment senior project, as specified in the course syllabus. A more detailed timeline is provided
in the form of a Gantt chart discussed below in section 6.5. As of this report, we’ve completed the
Critical Design Report and will be moving onto ordering parts and finalizing our manufacturing
plan.

52

Table 5. Key Events and Deadlines for Senior Project

Item Quarter Week Date

Project Proposal Fall 5 10/25/16

Preliminary Design Report Fall 8 11/17/16

Critical Design Report Winter 5 02/07/17

Manufacturing and Test Review Winter 10 03/16/17

Project Update Report Winter 10 03/16/17

Project Hardware/Safety Demo Spring 5 05/02/17

Final Design Project Expo Spring 9 06/02/17

Final Design Hardware Handoff Spring 9 06/02/17

Final Design Report Spring 9 06/02/17

6.5. Gantt Chart
The Gantt Chart is a useful organization tool to determine how long the steps in a given process
will take for a project. Our Gantt chart can be located in Appendix H. Judging by the complexity of
our project, we gave ourselves extensive time to manufacture and test our system by pushing
several tasks up.

7. Tear Down
In this section, we will summarize what worked and what didn’t work with the XBAS.

7.1. What Worked
1. All the stepper motors worked separately

2. The relays for the DC motors and solenoids work

3. DC motors worked

4. The Heidenhain probe could take readings

5. Granite surfaces and dimensions were within tolerance

6. Leadscrew worked

7. Gantry could be moved to a position with a variance of 0.5 mm every run

53

8. Gantry ran without binding

9. Both Gantry Housing and Electronics Housing were structurally sound

10. Beam actuator could be moved to a position with a variance of 0.25 mm

11. Rail actuators could be moved to a position consistent with a variance 0.1 mm

12. Electronics worked

13. The buttons, LEDs, and buzzer worked

14. Reading the three position switch worked

15. Emergency Stop and the interrupt worked

16. The error handling and writing to text file worked

17. Error conveyance worked

18. Storing, writing, and importing data from csv files (Calibration and BoltPattern) worked

19. Checking the piano switch board for the switch combination and converting that to a

number to check which file to use worked

20. Hardstop did not break and protected the Beam Actuator

21. X-Beam was fully constrained by the line constraint and Beam Actuator when leveled

22. Gantry could traverse the length of the X-Beam to all necessary positions

23. The program for the XBAS Sleep Mode worked

7.2. What Did Not Work and What Should Change
1. Of the four stepper motor actuators, the Beam and Gantry Actuators could not work in

conjunction with the rail actuators.

2. Program for the Calibration Mode was never tested.

3. Program for the Leveling and Assembly Mode were never tested.

a. Assembly could not be tested as the rail actuators could not be used after the

gantry had been moved, see item 1.

4. The gantry’s limit switch was not aligned with the bolt on the back of the gantry.

5. The housing was not properly constrained. It was tilted backwards, placing strain on the

shaft coupling between the NEMA23 motor and leadscrew.

6. The solenoids were undersized.

7. Shaft coupler for the leadscrew was undersized.

8. Bearing at the end of the leadscrew was not fixed inside the leadscrew support.

9. Housing was slightly too small and electronics were barely able to fit inside.

10. Hole placement on the housing for the LEDs were wrong.

11. Re-organize the button and LED positions for better placement

12. Probe reference tick pin did not read values

54

13. Loading the X-Beam was difficult as the Gantry in the home position was in the way and

the X-Beam would often get stuck on the hardstop

14. Gantry moved at a much slower speed than required.

15. XBAS is not easy to move

16. Resizing screwdriver components so that the screwdriver bit does not collide with the rails

on the X-Beam

17. A better connection on the SG6DM’s three pin port

18. Replace the four pin connecting wire to the Heidenhain probe with a longer wire

19. Beam Actuator runs at a very high temperature

20. Lead screw was slightly too short

7.3. Proposed Solutions
In this section, we will address possible solutions for the issues in section 7.2.

1. For item 1, if Micro-Vu continues to change solder bridges on one of the stepper drivers to

use a whole new SPI port or try using commands to clean out RAM and see if that allows

the controller to use all the stepper motors at the same time.

2. For items 4, 5, 9, 10, and 11, re-making the housing with better hole tolerancing and

flanges on the bottom to bolt to the granite would fix the issues we saw in our prototype.

3. For items 6 and 7, sizing up the coupler and solenoids should solve the issues we saw with

the prototype.

4. For item 8, the lead screw raiser was supposed to have a groove on the inside where a

snap ring could be placed to constrain the bearing. This was not present, so we suggest

checking with Misumi about this part.

5. For item 12 and 17, getting a female 3 pin for the SG6DM would solve both the issue of

the reference pin not being read and the reliability issues we faced with those three pins.

6. For item 13, we had a few solutions.

a. The first was to extend the length of the hardstop so that the angle at which the

user pushes the X-Beam is smaller.

b. Second, add a second hardstop identical to the other on the other side of the

beam actuator.

c. Third, add rollers or some device to prevent the X-Beam’s edge being pushed

along the granite which produces a lot of friction.

7. For item 14 and 20, we feel that replacing the leadscrew with a ball screw would

significantly decrease friction in the system and increase the gantry’s overall speed, not to

mention Micro-Vu can pick a longer ball screw. If this is still not enough to meet the 10

55

minute time limit, then changing the gantry actuator to a different system entirely such as

a pneumatic system should be considered.

8. For item 15, assuming the XBAS needs to be moved, placing the XBAS on a cart would

work. Another solution would be to add a frame with table legs to the XBAS so that there

is enough room to fit a fork lift under.

9. For item 16, resizing the screwdriver parts or possibly even re-manufacturing the gantry to

give the screwdrivers more space to clear the rails on the X-Beam are both valid options to

solve the issue.

10. For item 18, Micro-Vu can contact Heidenhain for a longer wire.

11. For item 19, adding heat sink fins or active cooling would help the issue; however, this

may not be a big issue as turning off the beam actuator in the software when the actuator

is not being used greatly reduces the chances of the actuator overheating.

8. What’s Next?
This section discusses additional tasks and modifications for the future advancement of the XBAS.
Since the XBAS prototype that was developed for this senior project had a limited time frame and
limited scope, future work will still need to be implemented by Micro-Vu in order to further
develop this prototype into a productive working unit in Micro-Vu’s production line.

8.1. Necessary Adjustments for Full Functionality
Before discussing future improvements, there are several issues that need to be addressed to
make the XBAS fully functional. First, the controller and stepper driver should be replaced with an
appropriate PLC system, such as the Siemens S7. New stepper drivers will also be needed, but the
choice of these are up to Micro-Vu. Beyond the controller, there are several hardware changes
that would help the machine achieve its specifications such as using a ball screw instead of the
leadscrew and anti-backlash nut and sizing up the solenoids in the screwdriver actuators so that
they function.

Another critical aspect of the XBAS that needs to be renovated is a more thorough calibration
process. This fully-developed calibration process should require the need to calibrate the touch
probe three times using Abby’s Law every time there is a major change to the machine or
machine’s environment such as transporting or moving the machine or having it in a new
atmospheric environment. This calibration should also be required over a pre-defined duration of
time such as six months or however much Micro-Vu deems necessary for the precise performance
of the XBAS.

8.2. Future Recommendations
Beyond the scope of this project, there are a few things Micro-Vu is considering to do with this

56

project. Most notable is the scaling up of this design for larger X-Beam assemblies. In order to do
this, we will list out what needs to be done to our current design in order to scale it up.

First, the following parts must be resized in order to make the gantry have a far enough range to
cover the length of the desired X-Beam.

1. Gantry Actuator Lead Screw
2. Granite Base Plate
3. Granite Parallel Gauge Blocks
4. Gantry Rails

Additionally, in order to accommodate the new leadscrew, the gantry legs might have to be made
thicker to accommodate the longer and possibly thicker lead screw. This also means that the
leadscrew support, leadscrew support raiser, flexible shaft coupling, and stepper motor may all
need to be scaled up as well. It should be noted that any changes made to the parts in the future
should also be reflected in the part and assembly drawings to ensure that they are up to date.

Another recommendation that Micro-Vu can look into in the future is to develop a more effective
way to load the X-beam into the XBAS. The current prototype’s process of manually loading the X-
beam onto the granite parallels and pushing it up the hard stop ramp into position does work, but
it is still fairly difficult to handle the heavy weight of the X-beam along with moving it through all
the tight constraints when positioning the X-beam. Depending on how sophisticated Micro-Vu
wants this process to be, potential solutions can range from simply adding in rollers on top of the
granite plate to come in contact with the bottom of the X-beam when it is being pushed in to
assist the movement of the X-beam or even more complex ideas such as developing a separate
automated process for loading the X-beam into place. If the XBAS is to be used for assembling
large scale quantities of X-beams then investing the time and effort into developing an automated
process for loading the X-beam can be a viable option, though for now, simply adding in rollers or
a similar mechanism to assist the movement of the X-beam should be adequate.

It should also be noted that the electronics housing that was manufactured for this XBAS
prototype has slight imperfections that make it difficult to properly constrain the lead screw, thus
affecting the lead screw’s alignment with the rails underneath it. Although the design of the
electronics housing is fine, it is the manufacturing imperfections from bending the sheet metal
that make it difficult to properly align the lead screw. For now, the imperfections are not that
severe to where it will significantly affect the functionality of this working prototype, though if
future models of this XBAS design are to be built it is recommended that the electronics housing
be manufactured with tighter tolerances or more precise manufacturing methods to ensure that
the lead screw is more precisely aligned with the rails to achieve better results.

57

References

[1] "Micro-Vu Precision Measurement Equipment." Micro-Vu Precision Measurement Equipment.

Micro-Vu, n.d. Web. 24 Oct. 2016. <https://www.microvu.com/products/excel.html>.

[2] "Alignment - FARO Solutions." Alignment - FARO Solutions. FARO, n.d. Web. 24 Oct. 2016.

<http://www.faro.com/measurement-solutions/applications/alignment>.

[3] "5530 Laser Calibration System, Superior Accuracy, Portability and Reliability." 5530 Laser

Calibration System. Keysight Technologies, n.d. Web. 24 Oct. 2016.
<http://www.keysight.com/en/pd-1401281-pn-5530/laser-calibration-system?nid=-
34541.780685&cc=US&lc=eng>.

[4] "HEIDENHAIN-METRO." Product Overview: METRO. Heidenhain, n.d. Web. 24 Oct. 2016.

<http://www.heidenhain.com/en_US/products/length-gauges/product-
overview/metro/>.

[5] "Ball Type Linear Motion Rolling Guides." Ball Type Linear Motion Rolling Guides. IKO, n.d.

Web. 24 Oct. 2016. <http://ikont.com/linear-guides/ball-type-linear-motion-rolling-
guides>.

58

Table of Appendices

Appendix A: Customer Requirements ... 62

Appendix B: QFD .. 63

Appendix C: Pugh Matrices .. 64

Appendix D Table of Contents .. 67

Appendix D1: Gantry X-Axis Movement Actuator.. 68

Appendix D2: Linear Rail Actuator Calculations .. 70

D2.1. Case 1 .. 71

D2.2. Case 2 .. 72

D2.3. Case 3 .. 74

Appendix D3: Gantry Structural Analysis .. 76

Appendix D4: Tolerance Stack up .. 89

Appendix D5: X-Beam Leveling Actuator .. 91

Appendix F: List of Subassembly and Parts Drawings .. 93

Appendix F1: Full Assembly .. 94

Appendix F2: Granite Subassembly ... 95

Appendix F3: Housing Subassembly .. 96

Appendix F4: Beam Actuator Subassembly .. 97

Appendix F5: Gantry Subassembly .. 98

Appendix F6: Gantry Actuator Subassembly ... 99

Appendix F7: Screwdriver Actuator Subassembly ... 100

Appendix F8: Bearing Attachment Plate Configuration 1 ... 101

Appendix F9: Bearing Attachment Plate Configuration 2 ... 102

Appendix F10: Solenoid Pullout Pin ... 103

Appendix F11: Electronics Housing ... 104

Appendix F12: Gantry Leg Configuration 1 ... 105

Appendix F13: Gantry Leg Configuration 2 ... 107

59

Appendix F14: Gantry Probe Covering ... 109

Appendix F15: Gantry Top ... 110

Appendix F16: Gearbox Housing ... 113

Appendix F17: Granite Parallel Gauge Block Constraints .. 114

Appendix F18: Granite Plate ... 115

Appendix F19: Hardstop .. 118

Appendix F20: Leadscrew Raiser ... 119

Appendix F21: Line Constraint .. 120

Appendix F22: Leadscrew Raiser Drawing .. 121

Appendix G: Manufacturing Plan .. 122

Appendix H: List of Part Job Planners .. 123

Appendix H1: Bearing Attachment Plate Configuration 1 ... 124

Appendix H2: Bearing Attachment Plate Configuration 2 ... 125

Appendix H3: Gantry Leg Configuration 1 .. 126

Appendix H4: Gantry Leg Configuration 2 .. 127

Appendix H5: Gantry Top ... 128

Appendix H6: Hardstop ... 129

Appendix H7: Lead Screw Support Raiser ... 130

Appendix H8: Line Constraint ... 131

Appendix I: Gantt Chart ... 132

Appendix J: DVPR ... 133

Appendix K: Table of Inspection Sheets ... 134

Appendix K1: Bearing Attachment Plate Configuration 1 ... 135

Appendix K2: Bearing Attachment Plate Configuration 2 ... 136

Appendix K3: Gantry Top ... 137

Appendix K4: Hardstop .. 146

Appendix K5: Leadscrew Support Raiser .. 147

60

Appendix K6: Line Constraint ... 148

Appendix L: Electronics Basic Schematic .. 149

Appendix M: Bill of Materials ... 150

Appendix N: Electronics Diagram.. 153

Appendix O: Final Program Flow Chart List .. 154

Appendix O1: BeamActuator.Home() .. 155

Appendix O2: BeamActuator.Move() ... 156

Appendix O3: Gantry.Home() ... 157

Appendix O4: Gantry.Move().. 158

Appendix O5: Import.BoltPattern() ... 159

Appendix O6: ImportCalibration ... 160

Appendix O7: Import.Song() ... 161

Appendix O8: main.Assembly_Mode()... 162

Appendix O9: main.Calibration_Mode() .. 163

Appendix O10: main.ErrorHandler() .. 164

Appendix O11: main.Home() .. 165

Appendix O12: main.Leveling_Mode() ... 166

Appendix O13: main.Lights_Sound_Action() .. 167

Appendix O14: main.Sleep_Mode()... 168

Appendix O15: main.TorqueDown() .. 169

Appendix O16: Probe.Home() ... 170

Appendix O17: Probe.Probe() ... 171

Appendix O18: RailAct.Move() .. 172

Appendix O19: RailAct.Home() ... 173

Appendix O20: setup.FileCheck() .. 174

Appendix P: Final Program Script.. 175

Appendix P1: BeamActuator.py .. 176

61

Appendix P2: encoder.py ... 180

Appendix P3: Gantry.py ... 182

Appendix P4: Import.py ... 186

Appendix P5: l4670nucleo.py ... 192

Appendix P6: main.py .. 204

Appendix P7: Probe.py .. 222

Appendix P8: RailAct.py ... 225

Appendix P9: setup.py ... 228

Appendix P10: task_share.py ... 237

Appendix Q: User Manual.. 239

Appendix R: Reference Documents ... 256

62

Appendix A: Customer Requirements
Table A1. Customer Requirements. A list of both the requirements and wishes or goals put forward
by Micro-Vu as items they wish to get out of this project. From left to right is the requirement
number, requirement description, and the letter R or W denoting whether this is really a
requirement or wish.

Requirement

Description
Requirement

or Wish

1 Rails Must be Straight R

2 Rails Must be Parallel to Each Other R

3 Automated Rail Alignment R

4 Automated Torqueing of the Screws W

5 Fast W

6 Low-skill Level W

7 Must Fit on a Table W

8 Must have a Length to Accommodate X-Beam R

9 Scalability W

10 Must Use Power Available at the Site R

11 Beam Must be Fully Constrained R

12 Basic Safety R

13 Must Convey Error to Operator W

14 Reusable R

15 Repeatable R

16 Cost R

Appendix B: QFD: House of Quality
Senior Project: X-Beam Rail Alignment System a.k.a XBAS
Revision:
Date: 10/23/16

H
O

W
:

En
gi

ne
er

in
g

Sp
ec

ifi
ca

tio
ns

WHAT: Customer
Requirements

(explicit & implicit)

1 ||||| 11% 9 9 9 9 5 3 2 5 5 1

2 |||||| 13% 10 10 10 9 5 3 3 5 5 2

3 |||||| 13% 10 10 10 9 5 1 2 2 2 3

4 || 5% 5 5 3 9 3 3 4 4 4 4

5 ||| 6% 3 6 6 9 4 0 2 1 1 5

6 || 6% 6 4 4 9 5 5 0 5 5 6

7 ||| 7% 6 6 5 9 5 5 5 5 5 7

8 |||| 8% 7 7 5 9 5 5 5 5 5 8

9 |||| 8% 8 6 5 9 5 5 5 5 5 9

10 ||| 7% 3 6 7 9 3 5 4 4 5 10

11 ||| 8% 6 6 6 9 5 0 2 1 1 11

12 ||| 8% 6 7 5 9 4 3 5 5 5 12

13 0% 13

14 0% 14

15 0% 15

16 0% 16

M
ic

ro
-V

u
(C

om
pa

ny
)

M
ic

ro
-V

u
Em

pl
oy

ee
s

WHO: Customers

Template Revision: 0.9 Date: 4/23/2010

Christopher Battles

Cu
rr

en
t P

ro
du

ct
 A

ss
es

m
en

t -
 E

ng
in

ee
ri

ng
 S

pe
ci

fic
at

io
ns

NOW: Current Product Assesment - Customer Requirements

M

ax
im

um
 R

el
at

io
ns

hi
p

3
2

1
0

 Competitor #1: Micro-VU's Current
Method

 Competitor #2: FARO Laser Tracker

 Competitor #3: Keysite Technologies:
Long Range Straightness Optics

 Competitor #4: Patent US5768137A

5
4

5

3

2

5 5

5 4 2 5

 Our Product

1 55 2 4 1 5 5 5 5 5

4 1 5

3 1 3 0 5 5

5 5 5 3 5 4

5 5 5 0 3

5

Ro

w
 #

5

1 2 3 4

O

ur
 C

ur
re

nt
 P

ro
du

ct

Co
m

pe
tit

or
 #

1:
 M

ic
ro

-V
U

's
Cu

rr
en

t
M

et
ho

d

Co
m

pe
tit

or
 #

2:
 F

AR
O

 L
as

er
 T

ra
ck

er

Co
m

pe
tit

or
 #

3:
 K

ey
si

te
 T

ec
hn

ol
og

ie
s:

Lo
ng

 R
an

ge
 S

tr
ai

gh
tn

es
s O

pt
ic

s

Co
m

pe
tit

or
 #

4:
 H

ei
de

nh
ai

n-
M

et
ro

0

9

| | |||||
|

Correlations

Positive +
Negative −

No Correlation

Direction of Improvement

Relationships

Strong ●
Moderate ○

Weak ▽

▲
◇
▼

Maximize

Target

Minimize

9 9 99 9 9 9 9 9

◇ ◇
4 5 6 7 8 9 10

Technical Importance Rating

HOW MUCH: Target

Max Relationship 9 9

14 15 16Column #

Weight Chart

Relative Weight

5 3 4 5

8 9 10 11 12 131 2 3 4 5 6 7

|| |||

3 2 4 2 0 5 5

5

5 2 4 1 5 5 5

|||||
||

|||||
||

||||| || |||| || |||

6% 8% 4% 4% 14%15% 15% 10% 4% 8% 6% 8%

n/
a

n/
a

n/
a

n/
a

n/
a

93.941 95.436 348.31137.91 191.87363.07 363.07 258.62 101.03 199.47 146.94 193.18

○ ▽
▽○ ○

14 15 16

◇ ◇ ▲ ▼ ◇ ▲ ◇
Column #

 ±
 1

µm

±
1µ

m

Se
t t

he
 p

ar
ts

 a
nd

 p
re

ss
 a

bu
tt

on
 a

nd
 th

e
m

ac
hi

ne
sh

ou
ld

 g
o

Ab
ou

t 1
0

m
in

ut
es

Be
tw

ee
n

5
an

d
10

 m
in

ut
es

Ta
bl

e
is

 a
bo

ut
 2

m
 in

 le
ng

th
an

d
0.

4m
 in

 w
id

th

15
0m

m
 x

 8
95

m
m

1

◇
2 3

●

M
ic

ro
-V

u
Sh

op
 T

ec
hn

ic
ia

ns

Re

la
tiv

e
W

ei
gh

t

Ro

w
 #

W

ei
gh

t C
ha

rt

Direction of Improvement

▽ ●●
●

▽ ▽ ▽ ●

▽ ▽ ▽ ▽

▽
●

●
▽ ○ ●

○ ▽ ○
▽

●
○

○

▽ ▽
▽ ● ● ○

●

○▽

○ ▽ ● ▽ ▽
▽ ▽ ●▽ ● ▽ ○ ○

● ○● ▽ ▽ ▽ ○

Must convey error to operator

○●

●

▽ ●

▽

○

○
●

●

Must be reusable and repeatable

High Precision for Straightness

High Precision for Parallelism

Automated

Fast

Low-skill Level

Must fit on a Table

M
us

t u
se

 e
le

ct
ri

ci
ty

 o
r a

ir
.

M
us

t u
se

 o
ne

 li
ne

 a
nd

 o
ne

 p
oi

nt
co

ns
tr

ai
nt

 fo
r b

ea
m

 su
pp

or
t.

Ra
ils

 m
us

t h
av

e
a

st
ra

ig
tn

es
s o

f a
gi

ve
n

to
le

ra
nc

e.

Ra
ils

 m
us

t m
an

ta
in

 a
 p

ar
al

le
lis

m
 to

ea
ch

 o
th

er
.

Th
e

on
ly

 h
um

an
 in

te
ra

ct
io

ns
 w

ith
 th

e
m

ac
hi

ne
 sh

ou
ld

 b
e

to
 in

se
rt

 p
ar

ts
 a

nd
te

ll
it

to
 st

ar
t o

r s
to

p.
M

ac
hi

ne
 sh

ou
ld

 b
e

ab
le

 to
 a

cc
om

pl
is

h
al

l t
as

ks
 w

ith
in

 a
 ti

m
e

fr
am

e.
An

y
M

ic
ro

-V
u

te
ch

ni
ca

l e
m

pl
oy

ee
 ca

n
be

 ta
ug

ht
 to

 u
se

 th
e

m
ac

hi
ne

 w
ith

in
 a

sh
or

t a
m

ou
nt

 o
f t

im
e.

M
us

t f
it

on
 a

 g
iv

en
 ta

bl
e.

M
us

t f
it

a
gi

ve
n

X-
be

am
 w

ith
 le

ng
th

an
d

w
id

th
.

○
▽

Length: Must fit a given X-beam

Must use power available at location

Must mirror current setup

Basic Safety

M
us

t h
av

e
vi

su
al

 a
nd

/o
r a

ud
ito

ry
si

gn
al

 to
 n

ot
ify

 th
e

op
er

at
or

.
M

us
t r

es
et

 it
se

lf
an

d
ha

ve
 a

 li
fe

tim
e

of
at

le
as

t 1
00

0
us

es
 w

ith
ou

t p
ar

t
re

pl
ac

em
en

t.

11 12

◇ ▲

−

+

M
us

t b
e

as
 sa

fe
 a

s a
n

av
er

ag
e

m
ac

hi
ne

.

+ −

+
+

+
−+

+ +
+

+
+

+ −

−

+

−
−
+ +
+

13

+ + +

Our Product

Competitor #1

Competitor #2

Competitor #3

Competitor #4

Our Product

Competitor #1

Competitor #2

Competitor #3

Competitor #4

63

64

Appendix C: Pugh Matrices

Table C1: Pugh Matrix of systems for moving the gantry or carriage along the x-axis

 Concept

Datum: Hand
pushed Granite

Block on Granite
Surface

Lead/Ball
Screw

Belt Pulley
Rope
and

Motor

Rack and
Pinion

Wheeled
Granite

Block/Car
Criteria

Rigidity S + - - - + S

Repeatability S + - S + S +

Speed of Task Completion
S - + - - - -

Scalability S - - - - - S

Projected Cost S - + - + - -

Complexity of Assembly S + - - - + -

Ease of Maintenance S + - - - + -

Size S + + - + + -

of S 7 0 0 1 0 1 2

of + 0 4 2 0 2 3 1

of - 0 3 5 6 5 3 4

65

Table C2: Pugh Matrix of systems for adjusting the rails along the y-axis

 Concept Datum:
Hand

actuated
Pneumatic Hydraulic

Lead/ball
screw

Rack
and

Pinion
Pulley

Rope
and

Motor
Belt

Criteria

Precision S + + + + + + +

Speed of Task Completion S - - - - - - -

Size S S S - - - - -

Rigidity S - + + + - - -

Projected Cost S - - + + - - S

Complexity of Assembly S + + + + - - -

Ease of Maintenance S - - + S - - -

Power S - + + + - - -

of S 8 1 1 0 1 0 0 1

of + 0 2 4 6 5 1 1 1

of - 0 5 3 2 2 7 7 6

Table C3: Pugh Matrix of systems for measuring and aligning the rails.

Datum: Visually
read dial

indicators

gauge
Block

Position Feed
Back Actuator

Force Feed
Back Actuator

Probes Interferometer Laser

Resolution S + + + + + +

Repeatability S + + + + + +

Cost S - - - - - -

Complexity of
Assembly S + - - - - -

Programming S S - - - - -

of S 5 1 0 0 0 0 0

of + 0 3 2 2 2 2 2

of - 0 1 3 3 3 3 3

66

Table C4: Pugh Matrix of systems for torqueing the screws on the rail

Datum: Hand

screw
Hand screw with

torque limiter
Automated Torque feedback

controlled screwdriver
DC motor with
torque limiter

Speed S + + +

Cost S - - -

Programmability S S - S

Vibration S S - -

Repeatability S + + +

Precision S + + +

of S 6 2 0 1

of + 0 3 3 3

of - 0 1 3 2

Table C5: Pugh Matrix of gantry or carriage frame styles

Datum: Granite
Block with L

overhang

U traversing X-
beam length

U gantry over x
beam in z-
direction

Square Gantry that
wraps around X-

Beam

L shape
overhang

Rigidity S + + + S

Weight S - - - S

Constrained S + + + S

Loading
Beam S S S - -

Durability S + + + -

Scalability S - S S S

of S 6 1 2 1 4

of + 0 3 3 3 0

of - 0 2 1 2 2

67

Appendix D Table of Contents
 Appendix D1: Gantry X-Axis Movement Actuator .. 68

Appendix D2: Linear Rail Actuator Calculations .. 70

D2.1. Case 1 .. 71

D2.2. Case 2 .. 72

D2.3. Case 3 .. 74

Appendix D3: Gantry Structural Analysis .. 76

Appendix D4: Tolerance Stack up .. 89

Appendix D5: X-Beam Leveling Actuator .. 91

68

Appendix D1: Gantry X-Axis Movement Actuator

The linear screw and motor used for the gantry’s actuation were sized according to the time
constraint listed in the design specifications. In order to calculate the time of the 10 minutes
specified that the motor had to move the gantry, we had to calculate the amount of time used for
the other functions of the XBAS first.

First we calculated the time required to torque down all the screws. We assume that it takes 10
revolutions per screw to max out the torque limiter. The calculation of time is shown below in
equation eqD1.1 and a sample calculation is shown below.

 #𝑠𝑐𝑟𝑒𝑤𝑠 ∗ 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠/𝑠𝑐𝑟𝑒𝑤

𝑟𝑝𝑚

eqD1.1

Table D1.1. Calculated Time required to torque down the screws

Screwdriver RPM 45.9 rpm

Revolutions to torque screw 10 revolutions/screw This is an assumption

of screws to torque 18 screws

Time 3.9 minutes

Then we calculate the time taken for stopping and starting the gantry. We assumed the gantry
would take 1 second to stop and accelerate. This is multiplied by the sum two things:

First is the number of screws since the gantry must stop at and start from each screw position
once.

Second is the number of runs the gantry makes along the X-Beam’s length to both level the X-
beam and torque all the screws. This is because the gantry has to stop at the end of each run of
the length of the X-Beam. We assumed for the second number a value of six, four of which are for
leveling the X-Beam. A single run is 840mm. The equation used to calculate time is shown in
eqD2.2. A sample calculation can be seen on the next page in Table D1.2.

 (𝑇𝑖𝑚𝑒 𝑡𝑜 𝑠𝑡𝑎𝑟𝑡 𝑚𝑜𝑣𝑖𝑛𝑔 + 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑠𝑡𝑜𝑝 𝑚𝑜𝑣𝑖𝑛𝑔) ∗ (𝑠𝑐𝑟𝑒𝑤𝑠 + 𝑟𝑢𝑛𝑠)

(60𝑠/𝑚𝑖𝑛)

eqD1.2

69

Table D1.2. Calculated time spent making the gantry stop or go.

Time to start moving gantry 0.5 s This is an assumption

Time for gantry to stop 0.5 s This is an assumption

Total number of Gantry runs along X-
Beam 6 runs

Total time spent starting and stopping 0.4 min

After calculating the two times above, we subtracted them from the target time. We then
calculated the total distance of travel by multiplying the number of runs by the distance of each
run. After that, we divide the distance to traverse by the time we have left for an estimate of the
velocity we need the gantry to move at. A sample calculation of what was just mentioned can be
seen below in table D1.3.

From there, we selected a leadscrew and motor. For the below sample calculation in table D1.4,
we demonstrate the calculation of the necessary motor rpm to achieve the required velocity given
a lead screw with a pitch of 2mm.

Table D1.3. Calculation of the velocity required to fulfill time constraint

Time Target 10 min

Time used so far 4 min

Time Remaining 6 min

 340 s

Distance to traverse 840 mm

Number of runs 6

Total distance to traverse 5040

Velocity needed 14.82 mm/s

Table D1.4. Calculation of motor rpm to fulfill velocity requirement

Lead Screw Pitch 2 mm

Nema23 Step 1.8 deg

 200 steps per rev

distance per step 0.01 mm/step

Step/second needed 1482 step/sec

rpm needed 440 rpm

70

Appendix D2: Linear Rail Actuator Calculations

For calculating the max output force of the actuators responsible for pressing the rails down

against the granite parallel gauge blocks, we looked at three cases. In all three cases, we modeled

the rail as a cantilever beam with an area moment inertia equal to a rectangular cross section and

set constants as listed below in table D2.1. Additionally, we stated that the actuator must be able

to force the rail down by at most 20 micrometers which is what we determined to be the worst

case scenario from assembling the X-Beam by hand.

The results are that in the worst case scenario as presented in Case 3, the actuator would need to

output 417 N of force.

Table D2.1. Linear Rail Actuator Constant Values.

Constants Source

Rail Width
8 mm

Published Value
0.008 m

Rail Height
24 mm

Published Value
0.024 m

Moment of
Inertia

9.22E-09 m^4 I = bh^3 / 12

Elastic Modulus
193 GPa for AISI 303

stainless steel 1.93E+11 Pa

Deflection
Desired

20 micrometer
Arbitrary Value

0.00002 m

71

D2.1. Case 1

First case, we modeled the rail as a simple cantilever beam with one end fixed and the other end

free. We calculated a necessary torque requirement of 1.3N in this case. A sample excel

calculation can be seen in table D2.2 and an image of the rail modeled as a beam can be seen in

figure D2.1 on the next page.

Figure D2.1. Linear Rail Actuator Calculation Diagram 1. Rail modeled as a cantilever beam with a

fixed end at the screw on the far left with a free end where force is applied above the screw on the

far right.

Table D2.2. Calculation of the force required actuator force output for Case 1

Deflection unsupported end (x) defined in the constants as the desired deflection

x = WL/3EI

Solved for force

W = (3EI/L)x

distance from previous screw to where the actuator is adjusting the rail

80 +/- 0.1 mm

0.08 +/- 0.0001 m

Calculated Force

1.3 +/- N

72

D2.2. Case 2

Second case, we modeled the full length of the rail as a simple cantilever beam with one end fixed

with a pin and the other as a roller. We calculated a necessary torque requirement to be 55 N in

this case. A sample excel calculation can be seen in table D2.3 on the next page and an image of

the rail modeled as a beam can be seen in figure D2.2 below.

Figure D2.2. Linear Rail Actuator Calculation Diagram 2. Entire rail modeled as a cantilever beam

with one end pinned and one end free to slide.

73

Table D2.3. Calculation of the force required actuator force output for Case 2

Maximum deflection at load

x = W(a^2)(b^2)/3EIL

Solved for force

W = 3xEIL/(a^2)(b^2)

distance (a) from fixed screw to applied force where the second screw is to be adjusted than
torqued

80 +/- mm

0.08 +/- m

distance b

0.37 +/- m

Beam Length (l) from first fixed screw to the end of the rail

0.45 +/- m

Calculated Force

55 +/- N

74

D2.3. Case 3

Third case, we modeled a section of the rail as a simple cantilever beam with one end fixed with a

pin and the other as a roller. We calculated a necessary torque requirement to be 417N in this

case. A sample excel calculation can be seen in table D2.4 and an image of the rail modeled as a

beam can be seen in figure D2.3 on the following two pages.

Figure D2.3. Linear Rail Actuator Calculation Diagram 3. Table of a sample calculation from excel

for the calculation of the force required by the actuator to press down the point indicated in figure

D2.2 down by the desired amount for a section of the rail modeled as a cantilever beam with one

end pinned and the other pinned and free to slide.

75

Table D2.4. Calculation of the force required actuator force output for Case 2

Maximum deflection at load

x = W(a^2)(b^2)/3EIL

Solved for force

W = 3xEIL/(a^2)(b^2)

distance (a) from fixed screw to applied force

80 +/- mm

0.08 +/- m

distance b

0.08 +/- m

Beam Length (l) from first fixed screw to the next screw hole

0.16 +/- m

Calculated Force

417 +/- N

12-19-2016
Team X

Structural Analysis of Gantry

GIVEN:

≔b 0.08 m Gantry Width

≔t ⋅0.04 m Gantry Thickness

≔h ⋅0.12 m Gantry Leg Height

≔L ⋅0.29 m Distance across Beam

≔a1 0.064 m Distance to Actuator (1)

≔a2 ⋅0.102 m Distance to Touch Probe

≔a3 ⋅0.225 m Distance to Actuator (2)

≔a4 0.145 m Distance to Center

≔a5 0.05 m Distance to Screwdriver Subassembly (1)

≔a6 a5 Distance to Screwdriver Subassembly (2)

≔b1 ⋅0.226 m Distance from Actuator (1)

≔b2 ⋅0.189 m Distance from Touch Probe

≔b3 0.0649 m Distance from Actuator (2)

≔b4 a4 Distance from Center

≔F1 11.77 N Weight of Actuator (1)

≔F2 ⋅13.73 N Weight of Touch Probe

≔F3 F1 Weight of Actuator (2)

≔F4 56.33 N Weight of Gantry Top Section

≔F5 9.37 N Weight of Screwdriver Subassebly (1)

≔F6 F5 Weight of Screwdriver Subassebly (2)

≔Fa 800 N Force of Actuator

76

Appendix D3: Gantry Structural Analysis

Joseph Falcao
12-19-2016
Team X

≔Fg 149.54 N Weight of Gantry Top Total

≔E ⋅2 1011 Pa Elastic Modulus for AISI 1018 Steel, Cold Drawn

≔n 2 Factor of Safety

ASSUMPTIONS:
1) Gantry treated as one whole unit
2) Uniform material properties throughout gantry (such as rigidity, stiffness, etc.)
3) Standard machine shop atmospheric conditions
4) Holes are negligible
5) Factor of Safety of n=2 was selected

FIND: Deflections at Points 1, 2, and 3 for Gantry Top

SCHEMATIC (FBD):

77

Joseph Falcao
12-19-2016
Team X

The load cases of the gantry will be modeled as a simple supports setup as seen in the
figure below where each individual loading will be represented by the corresponding
equations for force, F, which are shown in the figure below as well. Superposition Method
will be used to calculate the deflection at each point by first calculating the individual
deflections caused by each individual force at that given point and then adding them up.
The sum of these individual deflections from each force will give the total deflection of that
given point on the gantry.

Source: Shigley's Mechanical Engineering Design 10th ed. Table A-9 p. 1023

78

Joseph Falcao
12-19-2016
Team X

SOLUTION:

Calculate Moment of Inertia

≔I ――
⋅b t3

12

=I ⎛⎝ ⋅4.267 10−7⎞⎠ m
4 Moment of Inertia

Calculate Deflection at 1 using Superposition

≔x1 =a1 0.064 m

≔y1F1 ――――――――――
⋅((⋅⋅F1 b1 x1)) ⎛⎝ −−L2 x12 b12 ⎞⎠⎡⎣ ⎤⎦

((⋅⋅⋅6 E I L))

=y1F1 ⋅3.32 10−8⎡⎣ ⎤⎦ m Deflection from F1

≔y1F2 ――――――――――
⋅((⋅⋅F2 b2 x1)) ⎛⎝ −−L2 x12 b22 ⎞⎠⎡⎣ ⎤⎦

((⋅⋅⋅6 E I L))

=y1F2 ⋅4.95 10−8⎡⎣ ⎤⎦ m Deflection from F2

≔y1F3 ――――――――――
⋅((⋅⋅F3 b3 x1)) ⎛⎝ −−L2 x12 b32 ⎞⎠⎡⎣ ⎤⎦

((⋅⋅⋅6 E I L))

=y1F3 ⋅2.5 10−8⎡⎣ ⎤⎦ m Deflection from F3

≔y1F4 ――――――――――
⋅((⋅⋅F4 b4 x1)) ⎛⎝ −−L2 x12 b42 ⎞⎠⎡⎣ ⎤⎦

((⋅⋅⋅6 E I L))

=y1F4 ⋅2.08 10−7⎡⎣ ⎤⎦ m Deflection from F4

Adding all Deflections:

≔y1 ⋅⎛⎝ +++y1F1 y1F2 y1F3 y1F4
⎞⎠ n

=y1 0.63[[]] μm Deflection at 1

79

Joseph Falcao
12-19-2016
Team X

Calculate Deflection at 2 using Superposition

≔x2 =a2 0.102 m

≔y2F1 ――――――――――――――――

⋅((⋅F1 b1))
⎛
⎜
⎝

−+⋅
⎛
⎜
⎝
―
L

b1

⎞
⎟
⎠
((−x2 a1))

3

⋅⎛⎝ −L
2

b1
2 ⎞⎠ x2 ((x2))3

⎞
⎟
⎠

((⋅⋅⋅6 E I L))

=y2F1
⎛⎝ ⋅4.26 10−8⎞⎠ m Deflection from F1

≔y2F2 ――――――――――
⋅((⋅⋅F2 b2 x2)) ⎛⎝ −−L2 x22 b22 ⎞⎠⎡⎣ ⎤⎦

((⋅⋅⋅6 E I L))

=y2F2 ⋅6.77 10−8⎡⎣ ⎤⎦ m Deflection from F2

≔y2F3 ――――――――――
⋅((⋅⋅F3 b3 x2)) ⎛⎝ −−L2 x22 b32 ⎞⎠⎡⎣ ⎤⎦

((⋅⋅⋅6 E I L))

=y2F3 ⋅3.65 10−8⎡⎣ ⎤⎦ m Deflection from F3

≔y2F4 ――――――――――
⋅((⋅⋅F4 b4 x2)) ⎛⎝ −−L2 x22 b42 ⎞⎠⎡⎣ ⎤⎦

((⋅⋅⋅6 E I L))

=y2F4 ⋅2.96 10−7⎡⎣ ⎤⎦ m Deflection from F4

Adding all Deflections:

≔y2 ⋅⎛⎝ +++y2F1 y2F2 y2F3 y2F4
⎞⎠ n

=y2 0.88[[]] μm Deflection at 2

80

Joseph Falcao
12-19-2016
Team X

Calculate Deflection at 3 using Superposition

≔x3 =a3 0.225 m

≔y3F1 ――――――――――――――――

⋅((⋅F1 b1))
⎛
⎜
⎝

−+⋅
⎛
⎜
⎝
―
L

b1

⎞
⎟
⎠
((−x3 a1))

3

⋅⎛⎝ −L
2

b1
2 ⎞⎠ x3 ((x3))3

⎞
⎟
⎠

((⋅⋅⋅6 E I L))

=y3F1
⎛⎝ ⋅2.5 10−8⎞⎠ m Deflection from F1

≔y3F2 ――――――――――――――――

⋅((⋅F2 b2))
⎛
⎜
⎝

−+⋅
⎛
⎜
⎝
―
L

b2

⎞
⎟
⎠
((−x3 a2))

3

⋅⎛⎝ −L
2

b2
2 ⎞⎠ x3 ((x3))3

⎞
⎟
⎠

((⋅⋅⋅6 E I L))

=y3F2
⎛⎝ ⋅4.11 10−8⎞⎠ m Deflection from F2

≔y3F3 ――――――――――
⋅((⋅⋅F3 b3 x3)) ⎛⎝ −−L2 x32 b32 ⎞⎠⎡⎣ ⎤⎦

((⋅⋅⋅6 E I L))

=y3F3 ⋅3.39 10−8⎡⎣ ⎤⎦ m Deflection from F3

≔y3F4 ――――――――――――――――

⋅((⋅F4 b4))
⎛
⎜
⎝

−+⋅
⎛
⎜
⎝
―
L

b4

⎞
⎟
⎠
((−x3 a4))

3

⋅⎛⎝ −L
2

b4
2 ⎞⎠ x3 ((x3))3

⎞
⎟
⎠

((⋅⋅⋅6 E I L))

=y3F4
⎛⎝ ⋅2.10 10−7⎞⎠ m Deflection from F4

Adding all Deflections:

≔y3 ⋅⎛⎝ +++y3F1 y3F2 y3F3 y3F4
⎞⎠ n

=y3 0.62[[]] μm Deflection at 3

RESULTS: The maximum deflections for each point are , , and =y1 0.63[[]] μm =y2 0.88[[]] μm

with being the maximum deflection.=y3 0.62[[]] μm 0.88 μm

81

Joseph Falcao
12-19-2016
Team X

FIND: Deflections at Points 4 and 5 for Gantry Legs

SCHEMATIC (FBD):

Load Cases Examined:
Case 1: At Rest
Case 2: Actuator 1 Active (F1 becomes Fa)
Case 3: Actuator 2 Active (F3 becomes Fa)
Case 4: Both Actuators Active (F1 and F3 become Fa)

82

Joseph Falcao
12-19-2016
Team X

The load cases of the gantry will be modeled as a simple supports setup as seen in the
figure below where each individual loading will be represented by the corresponding
equations for force, F, which are shown in the figure below as well. Superposition Method
will be used to calculate the deflection at each point by first calculating the individual
deflections caused by each individual force at that given point and then adding them up.
The sum of these individual deflections from each force will give the total deflection of that
given point on the gantry.

Source: Shigley's Mechanical Engineering Design 10th ed. Table A-9 p. 1023

83

Joseph Falcao
12-19-2016
Team X

SOLUTION:

Calculate Cross-Sectional Area of Gantry Leg

≔A ⋅0.04 m 0.08 m

=A 0.0032 m
2 Cross-Sectional Area

Calculate Reactions at 1 and 2 for Case 1

= : = ΣM1 0 −+−−−−F5 ((a5)) F1 ((a1)) F2 ((a2)) F3 ((a3)) Fg ((a4)) R2 ((L)) F6 ((a6)) 0

≔R2 ―――――――――――――――――
−((−−−−−⋅F5 a5 ⋅F1 a1 ⋅F2 a2 ⋅F3 a3 ⋅Fg a4 ⋅F6 a6))

L

=R2 91.3 N

= : = ΣFy 0 −−−−−−+R1 R2 F5 F1 F2 F3 Fg F6 0

≔R1 −((−−−−−−R2 F5 F1 F2 F3 Fg F6))

=R1 114.2 N

Calculate Deflections at 4 and 5 for Case 1

≔δ4 ⋅――
⋅R1 h

⋅A E
n

=δ4 0.043 μm Deflection at 4 for Case 1

≔δ5 ⋅――
⋅R2 h

⋅A E
n

=δ5 0.034 μm Deflection at 5 for Case 1

Calculate Reactions at 1 and 2 for Case 2

= : = ΣM1 0 −+−−−+F5 ((a5)) Fa ((a1)) F2 ((a2)) F3 ((a3)) Fg ((a4)) R2 ((L)) F6 ((a6)) 0

≔R2 ―――――――――――――――――
−((−−−−+⋅F5 a5 ⋅Fa a1 ⋅F2 a2 ⋅F3 a3 ⋅Fg a4 ⋅F6 a6))

L

=R2 −87.8 N

84

Joseph Falcao
12-19-2016
Team X

= : = ΣFy 0 −−−−+−+R1 R2 F5 Fa F2 F3 Fg F6 0

≔R1 −((−−−−+−R2 F5 Fa F2 F3 Fg F6))

=R1 −518.4 N

Calculate Deflections at 4 and 5 for Case 2

≔δ4 ⋅――
⋅R1 h

⋅A E
n

=δ4 −0.19 μm Deflection at 4 for Case 2

≔δ5 ⋅――
⋅R2 h

⋅A E
n

=δ5 −0.03 μm Deflection at 5 for Case 2

Calculate Reactions at 1 and 2 for Case 3

= : = ΣM1 0 −+−+−−F5 ((a5)) F1 ((a1)) F2 ((a2)) Fa ((a3)) Fg ((a4)) R2 ((L)) F6 ((a6)) 0

≔R2 ―――――――――――――――――
−((−−+−−⋅F5 a5 ⋅F1 a1 ⋅F2 a2 ⋅Fa a3 ⋅Fg a4 ⋅F6 a6))

L

=R2 −538.5 N

= : = ΣFy 0 −−+−−−+R1 R2 F5 F1 F2 Fa Fg F6 0

≔R1 −((−−+−−−R2 F5 F1 F2 Fa Fg F6))

=R1 −67.7 N

Calculate Deflections at 4 and 5 for Case 3

≔δ4 ⋅――
⋅R1 h

⋅A E
n

=δ4 −0.03 μm Deflection at 4 for Case 3

≔δ5 ⋅――
⋅R2 h

⋅A E
n

=δ5 −0.20 μm Deflection at 5 for Case 3

85

Joseph Falcao

12-19-2016

Team X

Calculate Reactions at 1 and 2 for Case 4

= : = ΣM1 0 −+−+−+F5 ((a5)) Fa ((a1)) F2 ((a2)) Fa ((a3)) Fg ((a4)) R2 ((L)) F6 ((a6)) 0

≔R2 ―――――――――――――――――
−((−−+−+⋅F5 a5 ⋅Fa a1 ⋅F2 a2 ⋅Fa a3 ⋅Fg a4 ⋅F6 a6))

L

=R2 −717.6 N

= : = ΣFy 0 −−+−+−+R1 R2 F5 Fa F2 Fa Fg F6 0

≔R1 −((−−+−+−R2 F5 Fa F2 Fa Fg F6))

=R1 −700.3 N

Calculate Deflections at 4 and 5 for Case 4

≔δ4 ⋅――
⋅R1 h

⋅A E
n

=δ4 −0.26 μm Deflection at 4 for Case 4

≔δ5 ⋅――
⋅R2 h

⋅A E
n

=δ5 −0.27 μm Deflection at 5 for Case 4

RESULTS: The maximum deflections for each point are = 0.26 and = 0.27 .δ4 μm δ5 μm

86

Joseph Falcao

12-19-2016

Team X

FIND: Endurance Limit of Gantry for infinite life & whether it will experience plastic deformation

SCHEMATIC (FBD):

SOLUTION:

From Table A-20 for AISI 1018 CD Steel p.1048

≔Sut 440 MPa Tensile Strength

≔Sy 370 MPa Yield Strength

Calculate Cross-Sectional Area of Gantry Top

≔A ⋅b t

=A 3200 mm
2

Check for Yielding

≔σmax ――――――――――――
+++++++Fa Fa F1 F2 F3 F4 F5 F6

A

=σmax 0.54 MPa

RESULT: Since the max stress, , is significantly lower than the Yield Strength, =σmax 0.54 MPa

, the Gantry should not experience any plastic deformation during operation.=Sy 370 MPa

87

Joseph Falcao
12-19-2016
Team X

Calculating Endurance Limit for AISI 1018 CD Steel for infinite life

≔Se' ⋅0.5 Sut

=Se' 220 MPa

Determining Modifying Factors, K's

≔ka ⋅4.51 ⎛⎝Sut
⎞⎠
−0.265 For Cold Drawn Steel where a = 4.51 & b = -0.265 from

Table 6-2 p.296

≔ka 0.897

≔de ⋅0.808 ‾‾‾⋅b t Equivalent Diameter for Rectangle for calculating kb

=de 0.046 m

≔kb ⋅1.24 ⎛⎝de
⎞⎠
−0.107 For 2.79 mm < < 51 mm where de =de 46 mm

≔kb 1.725

≔kc 1 For Bending

≔kd 1 For Room Temperature

≔ke 1 For Reliability

≔kf 1 For Miscellaneous Effects

Modified Endurance Limit

≔Se ⋅⋅⋅⋅⋅⋅ka kb kc kd ke kf Se'

=Se 340 MPa

Calculating Alternating Strength using ASME-elliptic Formula

≔Sa

‾‾‾‾‾‾‾‾
―――

⋅Se
2

Sy
2

+Se
2

Sy
2

=Sa 251 MPa

RESULT: The max stress, , of the Gantry does not exceed the Endurance =σmax 0.54 MPa

Limtit, , nor the Alternating Strength, , of the 1080 CD Steel.=Se 340 MPa =Sa 251 MPa

88

89

Appendix D4: Tolerance Stack up

Table D4.1. Tolerance stack up results for beam to rail analysis for straightness tolerance

requirement as shown in figure D4.1.

Part Dimension Nominal ± Tolerance Units

Beam A 100 ± 0.1 mm

Line Constraint B 12 ± 0.1 mm

Granite Parallel C 50 ± 0.1 mm

Rail D 24 ± 0.1 mm

 Upper Limit E: 38.4

 Lower Limit E: 37.6

 E 38 ± 0.4 mm

Figure D4.1. Schematic of tolerance stack up for beam to rail analysis showing beam (A ± a), line

constraint (B ± b), granite parallel (C ± c), and rail (D ± d).

90

Table D4.2. Tolerance stack up results for rail to rail analysis for parallelism tolerance requirement

as shown in figure D4.2.

Part Dimension Nominal ± Tolerance Units

Rail A 24 ± 0.1 mm

Granite Parallel B 50 ± 0.1 mm

Granite Parallel C 50 ± 0.1 mm

Rail D 24 ± 0.1 mm

 Upper Limit E: 0.4

 Lower Limit E: -0.4

 E 0 ± 0.4 mm

Figure D4.2. Schematic of tolerance stack up for beam to rail analysis showing rail (A ± a), granite

parallel (B ± b), granite parallel (C ± c), and rail (D ± d).

91

Appendix D5: X-Beam Leveling Actuator

This section entails the calculations for the force requirement of the actuator needed to level the

X-Beam. It is assumed the actuator force acts and the line constraint are at extreme opposites of

the X-Beam which signifies the worst case scenario. The analysis will be based off of Figure D5.1.

To summarize, the actuator for leveling the X-Beam to within a tenth of a micrometer must have a

force output of 167 N, a stroke length of 5mm, and a minimum resolution of 0.1 micrometer.

Figure D5.1. X-Beam Leveling Actuator Calculation Diagram. X-Beam side view with marked

positions at the ends of the linear encoder strips at point A and B.

With the dimensions indicated above in figure D5.1, we can calculate the stroke length needed by

checking the stroke length required to adjust point B by some arbitrary amount. This is done by

comparing the distance moved by point B multiplied by the fraction of length b/l as shown by

equation D5.1 where x is the vertical distance you want to adjust point B by. On the next page in

Table D5.1 is an example calculation by excel.

 𝑏

𝑙
∗ 𝑥

eq D5.1

92

Additionally, we calculated the resolution achieved at point A and point B in the same way as we

calculated the stroke length necessary using equation D5.1 where x represents the resolution of

the error and dimension b is substituted with dimension a when calculating the resolution at point

A.

Table D5.1: Calculation for the stroke length needed.

If point B needs to be adjusted by 5 mm

and beam length is 895 mm

length a is 35 mm

length b is 860 mm

Actuator needs stroke Length 5 mm

Resolution of Actuator 0.1 micrometer

Projected resolution at point A 0.00391 micrometer

Projected resolution at point B 0.096 micrometer

After calculating the stroke length and resolution needed for the actuator, we calculated the

necessary force output of the actuator which was done by equating the moment generated by the

weight of the X-Beam to the moment generated by the actuator summed around the fixed pin at

the bottom left of the diagram in Figure D5.1. A sample excel calculation is shown below in Table

D5.2.

Table D5.2. Calculation of force output necessary to level the X-Beam

Beam Mass 75 lbs

Conversion 0.45 kg/lbs

Beam Mass 34 kg

Beam Weight 334 N

Moment Arm 149 Nm

Actuator Moment 149 Nm

Actuator Force Output 167 N

93

Appendix F: List of Subassembly and Parts Drawings
 Appendix F1: Full Assembly ... 94

Appendix F2: Granite Subassembly ... 95

Appendix F3: Housing Subassembly .. 96

Appendix F4: Beam Actuator Subassembly .. 97

Appendix F5: Gantry Subassembly .. 98

Appendix F6: Gantry Actuator Subassembly ... 99

Appendix F7: Screwdriver Actuator Subassembly ... 100

Appendix F8: Bearing Attachment Plate Configuration 1 ... 101

Appendix F9: Bearing Attachment Plate Configuration 2 ... 102

Appendix F10: Solenoid Pullout Pin ... 103

Appendix F11: Electronics Housing ... 104

Appendix F12: Gantry Leg Configuration 1 ... 105

Appendix F13: Gantry Leg Configuration 2 ... 107

Appendix F14: Gantry Probe Covering ... 109

Appendix F15: Gantry Top ... 110

Appendix F16: Gearbox Housing ... 113

Appendix F17: Granite Parallel Gauge Block Constraints .. 114

Appendix F18: Granite Plate ... 115

Appendix F19: Hardstop .. 118

Appendix F20: Leadscrew Raiser ... 119

Appendix F21: Line Constraint .. 120

Appendix F22: Leadscrew Raiser Drawing .. 121

2
4

5

1

36

6 ITEM NO. PART NUMBER

1 GRANITE
SUBASSEMBLY

2 HOUSING
SUBASSEMBLY

3 BEAM ACTUATOR
ASSEMBLY

4 GANTRY ASSEMBLY

5 GANTRY ACTUATOR
ASSEMBLY

6 SCREWDRIVER
ACTUATOR ASSEMBLY

FINISH: NONE
MATERIAL:

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: TEAM X

ID NUMBER:
934FA005

SCALE: 1:8
Cal Poly

Mechanical Engineering SHEET:
1/1

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE
FULL ASSEMBLY

SOLIDWORKS Educational Product. For Instructional Use Only

94

Appendix F1: Full Assembly

4

3

2

5

1

7

6

4

44

ITEM NO. PART NUMBER DESCRIPTION QTY.

1 934FA014 GRANITE PLATE 1

2 934FA013 GRANITE PARALLEL
CONSTRAINTS 2

3 SCB12-50_2_03 M12 BOLTS 6

4 SCB4-10_2_03 M4 BOLTS 55

5 934FA016 HARD STOP 1

6 LWLF24C1R1000BCST1P LINEAR RAILS 2

7 934FA021 LINE CONSTRAINT 1

FINISH: NONE
MATERIAL: REFER TO BOM

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

C934FA015

SCALE: 1:5
Cal Poly

Mechanical Engineering SHEET:
1/1

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

GRANITE SUBASSEMBLY

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F2: Granite Subassembly

95

4

2

10

5

37

9

8

6

5
12

1

11

7

13

ITEM
NO. PART NUMBER DESCRIPTION QTY.

1 HOUSING ELECTRONICS
HOUSING AND PLATE 1

2 ESP10-600-24 POWER SUPPLY 1

3 GH7028-ND RELAY BOARD AND
RELAYS 1

4 317436-02 SG60M HEIDENHAIN
SWITCHBOX 1

5 SCB4-10_2_03 M4 SCREWS 8

6 536397-01
HEIDENHAIN

INTERPOLATION
ELECTRONICS

1

7 2AP3 EMERGENCY STOP
AND RUN BUTTONS 2

8 2AS2-3 3 POSITION SWITCH 1
9 350-3981-ND INDICATOR LEDS 3

10 STM32 NUCLEO 476RG MICROCONTROLLER 1

11 MSPSS6_2_03 LIMIT SWITCH 1

12 934FA018 EXTERNAL HOUSING 1

13 HousingPlate HOUSING ACCESS
PANEL 1

14 HousingCableConnection HOUSING CABLE
CONNECTION 1

FINISH: NONE
MATERIAL: STEEL AND ALUMINUM

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: TEAM X

TITLE

HOUSING AND ELECTRONICS

SCALE: 1:4
Cal Poly

Mechanical Engineering SHEET:
1/1

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

SOLIDWORKS Educational Product. For Instructional Use Only

96

Appendix F3: Housing Subassembly

2

1

4

10

3
3

3

5

9

8

7

6

11

888

77

ITEM NO. PART NUMBER DESCRIPTION QTY.

1
Haydon-35F4N-2.33-6-
12_35000_Non_Captiv
e_None

NEMA14 Motor 1

2
Haydon-35F4N-2.33-6-
12_35000_Non_Captiv
e_Screw

Non-Captive Screw 1

3 LHSSW8H_2_03 Retaining Ring 1

4 PSSFGS8-90-F12-B10-
P3-SC10_2_03 Bushing Guide Rail 1

5 ActuatorBracket L-Bracket 1

6 MSSU5-6_2_03 Socket Head Cap Screws with Soft
Point 1

7 SCB4-10_2_03 M4x10 Stainless Steel Socket Head
Cap Screws 3

8 SCB3-10_2_03 M3x10 Stainless Steel Socket Head
Cap Screws 4

9 Screw Mount Angled Bracket 1

10 MSPSS6_2_03 Touch Probe 1

11 P5-1B O-Ring 2

FINISH:

MATERIAL:

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: Robert Tam

ID NUMBER:

C934FA022

SCALE: 1:1
Cal Poly

Mechanical Engineering SHEET:
1/3

02-26-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

X-Beam Actuator Subassembly
Drawing

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F4: Beam Actuator Subassembly

97

11

8

9

1

10
7

2

4

3

14
5

6

13

1212

14

77
10

9

ITEM NO. PART NUMBER DESCRIPTION QTY.

1 934FA001 BEARING ATTACHMENT PLATE
LEADSCREW -STEEL 1

2 934FA002 BEARING ATTACHMENT PLATE -STEEL 1
3 934FA006 GANTRY LEG CALIBRATION - STEEL 1

4 934FA007 GANTRY LEG NUT - STEEL 1

5 934FA010 GANTRY TOP - STEEL 1

6 linear_actuator_57H4
A-3.25-815 LINEAR ACTUATOR 2

7 _MLF24Slide_4 LINEAR RAILS AND BEARINGS MLF24 3

8 MT60 HEIDENHAIN PROBE MT-60M 1

9 SCB3-10_2_03 M3 BOLTS FOR METAL STOCK 12

10 SCB4-10_2_03 M4 BOLTS FOR METAL STOCK 12

11 SCB4-40_2_03 M4 BOLTS FOR PROBE 2

12 SCB5-20_2_03 M5 BOLTS FOR ACTUATORS 9

13 SCB12-50_2_03 M4 BOLTS TO ATTACH METAL STOCK
TO GANTRY FRAME 4

14 RGOCG14-50-
MC6_2_03

PRECISION RODS - 1045 CARBON
STEEL 2

FINISH: NONE
MATERIAL: REFER TO BOM

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

C934FA009

SCALE: 1:4
Cal Poly

Mechanical Engineering SHEET:
1/1

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

GANTRY SUBASSEMBLY

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F5: Gantry Subassembly

98

9

1
4

8

2

5

7

3

6

1

ITEM NO. PART NUMBER DESCRIPTION QTY.

1 SCB5-20_2_03 M5-20 Stainless Steel Socket Head
Bolt 6

2 NEMA23 NEMA23 Stepper Motor 1

3 MTSBRW12-970-F20-
V8-S13-Q6_2_03 Double Stepped Leadscrew 1

4 MTSNR12_2_03 Anti-Backlash Leadscrew Nut 1

5 Leadscrew Raiser Leadscrew Support Raiser 1

6 MTUZ8_2_03 Leadscrew End Support 1

7 SCB4-10_2_03 M4-10 Stainless Steel Socket Head
Bolt 2

8 CPLSC20-6-6_35_2_03 Flexible Slit Shaft Coupling 1

9 SCB6-45_2_03 M6-45 Stainless Steel Socket Head
Bolt 2

FINISH:

MATERIAL:

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: Robert Tam

ID NUMBER:

C934FA011

SCALE: 1:4
Cal Poly

Mechanical Engineering SHEET:
1/3

02-26-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

GANTRY ACTUATOR

SOLIDWORKS Educational Product. For Instructional Use Only

99

Appendix F6: Gantry Actuator Subassembly

5

6

12

4

15

14

7

3

13

16

11

2

1

8

9

10

ITEM
NO. PART NUMBER DESCRIPTION QTY.

1 BSJM10-100-F5-E15-P5-Q8_b BALL SPLINE 1

2 BSSS10_nr BALL SPLINE NUT 1
3 GEABB1.0-48-6-B-21_b SPUR GEAR 1
4 HBR8x BEARING BLOCK 1

5 GM9234S023-R1 DC TORQUING
MOTOR 1

6 GEABB1.0-20-6-B-6.35_b SPUR GEAR 1

7 BLUZS-SUD-A110-B80-T3-H20-V90 GEAR HOUSING 1

8 MCOG17-5-8 FLEXIBLE SHAFT
COUPLING 1

9 20 INCH LBS MINIATURE TORQUE
LIMITER TORQUE LIMITER 1

10 30TF09 BALL END HEX BIT 1

11 FNCLCH-V21_0-D25-L18_0_2_03 SHAFT COLLAR 1

12 74097841 SOLENOID 2

13 FL6805ZZ FLANGED BALL
BEARINGS 2

14 Steel Shaft SOLENOID ACTUATION
POINT 2

15 UF8-15 COMPRESSION
SPRINGS 2

16 SCB4-10 M4 SOCKET CAP
SCREW 2

FINISH: NONE
MATERIAL: REFER TO BOM

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: TEAM X

TITLE

SCREWDRIVER ACTUATOR SUBASSEMBLY

SCALE: 1:2
Cal Poly

Mechanical Engineering SHEET:
1/1

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

Appendix F7: Screwdriver Actuator Subassembly

100

ID NUMBER:

934FA020

4X 6

4X 34
 40

2X 15

2X 30

2X 120

2X 135

 150

8X 3,4 THRU
6.5

0,3 A B C
0,25 A

B

C

 10

A

NOTES: (UNLESS OTHERWISE SPECIFIED)
GENERAL SURFACE FINISH 1,6 MICRONS RMS1.
BREAK ALL EDGES 1,0 MAX2.
RADIUS ALL INTERNAL CORNERS 0,5 MAX3.

FINISH: POWDER COAT BLACK SEMI-GLOSS NO TEXTURE CARDINAL #BK05 EX MASKING SEE DRAWING

MATERIAL: AISI 1018 STEEL COLD DRAWN

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

934FA001

SCALE: 1:1 SHEET:
1/3

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

BEARING ATTACHMENT PLATE
LEADSCREW

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F8: Bearing Attachment Plate Configuration 1

101

2X 6

2X 34
 40

2X 32.5

2X 47.5

 80

4X 3,4 THRU
6.5

0,3 A B C
0,25 A

B

C

 10

A

NOTES: (UNLESS OTHERWISE SPECIFIED)
GENERAL SURFACE FINISH 1,6 MICRONS RMS1.
BREAK ALL EDGES 1,0 MAX2.
RADIUS ALL INTERNAL CORNERS 0,5 MAX3.

FINISH: POWDER COAT BLACK SEMI-GLOSS NO TEXTURE CARDINAL #BK05 EX MASKING SEE DRAWING
MATERIAL: AISI 1018 STEEL COLD DRAWN

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

934FA002

SCALE: 2:1 SHEET:
1/3

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

BEARING ATTACHMENT PLATE

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F9: Bearing Attachment Plate Configuration 2

102

 18

 2.50

1.50

 5 4

 3

 1.50

FINISH: BLACK OXIDE
MATERIAL: CARBON STEEL

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: TEAM X

TITLE

SOLENOID PULL PIN

SCALE: 8:1
Cal Poly

Mechanical Engineering SHEET:
1/1

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F10: Solenoid Pullout Pin

103

 3X 22 3X 8 30

 14X 4

22

 0

 5

 7
5

 1
14

 1

10

 1
05

 1
49

 1

69

 1
89

 2

09

 2
13

 2

20

 2
29

 2
29

 5
78

 5
89

 5

85

 6
52

 6
83

 6

93

 7
23

 7
98

 7

93

 0
 5

 13
 33
 49
 57

 107

 157
 163

 254
 238

 207

 263

 362

 476

FINISH: NONE
MATERIAL: ALUMINUM 5052

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: TEAM X

ID NUMBER:

934FA018

SCALE: 1:3
Cal Poly

Mechanical Engineering SHEET:
1/1

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

MAIN HOUSING

Appendix F11: Electronics Housing

104

37,0 THRU
40,0 1,0

2X 4

2X 7.95

2X 19.24

2X 17

2X 63

2X 76

71.7

2X 94.26

 109.65
2X 105.45

 4X M4X0,7 10,2

 4X M3X0,5 10,2

40

A

A

0,3 A B C

0,3 A D
0,25 A

0,3 A D
0,25 A

B

C

D

 80

 40

15
65

2X 20

 2X M12X1,75 15,0
0,3 B A C
0,25 B

A

2X 8

2X 32

2X 10
2X 70

 4X M4X0,7 10,0
0,3 B A C
0,25 B

42,0

 24,0

SECTION A-A

NOTES: (UNLESS OTHERWISE SPECIFIED)
GENERAL SURFACE FINISH 1,6 MICRONS RMS1.
BREAK ALL EDGES 1,0 MAX2.
RADIUS ALL INTERNAL CORNERS 0,5 MAX3.
THREAD PER ISO 2614.

FINISH: POWDER COAT BLACK SEMI-GLOSS NO TEXTURE CARDINAL #BK05 EX MASKING SEE DRAWING
MATERIAL: AISI 1018 STEEL COLD DRAWN

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

934FA006

SCALE: 1:2 SHEET:
1/2

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

GANTRY LEG CALIBRATION

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F12: Gantry Leg Configuration 1

105

MASK ALL SHADED AREAS

BACKSIDE

FINISH: POWDER COAT BLACK SEMI-GLOSS NO TEXTURE CARDINAL #BK05 EX MASKING SEE DRAWING
MATERIAL: AISI 1018 STEEL COLD DRAWN

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

934FA006

SCALE: 1:2 SHEET:
2/2

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

GANTRY LEG CALIBRATION

SOLIDWORKS Educational Product. For Instructional Use Only

106

37,0 THRU
40,0 1,0

2X 4

2X 7.95

2X 19.24

2X 17

2X 63

2X 76

71.7

2X 94.26

 109,65
2X 105.45

 4X M4X0,7 10,2

 4X M3X0,5 10,2

40

A

A

0,3 A B C

0,3 A D
0,25 A

0,3 A D
0,25 A

B

C

D

 80

 40

15
65

2X 20

 2X M12X1,75 15,0
0,3 B A C
0,25 B

A

2X 8

2X 32

2X 10
2X 70

 4X M4X0,7 10,0
0,3 B A C
0,25 B

3X 20

19.5
35

50.5

22 THRU

 2X M4X0,7 10,2
0,3 C E
0,25 C

0,3 C B A

E

42,0

 24,0

SECTION A-A

NOTES: (UNLESS OTHERWISE SPECIFIED)
GENERAL SURFACE FINISH 1,6 MICRONS RMS1.
BREAK ALL EDGES 1,0 MAX2.
RADIUS ALL INTERNAL CORNERS 0,5 MAX3.
THREAD PER ISO 2614.

FINISH: POWDER COAT BLACK SEMI-GLOSS NO TEXTURE CARDINAL #BK05 EX MASKING SEE DRAWING
MATERIAL: AISI 1018 STEEL COLD DRAWN

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

934FA007

SCALE: 1:2 SHEET:
1/2

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

GANTRY LEG NUT

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F13: Gantry Leg Configuration 2

107

MASK ALL SHADED AREAS

 50

 10
BACKSIDE

FINISH: POWDER COAT BLACK SEMI-GLOSS NO TEXTURE CARDINAL #BK05 EX MASKING SEE DRAWING
MATERIAL: AISI 1018 STEEL COLD DRAWN

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

934FA007

SCALE: 1:2 SHEET:
2/2

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

GANTRY LEG NUT

SOLIDWORKS Educational Product. For Instructional Use Only

108

 4X 4

 0

 2
5

 2
4

 5
3

 5
5

 1
91

.6

 2
37

.6

 0

 18
 22.5

 43.5

 64.1

 109.2

 155.3

 173.3

UP 90° R 2.29

UP 90° R 2.29

DOWN 90° R 2.29

D
O

W
N

 9
0°

 R
 2

.2
9

DOWN 90° R 2.29

FINISH: NONE
MATERIAL:

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: TEAM X

ID NUMBER:

394FA008

SCALE: 1:1
Cal Poly

Mechanical Engineering SHEET:
1/1

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

PROBE HOUSING

SOLIDWORKS Educational Product. For Instructional Use Only

109

Appendix F14: Gantry Probe Covering

 2X 40
2X 12,8 THRU

20 12,0

40

 4X M5X0,8 12,4

2X 12,8 THRU
20 12,0

 4X M5X0,8 12,4

 0

2X
 2

0

2X
 6

4.
85

88
.4

3

2X
 1

12

2X
 2

28
.8

5

25
2.

43

2X
 2

76

2X
 3

20

 0
2X 15

4X 16.93
2X 40.5

2X 65
 80

4X 64.07

0,3 A D

0,3 A B C
0,25 A

0,3 A D
0,25 A

0,3 A B C

0,3 A B C
0,25 A

0,3 A E
0,25 A

C

B
D E

 2X M4X0,7 10,2 2X M4X0,7 10,2
 2X M4X0,7 10,2 4X M4X0,7 10,2

 0

45 67

2X
 1

68
.0

4

19
3.

04

21
5.

04

2X
 2

40
.0

4

27
3

29
5

 3
40

 0
4X 5

2X 7.90
2X 25

2X 28.90
 40

0,3 B A C
0,25 B

0,3 B A C
0,25 B 0,3 B A C

0,25 B
0,3 B F
0,25 B

A
F

NOTES: (UNLESS OTHERWISE SPECIFIED)
GENERAL SURFACE FINISH 1,6 MICRONS RMS1.
BREAK ALL EDGES 0,5 MAX2.
RADIUS ALL INTERNAL CORNERS 0,5 MAX3.
THREAD PER ISO 2614.

FINISH: POWDER COAT BLACK SEMI-GLOSS NO TEXTURE CARDINAL #BK05 EX MASKING SEE DRAWING
MATERIAL: AISI 1018 STEEL COLD DRAWN

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

934FA010

SCALE: 1:2 SHEET:
1/3

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

GANTRY TOP

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F15: Gantry Top

110

B

10

4X 19.96

 4X M4X0,7 10,1
 M5X0,8 12,4

70

140

200
270

300

0,3 B A C
0,25 B 0,5 B A C

A

C

NOTES: (UNLESS OTHERWISE SPECIFIED)
GENERAL SURFACE FINISH 1,6 MICRONS RMS1.
BREAK ALL EDGES 0,5 MAX2.
RADIUS ALL INTERNAL CORNERS 0,5 MAX3.
THREAD PER ISO 2614.

FINISH: POWDER COAT BLACK SEMI-GLOSS NO TEXTURE CARDINAL #BK05 EX MASKING SEE DRAWING
MATERIAL: AISI 1018 STEEL COLD DRAWN

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

934FA010

SCALE: 1:2 SHEET:
2/3

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

GANTRY TOP

SOLIDWORKS Educational Product. For Instructional Use Only

111

 60 60 58 104

MASK ALL SHADED AREAS

 90 40 36 83 40 36

 60 250

 40 40 BACKSIDE

FINISH: POWDER COAT BLACK SEMI-GLOSS NO TEXTURE CARDINAL #BK05 EX MASKING SEE DRAWING
MATERIAL: AISI 1018 STEEL COLD DRAWN

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

934FA010

SCALE: 1:2 SHEET:
3/3

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

GANTRY TOP

SOLIDWORKS Educational Product. For Instructional Use Only

112

 7

 30

 53

 60

 11.54

 10.95

 49.05

4x 5 THRU

4x 4 THRU

11 THRU

28.58 THRU

B

 105
 97.50

 9.50

 20

A

C

FINISH: BLACK POWDER COATING

MATERIAL: AISI 1018 STEEL COLD DRAWN

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: Robert Tam

ID NUMBER:

934FA012

SCALE: 1:1
Cal Poly

Mechanical Engineering SHEET:
1/2

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

Gearbox Housing

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F16: Gearbox Housing

113

40 360 360

 800

3X 25

 TYP R1
3X 13,0 THRU ALL

 20,0 12,0

0,3 A B C
0,25 A

0,004 A

C

 50,0

 50

0,001

A

B

NOTES: (UNLESS OTHERWISE SPECIFIED)
GENERAL SURFACE FINISH 1,6 MICRONS RMS1.
BREAK ALL EDGES 1,0 MAX2.
RADIUS ALL INTERNAL CORNERS 0,5 MAX3.
THREAD PER ISO 2614.

0,001

FINISH: NONE
MATERIAL: GRANITE_JINAN_BLACK,GRADE_0_JB/T7975-1999

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

TITLE

GRANITE PARALLEL CONSTRAINT

SCALE: 1:3
Cal Poly

Mechanical Engineering SHEET:
1/1

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

ID NUMBER:

934FA046

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F17: Granite Parallel Gauge Block Constraints

114

6X INSERT FOR
M12X1,75 24,0

INSERT FOR
M6X1,0 10,0

17X INSERT FOR
M4X0,7 10,0

 TYP R10

50X INSERT FOR
M4X0,7 10,0

 0

25X 50

3X 100

145

255
3X 300

317
25X 350

383
8X 380

 0

2X
 4

0

2X
 8

0

2X
 1

20

2X
 1

60

2X
 2

00

2X
 2

40

2X
 2

80

2X
 3

20

2X
 3

60

2X
 4

00

2X
 4

40

2X
 4

80

2X
 5

20

2X
 5

60

2X
 6

00

2X
 6

40

2X
 6

80

2X
 7

20

2X
 7

60

2X
 8

00

2X
 8

40

2X
 8

80

2X
 9

20

2X
 9

60

2X
 1

00
0

 0

4X
 1

25

12
4,

23

27
4,

23

42
4,

23

2X
 4

85

61
3,

03

76
3,

03

91
3,

03
2X

 9
30

2X
 9

31

2X
 1

03
0

95
0

99
5

10
50

2X
 3

5

2X
 8

45

 0
2X 20

2X 200
231
261

0,3 A B C

0,3 A B C

0,3 A B C
0,25 A

0,3 A B C
0,25 A

C

 400

 100

A

B

NOTES: (UNLESS OTHERWISE SPECIFIED)
GENERAL SURFACE FINISH 1,6 MICRONS RMS1.
BREAK ALL EDGES 1,0 MAX2.
RADIUS ALL INTERNAL CORNERS 0,5 MAX3.
THREAD PER ISO 2614.
POLISH DATUMS B AND C5.

FINISH: NONE
MATERIAL: GRANITE_JINAN_BLACK,GRADE_0_JB/T7975-1999

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

ID NUMBER:

934FA045

SCALE: 1:5
Cal Poly

Mechanical Engineering SHEET:
1/3

03-06-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

B

TITLE

GRANITE PLATE

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F18: Granite Plate

115

2X 100

2X 950

2X 100

2X 300

4X INSERT FOR
M8X1,25 16,0

 4X 50 4X 50

 2X 250
 2X 775

 2X 75

 2X 275

PLACEMENT OF RUBBER
PADS TO REST THE GRANITE

0,3 A B C

C

A

B

NOTES: (UNLESS OTHERWISE SPECIFIED)
GENERAL SURFACE FINISH 1,6 MICRONS RMS1.
BREAK ALL EDGES 1,0 MAX2.
RADIUS ALL INTERNAL CORNERS 0,5 MAX3.
THREAD PER ISO 2614.
POLISH DATUMS B AND C5.

FINISH: NONE
MATERIAL: GRANITE_JINAN_BLACK,GRADE_0_JB/T7975-1999

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

SCALE: 1:5
Cal Poly

Mechanical Engineering SHEET:
2/3

03-06-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

B

TITLE

GRANITE PLATE
ID NUMBER:

934FA045

SOLIDWORKS Educational Product. For Instructional Use Only

116

A

B
 170

 130

 720

 250

MINIMUM AREA SHOWN

C

NOTES: (UNLESS OTHERWISE SPECIFIED)
GENERAL SURFACE FINISH 1,6 MICRONS RMS1.
BREAK ALL EDGES 1,0 MAX2.
RADIUS ALL INTERNAL CORNERS 0,5 MAX3.
THREAD PER ISO 2614.
POLISH DATUMS B AND C5.

0,005

FINISH: NONE
MATERIAL: GRANITE_JINAN_BLACK,GRADE_0_JB/T7975-1999

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: JOSEPH FALCAO

SCALE: 1:5
Cal Poly

Mechanical Engineering SHEET:
3/3

03-06-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

B

TITLE

GRANITE PLATE
ID NUMBER:

934FA045

SOLIDWORKS Educational Product. For Instructional Use Only

117

2X 4.50 THRU ALL
 8 6

 8.05 X 90°, NEAR SIDE

 10

 25

 40

 50

 13
 16

M4x0.7 Tapped Hole

A

B

 30.00°

 11

C

NOTES (UNLESS OTHERWISE SPECIFIED)

ALL HOLES 0.3 A B C

FINISH: NONE

MATERIAL: ALUMINIUM 6061

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: ROBERT TAM

ID NUMBER:

934FA016

SCALE: 2:1
Cal Poly

Mechanical Engineering SHEET:
1/3

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

Hardstop

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F19: Hardstop

118

 14

 66

 27.50

 52.50

 5

 68.70

 8

A

 15

 30

 80
 73
 59

 21
 7

2X 6 THRU ALL

2X 5 15
M6X1.0 - 6H 12

B

C

NOTES (UNLESS OTHERWISE SPECIFIED)

ALL HOLES 0.3 A B C

FINISH: NONE

MATERIAL: ALUMINIUM 6061

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: ROBERT TAM

ID NUMBER:

934FA019

SCALE: 1:1
Cal Poly

Mechanical Engineering SHEET:
1/3

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

LEADSCREW RAISER

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F20: Leadscrew Raiser

119

10

12
0

 1
30

2 x 4.50 THRU ALL
 8 4

 8.05 X 90°, Near Side

24

NOTES (UNLESS OTHERWISE SPECIFIED)

ALL HOLES 0.3 A B C

FINISH: NONE

MATERIAL: Aluminum 6061

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: TEAM X

TITLE

934FA021

SCALE:
Cal Poly

Mechanical Engineering SHEET:
1/1

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

Appendix F21: Line Constraint

120

 14

 66

 27.50

 52.50

 5

 68.70

 8

A

 15

 30

 80
 73
 59

 21
 7

2X 6 THRU ALL

2X 5 15
M6X1.0 - 6H 12

B

C

NOTES (UNLESS OTHERWISE SPECIFIED)

ALL HOLES 0.3 A B C

FINISH: NONE

MATERIAL: ALUMINIUM 6061

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE ALL IN MM

X±0,5 ANGLE: THREADS:
X,X±0,3 X±1° EXTERNAL -5G,6G
X,XX±0,1 X,X±0,5° INTERNAL -6H

DATE

DRAWN BY: ROBERT TAM

ID NUMBER:

934FA019

SCALE: 1:1
Cal Poly

Mechanical Engineering SHEET:
1/3

01-14-2017

DESCRIPTION

PROTOTYPE RELEASE

REV.

A

TITLE

LEADSCREW RAISER

SOLIDWORKS Educational Product. For Instructional Use Only

Appendix F2н: Leadscrew Raiser

121

122

Appendix G: Manufacturing Plan
Table G1: List of Manufactured Parts

Manufacturing Parts Stock Material
Material

Cost
Part Size Description Made by

Gantry Top
CD Mild Steel Rectangle

1018
$264.26 40mm x 80mm x 340mm Micro-Vu

Gantry Leg Calibration -Part of Steel Order - 40mm x 80mm x 110mm Micro-Vu

Gantry Leg Nut -Part of Steel Order - 40mm x 80mm x 110mm Micro-Vu

Bearing Attachment Plate -Part of Steel Order - 10mm x 40mm x 80mm Team X

Bearing Attachment Plate
Leadscrew

-Part of Steel Order - 10mm x 40mm x 150mm Team X

Line Constraint Aluminum Rod 6061 $22.55 Ø 25mm x 130mm Team X

Hard Stop Aluminum Rectangle 6061 $21.43 11mm x 50mm x 50mm Team X

Lead Screw Support Raiser Aluminum Rectangle 6061 $21.43 30mm x 68.7mm x 80mm Team X

Granite Plate Granite $550 100mm x 400mm x 1050mm Granite Supplier

Granite Parallel (1) Granite $370 50mm x 50mm x 800mm Granite Supplier

Granite Parallel (2) Granite $370 50mm x 50mm x 800mm Granite Supplier

Housing Main
0.09”Aluminum Sheet

5052
$117 549.34mm x 797.63mm Team X

Housing Middle Plate
- Part of Aluminum Sheet

Order
- 240mm x 370mm Team X

Housing Back Plate
- Part of Aluminum Sheet

Order
- 266.76mm x 393.05mm Team X

Cable Bracket
- Part of Aluminum Sheet

Order
- 143.05mm x 812.8mm Team X

Screwdriver Housing (1)
- Part of Aluminum Sheet

Order
- 306.14mm x 335.07mm Team X

Screwdriver Housing (2)
- Part of Aluminum Sheet

Order
- 306.14mm x 335.07mm Team X

Touch Probe Housing
- Part of Aluminum Sheet

Order
- 162.84mm x 235mm Team X

Drill Gear Box Cover
Holes

N/A N/A N/A Team X

Apply taps where needed N/A N/A N/A Team X

Total Manufacturing Costs $1736.67

123

Appendix H: List of Part Job Planners

Appendix H1: Bearing Attachment Plate Configuration 1 ... 124

Appendix H2: Bearing Attachment Plate Configuration 2 ... 125

Appendix H3: Gantry Leg Configuration 1 .. 126

Appendix H4: Gantry Leg Configuration 2 .. 127

Appendix H5: Gantry Top ... 128

Appendix H6: Hardstop ... 129

Appendix H7: Lead Screw Support Raiser ... 130

Appendix H8: Line Constraint ... 131

PART ROUTING / JOB PLANNER
NAME: Joseph Falcao
PART : Bearing Attachment Plate Leadscrew

DRAWING : OP#1 FAIR Print
MATERIAL: 10mm x 40mm x 150mm Cold Finish Mild Steel Square 1018

NOTES: Deburr all edges after every operation.

OP # Operation Description
Machine Tool

or
Cell

Tooling & Fixtures Required OP Time
(min) Approval

10 Cut Stock to Length & Deburr Horizontal Band Saw Dial Caliper
File 5.0

20 Milling Operation #1 Haas Mill

Milling Vise
Parallels

75 mm Face Mill
13 mm Flat End Mill

3.4 mm Drill Bit for the Ø 3.4 mm Holes
6.5 mm Drill Bit for the Ø 6.5 mm Counterbores

13 mm 45° Chamfer
Mechanical Edge Finder

20.0

30 Operation #1 F.A.I.R Inspection Metrology Lab Optical Comparater 10.0

40 Milling Operation #2 Haas Mill

Milling Vise
Parallels

75 mm Face Mill
13 mm Flat End Mill

4.5 mm Drill Bit for the Ø 4.5 mm Holes
8 mm Drill Bit for the Ø 8 mm Counterbores

13 mm 45° Chamfer
Mechanical Edge Finder

20.0

60 Operation #2 F.A.I.R Inspection Metrology Lab Drop Height Indicator
Optical Comparater 10.0

70 Clean & Polish Finishing Table Mothers Polish
Rag 5.0

124

Appendix H1: Bearing Attachment Plate Configuration 1

PART ROUTING / JOB PLANNER
NAME: Joseph Falcao
PART : Bearing Attachment Plate

DRAWING : OP#1 FAIR Print
MATERIAL: 10mm x 40mm x 80mm Cold Finish Mild Steel Square 1018

NOTES: Deburr all edges after every operation.

OP # Operation Description
Machine Tool

or
Cell

Tooling & Fixtures Required OP Time
(min) Approval

10 Cut Stock to Length & Deburr Horizontal Band Saw Dial Caliper
File 5.0

20 Milling Operation #1 Haas Mill

Milling Vise
Parallels

75 mm Face Mill
13 mm Flat End Mill

3.4 mm Drill Bit for the Ø 3.4 mm Holes
6.5 mm Drill Bit for the Ø 6.5 mm Counterbores

13 mm 45° Chamfer
Mechanical Edge Finder

20.0

30 Operation #1 F.A.I.R Inspection Metrology Lab Optical Comparater 10.0

40 Milling Operation #2 Haas Mill

Milling Vise
Parallels

75 mm Face Mill
13 mm Flat End Mill

4.5 mm Drill Bit for the Ø 4.5 mm Holes
8 mm Drill Bit for the Ø 8 mm Counterbores

13 mm 45° Chamfer
Mechanical Edge Finder

20.0

60 Operation #2 F.A.I.R Inspection Metrology Lab Drop Height Indicator
Optical Comparater 10.0

70 Clean & Polish Finishing Table Mothers Polish
Rag 5.0

100125

Appendix H2: Bearing Attachment Plate Configuration 2

PART ROUTING / JOB PLANNER
NAME: Joseph Falcao
PART : Gantry Leg Calibration

DRAWING : OP#1 FAIR Print
MATERIAL: 40mm x 80mm x 120mm Cold Finish Mild Steel Square 1018

NOTES: Deburr all edges after every operation.

OP # Operation Description
Machine Tool

or
Cell

Tooling & Fixtures Required OP Time
(min) Approval

10 Cut Stock to Length & Deburr Horizontal Band Saw Dial Caliper
File 5.0

20 Milling Operation #1 Haas Mill

Milling Vise
Parallels

75 mm Face Mill
13 mm Flat End Mill

 3.3 mm Tap Drill Bit for the M4X0.7 Holes
13 mm 45° Chamfer

Mechanical Edge Finder

20.0

30 Operation #1 F.A.I.R Inspection Metrology Lab Optical Comparater 10.0

40 Milling Operation #2 Haas Mill

Milling Vise
Parallels

Soft Jaw Set
75 mm Face Mill
15 mm End Mill

13 mm 45° Chamfer
Mechanical Edge Finder

20.0

50 Drill Press Operation #1 Drill Press Drill Press Vise
 10.8 mm Tap Drill Bit for the M12X1.25 Holes 15.0

60 Drill Press Operation #2 Drill Press Drill Press Vise
 3.3 mm Tap Drill Bit for the M4X0.7 Holes 15.0

70 Operation #2 F.A.I.R Inspection Metrology Lab Drop Height Indicator
Optical Comparater 10.0

80 Clean & Polish Finishing Table Mothers Polish
Rag 5.0

126

Appendix H3: Gantry Leg Configuration 1

PART ROUTING / JOB PLANNER
NAME: Joseph Falcao
PART : Gantry Leg Nut

DRAWING : OP#1 FAIR Print
MATERIAL: 40mm x 80mm x 120mm Cold Finish Mild Steel Square 1018

NOTES: Deburr all edges after every operation.

OP # Operation Description
Machine Tool

or
Cell

Tooling & Fixtures Required OP Time
(min) Approval

10 Cut Stock to Length & Deburr Horizontal Band Saw Dial Caliper
File 5.0

20 Milling Operation #1 Haas Mill

Milling Vise
Parallels

75 mm Face Mill
13 mm Flat End Mill

 3.3 mm Tap Drill Bit for the M4X0.7 Holes
13 mm 45° Chamfer

Mechanical Edge Finder

20.0

30 Operation #1 F.A.I.R Inspection Metrology Lab Optical Comparater 10.0

40 Milling Operation #2 Haas Mill

Milling Vise
Parallels

Soft Jaw Set
75 mm Face Mill
15 mm End Mill

13 mm 45° Chamfer
Mechanical Edge Finder

20.0

50 Milling Operation #3 Haas Mill

Milling Vise
Parallels

Soft Jaw Set
15 mm End Mill

 3.3 mm Tap Drill Bit for the M4X0.7 Holes
13 mm 45° Chamfer

Mechanical Edge Finder

20.0

60 Drill Press Operation #1 Drill Press Drill Press Vise
 10.8 mm Tap Drill Bit for the M12X1.25 Holes 15.0

70 Drill Press Operation #2 Drill Press Drill Press Vise
 3.3 mm Tap Drill Bit for the M4X0.7 Holes 15.0

80 Operation #2 F.A.I.R Inspection Metrology Lab Drop Height Indicator
Optical Comparater 10.0

90 Clean & Polish Finishing Table Mothers Polish
Rag 5.0

127

Appendix H4: Gantry Leg Configuration 2

PART ROUTING / JOB PLANNER
NAME: Joseph Falcao
PART : Gantry Top

DRAWING : OP#1 FAIR Print
MATERIAL: 70mm x 80mm x 340mm Cold Finish Mild Steel Square 1018

NOTES: Deburr all edges after every operation.

OP # Operation Description
Machine Tool

or
Cell

Tooling & Fixtures Required OP Time
(min) Approval

10 Cut Stock to Length & Deburr Horizontal Band Saw Dial Caliper
File 5.0

20 Milling Operation #1 Haas Mill

Milling Vise
Parallels

75 mm Face Mill
13 mm Flat End Mill

12 mm Drill Bit for the Ø 12 mm Holes
 4.4 mm Tap Drill Bit for the M5X0.8 Holes

13 mm 45° Chamfer
Mechanical Edge Finder

20.0

30 Operation #1 F.A.I.R Inspection Metrology Lab Optical Comparater 10.0

40 Milling Operation #2 Haas Mill

Milling Vise
Parallels

Soft Jaw Set
75 mm Face Mill
15 mm End Mill

13 mm 45° Chamfer
Mechanical Edge Finder

20.0

50 Drill Press Operation #1 Drill Press Drill Press Vise
 3.3 mm Tap Drill Bit for the M4X0.7 Holes 15.0

60 Operation #2 F.A.I.R Inspection Metrology Lab Drop Height Indicator
Optical Comparater 10.0

70 Clean & Polish Finishing Table Mothers Polish
Rag 5.0

128

Appendix H5: Gantry Top

PART ROUTING / JOB PLANNER
NAME: Joseph Falcao
PART : Hard Stop

DRAWING : OP#1 FAIR Print
MATERIAL: Ø 50 mm x 50mm 5056 Aluminum Rod

NOTES: Deburr all edges after every operation.

OP # Operation Description
Machine Tool

or
Cell

Tooling & Fixtures Required OP Time
(min) Approval

10 Cut Stock to Length & Deburr Horizontal Band Saw Dial Caliper
File 5.0

20 Milling Operation #1 Haas Mill

Milling Vise
Parallels for Round Stock

75 mm Face Mill
Mechanical Edge Finder

20.0

30 Drill Press Operation #1 Drill Press

Drill Press Vise
4.5 mm Drill Bit for the Ø 4.5 mm Holes

8.0 mm Drill Bit for the Ø 8.0 mm Counterbores
3.3 mm Tap Drill Bit for the M4X0.7 Holes

15.0

40 Operation #1 F.A.I.R Inspection Metrology Lab Optical Comparater 10.0

50 Clean & Polish Finishing Table Mothers Polish
Rag 5.0

129

Appendix H6: Hardstop

PART ROUTING / JOB PLANNER
NAME: Joseph Falcao
PART : Lead Screw Support Raiser

DRAWING : OP#1 FAIR Print
MATERIAL: 30mm x 80mm x 68.7mm Aluminum Bare Rectangle 6061 T6511

NOTES: Deburr all edges after every operation.

OP # Operation Description
Machine Tool

or
Cell

Tooling & Fixtures Required OP Time
(min) Approval

10 Cut Stock to Length & Deburr Horizontal Band Saw Dial Caliper
File 5.0

20 Milling Operation #1 Haas Mill

Milling Vise
Parallels

75 mm Face Mill
13 mm Flat End Mill
13 mm 45° Chamfer

Mechanical Edge Finder

20.0

30 Operation #1 F.A.I.R Inspection Metrology Lab Optical Comparater 10.0

40 Milling Operation #2 Haas Mill

Milling Vise
Parallels

Soft Jaw Set
75 mm Face Mill
15 mm End Mill

13 mm 45° Chamfer
Mechanical Edge Finder

20.0

50 Drill Press Operation #1 Drill Press

Drill Press Vise
 5.0 mm Tap Drill Bit for the M6X1.0 Holes

4.5 mm Drill Bit for the Ø 4.5 mm Holes
8.0 mm Drill Bit for the Ø 8.0 mm Counterbores

15.0

60 Operation #2 F.A.I.R Inspection Metrology Lab Drop Height Indicator
Optical Comparater 10.0

70 Clean & Polish Finishing Table Mothers Polish
Rag 5.0

130

Appendix H7: Lead Screw Support Raiser

PART ROUTING / JOB PLANNER
NAME: Joseph Falcao
PART : Line Constraint

DRAWING : OP#1 FAIR Print
MATERIAL: Ø 25 mm x 130mm 5056 Aluminum Rod

NOTES: Deburr all edges after every operation.

OP # Operation Description
Machine Tool

or
Cell

Tooling & Fixtures Required OP Time
(min) Approval

10 Cut Stock to Length & Deburr Horizontal Band Saw Dial Caliper
File 5.0

20 Milling Operation #1 Haas Mill

Milling Vise
Parallels for Round Stock

75 mm Face Mill
Mechanical Edge Finder

20.0

30 Drill Press Operation #1 Drill Press

Drill Press Vise
4.5 mm Drill Bit for the Ø 4.5 mm Holes

8.0 mm Drill Bit for the Ø 8.0 mm Counterbores
3.3 mm Tap Drill Bit for the M4X0.7 Holes

15.0

40 Operation #1 F.A.I.R Inspection Metrology Lab
Optical Comparater

Drop Height Indicator
Test Type Indicator

10.0

50 Clean & Polish Finishing Table Mothers Polish
Rag 5.0

131

Appendix H8: Line Constraint

ID Task
Mode

Task Name Duration Start

11 Determine Controller
Feasability

12 days Wed 11/16/16

13 Begin Electrical Component
Layout

5 days Fri 12/2/16

12 Determine Heidenhain
Sensor Price and Order

31 days Sat 12/3/16

14 Determine Electrical Circuit
Layout

23 days Thu 12/8/16

17 Assemble Mechanical BOM 16 days Mon 12/19/16
25 Propagation of Error Analysis 16 days Mon 12/19/16
26 Actuator Analysis 16 days Mon 12/19/16
27 Materials Analysis for

Stability
16 days Mon 12/19/16

28 Load Analysis 27 days Mon 12/19/16
29 Constraints Analysis 16 days Mon 12/19/16
31 Screwdriver Analysis 16 days Mon 12/19/16
34 Materials Analysis for

Vibration
27 days Mon 12/19/16

15 Assemble Electrical BOM 22 days Mon 1/9/17
8 CAD Design Review 11 days Tue 1/10/17
9 Finish CAD Modeling 4 days Tue 1/24/17

10 Write CDR 11 days Tue 1/24/17
1 CDR Scheduled with Sponsor 0 days Tue 1/31/17
2 CDR Report Due 0 days Tue 2/7/17

32 Microcontroller Programming60 days Tue 2/7/17
38 Write Out State Diagram 6 days Tue 2/7/17
16 Order All Parts 1 day Thu 2/9/17
30 Operator Manual Rough

DraftWrite
21 days Thu 2/9/17

18 Begin Manufacturing 0 days Wed 2/15/17
19 Constraints Manufacturing 22 days Wed 2/15/17
39 Stepper Driver Class

Debugging
22 days Wed 2/15/17

52 Test Constraints and Loading 23 days Thu 2/16/17
53 Testing of User Loading 8 days Thu 2/16/17
24 Begin Electronics

Manufacturing
8 days Fri 2/24/17

42 Short Lead Parts Arrive 1 day Fri 2/24/17
47 Leadscrew Raiser 15 days Fri 2/24/17
3 Operator's Manual Due 0 days Thu 3/9/17

20 Gantry Manufacturing 32 days Thu 3/9/17
4 Project Update Report Due 0 days Thu 3/16/17

33 Program Troubleshooting 53 days Thu 3/16/17
45 Screwdriver Assembly 7 days Sat 3/25/17
21 Housing Subassembly

Manufacturing
16 days Sat 4/1/17

40 Heidenhain Encoder
Integration

21 days Sat 4/1/17

46 Probe Covering
Manufacturing

16 days Sat 4/1/17

43 Long Lead Parts Arrive 1 day Mon 4/3/17
44 Granite Assembly 11 days Mon 4/3/17
22 Electrical Troubleshooting 22 days Fri 4/28/17
35 Test Failure 21 days Fri 4/28/17
56 HMI Testing 20 days Fri 4/28/17
41 Write Mastermind Code 21 days Mon 5/1/17
54 User teaching survey 18 days Mon 5/1/17
23 Mechanical Troubleshooting 22 days Tue 5/2/17
36 Check System Error

Externally
15 days Tue 5/2/17

37 Repeated System Testing
(Timing, Reliability)

20 days Tue 5/2/17

48 Rail Straightness Testing 15 days Tue 5/2/17
49 Rail Parallelism Testing 15 days Tue 5/2/17
50 Machine Speed Testing 7 days Sat 5/20/17
51 Screw Torque Testing 7 days Sat 5/20/17
55 Ease of Use Survey 7 days Sat 5/20/17
5 Project Expo 0 days Fri 6/2/17
6 Hardware Handoff 0 days Fri 6/2/17
7 FDR Report Due 0 days Fri 6/2/17

1/31

2/7

2/15

3/9

3/16

6/2

6/2

6/2

3rd Quarter 4th Quarter 1st Quarter 2nd Quarter 3rd Quarter

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 1

Project: 428Timeline.mpp

132

Appendix I: Gantt Chart

ME428 DVP&R Format
Report Date: Sponsor: Micro-Vu Component/Assembly REPORTING ENGINEER:

TEST PLAN TEST REPORT
Category Item

No
Specification or Clause

Reference [1] Test Description [2] Acceptance Criteria
[3]

Test
Respons
ibility [4]

Test Stage
[5]

SAMPLES
TESTED TIMING TEST RESULTS

NOTES
QuantityType [6]Start dateFinish date Test Result [7] Quantity Pass Quantity Fail

Iteration 1 Rail Straightness Run system and check with individual
measurements 2 micron R PV 0 C 5/6 5/20 Unconfirmed 0 0

Theoretically
achieved, not

checked as we
could not get both

motor pairs running
at the same time

Iteration 2 Rail Parallelism Run system and check with individual
measurements 2 micron W PV 0 C 5/6 5/20 Unconfirmed 0 0

Theoretically
achieved, not

checked as we
could not get both

motor pairs running
at the same time

Iteration 3 XBAS Speed XBAS must complete its task under
the specified time <10 minutes J PV 10 C 5/20 5/27 Failed 0 10 Gantry Motor stalls

out at higher speeds

Iteration 4 Rail Screw Torque XBAS must torque rail screws to
specified torque 2 Nm W PV 1 C 5/20 5/27 Failed 0 1

Solenoids too
underpowered to

move screwdriver in

Iteration 5 System Automation
Repeated Testing to determine if the
machine's automation of the XBeam

assembly is reliable

1 failure out of 200
or more runs R PV 3 C 5/20 5/27 Failed 0 3

Unable to use
screwdriver,

couldn't complete
test

Survey 6 X-Beam Loading Load X-Beam onto basic constraints
without assistance No Fail J DV 3 B 4/20 4/29 Passed 3 0

Survey 7 Loading by User
Inspection for awkward loading

position during testing of Ease of Use
and Loading

No bending over,
twisting of body,

and a loading point
from hip to mid-

chest level

J DV 3 B 5/11 5/23 Passed 3 0
Direct Loading

following OSHA
standards

Survey 8 Learning Time

Get Engineering Peers and teach
then how to operate the machine.
Time how long that took, how they
performed, and feedback on if the

tutorial was enough

User can operate
the machine with
15min or less of

teaching time

W PV 0 C 5/9 3/9 Unconfirmed 0 0

Ran out of time as
we were trying to
get machine as
functional as

possible.

Survey 9 Ease of Use

Get Engineering Peers to test the X-
Bas and record the number of people
that mess up and input on how easy

the machine works

Greater than 60%
positive feedback W PV 0 C 5/20 5/27 Unconfirmed 0 0

Ran out of time as
we were trying to
get machine as
functional as

possible.

UI 10 Controller User
Interface

Force system to fail to see if error is
conveyed No Fail R DV 5 B 5/9 5/2 Passed 5 0

133

Appendix J: DVPR

134

Appendix K: Table of Inspection Sheets
 Appendix K1: Bearing Attachment Plate Configuration 1 135

Appendix K2: Bearing Attachment Plate Configuration 2 ... 136

Appendix K3: Gantry Top ... 137

Appendix K4: Hardstop .. 146

Appendix K5: Leadscrew Support Raiser .. 147

Appendix K6: Line Constraint ... 148

FIRST ARTICLE INSPECTION SHEET
NAME: Joseph Falcao
PART : Bearing Attachment Plate
DATE : 4/19/2017

DRAWING NUMBER: OP#1 FAIR Print

Dimension ID Description Nominal Size Limits Actual Device Comments Pass/Fail

A Linear Height 10 mm ±0.5 mm 10.215 mm Drop Height Indicator Pass

B Position of Ø 3.4 mm Hole (1) 0.0 ±0.3 mm 0.182 mm Optical Comparater Pass

C Position of Ø 3.4 mm Hole (2) 0.0 ±0.3 mm 0.173 mm Optical Comparater Pass

D Position of Ø 3.4 mm Hole (3) 0.0 ±0.3 mm 0.184 mm Optical Comparater Pass

E Position of Ø 3.4 mm Hole (4) 0.0 ±0.3 mm 0.186 mm Optical Comparater Pass

F Position of Ø 4.5 mm Hole (1) 0.0 ±0.3 mm 0.179 mm Optical Comparater Pass

G Position of Ø 4.5 mm Hole (2) 0.0 ±0.3 mm 0.181 mm Optical Comparater Pass

H Position of Ø 4.5 mm Hole (3) 0.0 ±0.3 mm 0.175 mm Optical Comparater Pass

I Position of Ø 4.5 mm Hole (4) 0.0 ±0.3 mm 0.183 mm Optical Comparater Pass

Notes: Inspector: Joseph Falcao

135

Appendix K1: Bearing Attachment Plate Configuration 1

FIRST ARTICLE INSPECTION SHEET
NAME: Joseph Falcao
PART : Bearing Attachment Plate Leadscrew
DATE : 1/10/2017

DRAWING NUMBER: OP#1 FAIR Print

Dimension ID Description Nominal Size Limits Actual Device Comments Pass/Fail

A Linear Height 10 mm ±0.5 mm 10.128 mm Drop Height Indicator Pass

B Position of Ø 3.4 mm Hole (1) 0.0 ±0.3 mm 0.179 mm Optical Comparater Pass

C Position of Ø 3.4 mm Hole (2) 0.0 ±0.3 mm 0.156 mm Optical Comparater Pass

D Position of Ø 3.4 mm Hole (3) 0.0 ±0.3 mm 0.181 mm Optical Comparater Pass

E Position of Ø 3.4 mm Hole (4) 0.0 ±0.3 mm 0.175 mm Optical Comparater Pass

F Position of Ø 3.4 mm Hole (5) 0.0 ±0.3 mm 0.183 mm Optical Comparater Pass

G Position of Ø 3.4 mm Hole (6) 0.0 ±0.3 mm 0.172 mm Optical Comparater Pass

H Position of Ø 3.4 mm Hole (7) 0.0 ±0.3 mm 0.178 mm Optical Comparater Pass

I Position of Ø 3.4 mm Hole (8) 0.0 ±0.3 mm 0.185 mm Optical Comparater Pass

J Position of Ø 4.5 mm Hole (1) 0.0 ±0.3 mm 0.191 mm Optical Comparater Pass

K Position of Ø 4.5 mm Hole (2) 0.0 ±0.3 mm 0.189 mm Optical Comparater Pass

L Position of Ø 4.5 mm Hole (3) 0.0 ±0.3 mm 0.184 mm Optical Comparater Pass

M Position of Ø 4.5 mm Hole (4) 0.0 ±0.3 mm 0.192 mm Optical Comparater Pass

Notes: Inspector: Joseph Falcao

136

Appendix K2: Bearing Attachment Plate Configuration 2

Program: GantryTop_1

Units: mm, dec deg

3/2/2017 3:09:39 PM

Rounding Enabled - Units: x.xxxx Angle: x.xx

Out/TolDev/NomLowerUpperNominalActualCircle CB 1
Center X 20.0487 20.0000 1.0000 -1.0000 0.0487
Center Y -15.1374 -15.0000 1.0000 -1.0000 -0.1374
Diameter 19.9467 20.0000 0.5000 -0.5000 -0.0533

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.2916 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle 12.8 thru 1
Center X 20.0788 20.0000 1.0000 -1.0000 0.0788
Center Y -15.1188 -15.0000 1.0000 -1.0000 -0.1188
Diameter 12.9505 12.8000 0.3000 -0.3000 0.1505

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.2851 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle CB 4
Center X 20.0730 20.0000 1.0000 -1.0000 0.0730
Center Y -65.1491 -65.0000 1.0000 -1.0000 -0.1491
Diameter 19.9611 20.0000 0.5000 -0.5000 -0.0389

Out/TolDev/NomLowerUpperNominalActualCircle 12.8 thru 4
Center X 20.0772 20.0000 1.0000 -1.0000 0.0772
Center Y -65.1367 -65.0000 1.0000 -1.0000 -0.1367
Diameter 12.9543 12.8000 0.3000 -0.3000 0.1543

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.3139 0.3000 0.0139

Out/TolReferenceTol/ZoneAngleActualCircle M5 1
True Position (RFS) 0.2625 0.3000

Page 1
137

Appendix K3: Gantry Top

Program: GantryTop_1

Units: mm, dec deg

3/2/2017 3:09:39 PM

Rounding Enabled - Units: x.xxxx Angle: x.xx

Out/TolDev/NomLowerUpperNominalActualCircle M5 2
Center X 112.0808 112.0000 1.0000 -1.0000 0.0808
Center Y -17.0234 -16.9300 1.0000 -1.0000 -0.0934

Out/TolTol/ZoneActual
True Position (RFS) 0.2470 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M5 4
Center X 64.9143 64.8500 1.0000 -1.0000 0.0643
Center Y -64.1909 -64.0700 1.0000 -1.0000 -0.1209

Out/TolTol/ZoneActual
True Position (RFS) 0.2739 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M5 3
Center X 112.0526 112.0000 1.0000 -1.0000 0.0526
Center Y -64.1732 -64.0700 1.0000 -1.0000 -0.1032

Out/TolTol/ZoneActual
True Position (RFS) 0.2317 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle Actuator bore 1
Center X 88.4538 88.4300 1.0000 -1.0000 0.0238
Center Y -40.6433 -40.5000 1.0000 -1.0000 -0.1433
Diameter 39.9334 40.0000 0.5000 -0.5000 -0.0666

Out/TolTol/ZoneActual
True Position (RFS) 0.2904 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M5 5
Center X -23.5261 -23.5700 1.0000 -1.0000 0.0439
Center Y 23.6254 23.5700 1.0000 -1.0000 0.0554

Out/TolTol/ZoneActual
True Position (RFS) 0.1414 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M5 6
Center X 23.6073 23.5700 1.0000 -1.0000 0.0373
Center Y 23.6021 23.5700 1.0000 -1.0000 0.0321

Out/TolTol/ZoneActual
True Position (RFS) 0.0985 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M5 7
Center X 23.5872 23.5700 1.0000 -1.0000 0.0172
Center Y -23.5705 -23.5700 1.0000 -1.0000 -0.0005

Out/TolTol/ZoneActual
True Position (RFS) 0.0344 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M5 8
Center X -23.5295 -23.5700 1.0000 -1.0000 0.0405
Center Y -23.5553 -23.5700 1.0000 -1.0000 0.0147

Out/TolTol/ZoneActual
True Position (RFS) 0.0862 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle Actuator bore 2
Diameter 39.9314 40.0000 0.5000 -0.5000 -0.0686

Out/TolTol/ZoneActual
True Position (RFS) 0.1200 0.3000

Page 2
138

Program: GantryTop_1

Units: mm, dec deg

3/2/2017 3:09:39 PM

Rounding Enabled - Units: x.xxxx Angle: x.xx

Out/TolDev/NomLowerUpperNominalActualCircle CB 2
Center X 320.0176 320.0000 1.0000 -1.0000 0.0176
Center Y -15.2177 -15.0000 1.0000 -1.0000 -0.2177
Diameter 19.9350 20.0000 0.5000 -0.5000 -0.0650

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.4369 0.3000 0.1369

Out/TolDev/NomLowerUpperNominalActualCircle 12.8 thru 2
Center X 320.0293 320.0000 1.0000 -1.0000 0.0293
Center Y -15.2294 -15.0000 1.0000 -1.0000 -0.2294
Diameter 12.9574 12.8000 0.3000 -0.3000 0.1574

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.4625 0.3000 0.1625

Out/TolDev/NomLowerUpperNominalActualCircle CB 3
Center X 319.9808 320.0000 1.0000 -1.0000 -0.0192
Center Y -65.2015 -65.0000 1.0000 -1.0000 -0.2015
Diameter 19.9215 20.0000 0.5000 -0.5000 -0.0785

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.4048 0.3000 0.1048

Out/TolDev/NomLowerUpperNominalActualCircle 12.8 thru 3
Center X 320.0189 320.0000 1.0000 -1.0000 0.0189
Center Y -65.2116 -65.0000 1.0000 -1.0000 -0.2116
Diameter 12.9536 12.8000 0.3000 -0.3000 0.1536

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.4249 0.3000 0.1249

Out/TolDev/NomLowerUpperNominalActualLine Right edge
Location X 340.0391 340.0000 0.5000 -0.5000 0.0391

Out/TolDev/NomLowerUpperNominalActualLine Bottom edge
Location Y -80.1134 -80.0000 0.5000 -0.5000 -0.1134

Out/TolDev/NomLowerUpperNominalActualCircle M5 4'
Center X -23.5715 -23.5800 1.0000 -1.0000 0.0085
Center Y -23.5956 -23.5700 1.0000 -1.0000 -0.0256

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0539 0.2500

Out/TolDev/NomLowerUpperNominalActualCircle M5 1'
Center X -23.5715 -23.5700 1.0000 -1.0000 -0.0015
Center Y 23.5638 23.5700 1.0000 -1.0000 -0.0062

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0128 0.2500

Out/TolReferenceTol/ZoneAngleActualCircle M5 2'
True Position (RFS) 0.0434 0.2500

Out/TolReferenceTol/ZoneAngleActualCircle M5 3'
True Position (RFS) 0.0229 0.2500

Page 3
139

Program: GantryTop_1

Units: mm, dec deg

3/2/2017 3:09:39 PM

Rounding Enabled - Units: x.xxxx Angle: x.xx

Out/TolDev/NomLowerUpperNominalActualCircle M5 8'
Center X -23.5625 -23.5700 1.0000 -1.0000 0.0075
Center Y -23.5824 -23.5700 1.0000 -1.0000 -0.0124

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0290 0.2500

Out/TolDev/NomLowerUpperNominalActualCircle M5 5'
Center X -23.5625 -23.5700 1.0000 -1.0000 0.0075
Center Y 23.5982 23.5700 1.0000 -1.0000 0.0282

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0584 0.2500

Out/TolDev/NomLowerUpperNominalActualCircle M5 6'
Center X 23.5709 23.5700 1.0000 -1.0000 0.0009
Center Y 23.5784 23.5700 1.0000 -1.0000 0.0084

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0169 0.2500

Out/TolDev/NomLowerUpperNominalActualCircle M5 7'
Center X 23.5542 23.5700 1.0000 -1.0000 -0.0158
Center Y -23.5942 -23.5700 1.0000 -1.0000 -0.0242

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0578 0.2500

Out/TolReferenceTol/ZoneAngleActualCircle 12.8 thru 1'
True Position (RFS) 0.0178 0.2500

Out/TolReferenceTol/ZoneAngleActualCircle 12.8 thru 4'
True Position (RFS) 0.0178 0.2500

Out/TolDev/NomLowerUpperNominalActualCircle 12.8 thru 2'
Center X 0.0000 0.0000 1.0000 -1.0000 0.0000
Center Y 24.9911 25.0000 1.0000 -1.0000 -0.0089

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0178 0.2500

Out/TolReferenceTol/ZoneAngleActualCircle 12.8 thru 3'
True Position (RFS) 0.0178 0.2500

Page 4
140

Program: GantryTop_2

Units: mm, dec deg

3/2/2017 3:54:43 PM

Rounding Enabled - Units: x.xxxx Angle: x.xx

Out/TolDev/NomLowerUpperNominalActualCircle M4 1
Center X 44.8793 45.0000 1.0000 -1.0000 -0.1207
Center Y -4.8652 -5.0000 1.0000 -1.0000 0.1348

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.3619 0.3000 0.0619

Out/TolDev/NomLowerUpperNominalActualCircle M4 2
Center X 66.8850 67.0000 1.0000 -1.0000 -0.1150
Center Y -4.7946 -5.0000 1.0000 -1.0000 0.2054

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.4708 0.3000 0.1708

Out/TolDev/NomLowerUpperNominalActualCircle M4 3
Center X -36.0128 -36.0000 1.0000 -1.0000 -0.0128
Center Y 17.0483 17.1000 1.0000 -1.0000 -0.0517

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.1066 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M4 4
Center X -36.0139 -36.0000 1.0000 -1.0000 -0.0139
Center Y -3.9297 -3.9000 1.0000 -1.0000 -0.0297

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0655 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M4 5
Center X 192.9680 193.0400 1.0000 -1.0000 -0.0720
Center Y -24.6682 -25.0000 1.0000 -1.0000 0.3318

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.6790 0.3000 0.3790

Page 1
141

Program: GantryTop_2

Units: mm, dec deg

3/2/2017 3:54:43 PM

Rounding Enabled - Units: x.xxxx Angle: x.xx

Out/TolDev/NomLowerUpperNominalActualCircle M4 6
Center X 214.9480 215.0400 1.0000 -1.0000 -0.0920
Center Y -24.6748 -25.0000 1.0000 -1.0000 0.3252

Out/TolTol/ZoneActual
True Position (RFS) 0.6759 0.3000 0.3759

Out/TolDev/NomLowerUpperNominalActualCircle M4 7
Center X 35.9921 36.0000 1.0000 -1.0000 -0.0079
Center Y -3.9328 -3.9000 1.0000 -1.0000 -0.0328

Out/TolTol/ZoneActual
True Position (RFS) 0.0674 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M4 8
Center X 35.9663 36.0000 1.0000 -1.0000 -0.0337
Center Y 17.0467 17.1000 1.0000 -1.0000 -0.0533

Out/TolTol/ZoneActual
True Position (RFS) 0.1262 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M4 9
Center X 272.9488 273.0000 1.0000 -1.0000 -0.0512
Center Y -4.8114 -5.0000 1.0000 -1.0000 0.1886

Out/TolTol/ZoneActual
True Position (RFS) 0.3909 0.3000 0.0909

Out/TolDev/NomLowerUpperNominalActualCircle M4 10
Center X 294.9419 295.0000 1.0000 -1.0000 -0.0581
Center Y -4.8173 -5.0000 1.0000 -1.0000 0.1827

Out/TolTol/ZoneActual
True Position (RFS) 0.3834 0.3000 0.0834

Out/TolDev/NomLowerUpperNominalActualCircle M4 1'
Center X -11.0029 -11.0000 1.0000 -1.0000 -0.0029

Out/TolTol/ZoneActual
True Position (RFS) 0.0058 0.2500

Out/TolTol/ZoneActualCircle M4 2'
True Position (RFS) 0.0058 0.2500

Out/TolTol/ZoneActualCircle M4 5'
True Position (RFS) 0.0200 0.2500

Out/TolTol/ZoneActualCircle M4 6'
True Position (RFS) 0.0200 0.2500

Out/TolTol/ZoneActualCircle M4 9'
True Position (RFS) 0.0069 0.2500

Out/TolTol/ZoneActualCircle M4 10'
True Position (RFS) 0.0069 0.2500

Out/TolDev/NomLowerUpperNominalActualCircle M4 3'
Center X -35.9962 -36.0000 1.0000 -1.0000 0.0038
Center Y 10.4886 10.5000 1.0000 -1.0000 -0.0114

Out/TolTol/ZoneActual
True Position (RFS) 0.0241 0.2500

Page 2
142

Program: GantryTop_2

Units: mm, dec deg

3/2/2017 3:54:43 PM

Rounding Enabled - Units: x.xxxx Angle: x.xx

Out/TolReferenceTol/ZoneAngleActualCircle M4 4'
True Position (RFS) 0.0225 0.2500

Out/TolReferenceTol/ZoneAngleActualCircle M4 7'
True Position (RFS) 0.0287 0.2500

Out/TolReferenceTol/ZoneAngleActualCircle M4 8'
True Position (RFS) 0.0394 0.2500

Page 3
143

Program: GantryTop_3

Units: mm, dec deg

3/2/2017 4:10:54 PM

Rounding Enabled - Units: x.xxxx Angle: x.xx

Out/TolDev/NomLowerUpperNominalActualCircle M4 1
Center X 70.0136 70.0000 1.0000 -1.0000 0.0136
Center Y 19.9525 19.9600 1.0000 -1.0000 -0.0075

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0310 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M4 2
Center X 140.0098 140.0000 1.0000 -1.0000 0.0098
Center Y 19.9515 19.9600 1.0000 -1.0000 -0.0085

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0260 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M4 3
Center X 200.0036 200.0000 1.0000 -1.0000 0.0036
Center Y 19.9396 19.9600 1.0000 -1.0000 -0.0204

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0414 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M4 4
Center X 269.9510 270.0000 1.0000 -1.0000 -0.0490
Center Y 19.9475 19.9600 1.0000 -1.0000 -0.0125

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.1011 0.3000

Out/TolDev/NomLowerUpperNominalActualCircle M5
Center X 299.9654 300.0000 1.0000 -1.0000 -0.0346
Center Y 9.9961 10.0000 1.0000 -1.0000 -0.0039

Out/TolReferenceTol/ZoneAngleActual
True Position (RFS) 0.0697 0.5000

Page 1
144

Program: GantryTop_3

Units: mm, dec deg

3/2/2017 4:10:54 PM

Rounding Enabled - Units: x.xxxx Angle: x.xx

Out/TolDev/NomLowerUpperNominalActualCircle M4 1'
Center X -99.9809 -100.0000 1.0000 -1.0000 0.0191
Center Y 0.0008 0.0000 1.0000 -1.0000 0.0008

Out/TolTol/ZoneActual
True Position (RFS) 0.0382 0.2500

Out/TolDev/NomLowerUpperNominalActualCircle M4 2'
Center X -29.9847 -30.0000 1.0000 -1.0000 0.0153
Center Y 0.0025 0.0000 1.0000 -1.0000 0.0025

Out/TolTol/ZoneActual
True Position (RFS) 0.0310 0.2500

Out/TolDev/NomLowerUpperNominalActualCircle M4 3'
Center X 30.0091 30.0000 1.0000 -1.0000 0.0091
Center Y -0.0070 0.0000 1.0000 -1.0000 -0.0070

Out/TolTol/ZoneActual
True Position (RFS) 0.0230 0.2500

Out/TolDev/NomLowerUpperNominalActualCircle M4 4'
Center X 99.9565 100.0000 1.0000 -1.0000 -0.0435
Center Y 0.0037 0.0000 1.0000 -1.0000 0.0037

Out/TolTol/ZoneActual
True Position (RFS) 0.0873 0.2500

Page 2
145

FIRST ARTICLE INSPECTION SHEET
NAME: Joseph Falcao
PART : Hard Stop
DATE : 3/22/2017

DRAWING NUMBER: OP#1 FAIR Print

Dimension ID Description Nominal Size Limits Actual Device Comments Pass/Fail

A Linear Height 11 mm ±0.5 mm 11.469 mm Drop Height Indicator Pass

B Position of Ø 4.5 mm Hole (1) 0.0 ±0.3 mm 0.226 mm Optical Comparater Pass

C Position of Ø 4.5 mm Hole (2) 0.0 ±0.3 mm 0.249 mm Optical Comparater Pass

D Position of Ø 3.3 mm Hole 0.0 ±0.3 mm 0.237 mm Optical Comparater Pass

Notes: Inspector: Joseph Falcao

146

Appendix K4: Hardstop

FIRST ARTICLE INSPECTION SHEET
NAME: Joseph Falcao
PART : Lead Screw Support Raiser
DATE : 4/19/2017

DRAWING NUMBER: OP#1 FAIR Print

Dimension ID Description Nominal Size Limits Actual Device Comments Pass/Fail

A Linear Height 68.70 mm ±0.5 mm 68.963 mm Drop Height Indicator Pass

B Position of Ø 6.0 mm Hole (1) 0.0 ±0.3 mm 0.158 mm Optical Comparater Pass

C Position of Ø 6.0 mm Hole (2) 0.0 ±0.3 mm 0.162 mm Optical Comparater Pass

D Position of Ø 5.0 mm Hole (1) 0.0 ±0.3 mm 0.214 mm Optical Comparater Pass

E Position of Ø 5.0 mm Hole (2) 0.0 ±0.3 mm 0.237 mm Optical Comparater Pass

Notes: Inspector: Joseph Falcao

147

Appendix K5: Leadscrew Support Raiser

FIRST ARTICLE INSPECTION SHEET
NAME: Joseph Falcao
PART : Line Constraint
DATE : 3/22/2017

DRAWING NUMBER: OP#1 FAIR Print

Dimension ID Description Nominal Size Limits Actual Device Comments Pass/Fail

A Radius 12 mm ±0.5 mm 12.374 mm Drop Height Indicator Pass

B Position of Ø 4.5 mm Hole (1) 0.0 ±0.3 mm 0.157 mm Optical Comparater Pass

C Position of Ø 4.5 mm Hole (2) 0.0 ±0.3 mm 0.162 mm Optical Comparater Pass

D Flatness 0.000 ±0.004 mm 0.003 mm Test Type Indicator Pass

Notes: Inspector: Joseph Falcao

148

Appendix K6: Line Constraint

A1
A2

B10
GND

C4
AGND
SCK 2
MISO
MOSI

3V3
B9
B8
C6
C7
B6
B7

GND
3V3
C11
D2
A9
A8

SPI1 SPI2 C3

Heidenhain MT60M

EXE102

Stepper Driver

SG60M

5V Regulator

Yellow
LED

Beam
Actuator

Rail
Actuators

Gantry
Actuator

Piezo Buzzer
(Driven

Through PWM)
Green LED

Relay

DC
Motor

Emergency
Stop

24V Power Supply`

Relay

Relay

Relay

SolenoidDC
Motor

Solenoid

Run
Button

Stepper Driver

Red LED

Logic Level
Converter

`

Logic Level
Converter

A14
A15
C14
C15
H0
H1
C5

B12

Rotary
Switch

1

2

 Switch

 3

4

5

Reference
Mark MT60

Appendix L: Electronics Basic Schematic

149

Grand Total $ 8,605.17 275 parts

LINE SOURCE SUB-SUB-ASSEMBLY OR SUB-SUB-ASSEMBLY SOURCE PART NO. UST QTY.
QTY. TOTAL LINK MICRO-VU NEEO BY OATE MAP PURPOSE NOTES PART DESCRIPTION PART DESCRIPTION PRICE TYPE ITEM NO. LOCATION

Green non-illuminated Big green button for telling
1 Oigi Key Run Button

button
EG1935-ND $3.13 ea. 1 $3.13 � 2/24/2017 the machine to start the

selected mode

2 Digi Key Emergency Stop Push pull red button 679-3757-ND $24.48 ea. 1 $24.48 679-3757-ND 2/24/2017 Big red button for emergency
stoo. Push oull head
3 Position swithc for selecting

3 Digi Key State Selector 3 position turn switch CKN9823-ND $4.81 ea. 1 $4.81 � 2/24/2017 one of three modes: Off,

Assemble, and Calibration

4 Digi Key Piezo Buzzer Warning in case of 668-1463-ND $0.91 ea. 1 $0.91 � 2/24/2017 Audio signal for a critical
fault error or completion

5 Digi Key Proto Board For any additional 1568-1082-ND $4.95 ea. 1 $4.95 1568-1082-ND 2/24/2017 Wiring for piezo buzzer
wiring steps

6 Digi Key DC/DC Buck Converter Powers SV 1597-1243-ND $8.50 ea. 1 $8.50 1597-1243-ND 2/24/2017 Powers and protects SV
comoonents comoonents

7 Digi Key Terminal Block Organize Power WM5765-ND $4.32 ea. 1 $4.32 WMS765-ND 2/24/2017 Organize power distribution
Distribution with screw terminals

8 Dili:i Kev Loeic Level Shifter 5V-3.3V 1568-1209-ND $2.95 ea. 2 $5.90 1568-1209-ND 2/24/2017 Coverts SV to 3.3V

9 Digi Key M23 9 pin Heidenhain Heidenhain Pinout 889-1250-ND $21.23 ea. 1 $21.23 889-1250-ND 2/24/2017 Run Power from place to
Connector I olace in a neat fashion

10 Digi-Key MicroController NUCLEO-L476RG 497-15881-ND $14.90 ea. 1 $14.90 !121-lS�UU-�12 2/24/2017 Main Controller for the entire
machine
Relays for high power

Relays for Powering components, allows
11 Digi-Key Relay screwdriver GH7019-ND $13.05 ea. 4 $52.20 GH7019-ND 2/24/2017 microcontroller to turn on

components solenoids and motors for
screwdriver

Microstepping driver Stepper motor controllers for
12 Digi-Key Microstepping Driver for high precision 497-16251-ND $15.96 ea. 2 $31.92 427-1§2,21-ND 2/24/2017 Rail actuators, beam

movements actuator, and 1.1antrv actuator

13 Digi-Key Relay Board Holds Relays GH7028-ND $38.21 ea. 1 $38.21 GH7028-ND 2/24/2017 Board to organize relays on,
helps keep pins organized
Green Light to indicate the

14 Digi-Key Green Panel Light Green LED 350-3981-ND $6.80 ea. 1 $6.80 � 2/24/2017 machine is ready to start or
has finished its current run

15 Digi-Key Amber Panel Light Amber LED 350-3982-ND $5.30 ea. 1 $5.30 � 2/24/2017 Amber light indicates the
machine is currently running
Red light indicates a fatal

16 Digi-Key Red Panel Light Red LED 350-3980-ND $5.30 ea. 1 $5.30 350-3980-ND 2/24/2017 error detected by the
machine and the machine
stops

17 DiRi Kev 18 Ga11:e Wire Ferrules Wire Ferrules - Black 277-2186-ND $0.19 ea. 30 $5.61 277-2186-ND 2/24/2017
18 Oie:I Kev 18 Gae:e Wire Ferrules Wire Ferrules - Red 288-1015-ND $0.11 ea. 30 $3.36 288-1015-ND 2/24/2017
19 Ditti Kev Screw Terminals 6 position A98337-ND $4.23 ea. 4 $16.92 M���7-ND 2/24/2017

20 Dr. Ridgely Shoe of Brian Breakout Board (Dr. NONE $0.00 ea. 1 $0.00 NONE 2/24/2017 Breakout Board for Controller
Ridgely) & Programmer
20 INCH LBS 20 INCH LBS MINIATURE TORQUE 20 INCH LBS Subassembly for torquing 21 Fix It Sticks Screwdriver Actuator MINIATURE TORQUE LIMITER $40.00 ea. 2 $80.00 MllilAil!.B.s. 2/24/2017

screws LIMITER IQBQUE LIMIIEB

22 Grainger Screwdriver Actuator Insert Bit, 1/4", Hex,
4mm

30TF09 $0.94 ea. 2 $1.88 30TF09 2/24/2017 Subassembly for torquing
screws

23 Haydon Kerk Rail Leveling Actuators linear Actuator 57H4A-3.25-815 $262.91 ea. 2 $525.82 S7H4A-3.2S-S1S 2/24/2017 Actuators that push target
rails down against the granite

24 Haydon Kerk Non-Captive NEMA 14 n/a 35F4N-2.33-906 $125.57 ea. 1 $125.57 35F4N-2.33-906 2/24/2017 Levels the X-beam
Stepper Motor

25 Heidenhain Heidenhain Probe MT- n/a 359341-01 $2.781.0(ea. 1 $2,781.00 Contacted Via Email 2/24/2017 Measure level of the X-Beam
60M

Interpolation electronics

26 Heidenhain Heiden ha in
Interpolation 536397-01 $808.00 ea. 1 $808.00 536397-01 2/24/2017 board translates signal into
Electronics readable encoder ticks for

our system

27 Heidenhain Heiden ha in MT60 Swich Board 317436-02 $361.00 ea. 1 $361.00 l!Q!!lE 2/24/2017 Switch board allows us to
actuate the MT60

28 IKO linear rails and bearings n/a LWLF24 RlOOC BCS $0.00 ea. 2 $0.00 n/a 2/24/2017 The linear rails
MLF24

Bolts that attatch the The base of the device where 29 Misumi USA Granite Parallel Bolts granite parallel to the 5CB12-60 $3.51 ea. 6 $21.06 SCB12-60 4/3/2017
the machine will be built on

le:ranite block

30 Misumi USA NEMA 23 High Torque The driving motor of HT23-601 $105.00 ea. 1 $105.00 HT23-601 2/24/2017 Actuator Subassembly
Stepper Motor the actuator

Appendix M: Bill of Materials

150

31 Misumi USA NEMA 23 Bolts
Attatch the motor to

SCB5-20 $0.36 ea. 6 $2.16 � 2/24/2017 Actuator Subassembly
the main housimz

Lead Screw Nuts - Anti-
Nut that connects the

32 Misumi USA
Backlash Type

leadscrew to the MTBLR10 $136.42 ea. 1 $136.42 MTBLR10 2/24/2017 Actuator Subassembly

laantrv
Connects the shaft of

33 Misumi USA Coupling - Slit, Clamiping the motor to the CPLSC20-6-6.35 $59.60 ea. 1 $59.60 CPLSC20-6-6.35 2/24/2017 Actuator Subassembly

lead screw

34 Misumi USA
Lead Screw - Both Ends Lead screw with both

MT5RW12-950-F20-V8-S20-Q6 $65.39 ea. 1 $65.39
MTSRW12-950-F20-

2/24/2017 Actuator Subassembly
Steooed ends steooed V8-S20-06

35 Misumi USA Lead Screw Support Side
Support for the free

MTU28 $32.76 ea. 1 $32.76 Mil!Zl! 2/24/2017 Actuator Subassembly
end of the lead screw

36 Misumi USA Support Bolts Bolts from the support
5C86-45 $0.23 ea. 2 $0.46 � 2/24/2017 Actuator Subassembly

to the raiser

37 Misumi USA Raiser Bolts
Bolts from the raiser

SCB4-10 $0.30
to the granite plate

ea. 87 $26.10 = 2/24/2017 Actuator Subassembly

38 Misumi USA Probe Bolts nla 5CB4-40 $0.S9 ea. 2 $1.18 SCB4-40 2/24/2017 Measure level of the X-Beam

Precision Rods - g6

39 Misumi USA Rail Leveling Actuators
Tolerance / h7

RGOCG14·3S-MC6 $8.06 ea. 2 $16.12 RGOCG14-35-MC6 2/24/2017
Actuators that push target

Tolerance - 1045 rails down against the granite

Carbon Steel

Bolts from to attatch
40 Misumi USA bearing to afore SCB3-10 $0.30 ea. 12 $3.60 SCB3-10 2/24/2017 The linear rails

mentioned elate l#S\

Bolts that hold the

41 Misumi USA Gantry Frame Bolts
three machined parts

SCB12-100 $2.93 ea. 4 $11.72 = 2/24/2017
Holds the three parts of the

of the assembly gantry frame together

together

42 Misumi USA Screwdriver Actuator
Ball Splines - Both

BSJM10-80-F5-E15-P5-Q8 $192.12 2 $384.24
BSJMl0-80-FS-ElS-

2/24/2017
Subassembly for torquing

Ends Steooed
ea.

P5-08 screws

Pillow Blocks -
Subassembly for torquing

43 Misumi USA Screwdriver Actuator Diamond Shape HBR8 $24.12 ea. 2 $48.24 HBR8 2/24/2017

Flan2ed
screws

Compression Springs -

44 Misumi USA Screwdriver Actuator
Round Wire, Standard

UF8-15 $1.08 ea. 4 $4.32 UF8-15 2/24/2017
Subassembly for torquing

Lengths, Stainless screws

Steel

Spur Gears - Pressure
Subassembly for torquing

45 Misumi USA Screwdriver Actuator Angle 20Deg., Module GEABBl.0-48-6-8-21 $34.13 ea. 2 $68.26 GEABB1.0-48-6-B-21 2/24/2017

1.0
screws

Spur Gears - Pressure
��a1u Q-ZQ-�-a- Subassembly for torquing

46 Misumi USA Screwdriver Actuator Angle 20Deg., Module GEABBl.0-20-6-B-6.3S $21.32 ea. 2 $42.64
�

2/24/2017
screws

1.0

Small Deep Groove
Subassembly for torquing

47 Misumi USA Screwdriver Actuator Ball Bearings - Double FL680522 $42.21 ea. 4 $168.B4 � 2/24/2017

Shielded with Flanged
screws

Hardened Collars -

48 Misumi USA Screwdriver Actuator
Standard/Precision

FNCLCH-V21-D25-L18 $19.26 2 $38.S2
FNCLCH-V21-D25-

2/24/2017
Subassembly for torquing

Class - Length
ea.

L18 screws

Configurable

Couplings - High
Subassembly for torquing

49 Misumi USA Screwdriver Actuator Rigidity, Oldham, Set MCOG17-S-8 $22.77 ea. 2 $45.54 MCOG17-5-8 2/24/2017

ScrewTvoe
screws

50 Misumi USA Screwdriver Actuator
Sheet Metal Gearbox

BLUZS-5UD-Al10-B80-T3-H20-V90 $20.96 ea. 2 $41.92
BLUZS-SUD-AllO-

2/24/2017
Subassembly for torquing

Mountimz Plate EH30:D-l::IZQ-�2Q screws

Precision Pivot Pins -
Subassembly for torquing

51 Misumi USA Screwdriver Actuator Straight, Retaining CCG4-15 $10.80 ea. 2 $21.60 CCG4-15 2/24/2017

RinRS
screws

Linear Bushings with
52 Misumi USA Pillow Blocks - Double n/a LHSSW8H $62.70 ea. 1 $62.70 LHSSW8H 2/24/2017 Levels the X-beam

Bushine:s

53 Misumi USA Precision Linear Shaft n/a P55FG58-90-F12-810-P6-SC10 $23.04 ea. 1 $23.04
PSSFGS8-90-F12-

2/24/2017 Levels the X-beam
B10-P6-SC10

54 Misumi USA
Socket Head Cap Screws

n/a MSSU5-6 $2.09 ea. 1 $2.09 � 2/24/2017 Levels the X-beam
with Soft Point

55 Misumi USA
0-Rings for angular

n/a P5-1B $0.66 ea. 2 $1.32 PS-lB 2/24/2017 Prevents Bearing binding
misalignment

25 mm Cylindrical Stock
Line constraint, Line constraint of the X-Beam

56 Misumi USA
(Line Constraint)

enough material for RDOK2S-3S0 $22.55 ea. 1 $22.SS � 4/3/2017 for ensuring measument

four tries accuracv

57 Misumi USA X & Z axis Limit Switch limit Switch MSP556 $38.96 ea. 2 $77.92 = 2/24/2017
Tells the stepper motors

where to home to

Switching Power Supply Mi:;;ymi S:witthing
Coverts AC Input from wall to

58 Misumi USA (with Case, DC24V Power Supply ESPl0-600-24 $143.99 ea. 1 $143.99 � 2/24/2017

Outoutl DC24V
DC for use in

151

59 Misumi USA Cable Carrier
Gantry Cable

MHPK5206-50-32-A $62.32 ea. 1 $62.32 MHP�2Q§-SQ-l2-A 2/24/2017
Run Power from place to

Manaeement I olace in a neat fashion

60 Misumi USA
4 core stranded 18 gage

Wire MWS-A-0. 75-6-4 $27.58 ea. 1 $27.58 MWS-A-0. 75-6-4 2/24/2017
Run Power from place to

wire place in a neat fashion

61 MSCDirect Screwdriver Actuator Pull Solenoid 74097841 $50.32 ea. 4 $201.28 74097841 2/24/2017
Subassembly for torquing
screws

62 n/a
Granite Block, 1020mm x

n/a n/a $450.00 ea. 1 $450.00 n/a 4/3/2017
The base of the device where

400mm x 100mm the machine will be built on

Granite Parallel
The base of the device where

63 n/a Constraints, 800mm x n/a n/a $230.00 ea. 2 $460.00 n/a 4/3/2017
the machine will be built on

SOmmxSOmm

lead Screw Support A raiser for the lead
EXTRUDED ALUMINUM BARE f;iQ§l81IliSll

64 Online Metals
Raiser screw support

RECTANGLE 6061 T6511 - Random $21.43 ea. 1 $21.43 �l!t[!.!!;h�g l!i1� 2/24/2017 Actuator Subassembly

Len<th RPctanolP

65 Online Metals
Metal Stock for attatching

n/a Part of the Gantry Order $0.00 ea. 2 $0.00 Gantry Order 2/24/2017 The linear ralls
Bearing to Gantry

COLD FINISH MILD STEEL
COLD FINISH MILD

66 Online Metals Gantry Steel n/a $313.20 4 feet 1 $313.20 STEEL RECTANGLE 2/24/2017 The linear rails
RECTANGLE 1018

1018

Random Length
Keeps the X-Beam In a

67 Online Metals
50.8. mm Cylindrical should provide

50.8 mm Dia 6061 Al rod $51.66 ea. 1 $51.66 �Q 8 Disl gQ§l Al t2!:t 4/3/2017 predefined position and
Stock (Hardstop) enough materials for

protects the actuator
two .. three tries

Material to make the � Protection for the gantry
68 Online Metals Sheet Metal

housing structure with
ALUMINUM BARE SHEET 6061 T6 $21.52 24x36" 1 $21.52

Aluminym Sheet
4/3/2017 subassembly when the

machine is not running

Material to make the Bare 6061 T6
Attatchment to the housing

69 Online Metals Sheet Metal
housing structure with

ALUMINUM BARE SHEET 6061 T6 $21.52 24x36" 1 $21.52
Alumia!.lm S:b��t

4/3/2017 for the gantry that covers the
electronics

70
Pittman

Screwdriver Actuator DC Gearmotor GM92345023-Rl-SP $176.67 ea. 2 $353.34 GM9234S023-Rl-SP 2/24/2017
Subassembly for torquing

Motors screws

Total 275 Darts $8,605.17

152

A1
A2

B10
GND

C4
AGND
SCK 2
MISO
MOSI

3V3
B9
B8
C6
C7
B6
B7

GND
3V3
C11
D2
A9
A8

SPI1 SPI2 C3

Heidenhain MT60M

EXE102

Stepper Driver

SG60M

5V Regulator

Yellow
LED

Beam
Actuator

Rail
Actuators

Gantry
Actuator

Piezo Buzzer
(Driven

Through PWM)
Green LED

Relay

DC
Motor

Emergency
Stop

24V Power Supply`

Relay

Relay

Relay

SolenoidDC
Motor

Solenoid

Run
Button

Stepper Driver

Red LED

Logic Level
Converter

`

Logic Level
Converter

A14
A15
C14
C15
H0
H1
C5

B12

Rotary
Switch

1

2

 Switch

 3

4

5

Reference
Mark MT60

153

Appendix N: Electronics Diagram

154

Appendix O: Final Program Flow Chart List

 Appendix O1: BeamActuator.Home() ... 155

Appendix O2: BeamActuator.Move() ... 156

Appendix O3: Gantry.Home() ... 157

Appendix O4: Gantry.Move().. 158

Appendix O5: Import.BoltPattern() ... 159

Appendix O6: ImportCalibration ... 160

Appendix O7: Import.Song() ... 161

Appendix O8: main.Assembly_Mode()... 162

Appendix O9: main.Calibration_Mode() .. 163

Appendix O10: main.ErrorHandler() .. 164

Appendix O11: main.Home() .. 165

Appendix O12: main.Leveling_Mode() ... 166

Appendix O13: main.Lights_Sound_Action() .. 167

Appendix O14: main.Sleep_Mode()... 168

Appendix O15: main.TorqueDown() .. 169

Appendix O16: Probe.Home() ... 170

Appendix O17: Probe.Probe() ... 171

Appendix O18: RailAct.Move() .. 172

Appendix O19: RailAct.Home() ... 173

Appendix O20: setup.FileCheck() .. 174

Function Initilization

Check if limit switch is
pressed

Back off switch
Ie ReleaseSW

Switch released?True

False

Return/exit function
Return(Done)

HardHiZ/Turn off Beam
Actuator motor

True

Move Beam Actuator
towards limit switch

using GoUntil
(which stops at switch)

False

While loop

Beam Actuator
busy/still moving

Beam Actuator stalled

HardHiZ/Turn off Beam
Actuator motor

Set Beam Actuator Error
Flag True

Return/exit function
Return(Error Occurred)

true

true

false

Back off switch
Ie ReleaseSW

Note: Realized after the fact
that this can be replaced

with a normal run function
and the gantry busy check
replaced with a check for

the limit switch

While loop
Beam Actuator

busy/still moving
Beam Actuator stalledtrue

false

HardHiZ/Turn off Beam
Actuator motor

False

Return/exit function
Return(Done)

HardHiZ/Turn off Beam
Actuator motor

Set Beam Actuator Error
Flag True

Return/exit function
Return(Error Occurred)

True

File: BeamActuator.py
Function: Home()

155

Function Initilization

Set Variables
TicksPerDistance

Offset
Limit

Destination+Offset
<= 0

HardHiZ/Turn off Beam
Actuator motor

Set Beam Actuator Error
Flag True

True

Destination + Offset
>= Limit

False

Set Beam Actuator Error
Flag True

HardHiZ/Turn off Beam
Actuator motor

Convert Destination from a distance to #steps on the
stepper motor using TicksPerDistance and Offset

Ie
Destination = (Destination + Offset)*TicksPerDistance

False

Move Beam Actuator to
Destination

Did stall occur
Did the

 Beam Actuator reach
position

While loop

False

False

Return/exit function
Return(Error Occurred)

True
HardHiZ/Turn off Beam

Actuator motor

True

Set Beam Actuator Error
Flag True

HardHiZ/Turn off Beam
Actuator motor

Return/exit function
Return(Error Occurred)

Return/exit function
Return(Error Occurred)

Exit while loop
Ie break

Probe == True

File: BeamActuator.py
Function: Move(Destination,Probe = False)

Return/exit function
Return(Done)

False

True

If Probe func
returns error

Ie Error
Occurred

Return/exit function
Return(Error Occurred)

True

Return/exit function
Return(reading)

False

156

Function Initilization

Check if limit switch is
pressed

Back off switch
Ie ReleaseSW

Switch released?True

False

Return/exit function
Return(Done)

HardHiZ/Turn off Gantry
motor

True

Move Gantry towards
limit switch using GoUntil

(which stops at switch)

False

While loop

Gantry busy/still moving

Gantry stalled

HardHiZ/Turn off Gantry
motor

Set Gantry Error Flag True

Return/exit function
Return(Error Occurred)

true

true

false

Back off switch
Ie ReleaseSW

Note: Realized after the fact
that this can be replaced

with a normal run function
and the gantry busy check
replaced with a check for

the limit switch

While loop Gantry busy/still moving Gantry stalledtrue

false

HardHiZ/Turn off Gantry
motor

False

Return/exit function
Return(Done)

HardHiZ/Turn off Gantry
motor

Set Gantry Error Flag True
Return/exit function

Return(Error Occurred)

True

File: Gantry.py
Function: Home()

157

Function Initilization

Set Variables
DistancePerStep

xOffset
xLimit

Destination+xOffset
<= 0

HardHiZ/Turn off Gantry
motor

Set Gantry Error Flag TrueTrue

Destination + xOffset
>= xLimit

False

Set Gantry Error Flag True
HardHiZ/Turn off Gantry

motor

Convert Destination from a distance to #steps on the
stepper motor using DistancePerStep and xOffset

Ie
Destination = (Destination + xOffset)/DistancePerStep

False

Move Gantry to
Destination

Did stall occur
Did the gantry reach

position

While loop

False

False

Return/exit function
Return(Error Occurred)

True

HardHiZ/Turn off Gantry
motor

True

Set Gantry Error Flag True

HardHiZ/Turn off Gantry
motor

Return/exit function
Return(Error Occurred)

Return/exit function
Return(Error Occurred)

Exit while loop
Ie break

Probe == True

File: Gantry.py
Function: Move(Destination,Probe = False)

Return/exit function
Return(Done)

False

Calibration flag True?

True Note: Check Error Flags to determine how to
call the Probe function from the Probe file

Call Probe with no limits
on measurement

True

Note: Calling Probe function with no limits
means that the user can use any gage block

for calibration and the probe will accept read
values. Downside, the user can mess up

measurements (ie stop probe prematurely
with you hand). If this happens, re-run

calibration.

If Leveling
or Assembly

 flag true

False

Call Probe with limits on
measurement

True

Note: Calling Probe function with limits in case
something interferes with probe

measurements while beam is being leveled
and if no one is there to catch it. May not be

necessary as we noticed that it is hard to
interfere with the probe. Recommend further

testing

If Probe func
returns error

Ie Error
Occurred

Return/exit function
Return(Error Occurred)

True

Return/exit function
Return(reading)

False

158

Init

Input = Xbeam.get()

Create file name
FileName = BoltPattern +str(Input)+ .csv)

error = 0, i = 0

Try the following
Process lines, remove certain string

bits, store data

For Loop checking items
in BoltSide

ErrBoltCsv.put(1)FileNotFoundError

No Error

If item != R ,
 L , or B

ErrBoltCsv.put(1)

String calling error out

error = 1

i = i+1

True

False

End of for loop?False

For Loop checking items
in BoltData

Try to float item

ErrBoltCsv.put(1)

String calling error out

error = 1i = i+1

Value Error
Occurred

No Error

End of for loop?False

True

error == 0

error != 0

return([BoltSide,BoltData])

Write string to report

return(And Error Occurred)

String = Error

Write error to report

error = 1

Write error to report

return(Error Occurred)

File: Import.py
Function: BoltPattern()

159

Init

Input = Xbeam.get()

error = 0

Create File Name
i.e. For Input = 500,

FileName =
Calibration500.csv

Try to
open file with file

name given in
FileName

Try to float
item in list

for item in List

Store lines read from
file into String

Store output into List
Try to split String by as

the commas

No Error

Add an string describing
the error to String as a

list with one item
Error

Add an string describing
the error to the list

String

Repurpose String and
make it an empty list

ValueError
Or

TypeError

error = 1

End of List?

Replace item in List with
the floated value

List[i] = float(item)

No Error

False

True

Counter Variable i = 0

i = i+1

error == 1

error != 0

False

return(Error
Occurred)

Falsereturn(List)

True

Open Error Report text
file for writing

for loop beginning
for item in String

Write item to Error
Report

End of List String

True

return(Error
Occurred)

Close Error Report

File: Import.py
Function: Calibration()

160

Init

Import Pin Definitions
and Buffers from main

file

Calculate the piano switches as a binary number stored
into variable Number

Number = (a*2^3 + b*2^2 + c*2^1 + d*2^0) + 1

Number == 1

Number == 2

Number == 4

Number == 3

Number == 5

Number == 6

Number == 7

Number == 9

Number == 8

Number == 10

Number == 11 Number == 12

Number == 13

Number == 15

Number == 14

Number == 16

False

False

False

False

False

False

False

False

False

False

False

False

False

False

False

Length = 500

ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1) ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1)

ErrSong.put(1)

True

True

True

True

True

True

True

True

True

True

True True

True

True

True

True

ErrSong.put(1)

If ErrSong.get() == 0
Write Error message to

Error Report text file

Xbeam.put(Length)

return(No Error)

True

False

return(Error
Occurred)

False

Note1.value() == 0

Note2.value() == 0

Note3.value() == 0

Note4.value() == 0

a = 1

True

a = 0

False

b = 1

b = 0

c = 1

c = 0

d = 1

d = 0

File: Import.py
Function: Song()

161

Init

ErrAssemble.put(1)

Output =
ImportBoltPattern()

ErrorHandeler()type(Output) == str

break

False

True

ErrAssemble.put(1)

while loop start

while loop end

Store Output as
BoltData and BoltSide.

Define Offset

For Loop
for counter in

range(0,len(BoltData))

Output =
Move_Gantry_To(BoltData[counter])

Output == Error
Occurred

break

TorqueDown(BoltSide[counter])

False

While Loop Start

While Loop End

ErrorHandler()

ErrAssemble.put(1)

True

end of for loopFalse

Home

while loop start

Error Check

ErrorHandler()

break

ErrAssemble.put(1)

Error Occured

end of while loop

True

No Error

zero_flags()

Lights_Sound_Action()

return

File: main.py
Function: Assembly_Mode()

162

Init

Input = Xbeam.get()

error = 0

Create File Name
i.e. For Input = 500,

FileName =
Calibration500.csv

Try to
open file with file

name given in
FileName

Try to float
item in list

for item in List

Store lines read from
file into String

Store output into List
Try to split String by as

the commas

No Error

Add an string describing
the error to String as a

list with one item
Error

Add an string describing
the error to the list

String

Repurpose String and
make it an empty list

ValueError
Or

TypeError

error = 1

End of List?

Replace item in List with
the floated value

List[i] = float(item)

No Error

False

True

Counter Variable i = 0

i = i+1

error == 1

error != 0

False

return(Error
Occurred)

Falsereturn(List)

True

Open Error Report text
file for writing

for loop beginning
for item in String

Write item to Error
Report

End of List String

True

return(Error
Occurred)

Close Error Report

File: main.py
Function: Calibration_Mode()

163

Err.FileCheck.get()
== 0

ErrSong.get() == 0

ErrBoltCsv.get() == 0

ErrCalCsv == 0

Err.FileCheck.get()
== 1

False

False

False

True

True

True

True

ErrSong.get() == 1

ErrBoltCsv.get() == 1

ErrCalCsv == 1

False

False

False

For now, do nothingTrue

Ture

True

True

False

False

ErrInit.get() == 1

ErrSleep.get() == 1

ErrLeveling.get() == 1

ErrAssembly.get() == 1

ErrProbe.get() == 1

ErrGantry.get() == 1

ErrBeamAct.get() == 1

False

False

False

Open Error Report.txt
for writing to.

Write
 There was an error
during the system
initilization\n\r

Write
"There was an error

with the sleep mode\n\
r"

Write
"There was an error
with leveling the X-

Beam during the
Assembly mode\n\r"

Write
"There was an error

with assembling the X-
Beam during the

Assembly mode\n\r"

Write
"Probe was unable to

take valid
measurements"

Write
"Gantry was unable to

move to the
destination"

Write
"Beam Actuator was

unable to move to the
destination"

True

True

True

True

True

True

True

Write
"A possible issue has occurred where

the system has not been accounted for
all the\n\r

possible errors. Please identify and
name the new error"

False

Close Error Report.txt
to save changes

Toggle Lights and Sound
Lights_Sound_Action()

Init

Program Ends

zero_flags()

ErrRailActR.get() == 1
or

ErrRailActL.get() == 1

False

Write which actuator
has attempted to run
past maximum stroke

length allowed

True

CHECK

File: main.py
Function: ErrorHandler()

164

Init

if Probe or All in args

if RailActR or All or
RailAct in args

if RailActLor All or
RailAct in args

if Screwdrivers
 or All in args

False

False

False

if Gantry or All in args

False

if Bact or All in args

False

True Probe.Home()

RailAct.Home(Right)

RailAct.Home(Left)

Turn off both DC motors
and Solenoids

Gantry.Home()

BeamActuator.Home()

True

True

True

exit

False

True

True

File: main.py
Function:

Home_Mode(*arg)

165

Init

switch = 0

While Loop 1st layer
start

ErrLeveling.put(1)

ErrorHandeler()

End of 1st Layer While
Loop

While Loop 2nd Layer

switch == 0

Lights_Sound_Off()

YellowLED.High()

True Output = FileCheck()

type(Output) == str

break

True

Home

Check for Error break

False

No Error

Error

switch == 0 Lights_Sound_Off()

GreenLED.High()

True

While Loop 3rd Layer
Start

Go() == 1

Mode() != 3

break

return()

End of 3rd Layer While
Loop

False

False

True
switch = 1

Lights_Sound_Off()

YellowLED.High()

Output = ImportSong()

Output == Error
Occurred

breakTrue

Output =
ImportCalibration()

Output == Error
Occurred

False

breakTrue

False

False

Process Data in Output
into following Variables

CalibrationData
NearSide
FarSide

CalConst

False

Output = Move_Ganty_to(FarSide,probe = True)

Output == Error
Occurred

breakTrue

FarLevel = Output

False

Output = Move_Ganty_to(NearSide,probe = True)

Output == Error
Occurred

break

NearLevel = Output -
CalConstant

True

False

System Constants
hardcoded by user.

x1
x2

Calculate Ratio of
displacement at the
Beam Actuator to

displacement at the
probe stored in x

Output = Move_Beam_Act_to(NearLevel – FarLevel)/x,
probe = True)

Output == Error
Occurred

breakTrue

NearLevel = Output -
CalConstant

False

Error = 0
Tolerance = XXX

While Loop 3rd Layer
Start

NearLevel – FarLevel >= -Tolerance
or

NearLevel – FarLevel <= Tolerance

break

True

Output = Move_Beam_Act_to(NearLevel – FarLevel)/x,
probe = True)

False

Output == Error
Occurred

Error = 1
break

True

End of 3rd layer while
loop

Error == 1 break

zero_flags()

True

False

return(Done)

End of 2nd Layer while
loop

Home

Error Check

While Loop Start

While Loop End

ErrorHandler()

ErrLeveling.put(1)

breakNo Error

True

File: main.py
Function: Leveling_Mode()

166

Init

Lights_Sound_Off()

Create Green, Yellow,
Red, Blink, Switch, and

Stop Variables

ErrFileCheck.get() == 1

ErrProbe.get() == 1

ErrBeamAct.get() == 1

ErrSong.get() == 1

Green = 1
Yellow = 1

Red = 1
Blink = 0

Green = 0
Yellow = 1

Red = 1
Blink = 0

Green = 1
Yellow = 0

Red = 1
Blink = 0

Green = 1
Yellow = 1

Red = 1
Blink = 1

ErrGantry.get() == 1

Green = 1
Yellow = 1

Red = 0
Blink = 0

True

True

False

False

False

False

False

True

True

True

Turn Buzzer On

GreenLED.High

Sleep 1 second

Turn Buzzer Off

return()

While Loop Start

Turn On Buzzer

Switch == 0

Green == 1

Yellow == 1

Red == 1

GreenLED.High()

YellowLED.High()

RedLED.High()

True

Turn Buzzer Off

False

Green == 1

Yellow == 1

Red == 1

GreenLED.Low()

YellowLED.Low()

RedLED.Low()

Set Start (Time
Reference Point)

Set Current (Time
relative to Start)

While Loop Start

Go() == 1

(Current-Start)
>= 500

False

False

True

True

Stop == 0

Stop = 1Stop == 2

True

False

Set Current (Time
relative to Start)

True

Stop == 0 False

break

End of While Loop

Switch == 0

False

Switch == 1

False

Switch = 1

Switch = 0

True

True

Stop == 2

False

return()

True

Blink == 1 True

False

Lights_Sound_Off()

Turn Buzzer Off

break

End of while loop

YellowLED.High()

ErrRailActR.get() == 1
or

ErrRailActL.get() == 1

Green = 1
Yellow = 1

Red = 0
Blink = 1

File: main.py
Function: Lights_Sound_Action()

167

Function Start

ErrSleep.put(1)
Set Timer and related

variables

Start of while loop

If Timer > 10 min Go() == 1 Mode() != 2False False

Beginning of while loop

End of while loopFalse

True
True

return(1000)

True

Increment Counter

Home System

Check OutputError

ErrorHandeler

Reset Timer

Beginning of while loop

No Error

Mode != 2 Mode == 2
No Else Statement at
the end of this if else

statement

Increment Timer

ErrSleep.put(0)

End of while loop

False False

True

True

Increment Timer return(Timer)

Sleep for X sec so that
system repeats loop

every 500ms

Lights_Sound_off() YellowLED.High() Lights_Sound_off() GreenLED.High()

Lights_Sound_off()

YellowLED.High()

Lights_Sound_off()

Function Initilization

Pre-Sleep Mode

Home

Sleep Mode

ErrSleep.put(1)

Check Timer Values

Input > 500
or Timer > 10min

False

True

File: main.py
Function: Sleep_Mode(Input)

168

Initialization

While Loop 1st Layer

Input == L

Input == R

Move to left actuator
point above rail

Move to right actuator
point above rail

True

True

False

While Loop 2nd LayerFalse

End 1st Loop

Input == L

Input == R

False

Left Solenoid On

Right Solenoid On

True

True

sleep 0.5 s

False

Input == L or B

Input == R or B

False

Left Motor On

Right Motor On

True

True

sleep X s

False

Turn of Motors
Turn of Solenoids

sleep 0.5 s

Input == L or B

Input == R or B

Home Left Actuator

Home Right Actuator

False

True

True

return

False

Set Low Torque

Stall Check
Left

Destination Check

False

error = 1
ErrRailActL.put(1)

error = 0

True

True

break

error checkerror == 1 set high torqueerror == 0

Input == L

Input == R

Move to left actuator
point above granite

Move to right actuator
point above granite

True

True

False

while 3rd layer

False

Destination Check

Stall Check

False

error = 1 True

True

False

break

Stall Check
Right

False

error = 1
ErrRailActR.put(1)

True

Tell Actuator to Approach
Rail at low torque

Check if
actuator
stalled or
reached

destination

Tell
actuator to
approach

destination
at high
torque

wait until actuator
reached destination

or stall

Torqueing
down side
depending

on input

Define constants

ErrorHandler()

ErrAssembly.put(1)

File: main.py
Function: TorqueDown(Input)

169

Init

Return/exit function

File: Probe.py
Function: Home()Probe not at

reference tick
False

Retract Probe

While loop

True

Probe at reference tick

Time spent
Retracting probe

> 2sec

FalseFalse

Zero out encoder

True

True

Return/exit function

170

Init

Home Probe

While loop

Lower probe

Reading changed
by less than tolerance

(1)

False

Save reading True

If Limit == True
If Reading > UppperLimit

Or
Reading < LowerLimit

True True
Set Probe Error Flag

True

Home ProbeFalse

False

If Probe Error
 Flag True

Return reading
Return/exit function

Return(Error Occurred)

False True

File: Probe.py
Function: Probe(Limit = False, UpperLimit = 0,

LowerLimit = 0)

171

Init

File: RailAct.py
Function: Move(Side,Destination,stall=90)

Set stall to stall input

Get motor from
checkSide(side)

Run motor

While loop

Motor still busy? Motor stalled?True

False

False True

Break/exit loop Break/exit loop

Return/exit function
Return(Completed move

command)

Set stall to original level

HardHiZ/Turn off Beam
Actuator motor

172

File: RailAct.py
Function: Home(Side)

Init

Return/exit function
Return(Done)

Get motor from
checkSide(side)

Run motor 1
If motor == 1
(right side)

Run motor 2

True

False

While loop

False

At Home?

False

At Home? True

Return/exit function
Return(Done)

True

173

Initialize Function
Switch = 0

Import os Python
Module

List Directory
files = os.listdir()

For loop
for file in FileList

Check if file is in files

Create FileList: List of
file names (strings) that

system checks for.

Print Error Message Intro
There was an error durning...

Swtich = 1

False

End of For Loop?

True

False

Check Switch == 0 True

Print File Error Message
The file was missing

False

Check Switch != 0
return(Error Message

prompting user to read
ErrorReport.txt)

return(0)

True

False

True

ErrFileCheck.put(1)

Function Starts

While Loop Start

Turn On Buzzer

Switch == 0

Green == 1

Yellow == 1

Red == 1

GreenLED.High()

YellowLED.High()

RedLED.High()

True

Turn Buzzer Off

False

Green == 1

Yellow == 1

Red == 1

GreenLED.Low()

YellowLED.Low()

RedLED.Low()

Set Start (Time
Reference Point)

Set Current (Time
relative to Start)

While Loop Start

Go() == 1

(Current-Start)
>= 500

False

False

True

True

Stop == 0

Stop = 1Stop == 2

True

False

Set Current (Time
relative to Start)

True

Stop == 0 False

break

End of While Loop

Switch == 0

False

Switch == 1

False

Switch = 1

Switch = 0

True

True

Stop == 2

False

return()

True

Blink == 1 True

False

Lights_Sound_Off()

Turn Buzzer Off

break

End of while loop

YellowLED.High()

Green = 1
Yellow = 1

Red = 1
Blink = 0

File: setup.py
Function: FileCheck(Side)

174

175

Appendix P: Final Program Script

 Appendix P: Final Program Script ... 175

Appendix P1: BeamActuator.py .. 176

Appendix P2: encoder.py ... 180

Appendix P3: Gantry.py ... 182

Appendix P4: Import.py ... 186

Appendix P5: l4670nucleo.py ... 192

Appendix P6: main.py .. 204

Appendix P7: Probe.py .. 222

Appendix P8: RailAct.py ... 225

Appendix P9: setup.py ... 228

Appendix P10: task_share.py ... 237

-*- coding: utf-8 -*-
"""
File: BeamActuator.py
@author: Robert Tam
"""

def Move(Destination, probe = False):
 '''Function which utalizes code from the l6470nucleo.py file to drive the
 stepper motors.

 Function runs the Beam Actuator till it stalls (in which case the system
 throws an error and waits for user input) or it reaches the destination in
 which case it stops and exits the function.

 @param Destination is the input distance x in millimeters from the bottom
 edge of the X-Beam

 @param probe is True or False, defaulting to False if not called. If True,
 the function will call the probe function to do one measurement
 at the end of the move. If False, it will not do that measurement.

 @return Returns one of three things. If the probe == True, the system will
 retrn the value read by the probe at the end. If not, then the
 function will return "Done". In both cases, if an error occured,
 function will return "Error Occured".'''

 TickPerDistance = 111000/51.19 # ticks per mm determined experimentally
 Offset = 3 # Destance from home position of beam actuator to bottom

 # edge of the X-Beam in mm
 Limit = 10 # Maximum travel of the beam actuator before something

 # collides in mm. This is without the offset
 #ISSUE See above 2 variables

 print("Moving Beam Actuator to position x: "+str(Destination))
 print(" Probe at the end of the move? "+str(probe))
 # Check that Destination is not outside of the limits
 if Destination + Limit <= 0:

 # If the destination is less than -xOffset, then the destination is
 # behind the home position which would push the system against the
 # housing and possible break the switch.
 print(" Error Occured moving the Beam Actuator, Destination behind home")
 ErrBeamAct.put(1)
 return("Error Occured")

 elif Destination+Offset >= (Limit):
 # If the destination is greater than the xLimit, the beam actuator is running
 # the risk of crashing against the leadscrew bearing end support
 # raiser.
 print(" Error Occured moving the Beam Actuator, destination past"+\

 " max limit")
 ErrBeamAct.put(1)
 return("Error Occured")

 print(''' Destination of Beam Actuator within limits''')

 # Convert Destination in mm to revolutions to steps
 Destination = int((Destination+Offset)*TickPerDistance)
 print(" Destination converted to "+str(Destination)+" number of steps")

 # Move to the new value of Destination
 print(" Moving Beam Actuator to Destination")

Appendix P1: BeamActuator.py

176

 Board1.GoTo(1,Destination)
 utime.sleep_ms(3000)

 # Wait for stall or finish flag
 print(" waiting for stall or completion of move command")
 while True:

print("Busy? : "+str(Board1.isBusy(1)))
print("Stalled? : "+str(Board1.isStalled(1)))

 if Board1.isBusy(1) == False:
 # if finish, exit the function
 print(" Beam Actuator in position, exit loop")
 Board1.HardHiZ(1)
 Board1.GetStatus(1,verbose = 0)
 break

 elif Board1.isStalled(1) == True:
 # if stall, stop beam actuator, throw error and return
 print(" Error Occured moving the Beam Actuator to position. "+\

 "Beam Actuator stalled out")
 ErrBeamAct.put(1)
 Board1.HardHiZ(1)
 Board1.GetStatus(1,verbose = 0)
 return("Error Occured")

 # If done moving beam actuator and probe option is true, take measurement
 if probe == True:

 print(" Probe part of BeamActuator.Move() function called")
 reading = Probe.Probe()

 if type(reading) == "Error Occured":
 # Error occured, but should have been solved as the Probe function
 # shouldn't be able to finish if there was an error.
 print(" Error occured with probe in the Move_beam actuator_to()")
 return("Error Occured")

 else:
 print(" No error occured with probe in the BeamActuator.Move()")
 return(reading)

 # Else if the beam actuator is done moving and probe option in false, return
 elif probe == False:

 Board1.HardHiZ(1)
 Board1.GetStatus(1,verbose = 0)
 print(" Probe part of BeamActuator.Move() function not called")
 return("Done")

def Home():
 '''Home the Beam Actuator.
 Function input:

 Board1 is the l6470nucleo.Dual6470 class object that the beam actuator
 is a member of.

 Function output:
 outputs and "Error Occured" if there is an error.
 '''

 if Board1.isHome(1)==True:
 # if at switch, exit.
 # Note, need to add while loop to release switch
 print(' Beam Actuator already homed')
 return

177

 # Home beam actuator Code. +/- 400 is the max speed of the beam actuator
 print(" Beam Actuator GoUntil switch command")
 Board1.GetStatus(1,verbose = 0)
 Board1.GoUntil(1,-400)
 utime.sleep_ms(250)
 # Check home status in while loop
 while True:

 if Board1.isBusy(1) == False:
 # beam actuator at switch, continue.
 print(" Board isn't busy anymore")

Board1.GetStatus(1)
 Board1.HardHiZ(1)
 Board1.GetStatus(1,verbose = 0)
 break

 elif Board1.isStalled(1) == True:
 print(" Board stalled: "+str(Board1.isStalled(1)))

motor stalled, return an error and set flag
 Board1.HardHiZ(1)
 Board1.GetStatus(1,verbose = 0)
 print(" Beam Actuator Stalled during Home command")
 print(" ERROR ERROR ERROR, return error")
 ErrBeamAct.put(1)
 return("Error Occured")

 # Release switch for beam actuator
 print(" releasing switch for Beam Actuator")
 Board1.ReleaseSW(1,1)
 utime.sleep_ms(500)

 # Check home status in while loop
 start = utime.ticks_ms()
 while True:

 if Board1.isBusy(1) == False:
 # beam actuator homed, continue.
 print(" Beam Actuator completed ReleaseSW Command")
 Board1.HardHiZ(1)
 status = Board1.GetStatus(1,verbose = 0)
 if status[1-1] & (1<<2) == False:

 break
 else:

 Board1.ReleaseSW(1,1)
 elif Board1.isStalled(1) == True:

 # motor stalled, return an error and set flag
 Board1.HardHiZ(1)
 Board1.GetStatus(1,verbose = 0)
 print(" Beam Actuator Stalled during Home command")
 print(" ERROR ERROR ERROR, return error")
 ErrBeamAct.put(1)
 return("Error Occured")

 if Board1.isHome(1) == False:
 break

def Status():
 '''Print information about the board's status for the Beam actuator
 to the repl
 Function Inputs:

178

 Board1 is the l6470.Dual6470 class object which correlates with
 the beam actuator

 Function Outputs:
 None'''

 Board1.GetStatus(1,verbose = 1)

importing modules and objects needed
import Probe
from setup import ErrBeamAct, Board1
import utime

179

-*- coding: utf-8 -*-
##
@file encoder.py
File containing class to control a Quad Encoder
@author Robert Tam
@author Tommy Yath
@author Berizohar Padilla
@copyright GPL Version 3.0

#--
Pin Callouts
class Quad_Encoder:

 """Class of functions for a DC motor Quadratic encoder
 This class has two functions

 1: .read() returns the current position
 2: .zero() sets the postion to zero

 """

 def __init__(self,pin1,pin2,timer):
 """Initilizes the Encoder class by taking inputs and creating channels
 for said inputs.
 @ param pin1 : Pin location of channel A of the Encoder
 @ param pin2 : Pin location of channel B of the Encoder
 @ param timer : Timer channel associated with pin1 and pin2
 """
 # Module Importing
 import pyb

 self.timer=timer
 self.pin1=pin1
 self.pin2=pin2
 self.position = 0
 self.current = 0
 self.previous = 0
 self.delta = 0

 # Create Timer Channels
 self.ch1 = self.timer.channel(1,pyb.Timer.ENC_AB,pin=self.pin1)
 self.ch2 = self.timer.channel(2,pyb.Timer.ENC_AB,pin=self.pin2)

 def read(self):
 """Updates and returns the current postion of the encoder
 Updates by taking the difference in counts since the last read
 and adding them to self.position. Thus, this funtion has to be
 run often enough that the encoder doesn't roll over more than
 twice
 """
 self.previous = self.current
 self.current = self.timer.counter()
 self.delta = self.current - self.previous

 # if statements to account for encoder roll over
 if self.delta < -10000:

 self.delta += 2**14
 elif self.delta > 10000:

 self.delta -= 2**14

180

Appendix P2: encoder.py

 self.position = self.position + self.delta
 return(self.position)

 def zero(self):
 """Sets the encoder postion and other values to zero
 """
 self.position = 0
 self.current = 0
 self.previous = 0
 self.delta = 0

181

-*- coding: utf-8 -*-
"""
File: Gantry.py
@author: Robert Tam
"""

def Move(Destination, probe = False):
 '''Function which utalizes code from the l6470nucleo.py file to drive the
 stepper motors.

 Function runs the gantry till it stalls (in which case the system throws an
 error and waits for user input) or it reaches the destination in which case
 it stops and exits the function.

 @param Destination is the input distance x in millimeters from the end of
 the X-Beam you want to run to.

 @param probe is True or False, defaulting to False if not called. If True,
 the function will call the probe function to do one measurement
 at the end of the move. If False, it will not do that measurement.

 @return Returns one of two things. If the probe == True, the system will
 retrn the value read by the probe at the end. If not, then the
 function will return "Done".'''

 # The following three variables (DistancePerStep, xOffset, and xLimit) were
 # all experimetnally determined in a not so accurate way. Recommend using
 # these numbers as ball park estimates.
 DistancePerStep = 1/800
 xOffset = 3.2 # Distance from gantry home position to the closest end

 # of the X-Beam. Absolute distsnce in mm.
 xLimit = 775 # Maximum travel of the gantry from the end of the

 # X-Beam to the Lead Screw Raiser minus the gantry
 # width. Absolute units in mm. Does not include the
 # xOffset

 # Print information to repl about where the gantry is moving to and if the
 # function will use the probe at the end
 print("Moving Gantry to position x: "+str(Destination))
 print(" Probe at the end of the move? "+str(probe))
 # Check that Destination is not outside of the limits
 if Destination + xOffset <= 0:

 # If the destination is less than -xOffset, then the destination is
 # behind the home position which would push the system against the
 # housing and possible break the switch. Also print an error message
 # to the repl
 print(" Error Occured moving the Gantry, Destination behind home")
 ErrGantry.put(1) # set error flag
 Board1.HardHiZ(2) # stop the motor
 Board1.GetStatus(2,verbose=0) # get status to clear the HardHiZ
 return("Error Occured") # exit function

 elif Destination+xOffset >= xLimit:
 # If the destination is greater than the xLimit, the gantry is running
 # the risk of crashing against the leadscrew bearing end support
 # raiser. Also preint an error message to the repl
 print(" Error Occured moving the Gantry, destination beyond max"+\

 " limit")
 ErrGantry.put(1) # set error flag
 Board1.HardHiZ(2) # turn off motor
 Board1.GetStatus(2,verbose=0) # get status to clear the HardHiZ

182

Appendix P3: Gantry.py

 return("Error Occured") # exit function

 # if no error, print message saying no error to repl
 print(''' Destination of Gantry within limits''')

 # Convert Destination in mm to revolutions to steps and print number of
 # steps on the repl
 Destination = int((Destination+xOffset)/DistancePerStep)
 print(" Destination converted to "+str(Destination)+" number of steps")

 # Move to the new value of Destination, tell user by printing to repl that
 # gantry should be moving
 print(" Moving Gantry to Destination")
 Board1.GetStatus(2,verbose=0) # clear errors before telling gantry to go
 Board1.GoTo(2,Destination)

 # sleep for 1 second to let the system get going, clear errors during that
 # 1 second because sometimes the machine thought it stalled out during
 # acceleration
 utime.sleep(1)
 Board1.GetStatus(2,verbose=0)

 # Wait for stall or finish flag, print message to repl saying as much
 print(" waiting for stall or completion of move command")
 while True:

 if Board1.isBusy(2) == False:
 # if finish, exit the loop and print message to repl saying that
 print(" Gantry in position, exit loop")
 Board1.HardHiZ(2) # stop motor
 Board1.GetStatus(2,verbose=0) # clear errors if any
 break

 elif Board1.isStalled(2) == True:
 # if stall: print message, stop gantry, throw error and return
 print(''' Error Occured moving the Gantry to position. '''+\

 "Gantry stalled out")
 ErrGantry.put(1) # throw error flag
 Board1.HardHiZ(2) # stop motor
 Board1.GetStatus(2,verbose=0) # clear error
 return("Error Occured") # return

 # If done moving gantry and probe option is true, take measurement
 if probe == True:

 print(" Probe part of Move function called")
 # check the error flags to determine what mode the machine is in.
 # if it is in calibration, then the probe does not need limits on
 # its measurement. If it is leveling, then it does.
 if ErrCalibration.get() == 1:

 # print message saying function is calling Probe.Probe() func for
 # the calibration mode which does not need limits on the probe
 # reading
 print(" Probe called for Calibration Mode")
 reading = Probe.Probe() # take measurement

 elif ErrAssembly.get() == 1 or ErrLeveling.get() == 1:
 # print message saying func is calling Probe.Probe() for the
 # leveling or assembly mode and that limits are needed
 print(" Probe called for Leveling and Assembly Mode")

183

 # limits were not experimentally determined due to time and that
 # they may be unecessary as we could not get fingers under the probe
 # while the X-Beam was loaded to interfere with the probe reading.
 # (the limits were put into the program to prevent people's fingers
 # or other stuff from messing up probe readings)
 UpprLimit = 1000000
 LwrLimit = -1000000
 reading = Probe(Limit = True, UpperLimit = UpprLimit,

 LowerLimit = LwrLimit)

 if type(reading) == "Error Occured":
 # Error occured, but should have been solved as the Probe function
 # shouldn't be able to finish if there was an error.
 print(" Error occured with probe in the Move()")
 return("Error Occured")

 else:
 # no error, return reading
 print(" No error occured with probe in the Mov()")
 return(reading)

 # Else if the gantry is done moving and probe option in false, return
 elif probe == False:

 print(" Probe part of Move function not called")
 return("Done")

def Home():
 '''Home the Beam Actuator.
 Function input:

 Board1 is the l6470nucleo.Dual6470 class object that the beam actuator
 is a member of.

 Function output:
 outputs and "Error Occured" if there is an error.
 '''

 if Board1.isHome(2)==True:
 # Gantry is homed, exit func. Should add a while loop to release switch
 # and wait till switch is released
 print(' Gantry is already homed')
 return

 # Home Gantry Code. +/- 400 is the max speed of the gantry
 print(" Gantry GoUntil switch command")
 Board1.GoUntil(2,-500)
 utime.sleep(5) # wait for system to get going before making checks
 Board1.GetStatus(2, verbose = 0)
 # Check home status in while loop
 while True:

 if Board1.isBusy(2) == False:
 # gantry at switch, continue.
 break

 elif Board1.isStalled(2) == True:
 print(" Board stalled: "+str(Board1.isStalled(2)))
 # motor stalled, return an error and set flag
 Board1.HardHiZ(2)
 Board1.GetStatus(2,verbose=0)
 print(" Gantry Stalled during Home command")
 print(" ERROR ERROR ERROR, return error")
 ErrGantry.put(1)
 return("Error Occured")

184

 # Release switch for gantry
 print(" releasing switch for gantry")
 Board1.ReleaseSW(2,1)

 # Check home status in while loop
 while True:

 if Board1.isBusy(2) == False:
 # Both rail actuators are homed, continue.
 print(" Gantry completed ReleaseSW Command")
 Board1.HardHiZ(2)
 Board1.GetStatus(2,verbose=0)
 return('Done')

 elif Board1.isStalled(2) == True:
 # motor stalled, return an error and set flag
 Board1.HardHiZ(2)
 Board1.GetStatus(2,verbose=0)
 print(" Gantry Stalled during Home command")
 print(" ERROR ERROR ERROR, return error")
 ErrGantry.put(1)
 return("Error Occured")

def Status():
 '''Function prints out the Gantry's status on the repl
 Function Input:

 The l6470.Dual6470 class object that correlates to the
 Gantry

 Function Output:
 None'''

 Board1.GetStatus(2,verbose = 1)

Import Modules and Objects used in this file when the file is imported
import utime
from setup import ErrGantry , ErrCalibration, ErrLeveling, ErrAssembly, Board1
import Probe

185

-*- coding: utf-8 -*-
"""
File: Import.py
@author: Robert Tam
"""
def Song():

 '''This function checks the piano board's last four switches (the pins
 called Note1 to Note4) and converts those four binary inputs into an
 integer. With four switches available, the range of corresponding integer
 inputs should be 0 to 15 (1-16 if you add 1 to the final number)

 Ammendment: due to issues with the piano switch board, this function
 was basically cut out. If the user still wishes to use the piano switch
 board, just delete XBeam.put(500) and uncomment the rest of the function
 '''
 XBeam.put(500)

Get Values from the switches and store into variables a, b, c, and d
NOTE: as with Note0, reading 0 means true on the switch
if Note0.value() == 0:
a = 1
else:
a = 0
if Note1.value() == 0:
b = 1
else:
b = 0
if Note2.value() == 0:
c = 1
else:
c = 0
if Note3.value() == 0:
d = 1
else:
d = 0
if Note4.value() == 0:
e = 1
else:
e = 0

Calculating a binary number from four binary input
Number = (a*2**4 + b*2**3 + c*2**2 + d*2**1 + e*2**0) + 1

If the user has selected the combination of switches which correspond
to 1-16, than input the X-Beam length into the buffer XBeam that
corresponds to that input. Additionally, if there is no input, than the
system will return an error.
if Number == 1:
Length = 500

elif Number == 2:
ErrSong.put(1)

elif Number == 3:
ErrSong.put(1)

Appendix P4: Import.py

186

elif Number == 4:
ErrSong.put(1)

elif Number == 5:
ErrSong.put(1)

elif Number == 6:
ErrSong.put(1)

elif Number == 7:
ErrSong.put(1)

elif Number == 8:
ErrSong.put(1)

elif Number == 9:
ErrSong.put(1)

elif Number == 10:
ErrSong.put(1)

elif Number == 11:
ErrSong.put(1)

elif Number == 12:
ErrSong.put(1)

elif Number == 13:
ErrSong.put(1)

elif Number == 14:
ErrSong.put(1)

elif Number == 15:
ErrSong.put(1)

elif Number == 16:
ErrSong.put(1)

Note that with 5 switches, you can have up to 32 options. Add more elif
statements.

if ErrSong.get() == 0:
XBeam.put(Length)
return("No Error")

elif ErrSong.get() == 1:
f = open("Error Report.txt","w")
f.write('''An error occured during the initilization phase\n\r
The switch combination of the piano switch board does not correspond to any of\n\r
registered X-Beam lengths.\n\r
Recomendations:\n\r
1) Check your switch combination\n\r
2) Open ImportSong.py and check that the switch combination you've selected\n\r
has a corresponding X-Beam length.\n\r
Note: Please remember to check that if you add an X-Beam Length to\n\r
ImportSong.py, check that the corresponding Calibration and BoltPattern\n\r

187

csv files are included''')
f.close()
return("Error Occured")

def BoltPattern():
 '''This function imports a bolt pattern file based on the value of buffer

X-Beam. This is done by using the Python try function to attempt to import
 the bolt pattern file assotiated with the input given which should be the
 length of the X-Beam being worked upon. The input is from the
 ImportSwitchBoard() function. Example of how this would work is shown
 below.

 # Value in XBeam buffer is 500
 Input = XBeam.get()
 String = "BoltPattern"+str(Input)+".csv"

i.e. BoltPattern500.csv

 After figureing out the file name, it tries to import the file. If the file
 exists, the function returns a list of integers. If the file does not
 exist, then the program returns an error message

 @input Function reads buffer X-Beam for the necessary input which should
 be the length of the X-Beam

 @return Function returns a string if there was an error and writes a
 message to the Error Report text file. If there was no error, the
 function returns a list with two sub-lists, one containing strings
 of which side is to be bolted and the other containing positions
 relative to the gantry's zero position of where to move to.

 '''

 print("Beginning to import BoltPatternXXX.csv")
 # Getting length value of the X-Beam from the buffer XBeam
 Input = XBeam.get()
 print(" Working X-Beam "+str(Input))

 # Creating the name of the file to be imported
 FileName = "BoltPattern"+str(Input)+".csv"
 print(" File name assotiated with X-Beam: "+FileName)

 # a function unique binary error flag indicating which error has occured.
 error = 0

 '''Open Error Report for editing'''
 f = open("Error Report.txt","w")
 print(" File Opened, checking values")

 try:
 '''Attempt to import the BoltPattern file indicated by the input.'''
 with open(FileName,'r') as file:

 '''File does exist, process the data as indicated'''
 i = 1
 print(" File Opened, splitting values into two seperate lists")
 for line in file:

 line = line.split(',')
 line[-1] = (line[-1].replace("\n",''))
 line[-1] = (line[-1].replace("\r",''))
 if i == 1:

188

 BoltSide = line
 elif i == 2:

 BoltData = line
 print(" Line "+str(i)+" processed")
 i = i+1

 except OSError:
 '''File doesn't exist, write to Error Report'''
 print(" Unable to open BoltPatternXXX.csv file")
 ErrBoltCsv.put(1)
 string = "Error, Missing "+FileName

f.write(string)
f.close()

 return("Missing file error")

 '''Check the values in the BoltSide list. If there is an error, write
 to the Error Report text file.'''
 print("Checking items indicating sides in the BoltSide list")
 i = 1
 for item in BoltSide:

 if item != "R" and item != "L":
 ErrBoltCsv.put(1)
 string = "Error in "+FileName+", row 1 item "+str(i)+": '"+\

 str(item)+"' is not a valid input"
f.write(string)
f.write('\r\r\n')

 error = 1
 print(" Item "+str(i)+" checked, "+string)

 else:
 print(" Item "+str(i)+" checked, no errors")

 i = i+1

 '''Check the values in the BoltData list. If there is an error, write
 to the Error Report text file.'''
 print("Checking items indicating positions in the BoltData list")
 i = 1
 for item in BoltData:

 try:
 float(item)

 except ValueError:
 ErrBoltCsv.put(1)
 string = "Error in "+FileName+", row 2 item "+str(i)+": '"+\

 str(item)+"' is not a valid input"
f.write(string)
f.write('\r\r\n')

 error = 1
 print(" Item "+str(i)+" checked, "+string)

 else:
 print(" Item "+str(i)+" checked, no errors")

 i = i+1

 '''If there were no issues in the lists, return the two lists'''
 if error == 0:

 print(" No Errors importing "+FileName)
 return([BoltSide,BoltData])

 elif error != 0:
 print(" An error has occured, exiting function")

189

f.close()
 return("An Error Occured, please see the 'Error Report.txt' file")

def Calibration():
 '''This function imports a calibration file based on the value stored in
 the XBeam buffer. This is done by using the Python try function to attempt
 to import the calibration file assotiated with the input given which should
 be the length of the X-Beam being worked upon. The input is from the
 ImportSwitchBoard() function. Example of how this would work is shown
 below.

 # Value in XBeam buffer is 500
 Input = XBeam.get()
 String = "Calibration"+str(Input)+".csv"

i.e. Calibration500.csv

 After figureing out the file name, it tries to import the file. If the file
 exists, the function returns a list of integers. If the file does not
 exist, then the program returns an error message

 @input This function takes inputs in by reading the buffer XBeam for the
 necessary information which is an integer indicating XBeam length

 @return This function returns a string if there was an error. If not, the
 function returns a list of values'''

 print("Beginning to import CalibrationXXX.csv")

 # Getting length value of the X-Beam from the buffer XBeam
 Input = XBeam.get()
 print("Working X-Beam "+str(Input))

 # Creating the name of the file to be imported
 FileName = "Calibration"+str(Input)+".csv"
 print("File name assotiated with X-Beam: "+FileName)

 # a function unique binary error flag indicating which error has occured.
 error = 0

 try:
 '''Attempt to import the Calibration file indicated by the input.'''
 with open(FileName,'r') as file:

 '''File does exist, process the data as indicated'''
 print("File Opened, processing data and checking items")
 for line in file:

 String = str(line) # Bring in line of info from csv
 # file

 List = String.split(',') # Split line of info at the comma
 String = []
 i = 0
 for item in List:

 '''Go through each item in List of info and try to make each
 item a float. If not, return an error message indicating
 which item was invalid.'''
 try:

 '''Try to turn the item into a float'''
 List[i] = float(item)
 print("Item "+str(i)+" checked and is valid")

190

 except ValueError:
 '''Error indicating invalid input'''
 String.append("Error in "+FileName+" Line "+str(i+1)+

 ": '"+item+"' is not a valid input")
 ErrCalCsv.put(1)
 print("Error in "+FileName+" Line "+str(i+1)+

 ": '"+item+"' is not a valid input")
 error = 1

 except TypeError:
 '''Error indicating invalid input'''
 String.append("Error in "+FileName+" Line "+str(i+1)+

 ": '"+item+"' is not a valid input")
 ErrCalCsv.put(1)
 print("Error in "+FileName+" Line "+str(i+1)+

 ": '"+item+"' is not a valid input")
 error = 1

 i = i+1

 except OSError:
 '''Exception to report that the file is missing'''
 print("Unable to open CalibrationXXX.csv file")
 String = ["Error,Missing Calibration"+str(Input)+".csv File"]
 ErrCalCsv.put(1)
 error = 1

 if error == 0:
 print("No error importing "+FileName)
 return(List) # return the final list of values

 elif error != 0:
 f = open("Error Report.txt","w")
 for item in String:

f.write(item)
f.close()

 print("Error Occured importing "+FileName)
 return("Error Occured")

 else:
 return('''Error Occured, error flag in ImportCalibration was not 0 or 1

 at the end of the function''')

from setup import ErrCalCsv, ErrBoltCsv, XBeam

191

-*- coding: utf-8 -*-
#
@file l6470nucleo.py
This file contains a driver for a dual L6470 stepper driver board which
is part of the Nucleo package from ST Micro. It can control each of the
two L5470 chips which are on the board.
#
In order to use a stepping motor, the constants @c MAX_SPEED, @c ACCEL,
@e etc. need to be tuned for that motor using the methods shown at
@c http://www.st.com/resource/en/application_note/dm00061093.pdf.
#
@author John Ridgely, John Barry, Anthony Lombardi,
Whittaker Hamill, Sam Artho-Bentz, and Robert Tam

import pyb
import time
'''
Maximum speed for the motor; default 65, or ~992 steps/s
MAX_SPEED = 0

Acceleration for the motor; default 138, or 2008 steps/s^2
ACCEL = const (5)

Deceleration for the motor; default 138, or 2008 steps/s^2
DECEL = const (12)

The K_val constant for registers 0x09, 0x0A, 0x0B, 0x0C; default 0x29 = 41
K_VAL = const (90) # Calculated 200??

Intersection speed for register 0x0D; default 0x0408 = 1032
INT_SPEED = const (1032)

Startup slope for register 0x0E; default 0x19 = 25
ST_SLP = const (25)

Final slope for registers 0x0F, 0x10; default 0x29 = 41
FN_SLP = const (397)

Number of Microsteps, num which are powers of 2 up to 128 are acceptable.
STEP_SEL = const (8)

Define SYNC_ENable bitmask. 0x80 for High, 0x00 for Low
SYNC_EN = const(0x00)

SYNC_SEL modes. Datasheet pg 46 for full information
SYNC_SEL = const(0x10)

STALL_TH. Default of 2.03A
pg 47 of L6470 Programming Manual for details
STALL_TH = const(16)
'''
class Dual6470:

 ## This class implements a driver for the dual L6470 stepping motor driver
 # chips on a Nucleo IHM02A1 board. The two driver chips are connected in
 # SPI daisy-chain mode, which makes communication a bit convoluted.
 #
 # NOTE: One solder bridge needs to be moved for the IHM02A1 to work

Appendix P5: l4670nucleo.py

192

 # with unmodified MicroPython. Bridge SB34 must be disconnected, and
 # bridge SB12 must be connected instead. This is because the SCK signal
 # for which the board is shipped is not the one which MicroPython uses
 # by default.

 def __init__ (self, spi_object, cs_pin, stby_rst_pin):
 # === DICTIONARIES ===

 """ Dictionary of available registers and their addresses.
 """
 self.REGISTER_DICT = {} # ADDR | LEN | DESCRIPTION | xRESET | Write
 self.REGISTER_DICT['ABS_POS']=[0x01, 22] # current pos | 000000 | S
 self.REGISTER_DICT['EL_POS']=[0x02, 9] # Electrical pos | 000 | S
 self.REGISTER_DICT['MARK']=[0x03, 22] # mark position | 000000 | W
 self.REGISTER_DICT['SPEED']=[0x04, 20] # current speed | 00000 | R
 self.REGISTER_DICT['ACC']=[0x05, 12] # accel limit | 08A | W
 self.REGISTER_DICT['DEC']=[0x06, 12] # decel limit | 08A | W
 self.REGISTER_DICT['MAX_SPEED']=[0x07, 10] # maximum speed | 041 | W
 self.REGISTER_DICT['MIN_SPEED']=[0x08, 13] # minimum speed | 0 | S
 self.REGISTER_DICT['FS_SPD']=[0x15, 10] # full-step speed | 027 | W
 self.REGISTER_DICT['KVAL_HOLD']=[0x09, 8] # holding Kval | 29 | W
 self.REGISTER_DICT['KVAL_RUN']=[0x0A, 8] # const speed Kval | 29 | W
 self.REGISTER_DICT['KVAL_ACC']=[0x0B, 8] # accel start Kval | 29 | W
 self.REGISTER_DICT['KVAL_DEC']=[0x0C, 8] # decel start Kval | 29 | W
 self.REGISTER_DICT['INT_SPEED']=[0x0D, 14] # intersect speed | 0408 | H
 self.REGISTER_DICT['ST_SLP']=[0x0E, 8] # start slope | 19 | H
 self.REGISTER_DICT['FN_SLP_ACC']=[0x0F, 8] # accel end slope | 29 | H
 self.REGISTER_DICT['FN_SLP_DEC']=[0x10, 8] # decel end slope | 29 | H
 self.REGISTER_DICT['K_THERM']=[0x11, 4] # therm comp factr | 0 | H
 self.REGISTER_DICT['ADC_OUT']=[0x12, 5] # ADC output | XX |
 self.REGISTER_DICT['OCD_TH']=[0x13, 4] # OCD threshold | 8 | W
 self.REGISTER_DICT['STALL_TH']=[0x14, 7] # STALL threshold | 40 | W
 self.REGISTER_DICT['STEP_MODE']=[0x16, 8] # Step mode | 7 | H
 self.REGISTER_DICT['ALARM_EN']=[0x17, 8] # Alarm enable | FF | S
 self.REGISTER_DICT['CONFIG']=[0x18, 16] # IC configuration | 2E88 | H
 self.REGISTER_DICT['STATUS']=[0x19, 16] # Status | XXXX |
 self.REGISTER_DICT['RESERVED A']=[0x1A, 0] # RESERVED | | X
 self.REGISTER_DICT['RESERVED B']=[0x1B, 0] # RESERVED | | X
 # Write: X = unreadable, W = Writable (always),
 # S = Writable (when stopped), H = Writable (when Hi-Z)

 """ Dictionary for the STATUS register. Contains all error flags,
 as well as basic motor state information.

 """
 self.STATUS_DICT = {} # [NAME | OK/DEFAULT VALUE]
 self.STATUS_DICT[14] = ['STEP_LOSS_B',1] # stall detection on bridge B
 self.STATUS_DICT[13] = ['STEP_LOSS_A',1] # stall detection on bridge A
 self.STATUS_DICT[12] = ['OVERCURRENT',1] # OCD, overcurrent detection
 self.STATUS_DICT[11] = ['HEAT_SHUTDN',1] # TH_SD, thermal shutdown
 self.STATUS_DICT[10] = ['HEAT_WARN ',1] # TH_WN, thermal warning
 self.STATUS_DICT[9] = ['UNDERVOLT ',1] # UVLO, low drive supply voltage
 self.STATUS_DICT[8] = ['WRONG_CMD ',0] # Unknown command
 self.STATUS_DICT[7] = ['NOTPERF_CMD',0] # Command can't be performed

 self.STATUS_DICT[3] = ['SWITCH_EDGE',0] # SW_EVN, signals switch falling edge
 self.STATUS_DICT[2] = ['SWITCH_FLAG',0] # switch state. 0=open, 1=grounded

 self.STATUS_DICT[15] = ['STEPCK_MODE',0] # 1=step-clock mode, 0=normal

193

 self.STATUS_DICT[4] = ['DIRECTION' ,1] # 1=forward, 0=reverse
 self.STATUS_DICT[6] = ['MOTOR_STAT' ,0] # two bits: 00=stopped, 01=accel

 # 10=decel, 11=const spd
 self.STATUS_DICT[1] = ['BUSY' ,1] # low during movement commands
 self.STATUS_DICT[0] = ['Hi-Z' ,1] # 1=hi-Z, 0=motor active

 """ Dictionary for Application Commands. See L6470 Programming manual Pg 56
 for information on usage. These commands must be OR'd with the
 values for use.

 """
 self.COMMAND_DICT = {} # [NAME | Command Hex Code | Action]
 self.COMMAND_DICT['SetParam'] = 0x00 # Writes VALUE in PARAM register
 self.COMMAND_DICT['GetParam'] = 0x20 # Returns the stored value in PARAM register
 self.COMMAND_DICT['Run'] = 0x50 # Sets the target speed and direction
 self.COMMAND_DICT['StepClock'] = 0x58 # Puts the device in Step-clock mode and imposes direction
 self.COMMAND_DICT['Move'] = 0x40 # Moves specified number of steps in direction
 self.COMMAND_DICT['GoTo'] = 0x60 # Goes to specified ABS_POS (min path)
 self.COMMAND_DICT['GoTo_DIR'] = 0x68 # Goes to specified ABS_POS (forced direction)
 self.COMMAND_DICT['GoUntil'] = 0x82 #
 self.COMMAND_DICT['ReleaseSW'] = 0x92 #
 self.COMMAND_DICT['GoHome'] = 0x70 #
 self.COMMAND_DICT['GoMark'] = 0x78 #
 self.COMMAND_DICT['ResetPos'] = 0xD8 #
 self.COMMAND_DICT['ResetDevice'] = 0xC0 #
 self.COMMAND_DICT['SoftStop'] = 0xB0 #
 self.COMMAND_DICT['HardStop'] = 0xB8 #
 self.COMMAND_DICT['SoftHiZ'] = 0xA0 #
 self.COMMAND_DICT['HardHiZ'] = 0xA8 #
 self.COMMAND_DICT['GetStatus'] = 0xD0 #

 ## Initialize the Dual L6470 driver. The modes of the @c CS and
 # @c STBY/RST pins are set and the SPI port is set up correctly.
 # @param spi_object A SPI object already initialized. used to talk to the
 # driver chips, either 1 or 2 for most Nucleos
 # @param cs_pin The pin which is connected to the driver chips' SPI
 # chip select (or 'slave select') inputs, in a pyb.Pin object
 # @param stby_rst_pin The pin which is connected to the driver
 # chips' STBY/RST inputs, in a pyb.Pin object

 ## The CPU pin connected to the Chip Select (AKA 'Slave Select') pin
 # of both the L6470 drivers.
 self.cs_pin = cs_pin

 ## The CPU pin connected to the STBY/RST pin of the 6470's.
 self.stby_rst_pin = stby_rst_pin

 ## The SPI object, configured with parameters that work for L6470's.
 # pyb.SPI (spi_number, mode=pyb.SPI.MASTER,
 # baudrate=2000000, polarity=1, phase=1,
 # bits=8, firstbit=pyb.SPI.MSB)
 self.spi = pyb.SPI (spi_object, mode=pyb.SPI.MASTER,

 baudrate=2000000, polarity=1, phase=1,
 bits=8, firstbit=pyb.SPI.MSB)

 # Make sure the CS and STBY/RST pins are configured correctly
 self.cs_pin.init (pyb.Pin.OUT_PP, pull=pyb.Pin.PULL_NONE)
 self.cs_pin.high ()
 self.stby_rst_pin.init (pyb.Pin.OUT_OD, pull=pyb.Pin.PULL_NONE)

194

 # Reset the L6470's
 stby_rst_pin.low ()
 time.sleep (0.01)
 stby_rst_pin.high ()
 '''
 # Set the registers which need to be modified for the motor to go
 # This value affects how hard the motor is being pushed
 K_VAL = 80
 self._set_par_1b ('KVAL_HOLD', K_VAL)
 self._set_par_1b ('KVAL_RUN', K_VAL)
 self._set_par_1b ('KVAL_ACC', K_VAL)
 self._set_par_1b ('KVAL_DEC', K_VAL)

 # Speed at which we transition from slow to fast V_B compensation
 INT_SPEED = 1032 #3141
 self._set_par_2b ('INT_SPEED', INT_SPEED)

 # Acceleration and deceleration back EMF compensation slopes
 ST_SLP = 25
 self._set_par_1b ('ST_SLP', ST_SLP)
 self._set_par_1b ('FN_SLP_ACC', ST_SLP)
 self._set_par_1b ('FN_SLP_DEC', ST_SLP)

 # Set the maximum speed at which motor will run
 MAX_SPEED = 1
 self._set_par_2b ('MAX_SPEED', MAX_SPEED)

 # Set the maximum acceleration and deceleration of motor
 ACCEL = 5
 DECEL = 12
 self._set_par_2b ('ACC', ACCEL)
 self._set_par_2b ('DEC', DECEL)

 # Set the number of Microsteps to use
 SYNC_EN = 0x00
 SYNC_SEL = 0x10
 STEP_SEL = 8
 self._set_MicroSteps (SYNC_EN, SYNC_SEL, STEP_SEL)

 # Set the Stall Threshold
 STALL_TH = 64
 self._setStallThreshold(STALL_TH)

 # Set motors in high impedence mode
 self.SoftHiZ(1)
 self.SoftHiZ(2)
 self.GetStatus(1,verbose = 0)
 self.GetStatus(2,verbose = 0)
 '''

 def _setStallThreshold(self, value):
 ## Sets the threshold back emf value for the board to stall at.
 # @param value is an integer input from 1 to 64 which corresponds to a
 # current of x*31.25mA where x is the input from 1 to 16
 self._set_par_1b('STALL_TH', value)

195

utime.sleep(10)

 def _set_MicroSteps(self, SYNC_Enable, SYNC_Select, num_STEP):
 ## Set the number of Microsteps to use, the SYNC output frequency, and the
 # SYNC ENABLE bit.
 # @param SYNC_Enable A 1-bit integer which determines the behavior of the
 # BUSY/SYNC output.
 # @param SYNC_Select A 3-bit integer which determines SYNC output frequency
 # @param num_STEP the integer number of microsteps, numbers which are
 # powers of 2 up to 128 are acceptable.

 for stepval in range(0,8): #convert num_STEPS to 3-bit power of 2
 if num_STEP ==1:

 break
 num_STEP = num_STEP >>1

 if SYNC_Enable == 1:
 SYNC_EN_Mask = 0x80

 else:
 SYNC_EN_Mask = 0x00

 self._set_par_1b('STEP_MODE', SYNC_EN_Mask|stepval|SYNC_Select)
utime.sleep(5)

 def _read_bytes (self, num_bytes):
 ## Read a set of arguments which have been sent by the L6470's in
 # response to a read-register command which has already been
 # transmitted to the L6470's. The arguments are shifted into the
 # integers supplied as parameters to this function.
 # @param num_bytes The number of bytes to be read from each L6470
 data_1 = 0
 data_2 = 0

 # Each byte which comes in is put into the integer as the least
 # significant byte so far and will be shifted left to make room for
 # the next byte
 for index in range (num_bytes):

 self.cs_pin.low ()
 data_1 <<= 8
 data_1 |= (self.spi.recv (1))[0]
 data_2 <<= 8
 data_2 |= (self.spi.recv (1))[0]
 self.cs_pin.high ()

 #print("in read bytes motor 1 is " + str(bin(data_1)))
 #print("in read bytes motor 2 is " + str(bin(data_2)))
 return ([data_1, data_2])

 def _get_params (self, command_byte, recv_bytes):
 ## Send one byte to each L6470 as a command and receive two bytes
 # from each driver in response.
 # @param command_byte The byte which is sent to both L6470's
 # @param recv_bytes The number of bytes to receive: 1, 2, or 3

 # Send the command byte, probably a read-something command
 self._sndbs (command_byte, command_byte)

 # Receive the bytes from the driver chips
 [data_1, data_2] = self._read_bytes (recv_bytes)

196

 return([data_1, data_2])

 def _set_par_2b (self, reg_name, num):
 ## Set a parameter to both L6740 drivers, in a register which needs
 # two bytes of data.0
 # @param reg_name (string) The register to be set
 # @param num The two-byte number to be put in that register
 reg = self.REGISTER_DICT[reg_name][0]
 self._sndbs (reg, reg)
 highb = (num >> 8) & 0x03
 self._sndbs (highb, highb)
 lowb = num & 0xFF
 self._sndbs (lowb, lowb)

utime.sleep(1)

 def _set_par_1b (self, reg_name, num):
 ## Set a parameter to both L6740 drivers, in a register which needs
 # one byte of data.
 # @param reg_name (string) The register to be set
 # @param num The one-byte number to be put in that register
 reg = self.REGISTER_DICT[reg_name][0]
 self._sndbs (reg, reg)
 self._sndbs (num, num)

utime.sleep(1)

 def _sndbs (self, byte_1, byte_2):
 ## Send one command byte to each L6470. No response is expected.
 # @param byte_1 The byte sent first; it goes to the second chip
 # @param byte_2 The byte sent second, to go to the first chip

 self.cs_pin.low ()
 self.spi.send (byte_1)
 self.spi.send (byte_2)
 self.cs_pin.high ()

 def _cmd_1b (self, motor, command):
 ## Send a command byte only to one motor. The other motor is sent a NOP
 # command (all zeros).
 # @param motor The number, 1 or 2, of the motor to receive the command

 if motor == 1:
 self._sndbs (command, 0x00)

 elif motor == 2:
 self._sndbs (0x00, command)

 else:
 raise ValueError ('Invalid L6470 motor number; must be 1 or 2')

 def _cmd_3b (self, motor, command, data):
 ## Send a command byte plus three bytes of associated data to one of
 # the motors.
 # @param motor The motor to receive the command, either 1 or 2
 # @param command The one-byte command to be sent to one motor
 # @param data The data to be sent after the command, in one 32-bit
 # integer

 # Break the integer containing the data into three bytes

197

 byte_2 = (data >> 16) & 0x0F
 byte_1 = (data >> 8) & 0xFF
 byte_0 = data & 0xFF

 # Send commands to one motor, NOP (zero) bytes to the other
 if motor == 1:

 self._sndbs (command, 0x00)
 self._sndbs (byte_2, 0x00)
 self._sndbs (byte_1, 0x00)
 self._sndbs (byte_0, 0x00)

 elif motor == 2:
 self._sndbs (0x00, command)
 self._sndbs (0x00, byte_2)
 self._sndbs (0x00, byte_1)
 self._sndbs (0x00, byte_0)

 else:
 raise ValueError ('Invalid L6470 motor number; must be 1 or 2')

---------------- L6470 Built-in Functions------------------

 '''---'''

 def Run (self, motor, steps_per_sec):
 ## Tell the motor to run at the given speed. The speed may be
 # positive, causing the motor to run in direction 0, or negative,
 # causing the motor to run in direction 1.
 # @param motor Which motor to move, either 1 or 2
 # @param steps_per_sec The number of steps per second at which to
 # go, up to the maximum allowable set in @c MAX_SPEED

 # Figure out the direction from the sign of steps_per_sec
 if steps_per_sec < 0:

 direc = 0
 steps_per_sec = -steps_per_sec

 else:
 direc = 1

 # Convert to speed register value: multiply by ~(250ns)(2^28)
 steps_per_sec *= 67.108864
 steps_per_sec = int (steps_per_sec)

 # Have the _cmd_3b() method write the command to a driver chip
 self._cmd_3b (motor, self.COMMAND_DICT['Run'] | direc,

 steps_per_sec & 0x000FFFFF)

 '''---'''

def StepClock(self, direc = None):
'''Needs Writing'''

 '''---'''

 def Move (self, motor, steps, direc = None):
 ## Tell motor driver @c motor to move @c num_steps in the direction
 # @c direction.

198

 # @param motor Which motor to move, either 1 or 2
 # @param steps How many steps to move, in a 20 bit number
 # @param direc The direction in which to move, either 0 for one
 # way or nonzero for the other; if unspecified, the sign of the
 # number of steps will be used, positive meaning direction 0

 # Figure out the intended direction
 if direc == None:

 if steps <= 0:
 direc = 1
 steps = -steps

 else:
 direc = 0

 else:
 if direc != 0:

 direc = 1

 # Call the _cmd_3b() method to do most of the work
 self._cmd_3b (motor, self.COMMAND_DICT['Move'] | direc, steps & 0x003FFFFF)

 '''---'''

 def GoTo (self, motor, pos_steps):
 ## This command asks the specified motor to move to the specified
 # position.
 # @param motor Which motor to move, either 1 or 2
 # @param pos_steps The position to which to move, in absolute steps

 # Call the _cmd_3b() method to do most of the work
 self._cmd_3b (motor, self.COMMAND_DICT['GoTo'], pos_steps & 0x003FFFFF)

 '''---'''

def GoTo_DIR(self, motor, pos_steps, direc):
'''Needs Writing
Not needed for our code - Whittaker'''

 '''---'''

 def GoUntil (self, motor, steps_per_sec, direc = None):
 '''Goes until a switch has been hit.
 @param motor is the value 1 or 2 of the motor on the board

 being ordered to move.
 @param steps_per_sec is the speed at which you want the

 motor to move in steps per second.
 @param direc indicates the direction you want. This is

 superceeded by the direction indicated by the
 param steps_per_sec'''

 # Figure out the direction from the sign of steps_per_sec
 if steps_per_sec < 0:

 direc = 0
 steps_per_sec = -steps_per_sec

 else:
 direc = 1

199

 # Convert to speed register value: multiply by ~(250ns)(2^28)
 steps_per_sec *= 67.108864
 steps_per_sec = int (steps_per_sec)

 # Have the _cmd_3b() method write the command to a driver chip
 self._cmd_3b (motor, self.COMMAND_DICT['GoUntil'] | direc,

 steps_per_sec & 0x000FFFFF)

 '''---'''

 def ReleaseSW(self, motor, direc):
 '''The ReleaseSW command produces a motion at minimum speed imposing a forward

(DIR = '1') or reverse (DIR = '0') rotation. When SW is released (opened), the ABS_POS
register is reset (ACT = '0') or the ABS_POS register value is copied into the MARK register
(ACT = '1'); the system then performs a HardStop command.'''

 self._cmd_1b(motor, self.COMMAND_DICT['ReleaseSW'] | direc)
 '''---'''

def GoHome(self, motor):
'''Same as Goto(0), not needed'''

 '''---'''

def GoMark(self, motor):
'''The GoMark command keeps the BUSY flag low until the MARK position is reached. This
#command can be given only when the previous motion command has been completed
#(BUSY flag released).'''

 '''---'''

 def ResetPos (self, motor):
 ## This command sets the given motor driver's absolute position register
 # to zero.
 # @param motor The motor whose position is to be zeroed, either 1 or 2
 self._cmd_1b (motor, self.COMMAND_DICT['ResetPos'])

 '''---'''

 def ResetDevice(self, motor):
 self._cmd_1b (motor, self.COMMAND_DICT['ResetDevice'])

 '''---'''

def SoftStop (self, motor):
Tell a motor driver to decelerate its motor and stop wherever it ends
up after the deceleration.
@param motor Which motor is to halt, 1 or 2
self._cmd_1b (motor, self.COMMAND_DICT['SoftStop'])

 '''---'''

def HardStop (self, motor):

200

Tell the specified motor to stop immediately, not even doing the usual
smooth deceleration. This command should only be used when the compost
is really hitting the fan because it asks for nearly infinite
acceleration of the motor, and this will probably cause the motor to
miss some steps and have an inaccurate position count.
@param motor Which motor is to halt, 1 or 2
self._cmd_1b (motor, self.COMMAND_DICT['HardStop'])

 '''---'''

 def SoftHiZ (self, motor):
 ## Tell the specified motor to decelerate smoothly from its motion, then
 # put the power bridges in high-impedance mode, turning off power to the
 # motor.
 # @param motor Which motor is to be turned off, 1 or 2
 self._cmd_1b (motor, self.COMMAND_DICT['SoftHiZ'])

 '''---'''

 def HardHiZ (self, motor):
 ## Tell the specified motor to stop and go into high-impedance mode (no
 # current is applied to the motor coils) immediately, not even doing the
 # usual smooth deceleration. This command should only be used when the
 # compost is really hitting the fan because the motor is put into a
 # freewheeling mode with no control of position except for the small
 # holding torque from the magnets in a PM hybrid stepper, and this will
 # probably cause the motor to miss some steps and have an inaccurate
 # position count.
 # @param motor Which motor is to be turned off, 1 or 2
 self._cmd_1b (motor, self.COMMAND_DICT['HardHiZ'])

 '''---'''

 def GetStatus (self, motor, verbose=1):
 status = self._get_params(self.COMMAND_DICT['GetStatus'], 2)
 if verbose:

 self.Print_Status(motor, status)
 return status

 '''---'''

-----------------Secondary Functions-------------------

 '''---'''

def getPositions (self, motor):
Get the positions stored in the drivers for the selected motor. Each
driver stores its motor's position in a 22-bit register. If only
one position is needed, it's efficient to get both because the
drivers are daisy-chained on the SPI bus, so we have to send two
commands and read a bunch of bytes of data anyway.
@return The current positions of the selected motor

Read (command 0x20) register 0x01, the current position
[data_1, data_2] = self._get_params (self.COMMAND_DICT['GetParam']|self.REGISTER_DICT['ABS_POS'][0], 3)
print("motor 1 is " + str(bin(data_1)))
print("motor 2 is " + str(bin(data_2)))

201

#
Sign-extend the signed absolute position numbers to 32 bits
''' We Don't need to sign extend the number
if data_1 & 0x00400000:
data_1 |= 0xFF800000
else:
data_1 &= 0x001FFFFF
if data_2 & 0x00400000:
data_2 |= 0xFF800000
else:
data_2 &= 0x001FFFFF
'''
if motor == 1:
data = data_1
else:
data = data_2
return (self.GetTwosComplement(data, 22))

 '''---'''
 def GetTwosComplement(data, length):

 if (data & (1 << (length - 1))) != 0: # if sign bit is set e.g., 8bit: 128-255
 data = data - (1 << length) # compute negative value

 return (data) # return positive value as is

 def isStalled(self, motor):
 status = self.GetStatus(1,verbose = 0)
 if ((status[motor-1]&(1<<13) == 0) and (status[motor-1]&(1<<14) == 0)):

if status[2-1] & (1<<6) == True and status[2-1] & (1<<5) == True:
 return True

 else:
 return False

 def isBusy(self,motor):
 status = self.GetStatus(1,verbose = 0)
 if (status[motor-1] & (1<<1)) == 0:

 return(True)
 else:

 return(False)

 def isHome(self,motor):
 status = self.GetStatus(1,verbose = 0)
 if status[motor-1] & (1<<2):

 return(True)
 else:

 return(False)
 '''---'''
 def Print_Status(self, motor, status):

 """ Formatted printing of status codes for the driver.

 @arg @c motor (int): the motor which the status is representing.
 @arg @c status (int): the code returned by a GetStatus call.

 """
 # check error flags
 print ('Driver ', str(motor), ' Status: ') #, bin(status))
 print(status)
 for bit_addr in range(7,15):

 print(' Flag ', self.STATUS_DICT[bit_addr][0], ': ', end='')

202

 # we shift a 1 to the bit address, then shift the result down again
 if ((status[motor-1] & 1<<bit_addr)>>bit_addr)==self.STATUS_DICT[bit_addr][1]:

 # the result should either be a 1 or 0. Which is 'ok' depends.
 print("ok")

 else:
 print("Alert!")

 # check SCK_MOD
 if status[motor-1] & (1<<15):

 print(' Step-clock mode is on.')
 else:

 print(" Step-clock mode is off.")

 # check MOT_STATUS
 if status[motor-1] & (1<<6):

 if status[motor-1] & (1<<5):
 print(" Motor is at constant speed.")

 else:
 print(" Motor is decelerating.")

 else:
 if status[motor-1] & (1<<5):

 print(" Motor is accelerating.")
 else:

 print(" Motor is stopped.")

 # check DIR
 if status[motor-1] & (1<<4):

 print(" Motor direction is set to forward.")
 else:

 print(" Motor direction is set to reverse.")

 # check BUSY
 if not (status[motor-1] & (1<<1)):

 print(" Motor is busy with a movement command.")
 else:

 print(" Motor is ready to recieve movement commands.")

 # check HiZ
 if status[motor-1] & 1:

 print(" Bridges are in high-impedance mode (disabled).")
 else:

 print(" Bridges are in low-impedance mode (active).")

 # check SW_EVEN flag
 if status[motor-1] & (1<<3):

 print(" External switch has been clicked since last check.")
 else:

 print(" External switch has no activity to report.")
 # check SW_F
 if status[motor-1] & (1<<2):

 print(" External switch is closed (grounded).")
 else:

 print(" External switch is open.")

#setLoSpdOpt(boolean enable);
#configSyncPin(byte pinFunc, byte syncSteps);
#configStepMode(byte stepMode);

203

-*- coding: utf-8 -*-
##
@file main.py
@author Robert Tam
This program was written for an ME Senior Project.
-*- coding: utf-8 -*-

importing modules for buffers and functions
print('Program initilizing')
import utime
import Gantry
import Probe
import BeamActuator
import RailAct
import setup
from setup import ErrInit,\

 ErrCalibration,\
 ErrLeveling,\
 ErrBoltCsv,\
 ErrCalCsv,\
 ErrGantry,\
 ErrProbe,\
 ErrRailActL,\
 ErrRailActR,\
 ErrBeamAct,\
 ErrFileCheck,\
 ErrSong,\
 XBeam,\
 zero_flags,\
 FileCheck,\
 DCMotor,\
 Solenoid,\
 Mode,\
 RedLED,\
 GreenLED,\
 YellowLED,\
 Buzzer,\
 Go,\
 Board1,\
 Board2

def Lights_Sound_Off():
 '''Turns all LEDs and the buzzer off
 Function has no input paramaters or returned values'''
 RedLED.low()
 YellowLED.low()
 GreenLED.low()
 Buzzer('off')
 print("All Lights and Sound have been turned off")

def Lights_Sound_Action():
 '''This function turns on various LEDs and controls the buzzer depending on
 the error flags which have been raised. Function has no input paramaters or
 returned values'''
 Lights_Sound_Off() # Turn lights off
 print("Lights_Sound_Action() has been called. Let the show begin.")
 import utime

Appendix P6: main.py

204

 switch = 0 # Switch is bolean variable that switches each run
 # of the LEDs and buzzer so the system knows to
 # alternate

 Green = 0 # Valriable that says the green LED is to be used
 Yellow = 0 # Valriable that says the yellow LED is to be used
 Red = 0 # Valriable that says the red LED is to be used
 Blink = 0 # Variable that says LEDs need to blink
 Stop = 0 # Variable that counts number of Go's pressed to

 # exit function

 if ErrGantry.get() == 1:
 # If the Gantry error flag is raised, tell system to turn on green and
 # yellow LEDs, no blinking
 Green = 1
 Yellow = 1
 print(" Gantry Error detected")

 elif ErrProbe.get() == 1:
 # If Probe flag raised, yellow and red LED, no blinking
 Yellow = 1
 Red = 1
 print(" Probe Error detected")

 elif ErrBeamAct.get() == 1:
 # If beam actuator flag raised, green and red LED, no blinking
 Green = 1
 Red = 1
 print(" Beam Actuator Error detected")

 elif ErrSong.get() == 1:
 # If Song error flag raised, all LEDs on, blinking
 Green = 1
 Yellow = 1
 Red = 1
 Blink = 1
 print(" Piano Switch Board Combination Error detected")

 elif ErrRailActR.get()==1 or ErrRailActL.get() == 1:
 # If Either rail actuator flags are raised
 Green = 1
 Yellow = 1
 Red = 0
 Blink = 1
 print(" One or Both of the Rail Actuators Error detected")

 elif ErrBoltCsv.get() == 1 or ErrCalCsv.get() == 1:
 Green = 1
 Yellow = 1
 Red = 1
 Blink = 0
 print(" Missing file")

 else:
 # No error, Set Green LED, turn noise on 1 sec
 print(" No Error detected, doing the green light and 1 second beep")
 GreenLED.high()
 Buzzer('on')
 utime.sleep(1)
 Buzzer('off')
 return

 while True:
 Start = utime.ticks_ms()

205

 # Check Switch for what to do
 if switch == 0:

 # Check Buzzer for if it should run or not. Should not run if Stop
 # is not 0 meaning user hit go at some point.
 if Stop == 0:

 Buzzer('On')
 print("Sound On")

 else:
 print("Sound Off")
 Buzzer('Off')

 # Check what LEDs should be on
 print('LEDs on')
 if Green == 1:

 GreenLED.high()
 if Yellow == 1:

 YellowLED.high()
 if Red == 1:

 RedLED.high()
 else:

 # Buzzer should be off
 print("Sound Off")
 Buzzer('Off')

 # Check what LEDs should be blinking. If so, then the LEDs now
 # need to be off.
 if Blink == 1:

 print("LEDs off")
 if Green == 1:

 GreenLED.low()
 if Yellow == 1:

 YellowLED.low()
 if Red == 1:

 RedLED.low()
 print("Go pressed: "+str(Stop))
 print("Go() reads "+str(Go())+"\r\r\n")

 Current = utime.ticks_ms()
 # Wait in the below while loop until the difference in time from the
 # beggining of the while loop to present >= 500ms or user hits go
 while True:

 if Go() == 1:
print("Go pressed")

 if Stop == 0:
 Stop = 1
 # wait .25 sec for button to be released
 utime.sleep_ms(250)

 elif Stop == 1:
 Stop = 2
 break

 elif (Current - Start) >= 500:
 break

 Current = utime.ticks_ms()

 # If user has hit go twice during the above while loop, exit function.
 # i.e. hit it once, than hit it again when the function loops back to
 # the above nested loop.

206

 if Stop == 2:
 Lights_Sound_Off()
 YellowLED.high()
 print("Exiting Lights_Sound_Action()")
 return()

 # Toggle switch so the system toggles sound and LEDs
 if switch == 0:

 switch = 1
 elif switch == 1:

 switch = 0

def ErrorHandler():
 '''This function checks flags, prints errors, sets lights, and makes noise
 accordingly.
 '''

 # print statements for debugging purposes
 from setup import ErrSleep, ErrAssembly
 print("Beginning Error Handling")
 print("ErrInit = "+str(ErrInit))
 print("ErrSleep = "+str(ErrSleep))
 print("ErrCalibration = "+str(ErrCalibration))
 print("ErrLeveling = "+str(ErrLeveling))
 print("ErrAssembly = "+str(ErrAssembly))
 print("ErrProbe = "+str(ErrProbe))
 print("ErrGantry = "+str(ErrGantry))
 print("ErrBeamAct = "+str(ErrBeamAct))
 print("ErrRailActR = "+str(ErrRailActR))
 print("ErrRailActL = "+str(ErrRailActL))
 print("")

 # There was no issues with all of the named error flags, check all of the
 # other error flags
 if ErrSong.get() == 0 and \

 ErrBoltCsv.get() == 0 and \
 ErrCalCsv.get() == 0:

 f = open("Error Report.txt","w")

 if ErrProbe.get() == 1:
print("Error with probe, writing error")

f.write("Probe was unable to take valid measurements")
 elif ErrGantry.get() == 1:

print("Error with gantry, writing error")
f.write("Gantry was unable to move to the destination")

 elif ErrBeamAct.get() == 1:
print("Error with beam actuator, writing error")

f.write("Beam Actuator was unable to move to the destination")
 elif ErrRailActR.get() == 1 or ErrRailActL.get() == 1:

 if ErrRailActR.get() == 1 and ErrRailActL.get() == 1:
 x = "Both rail actuators"

 elif ErrRailActR.get() == 1:
 x = "The right rail actuator"

 elif ErrRailActL.get() == 1:
 x = "The left rail actuator"

 print("error with the "+x)

207

f.write(x+"Has attempted run past the maximum stroke length "+\
 "allowed")

f.close()

 # After finishing up writing to the Error Report text file, now run the
 # function responsible for turning on and off the LEDs and sound.
 Lights_Sound_Action()

print("Exiting Error Handler")
 # Now Home the system
 Home("All")

def Home(*arg):
 '''Function Homes parts as indicated by the *arg which is a tuble of
 strings of whatever the user inputs. For reference, google Python optional
 arguments.
 Inputs:

*agr: can be any to all of the following
 Probe: Homes the probe
 RailActR: Homes Right rail actuator
 RailActL: Homes Left rail actuator
 Screwdrivers: Homes the screwdrivers
 Gantry: Homes the Gantry
 Bact: Homes the Beam Actuator
 RailAct: Homes both rail actuators
 All: Homes everything

 Outputs:
 None'''

print("Beginning to Home system")

 # Set the stall thresholds of the stepper drivers to the maximum
 # ammount (which they should be already)
 Board1._setStallThreshold(16)
 Board2._setStallThreshold(16)

 # First Home Probe if Probe or all is listed in *arg
 if ('Probe' in arg) or ('All' in arg):

 Probe.Home()

 # Now Home Righ and Left rail actuator
print(" Homing one or both rail actuators")
if ('RailActR' in arg) or ('All' in arg) or ('RailAct' in arg):
RailAct.Home(1)

if ('RailActL' in arg) or ('All' in arg) or ('RailAct' in arg):
RailAct.Home(2)

 # Home screwdriver DC Motors and Solenoids
 if ('Screwdrivers' in arg) or ('All' in arg):

 # Turn of both DC motors and solenoids
print(" Turning off all DC motors and Solenoids for srewdrivers")

 DCMotor(1,1)
 Solenoid(1,1)

 # Home Gantry
 if ('Gantry' in arg) or ('All' in arg):

208

 Gantry.Home()

 # Home Beam Actuator
 if ('Bact' in arg) or ('All' in arg):

 BeamActuator.Home()

def Calibration_Mode():
 '''This function directs the XBAS machine to calibrate a machine csv file
 to a specific X-Beam indicated by length in the file name. The file to be
 edited is indicated by the user input in a piano switch board.
 Function Inputs:

 None
 Function Outputs:

 None
 '''

print("Beginning Calibration Mode")

 # Variable switch is used to identify if this is the first time running
 # through this program or not.
 switch = 0

 # Variable block is a hardcoded user input that determines the behavior
 # of the program
 # Value of 1 indicates that the user is using a short block that they
 # manually have to move for calibration, thus the machine waits
 # after moving the gantry for the user to hit go.
 # Value of 2 indicates the user is using a long block for calibration
 # that they don't have to move, so the machine will not wait for
 # user input and just go.
 block = 1

 # 1st layer
 while True:

 # Set Error Flag fir this mode
 ErrCalibration.put(1)

 # 2nd Layer. System will stay in this loop unless an error occurs or
 # the system finishes calibration.
 while True:

 # Pre-Calibration Mode

 # Turn Yellow LED on indicating the system is initializing the
 # calibration mode. Runs once at the beginning of the function
 Lights_Sound_Off()
 YellowLED.high()

 # If first time running through this section of code
 if switch == 0:

 # First Check Files are present
 Output = FileCheck()
 if type(Output)==str:

 # If file is missing, handle the error than break back into
 # 1st layer.
 break

209

 # Home Machine
 Output = Home("All")

 # Error Check
 if Output == "Error Occured":

 break

 if switch == 0:
print("Waiting in pre-Calibration Stage")

 # The calibration mode is ready to go, turn green light on and
 # wait for go.
 Lights_Sound_Off()
 GreenLED.high()
 while True:

 if Go() == 1:
 # User hit go
 Lights_Sound_Off()
 YellowLED.high() # Turn Yellow LED on Indicating the

 # system is working now
 break # Exit the 3rd layer and resume in

 # 2nd layer
print("Go selected, continuing function")

 elif Mode() != 1:
 # User has selected a different mode before hitting go,
 # exit the function

print("Another Mode selected, exiting function")
 return()

 # User has hit go, import files. Will error if the file is missing
 # and user must hit go twice(once to turn sound off, once to
 # resume). After error, return to the pre-calibration stage by
 # breaking from the 2nd loop back to the 1st loop.
 Output = Import.Song()
 if Output == "Error Occrured":

 # Error occured, handle the error, then break out of the 2nd
 # layer to the 1st layer
 break

 # Song imported, import calibration. If there is an issue, go to
 # error and wait for user input upon which it breaks back into
 # the 1st loop.
 Output = Import.Calibration()
 if Output == "Error Occrured":

 break

 # Now we've inported the Calibration file w/o error, save the value
 # of Output to a variable for later use. Also take values out of
 # the list output of ImportCalibration and save specific values
 # to named variables for ease of use. Note, Offset adjusts the
 # distance NearSide and FarSide so they are from the end of the
 # X-Beam

print("Transcribing calibration data over to local variables")
 CalibrationData = Output
 NearSide = Output(0)
 FarSide = Output(1)

210

 # Move Gantry to the near side
print("Moving Gantry to the near side for calibration purposes")

 Output = Gantry.Move(NearSide, probe = False)

 # Check output for if an error occured. If no error occured, the
 # function should have returned a number indicating the
 # measurement.
 if Output == "Error Occured":

 # An error did occur, break back to 1st layer
print("Error occured moving gantry, do error handling")

 break

 # Gantry is in position, check the "block" variable for if the
 # machine needs to wait for user input or not
 if block == 1:

print("Waiting for user input to do measurement")
 Lights_Sound_Off()
 GreenLED.high()
 while True:

 # Sit in a while loop until the user hits Go()
 if Go()==1:

print("Go pressed, taking measurement")
 Lights_Sound_Off()
 YellowLED.high()
 break

 # XBAS now needs to take measurement
 Output = Probe()

 # Check Output for error from probe()
 if Output == "Error Occured":

print("Probe measurement error, do error handling")
 # Error Occured, exit 2nd layer to 1st layer for error handling.
 break

 # Store the data of the near side to the calibration data
 CalibrationData[2] = Output

print("Substituting probe measurement into CalibrationData, "+\
"value "+str(Output))

 # Calue of NearSide has been stored, now for FarSide
print("Moving Gantry to the Farside for Calibration Purpose")

 Output = Gantry.Move(FarSide, probe = False)

 # Check output for if an error occured. If no error occured, the
 # function should have returned a number indicating the
 # measurement.
 if Output == "Error Occured":

print("Gantry moving error, do error handling")
 # An error did occur, handle error and break back to 1st layer
 ErrorHandler()
 break

 # Gantry is in position, check the "block" variable for if the
 # machine needs to wait for user input or not
 if block == 1:

print("Waiting for user input to do measurement")

211

 Lights_Sound_Off()
 GreenLED.high()
 while True:

 # Sit in a while loop until the user hits Go()
 if Go()==1:

print("Go pressed, taking measurement")
 Lights_Sound_Off()
 YellowLED.high()
 break

 # XBAS now needs to take measurement
 Output = Probe()

 # Check Output for error from probe()
 if Output == "Error Occured":

 # Error Occured, exit 2nd layer to 1st layer for error handling
print("Probe error occured, handle error")

 break

 # Store the data of the far side to the calibration data
print("Substituting probe measurement into CalibrationData, "+\
"value "+str(Output))

 CalibrationData[3] = Output

 # Calculate the difference between the level of the two points for
 # the calibration constant
 CalibrationData[4] = CalibrationData[3]-CalibrationData[2]

print("Calculating and storing calibration constant, value "+\
str(CalibrationData[4]))

 # At this point, there should have been no errors or such, so
 # finish up by storing information into the Calibration file for
 # the X-Beam length being calibrated and signal the user that the
 # machine is done.
 Input = XBeam
 FileName = "Calibration"+str(Input)+".csv"

print("Writing CalibrationData to "+FileName)
 f = open(FileName,'w')
 String = ''
 for item in CalibrationData:

 String = String + str(item) + ','
 String = String.rstrip(',')

print(" writing line: "+String)
f.write(String)

 # Exit Function
print("Calibration Done, exiting function")

 return('Done')
 # End of 2nd Layer loop

 # End of 1st layer loop
 ErrorHandler()

def Leveling_Mode():
 '''This function is part 1 of the assembly mode which is leveling the

X-Beam relative to the datum surface.
 Function Inputs:

212

 None
 Function Outputs:

 None
 '''

print("Beginning Leveling half of the Assembly Mode")

 # Variable switch indicates if this is the first time the code is
 # running through the code. This is for the purpose of skipping
 # the pre-stage every run through after the first, ie after
 # error handling.
 switch = 0

 # While Loop 1st Layer
 while True:

 # Set error flag for this mode
 ErrLeveling.put(1)

 # While Loop 2nd Layer
 while True:

 # Pre Assembly Mode

 # Turn Yellow LED on indicating the system is initializing the
 # mode. Only does this once for the functions first
 # run
 Lights_Sound_Off()
 YellowLED.high()

 # Is this the first time running through this section of code?
 if switch == 0:

 # First Check Files are present
 Output = FileCheck()
 if type(Output)==str:

 # If file is missing, break back into 1st layer where the
 # error handle function is (at the bottom)
 break

 # Home function, home everything
 Output = Home("All")

 # Check output
 if Output == "Error Occured":

 break

 if switch == 0:
 # Turn Green LED on indicating ready for user input
 Lights_Sound_Off()
 GreenLED.high()

 # Wait for user to hit go or to switch system modes to a
 # different mode
 while True:

print("Waiting in pre-Assembly Stage")
 if Go() == 1:

 # Go was pressed, exit the 3rd Layer while loop and

213

 # resume the 2nd layer loop via a break command
print("User hit Go, continue leveling and assmembly")

 break
 elif Mode() != 3:

 # Else if the 3 position switch is not set to 3 which
 # is the assembly mode, then exit this function via
 # return

print("User selected different mode, exit function")
 return()

 # Set switch to 1 so that on future runs, it skips the while loop
 # for waiting for the user to hit go
 switch = 1

 # Turn Yellow Ligth on
 Lights_Sound_Off()
 YellowLED.high()

 # User has hit Go, read the piano board via ImportSong()
 Output = Import.Song()

 # Check Output for if an error occured
 if Output == "Error Occured":

 # Error occured, break 2nd layer loop to return to 1st layer
 # loop and handle error

print("Error in ImportSong, handle error")
 break

 # ImportSong() had no issues, continue by importing Calibration
 # Data
 Output = Import.Calibration()

 # Check Output of ImportCalibration for errors
 if Output == "Error Occured":

 # Error occured, break 2nd layer loop to return to 1st layer
 # loop and handle error

print("Error in ImportCalibration, handle error")
 break

 # Take data from Import Calibration and Store it for future use
print("Transcribe Calibrationdata to local variables")

 CalibrationData = Output
 NearSide = CalibrationData(0)
 FarSide = CalibrationData(1)
 CalConst = CalibrationData(4)

 # Import BoltPatternXXX.csv file for the X-Beam just to check
 # that it is both present and valid.
 Output = Import.BoltPattern()

 # Check the output for an error
 if type(Output) == str:

 # If error, break out of 2nd layer into 1st layer for
 # error handling

print("Error in ImportBoltPattern, handle error")
 break

214

 # Move the Gantry to the far side and take the first measurement
print("Moving Gantry to far side and take measurement")

 Output = Gantry.Move(FarSide, probe = True)

 # Check function output
 if Output == 'Error Occured':

 # Error occured, break loop
print("Error in moving Gantry or probe, handle error")

 break

 # Store output
 FarLevel = Output

 # Move the Gantry to the near side and take the first measurement
print("Moving Gantry to near side and take measurement")

 Output = Gantry.Move(NearSide, probe = True)

 # Check function output
 if Output == 'Error Occured':

 # Error occured, break loop
print("Error in moving Gantry or probe, handle error")

 break

 # Store output modified by calibration constant
 NearLevel = Output - CalConst

print("Calculate nearside w/cal constant")
print(" FarLevel "+str(FarLevel))
print(" NearLevel "+str(NearLevel))

 # Level X-Beam by actuating X-Beam Actuator to raise the X-Beam
 # to the level needed.

x1 = distance from line constraint to x-beam actuator point contraint
x2 = distance from where probe takes near side measurement to line constraint

 # Fraction indicating how much the point being leveled changes as
 # the X-Beam actuator levels the beam
 x = x2/x1

 # NOTE: If time, fix this, it seems wrong

 # Actuate X-Beam levveling actuator and measure
print("Actuate X-Beam actuator")

 Output = BeamActuator.Move((NearLevel - FarLevel)/x,
 probe = True)

 # Check output
 if Output == 'Error Occured':

 # Error occured, break loop
print("Error w/beam actuator, handle error")

 break

 # Store output
 NearLevel = Output - CalConst

 # Check, retry, and repeat
 Error = 0
 Tolerance = 100

215

 while True:
 if NearLevel - FarLevel >= -Tolerance or\

 NearLevel - FarLevel <= Tolerance:
 # Within of range, continue whiile loop
 break

 # Actuate X-Beam levveling actuator and measure
print("X-Beam not leveled, re-attempt leveling with actuator")

 Output = BeamActuator.Move((NearLevel - FarLevel)/x,
 Probe = True)

 # Check output
 if Output == 'Error Occured':

 # Error occured, break loop
 Error = 1
 break

 # if there was an error in the above while loop, its supposed to
 # exit to the 1st loop. THis is the second break that helps
 # achieve that.
 if Error == 1:

print("Error w/beam actuator, handle error")
 break

 # At this point, the beam should be leveled with no errors. Home,
 # zero flags and exit function.
 return('Done')

 # End of the 2nd Layer

 ErrorHandler()
 # End of the First Layer

def TorqueDown(Input):
 from setup import ErrAssembly
 '''Function Torques down the side indicated by the input
 Function inputs:

 Input is a character "L" or "R", indicating that either the
 left or right side needs to be torqued down.

 Function outputs:
 None'''

print("Beginning to Toque Down")

 # Rail Actuators constants
 DistancePerStep = .0079375 # mm linear travel per step

 # Position above rails in mm away from the motor. Does not have
 # to be very accurate (+/- 1mm)
 PositionAboveRails = 10 # mm is the distance we determined too

 # small for human fingers
 # Covert PositionAboveRails from distance in mm to steps for the
 # drivers
 PositionAboveRails = PositionAboveRails / DistancePerStep

 # Calculating position above granite from the motor just as with
 # PositionAboveRails
 PositionAboveGranite = 10

216

 PositionAboveGranite = PositionAboveGranite / DistancePerStep

 # 1st Layer while loop
 while True:

 # Set torque for the approach to the rails at a very low stall torque
print("setting stall threshold of rail actuators low")

 Board2._setStallThreshold(4)

 # Turn on actuators and move twoards a position just above the rails
print("move rail actuator to point above rails")

 if Input == "L":
 # Turn on left actuator

print(" left actuator on")
 Board2.Goto(1,PositionAboveRails)

 elif Input == "R":
 # Turn on right actuator

print(" right actuator on")
 Board2.Goto(2,PositionAboveRails)

 # 2nd Layer while Loop
 error = 0
 while True:

 # Check for if the rail actuator has stalled or if the rail
 # actuator has reached destination.

 if Board2.isStalled(1) == True and Input == "L":
 # Left actuator stalled, call error and break out of while
 # loop for handling it

print(" left actuator stalled")
 ErrRailActL = 1
 error = 1
 break

 elif Board2.isStalled(2) == True and Input == "R":
 # Right actuator stalled, call error and break out of while
 # loop for handling it

print(" right actuator stalled")
 ErrRailActR = 1
 error = 1
 break

 elif Board2.isBusy(2) == 1:
 # Check for completion (Done flag false), exit with no
 # error called

print(" actuator in position above rails")
 error = 0
 break

 # End of the 2nd Layer while loop, back in the 1st layer

 # Error Check, If an error was declared earlier, then skip
 # the following code responsible for fully pressing down the
 # rails and bolting down the screws
 if error == 0:

 # Set torque high
print("setting torque high")

 Board2._setStallThreshold(16)

217

 # Set actuators on depending on input
print("moving rail actuator to point above granite")

 if Input == "L":
 # Turns left actuator on

print(" left actuator on")
 Board2.Goto(1,PositionAboveGranite)

 elif Input == "R":
 # Turns right actuator on

print(" right actuator on")
 Board2.Goto(2,PositionAboveGranite)

 # 2nd layer while loop checking destination and stall
 # flags as before.
 while True:

 if Board2.isBusy(2) == 1:
 # Check for completion, call error if actuator moved
 # to destination succesfully
 if Input == "L":

print(" left actuator reached destination, error.")
 ErrRailActL.put(1)

 if Input == "R":
print(" right actuator reached destination, error.")

 ErrRailActR.put(1)
 break

 if Board2.isStalled(1) == True or Board2.isStalled(2) == True:
 # Left or right actuator stalled, move on to next
 # stage (torque down)

print("Actuator stalled, begin torque down section")
 # Truning On solenoids based on side being done
 if Input == "L":

 # Left Side
print("Left Solenoid On")

 Solenoid('l','on')
 if Input == "R":

 # Right Side
print("Right Solenoid On")

 Solenoid('r','off')

 # Import Time so system can wait for stuff to finish

 # Wait for solenoids to extend
 utime.sleep(100)

 # Turn On motors depedning on side being done
 if Input == "L":

 # Left Side
print("Left DC motor On")

 DCMotor("l","On")
 if Input == "R":

 # Right Side
print("Right DC motor On")

 DCMotor("R","On")

 # Sleep for X amount of time so the DC motor torques
 # down the bolt.

218

 utime.sleep(5000)

 # Turn screwdriver motors and solenoids off
print("all motors and solenoids off")

 DCMotor(1,1)
 Solenoid(1,1)

 # Sleep till solenoids retract
 utime.sleep(100)

 # home the rail actoators depedning on side being done
 if Input == "L":

 # Left Side
print("Homing Left Actuator")

 Home("RailActL")
 if Input == "R":

 # Right Side
print("Homing Right Actuator")

 Home("RailActR")

 # Program done, return
 return()

 # end 2nd layer, back in 1st layer
 # Home the rail actuators in preparation for error handling.
 Home("RailAct")

 # Error Handling and set mode error back
 ErrorHandler()
 ErrAssembly.put(1)
 # End of 1st layer, resume at beginning

def Assembly_Mode():
 from setup import ErrAssembly
 '''Function that runs after the beam is leveled to force rails into
 position and torque them down.
 Function Inputs:

 None
 Function Outputs:

 None
 '''

print("Beginning Assembly half of the assembly mode")

 # Set Error Flag for mode
 ErrAssembly.put(1)

 # Beginning of the while loop for importing the data stored in
 # BoltPatternXXX.csv
 while True:

print("ImportBoltPattern function called")
 Output = Import.BoltPattern()
 if type(Output) == str:

 # Error Occured
print("Error importing Bolt Pattern csv file.")

 ErrorHandler()
 ErrAssembly = 1

219

 else:
 # No Error Occured
 break

 # End of while loop

 # Store Output into variables for later use. Also assign value to offset
 # to adjust the Bolt

print("Transcribing bolt pattern data to two seperate lists")
 BoltSide = Output(0)
 BoltData = Output(1)

 # For loop to run through the values of BoltSide and BoltData
 for counter in range(0,len(BoltData)):

 # Nested while loop to handle moving the gantry to the target point
 while True:

 # Run Gantry to position
print("Moving gantry to position #"+str(counter)+": "+\
str(BoltData(counter)))

 Output = Gantry.Move(BoltData(counter))

 # Check output of the function for error
 if Output == "Error Occured":

 # Error Occured
print("error occured moving ganty, handling error")

 ErrorHandler()
 ErrAssembly.put(1)

 else:
 # No Error Occured

print("Gantry successfully moved, "+str(counter)+"/"+\
str(len(BoltData))+" moves completed")

 break
 # End of while loop, go back to for loop and repeat entire
 # process of moving gantry.

 # The gantry should be in position, press rails down and bolt them
 TorqueDown(BoltSide(counter))

print("TorqueDown successfull, "+str(counter)+"/"+\
str(len(BoltData))+" bolts completed")

 # End of for loop, go back to beginning unless done.

 # Zero Flags, indicate the system is done via Lights_Sound_Action(), and
 # retrun
 zero_flags()
 Lights_Sound_Action()
 return

def Sleep_Mode(Input):
 '''This is the sleeping mode for the machine. It homes the machine and goes
 to sleep.
 Function Inputs:

 The amount of time spend checking the Mode()
 Function Outputs:

 Time spent in the sleep mode after if finishes homing with no issues.
 '''
 from setup import ErrSleep
 # Turn all lights and sounds off, then turn on yellow lED
 Lights_Sound_Off()

220

 YellowLED.high()

 # Set the sleep mode error flag buffer to 1 so that if an issue occurs, the
 # flag is already set.
 ErrSleep.put(1)

 # Turn all lights and sounds off, then turn on green lED
 Lights_Sound_Off()
 GreenLED.high()

 # Pre-Sleep mode: Wait in while loop for one of two exit conditions.
 # 1) User hits go
 # 2) User changes the system mode to something that isn't the sleep mode
 print("Sleep mode pre-stage")
 Timer = 0 # Creating a timer variable
 Start = utime.ticks_ms() # Creating a starting reference time
 while True:

 if Timer > 60000: # 1 min * 60s/min * 1000ms/s
 print("Timed Out, going to sleep")
 break

 if Go() == 1:
 print("Go pressed, going to sleep")
 break

 elif Mode() != 2:
 print("Another mode selected, exiting function")
 return(1000)

 # increment Timer
print("Time in Sleep pre-stage: "+str(Timer)+" ms")

 Current = utime.ticks_ms()
 Timer = Current - Start + Timer
 Start = Current

 # User must have hit go to have reached this point of the program. Turn of
 # lights, turn yellow LED, then enter the new while loop that will try to
 # home the system. Function will continue until the machine has been
 # homed.
 # Ammendment, if the system spend 500ms or more in the while loop checking
 # the Mode() function, then the system homes. Otherwise, if it spent less
 # than that, it doesnt run the Home() function.
 if Input >= 500:

 Lights_Sound_Off()
 print(' check')
 YellowLED.high()
 while True:

print("Time spend in main checking Mode() >500ms")

 # If the system enters sleep mode, Home
 Output = Home("All")

 # Check Output for Error
 if type(Output) == str:

 # If error, do the whole error handeler and when user hits go
 # 2nd time, repeat (ie home again)

print("Error Homing, handle error")
 ErrorHandler()
 ErrSleep = 1

 elif type(Output) != str:

221

-*- coding: utf-8 -*-
"""
File: Probe.py
@author: Robert Tam
"""

def Move(Input):
 '''Moves the probe up, down, or not at all
 Function Inputs:

 Input can be 1 of 3 things
 1)"up" or "Up" moves the probe up
 2)"down" or "Down" moves the probe down

3) anything else stops the probe.
 Function Outputs:

 None'''
 if Input == "up" or Input == "Up":

 RaisePin.high()
 LowerPin.low()

 elif Input == "down" or Input == "Down":
 RaisePin.low()
 LowerPin.high()

 else:
 RaisePin.high()
 LowerPin.high()

def Probe(Limit = False, UpperLimit = 0,LowerLimit = 0):
 '''Lower Probe, Take measurement, Check measurement, Raise the probe if no
 error. If not, throw an error.
 Function Inputs:

 Limit is True or False, defaulting to False. If the Limit is False, the
 function does not check teh value taken against the upper and lower
 limits. If True, it does compare.

 Function Outputs: Returns the value of the measurement taken. Otherwise
 returns message "Error Occured" if the reading is outside the
 given limits.
 '''

 print("Home the Probe")
 Home()
 print("Taking measurement with probe")
 print(" Lowering probe")
 RefRead = ProbeEncoder.read()
 Move("down")
 start = utime.ticks_ms()
 current = utime.ticks_ms()
 tolerance = 1
 while True:

 # wait for readings from probe to change (delta) by the tolerance
 # amount.
 CurrentRead = ProbeEncoder.read()
 delta = CurrentRead-RefRead
 # many debuggin statements. ctr + 1 to comment or uncomment
 # sections of code FYI

print(" Current reading = "+str(CurrentRead))
print(" Previous reading = "+str(RefRead))

 RefRead = CurrentRead
print(" delta = "+str(delta))
print(" tolerance= "+str(tolerance))

222

Appendix P7: Probe.py

print(" time passed in ms = "+str(current - start))
print(" exit cond 1: "+str(delta)+" >= "+str(tolerance)+\
" is "+str(delta <= tolerance))
print(" exit cond 2: "+str(delta)+" <= "+\
str(-tolerance)+" is "+str(delta >= -tolerance))
print(" exit cond 3: "+str(current - start)+\
" > 500 is "+str((current - start >500)))

 if delta <= tolerance and delta >= -tolerance and \
 (current - start >500):

 print(" Probe met surface")
 break

print("")
 utime.sleep_ms(100)
 current = utime.ticks_ms()

 # Check Reading is within the limits if the Limit flag is true
 Reading = ProbeEncoder.read()
 print(" Probe read: "+str(Reading))
 if Limit == True:

 if Reading > UpperLimit or Reading < LowerLimit:
 print(" probe reading was above upper limit of readings")
 ErrProbe.put(1)

 print(" Homing probe")
 Home()

 print(" ErrProbe = "+str(ErrProbe.get()))
 # If there was or was not an error
 if ErrProbe.get() == 0:

 print(" No error, exit")
 # No error, return
 return(Reading)

 else:
 # Error, return error message
 print(" Error Error Error Error")
 return("Error Occured")

def Home():
 '''Function homes the probe by checking the reference tick for the
 probe. The function also has a timer if the reference tick doesn't
 work
 Function Inputs:

 None
 Function Outputs:

 None'''
 if ProbeReference.value() != 1:

 # False, Retract Probe until it is at the reference tick
 print(" Probe is not at reference tick, raise probe")
 Move("up")

 # While loop to check the probe for when its reaches reference
 # tick
 start = utime.ticks_ms()
 while True:

 current = utime.ticks_ms()
 if ProbeReference.value == 1 or (current - start) > 2000:

223

 # True
 Move("Stop")
 print(" Probe is at reference tick, Zero out encoder")
 utime.sleep_ms(100)
 ProbeEncoder.zero()
 ProbeEncoder.position = 0
 utime.sleep_ms(500)
 print(" Probe homed at "+str(ProbeEncoder.position))
 break

def read():
 '''Function returns the read value from the Probe's Encoder
 Function Inputs:

 None
 Function Outputs:

 None'''
 return(ProbeEncoder.read())

Encoder Pins and Object for the Probe
C6 is encoder ch1
C7 is encoder ch2
ProbeEncoder is a Quadrature Encoder Object
import encoder as enc
import pyb
import utime

pinC6 = pyb.Pin(pyb.Pin.cpu.C6, pyb.Pin.AF_PP,af=3)
pinC7 = pyb.Pin(pyb.Pin.cpu.C7, pyb.Pin.AF_PP,af=3)
tim8 = pyb.Timer (8,freq=1000)
ProbeEncoder = enc.Quad_Encoder(pinC6,pinC7,tim8)

'''Probe Pins'''
H1 is the referencetick
ProbeReference = pyb.Pin(pyb.Pin.cpu.H1, mode = pyb.Pin.IN,

 pull = pyb.Pin.PULL_DOWN)

B9 high sends the probe up if B8 is low
RaisePin = pyb.Pin(pyb.Pin.cpu.B9, mode = pyb.Pin.OUT_PP,

 pull = pyb.Pin.PULL_DOWN)
RaisePin.high()

B8 high sends the probe down if B9 is low
LowerPin = pyb.Pin(pyb.Pin.cpu.B8, mode = pyb.Pin.OUT_PP,

 pull = pyb.Pin.PULL_DOWN)
LowerPin.high()

Grab the ErrProbe error flag from setup
from setup import ErrProbe

224

-*- coding: utf-8 -*-
"""
File: RailAct.py
@author: Robert Tam
"""
def checkSide(Side):

 '''Function determines the rail actuator being called
 Function Inputs:

 Side indicates which rail actuator is being operated. It takes values
 of Right, right, r, R, and 1 for the right rail actuator. It takes
 values of Left, left, l, L, and 2 for the left rail actuator.
 Both, both, b, B, or 3 indicates both rail actuators and is only
 for the Home command

 Function Outputs:
 Function outputs either a 1 or 2 corresponding to the right and left
 actuator respectivly

 '''
 if Side == 'right' or\

 Side == 'Right' or\
 Side == 'r' or\
 Side == 'R' or\
 Side == 1:
 return(1)

 elif Side == 'left' or\
 Side == 'Left' or\
 Side == 'l' or\
 Side == 'L' or\
 Side == 2:
 return(2)

def Move(Side,Destination,stall=90):
 '''Moves the selected rail actuator to the given destination
 Function Inputs:

 Side indicates which rail actuator is being operated. The value is put
 into the function checkSide to determine the actuator being called.

 Destintion is the destination desired in steps.
 stall is the stall threshold of both the rail actuators. defaults to 65

 which we found to be weak enough not to hurt a person, but enough
 to move without stall. Set to higher stalls for specific commands

 Fucntion Outputs:
 If there was stall, returns "Stalled"
 If move was completed, returns "Completed move command"

 Note: This function was written very last minute and is untested
 '''

 # setting stall threshold
 Board2._setStallThreshold(stall)

 # determine side
 motor = checkSide(Side)

 # get status on motor being run (cleares errors)
 Board2.GetStatus(motor)

 # run motor. This gets the motor going for the GoUntil
 # command later since we noticed the GoUntil command

225

Appendix P8: RailAct.py

 # sometimes doesn't work until after a Run command.
 # this was a last minute addition to help cover the
 # aforementioned bug and is not in the flow chart
 Board2.Run(motor,200)

 # start timer
 start = utime.ticks_ms()

 # while loop that waits for stall or a time out
 while True:

 current = utime.ticks_ms()
 if Board2.isStalled(motor):

 print('stalled')
 Board2.HardHiZ(motor)

 if current-start > 1000:
 utime.sleep(5)
 Board2.HardHiZ(motor)
 Home(motor)
 break

 # move motor to destination
 Board2.GoTo(motor,Destination)

 # check rail actuators for completion or stall
 while True:

 if Board2.isBusy(motor) == False and switch == 1:
 # gantry at switch, continue.
 print(" Board isn't busy anymore")
 Board2.GetStatus(motor)
 Board2.HardHiZ(motor)
 Board2._setStallThreshold(127)
 utime.sleep(1)
 return("Completed move command")

 elif Board2.isStalled(motor) == True:
 print(" Board stalled: True")

motor stalled, return an error and set flag
 Board2.HardHiZ(motor)
 Board2._setStallThreshold(127)
 utime.sleep(1)
 print(" rail actuator Stalled during move command")
 return("Stall occured")

def Home(Side):
 '''Function homes one or both of the rail actuators depending on the input
 Function Inputs:

 Side indicates which actuator (if not both) is being homed
 Fucntion Outputs:

 returns "Completed move command" when done

 Note: this function was written last minute and is untested
 '''
 print('homing rail actuator')
 motor = checkSide(Side)
 if motor == 1 or motor == 2:

 Board2.GoUntil(motor,-100)
 else:

226

 Board2.GoUntil(1,-100)
 Board2.GoUntil(2,-100)

 if Board2.isHome(motor) == False:
 print(' not home')
 while True:

 if Board2.isBusy(motor) == False:
 # gantry at switch, continue.
 print(" Board isn't busy anymore")

 # Board1.GetStatus(1)
 Board2.HardHiZ(motor)
 Board2.GetStatus(motor,verbose = 0)

 # Board2._setStallThreshold(127)
 print(' release switch')
 Board2.ReleaseSW(motor,1)
 utime.sleep(1)
 while True:

 if Board2.isBusy(motor) == False or Board2.isHome(motor) == False:
 Board2.HardHiZ(motor)
 Board2.GetStatus(motor,verbose = 1)
 utime.sleep(5)
 return("Completed move command")

 else:
 print(' already Bhomed')

def Status(Side):
 motor = checkSide(Side)
 Board2.GetStatus(motor)

from setup import Board2
import utime

227

-*- coding: utf-8 -*-
"""
File: setup.py
@author: Robert Tam
"""
def zero_flags():

 '''Function sets all error flag buffers to false aka 0 or its equivalent.
 No input paramaters or returned values. Does require for the task_share.py
 file to be present and the main section of this program to have been run
 so that the buffers exist.'''

 ErrInit.put(0)
 ErrSleep.put(0)
 ErrLeveling.put(0)
 ErrAssembly.put(0)
 ErrBoltCsv.put(0)
 ErrCalCsv.put(0)
 ErrGantry.put(0)
 ErrProbe.put(0)
 ErrRailActL.put(0)
 ErrRailActR.put(0)
 ErrBeamAct.put(0)
 ErrFileCheck.put(0)
 ErrSong.put(0)
 XBeam.put(0)
 print("Flags Zeroed")

def FileCheck():
 '''Function checks for files in the same directory and writes to the error
 report, listing the files from FileList that are missing. After that, if
 the Switch has been set to 1 (meaning an file was missing), it sets the
 ErrFileCheck to 1 and runs the ErrorHandler() function. This function
 also completely takes care of its own error report.
 Takes no paramaters.
 @return Function returns a string if an error occured, an integer if not.
 '''
 print("Checking Files")
 Switch = 0 # Indicates if an error has occured. Used so that the error

 # message indicating that the error occured during the
 # initilization phase is written only once at the
 # beginning of the report.

 import os # Import os for the listdir() function

 # List of strings of file names to check for in the system directory
 FileList = ["main.py",

 "boot.py",
 "l6470nucleo.py",
 "encoder.py",
 "task_share.py",
 "BeamActuator.py",
 "Gantry.py",
 "Probe.py",
 "Import.py",
 "setup.py"]

 # Retrieve the system directory information as a list of strings
 files = os.listdir()

Appendix P9: setup.py

228

print("files present")
print(files)
print("")

 # Open the Error Report text file in preparation of writing errors to
 f = open("Error Report.txt",'w')
 for file in FileList:

 print(" file being checked: "+str(file))
 if file not in files:

 # If the file being checked is not on the pyboard
 if Switch == 0:

f.write('There was an error during the system initilization'+\
 '\r\r\n')

 Switch = 1
f.write("The file "+file+" is missing\r\r\n")

 print(" The file "+file+" is missing")

 # If special action is required for a file, add an if statement
 # here which checks for said file to write that specific
 # recommended action here.

f.write(" Recommended action: Copy "+file+" from a backup onto"+
 " the pyboard\r\r\n")

 # Written Error report should look like...
 # There was an error during the initilization phase
 # The file main.py is missing
 # Recommened action: Copy main.py from a backup onto the pyboard

 # Finished writing to Error Report, close the text file
f.close()

 # Copied from main.Lights_Sound_Action(). This section of error handling
 # is if task_share.py is missing in which case main.Lights_Sound_Action()
 # and main.ErrorHandler() cannot work due to undefined error flag buffers.
 # Thus FileCheck has to take care of itself
 if Switch != 0:

 # If there was an error, set flag
 print("File Check Done, error occured, please press (deliberatly) "+\

 "the go once to turn the noise off")
 # Perfrom special error handling unique to this function which must be
 # done here for the system to work
 RedLED.high()
 YellowLED.high()
 GreenLED.high()
 switch = 0
 go = 0
 Time = 0
 while True:

 start = utime.ticks_ms()
 if switch == 0 and go == 0:

 Buzzer('on')
 elif switch == 1 and go == 0:

 Buzzer('off')
 else:

 Buzzer('off')
 if Go() == 1 and go == 0:

 go = 1

229

 Buzzer('off')
 print("Go hit first time, sleep for 0.25 seconds.")
 utime.sleep_ms(250)
 print("Buzzer Off, please press the go button once more"+\

 " to resume")
 elif Go() == 1 and go == 1:

 break
 if go == 0:

 current = utime.ticks_ms()
 Time = Time + (current-start)
 start = current

 if Time >= 1000 and go == 0:
 if switch == 0:

 switch = 1
 else:

 switch = 0
 Time = 0

 return("Error Occured")
 else:

 print("File Check Done, no errors")
 return([files,FileList])

def paramatarize():
 '''Function paramatrizes the l6470nucleo.Dual6470 objects
 Function Inputs:

 None
 Function Outputs:

 None
 '''

 print(' parameterizing')
 # Set the registers which need to be modified for the motor to go
 # This value affects how hard the motor is being pushed
 print(' parameterizing board 1')
 K_VAL = 65
 Board1._set_par_1b ('KVAL_HOLD', K_VAL)
 Board1._set_par_1b ('KVAL_RUN', K_VAL)
 Board1._set_par_1b ('KVAL_ACC', K_VAL)
 Board1._set_par_1b ('KVAL_DEC', K_VAL)
 # Speed at which we transition from slow to fast V_B compensation
 INT_SPEED = 1032 #3141
 Board1._set_par_2b ('INT_SPEED', INT_SPEED)
 # Acceleration and deceleration back EMF compensation slopes
 ST_SLP = 25
 Board1._set_par_1b ('ST_SLP', ST_SLP)
 Board1._set_par_1b ('FN_SLP_ACC', ST_SLP)
 Board1._set_par_1b ('FN_SLP_DEC', ST_SLP)
 # Set the maximum speed at which motor will run
 MAX_SPEED = 30
 Board1._set_par_2b ('MAX_SPEED', MAX_SPEED)

 # Set the minimum speed at which motor will run
 MIN_SPEED = 15
 Board1._set_par_2b ('MIN_SPEED', MIN_SPEED)

 # Set the maximum acceleration and deceleration of motor
 ACCEL = 1

230

 DECEL = 20
 Board1._set_par_2b ('ACC', ACCEL)
 Board1._set_par_2b ('DEC', DECEL)

 # Set the number of Microsteps to use
 SYNC_EN = 0x00
 SYNC_SEL = 0x10
 STEP_SEL = 8
 Board1._set_MicroSteps (SYNC_EN, SYNC_SEL, STEP_SEL)

 # Set the Stall Threshold
 STALL_TH = 127
 Board1._setStallThreshold(STALL_TH)

 print(' parameterizing board 2')
 # Set the registers which need to be modified for the motor to go

 # This value affects how hard the motor is being pushed
 K_VAL = 60
 Board2._set_par_1b ('KVAL_HOLD', K_VAL)
 Board2._set_par_1b ('KVAL_RUN', K_VAL)
 Board2._set_par_1b ('KVAL_ACC', K_VAL)
 Board2._set_par_1b ('KVAL_DEC', K_VAL)
 # Speed at which we transition from slow to fast V_B compensation
 INT_SPEED = 1032 #3141
 Board2._set_par_2b ('INT_SPEED', INT_SPEED)
 # Acceleration and deceleration back EMF compensation slopes
 ST_SLP = 25
 Board2._set_par_1b ('ST_SLP', ST_SLP)
 Board2._set_par_1b ('FN_SLP_ACC', ST_SLP)
 Board2._set_par_1b ('FN_SLP_DEC', ST_SLP)
 # Set the maximum speed at which motor will run
 MAX_SPEED = 20
 Board2._set_par_2b ('MAX_SPEED', MAX_SPEED)
 # Set the maximum acceleration and deceleration of motor
 ACCEL = 12
 DECEL = 12
 Board2._set_par_2b ('ACC', ACCEL)
 Board2._set_par_2b ('DEC', DECEL)

 # Set the number of Microsteps to use
 SYNC_EN = 0x00
 SYNC_SEL = 0x10
 STEP_SEL = 8
 Board2._set_MicroSteps (SYNC_EN, SYNC_SEL, STEP_SEL)

 # Set the Stall Threshold
 STALL_TH = 127
 Board2._setStallThreshold(STALL_TH)

def DCMotor(Side,Dir):
 '''Function for running the DC motors
 Function Inputs:

 Side can be any of the following and indicates which DC motor
 is being called upon.

1) "Left", "left", "l", and "L" calls on the left motor
2) "Right", "right", "r", and "R" calls on the right motor
3) Anything else turns off both motors regardless of the

231

 value of Dir
 Dir Indicates if the DC motors selected by Side is turned on or

 off. Takes the following inputs:
1) "On" or "on" will turn the motor selected on
2) "Off" or "off" will turn the selected motor off

 Function Outputs:
 None
 '''

 if Side == "Left" or Side == "left" or Side == "l" or Side == "L":
 if Dir == "on" or Dir == "On":

 DCMotorLeftPin.low()
 elif Dir == "off" or Dir == "Off":

 DCMotorLeftPin.high()
 elif Side == "Right" or Side == "right" or Side == "r" or Side == "R":

 if Dir == "on" or Dir == "On":
 DCMotorRightPin.low()

 elif Dir == "off" or Dir == "Off":
 DCMotorRightPin.high()

 else:
 DCMotorLeftPin.high()
 DCMotorRightPin.high()

def Solenoid(Side,Dir):
 '''Function for running the solenoids
 Function Inputs:

 Side can be any of the following and indicates which solenoid
 is being called upon.

1) "Left", "left", "l", and "L" calls on the left solenoid
2) "Right", "right", "r", and "R" calls on the right solenoid
3) Anything else turns off both solenoids regardless of the

 value of Dir
 Dir Indicates if the Solenoid selected by Side is turned on or

 off. Takes the following inputs:
1) "On" or "on" will turn the solenoid selected on
2) "Off" or "off" will turn the selected solenoid off

 Function Outputs:
 None
 '''

 if Side == "Left" or Side == "left" or Side == "l" or Side == "L":
 if Dir == "on" or Dir == "On":

 SolenoidLeftPin.low()
 elif Dir == "off" or Dir == "Off":

 SolenoidLeftPin.high()
 elif Side == "Right" or Side == "right" or Side == "r" or Side == "R":

 if Dir == "on" or Dir == "On":
 SolenoidRightPin.low()

 elif Dir == "off" or Dir == "Off":
 SolenoidRightPin.high()

 else:
 SolenoidLeftPin.high()
 SolenoidRightPin.high()

def Buzzer(Input,duty = 50):
 '''Function runs the buzzer, turning it on or off depending on the inputs.
 Function Inputs:

 Input can be one of the following.
1) "On", or "on" indicate that the buzzer should turn on

232

2) Anything else turns the buzzer off
 duty defaults to 100 and represents the duty cycle of the pwm wave

 controlling the buzzer. The function restricts the values of duty
 to be between 0 and 100 percent
 '''

 if Input == "On" or Input == "on":
 if duty > 100:

 duty = 100
 if duty < 0:

 duty = 0
 BuzzerChannel.pulse_width_percent(duty)

 else:
 BuzzerChannel.pulse_width_percent(0)

def callback(line):
 '''This is a function which runs during interrupts. This should occur when
 the emergecny stop button is pressed down. It waits until the emergency
 stop has been disengaged and initiates a soft restart'''
 print("Emergency Stop pressed...")
 RedLED.high()
 while True:

 if Stop_Pin.value() == 0:
 print("... and released")
 RedLED.low()
 break

 import pyb
 pyb.hard_reset()

def Mode():
 '''Function which is used to read and return the selection of the three
 position switch.
 @input Inputs are the read values of pin ThreeSwitch()
 @return Returns either a 1, 2, or 3 corresponding with the selection of the
 three position switch which are differentiated by different resistor values
 hardcoded below.'''

 # Get the reading from the three position switch analog pin
 value = ThreeSwitch()

 # Pins by Voltage in voltage
 V3 = 4030
 V2 = 1950
 V1 = 1300
 tolerance = 200

print("First Position value in ticks: "+str(V1))
print("Second Position value in ticks: "+str(V2))
print("Third Position value in ticks: "+str(V3))
print("Tolerance of "+str(tolerance))
print("Three Pos Switch read value in ticks: "+str(value))

 # Check if the first position has been selected
 if (value <= (V1 + tolerance)) and (value >= (V1 - tolerance)):

print("Selected Mode 1")
 return(1)

 # Check if the second position has been selected

233

 elif (value <= (V2 + tolerance)) and (value >= (V2 - tolerance)):
print("Selected Mode 2")

 return(2)

 # Check if the third position has been selected
 elif value <= V3 + tolerance and value >= V3 - tolerance:

print("Selected Mode 3")
 return(3)

 else:
print("No Mode Selected")

 return(0)

import pyb
import utime
start = utime.ticks_ms()
Pin Definition
print("Creating pins")

Notable stepper driver pins

LED Pin Definition
print(" creating LED pins")
RedLED = pyb.Pin (pyb.Pin.cpu.A8, mode = pyb.Pin.OUT_PP,

 pull = pyb.Pin.PULL_DOWN)

YellowLED = pyb.Pin (pyb.Pin.cpu.B10, mode = pyb.Pin.OUT_PP,
 pull = pyb.Pin.PULL_DOWN)

GreenLED = pyb.Pin (pyb.Pin.cpu.B4, mode = pyb.Pin.OUT_PP,
 pull = pyb.Pin.PULL_DOWN)

YellowLED.high()
RedLED.low()
GreenLED.low()

Piezzo Buzzer
BuzzerPin = pyb.Pin(pyb.Pin.cpu.A1, mode = pyb.Pin.OUT_PP)
timBuzzer = pyb.Timer(5,freq = 2730)
BuzzerChannel = timBuzzer.channel(2, pyb.Timer.PWM, pin = BuzzerPin)
BuzzerChannel.pulse_width_percent(0)

Solenoid and DC Motor Pin call outs and functions for controlling
said pins.
print(" Creating solenoid pins")
SolenoidLeftPin = pyb.Pin (pyb.Pin.cpu.D2, mode = pyb.Pin.OUT_PP,

 pull = pyb.Pin.PULL_DOWN)
SolenoidLeftPin.high()

SolenoidRightPin = pyb.Pin (pyb.Pin.cpu.B6, mode = pyb.Pin.OUT_PP,
 pull = pyb.Pin.PULL_DOWN)

SolenoidRightPin.high()

print(" Creating DC motor pins")
DCMotorLeftPin = pyb.Pin (pyb.Pin.cpu.C11, mode = pyb.Pin.OUT_PP,

 pull = pyb.Pin.PULL_DOWN)
DCMotorLeftPin.high()

234

DCMotorRightPin = pyb.Pin (pyb.Pin.cpu.B7, mode = pyb.Pin.OUT_PP,
 pull = pyb.Pin.PULL_DOWN)

DCMotorRightPin.high()

Creating the Go button function call. Go() should give 0 or 1 depending on
the pin input. Basically, equating Go_Pin.value() to Go() so I do less
typing.
print(" Creating go pin")
Go_Pin = pyb.Pin(pyb.Pin.cpu.C4, mode = pyb.Pin.IN, pull = pyb.Pin.PULL_UP)
Go = Go_Pin.value

'''Three Position Swtich Pin'''
print(" Creating 3 pos switch pin")
ThreeSwitch_Pin = pyb.Pin(pyb.Pin.cpu.C3, mode = pyb.Pin.ANALOG)
adc = pyb.ADC(ThreeSwitch_Pin)
ThreeSwitch = adc.read

Check Files
Output = FileCheck()

Check Output of function FileCheck() for an error in the shape of a string
if type(Output)==str:

 # If there was an error, handle it
print("error with files, error handled by special exception error error"+
" handling section of FileCheck()")

 # If there was an error and the user hit the go twice, do a soft reset,
 # restarting the program from the beginning.

print("SOFT RESET!!!!")
 import sys
 sys.exit()

If there was no error, create all items
print("Creating class objects")

'''Stepper Driver pin and object creations'''
import l6470nucleo # Import file
SCK= pyb.Pin(pyb.Pin.cpu.B5) # stby_rst_pin
ncs1= pyb.Pin(pyb.Pin.cpu.A10) # cs_pin for board 1
ncs2= pyb.Pin(pyb.Pin.cpu.A4) # cs_pin for board 2
Board1 = l6470nucleo.Dual6470(1,ncs1,SCK) # Controls the Gantry (2) and

 # Beam Actuator (1)
Board2 = l6470nucleo.Dual6470(1,ncs2,SCK) # Controls Left (1) and Right

 # (2) rail actuators
 # Beam Actuator (1)

paramatarize()
Board1.HardHiZ(1)
Board1.GetStatus(1,verbose = 0)
Board1.HardHiZ(2)
Board1.GetStatus(2,verbose = 0)
Board2.HardHiZ(1)
Board2.GetStatus(1,verbose = 0)
Board2.HardHiZ(2)
Board2.GetStatus(2,verbose = 0)

print(" creating interrupt for emergency stop")

235

The same as the Go pin, but greating a short function call for the emergency
stop button. This pin is defined last as to prevent memory issues found
importing task_share.
Stop_Pin = pyb.Pin(pyb.Pin.cpu.C5, mode = pyb.Pin.IN, pull = pyb.Pin.PULL_DOWN)

'''External Interrupt Pin'''
import micropython
micropython.alloc_emergency_exception_buf(100)
extint = pyb.ExtInt(Stop_Pin, pyb.ExtInt.IRQ_FALLING, pyb.Pin.PULL_DOWN,

 callback)

import task_share
Variable Buffer Creation
ErrInit = task_share.Share ('i', thread_protect = False,

 name = "Initilization Error Flag")
ErrSleep = task_share.Share ('i', thread_protect = False,

 name = "Sleep Error Flag")
ErrCalibration = task_share.Share ('i', thread_protect = False,

 name = "Sleep Error Flag")
ErrLeveling = task_share.Share ('i', thread_protect = False,

 name = "X-Beam Leveling Error Flag")
ErrAssembly = task_share.Share ('i', thread_protect = False,

 name = "X-Beam Error Flag")
ErrBoltCsv = task_share.Share ('i', thread_protect = False,

 name = "BoltPattern.csv Error Flag")
ErrCalCsv = task_share.Share ('i', thread_protect = False,

 name = "Calibration.csv Error Flag")
ErrGantry = task_share.Share ('i', thread_protect = False,

 name = "Gantry Error Flag")
ErrProbe = task_share.Share ('i', thread_protect = False,

 name = "Probe Error Flag")
ErrRailActL = task_share.Share ('i', thread_protect = False,

 name = "Left Rail Actuator Error Flag")
ErrRailActR = task_share.Share ('i', thread_protect = False,

 name = "Right Rail Actuator Error Flag")
ErrBeamAct = task_share.Share ('i', thread_protect = False,

 name = "X-Beam Actuator Error Flag")
ErrSong = task_share.Share ('i', thread_protect = False,

 name = "Incorrect Piano Board Input Flag")
ErrFileCheck = task_share.Share ('i', thread_protect = False,

 name = "File Check Error Flag")

This buffer contains the value of the X-Beam Length indicated by the
combination of switches on the piano switch board.
XBeam = task_share.Share ('i', thread_protect = False,

 name = "X-Beam Length")
current = utime.ticks_ms()
print('importing setup.py took '+str((current - start)/1000)+' seconds')

236

-*- coding: utf-8 -*-
#
@file task_share.py
This file contains classes which allow tasks to share data without the risk
of data corruption by interrupts.
#
@copyright This program is copyright (c) JR Ridgely and released under the
GNU Public License, version 3.0.

import array
import gc
import pyb
import micropython

This is a system-wide list of all the queues and shared variables. It is
used to create diagnostic printouts.
share_list = []

class Share:
 """ This class implements a shared data item which can be protected
 against data corruption by pre-emptive multithreading. Multithreading
 which can corrupt shared data includes the use of ordinary interrupts as
 well as the use of a Real-Time Operating System (RTOS). """

 ## A counter used to give serial numbers to shares for diagnostic use.
 ser_num = 0

 def __init__ (self, type_code, thread_protect = True, name = None):
 """ Allocate memory in which the shared data will be buffered. The
 data type code is given as for the Python 'array' type, which
 can be any of

* b (signed char), B (unsigned char)
* h (signed short), H (unsigned short)
* i (signed int), I (unsigned int)
* l (signed long), L (unsigned long)
* q (signed long long), Q (unsigned long long)
* f (float), or d (double-precision float)

 @param type_code The type of data items which the share can hold
 @param thread_protect True if mutual exclusion protection is used
 @param name A short name for the share, default @c ShareN where @c N

 is a serial number for the share """

 self._buffer = array.array (type_code, [0])
 self._thread_protect = thread_protect

 self._name = str (name) if name != None \
 else 'Share' + str (Share.ser_num)

 # Add this share to the global share and queue list
 share_list.append (self)

 @micropython.native
 def put (self, data, in_ISR = False):

 """ Write an item of data into the share. Any old data is overwritten.
 This code disables interrupts during the writing so as to prevent

237

Appendix P10: task_share.py

 data corrupting by an interrupt service routine which might access
 the same data.
 @param data The data to be put into this share
 @param in_ISR Set this to True if calling from within an ISR """

 # Disable interrupts before writing the data
 if self._thread_protect and not in_ISR:

 irq_state = pyb.disable_irq ()

 self._buffer[0] = data

 # Re-enable interrupts
 if self._thread_protect and not in_ISR:

 pyb.enable_irq (irq_state)

 @micropython.native
 def get (self, in_ISR = False):

 """ Read an item of data from the share. Interrupts are disabled as
 the data is read so as to prevent data corruption by changes in
 the data as it is being read.
 @param in_ISR Set this to True if calling from within an ISR """

 # Disable interrupts before reading the data
 if self._thread_protect and not in_ISR:

 irq_state = pyb.disable_irq ()

 to_return = self._buffer[0]

 # Re-enable interrupts
 if self._thread_protect and not in_ISR:

 pyb.enable_irq (irq_state)

 return (to_return)

 def __repr__ (self):
 """ This method puts diagnostic information about the share into a
 string. """

 return ('{:<12s} Share'.format (self._name))

238

239

Appendix Q: User Manual

X-Beam Alignment System

User Manual

Cal Poly SLO Senior Project 2017

Written By: Joseph Falcao, Whittaker Hamill, and Robert Tam
Project Advisor: Ian Davison

240

Table of Contents

1. User Interface Panel Buttons 242

1.1. Three Position Rotary Switch 242

1.2. Green Button or Go 243

1.3. Red Button or Emergency Stop 243

1.4. Piano Switchboard 244

2. Nucleo Board Program Files 244

2.1. CalibrationXXX.csv 244

2.2. BoltPatternXXX.csv 245

2.3. ErrorReport.txt 245

2.4. main.py 245

2.5. setup.py 245

2.6. BeamActuator.py 245

2.7. Gantry.py 245

2.8. Import.py 246

2.9. encoder.py 246

2.10. Probe.py 246

2.11. RailAct.py 246

2.11. l6470nucleo.py 246

2.12. task_share.py 246

2.13. boot.py 246

2.14. pybcdc.inf 246

3. XBAS Operation 247

3.1. Calibration 247

3.2. Preparing the X-Beam for Assembly 247

3.3. Loading 247

3.5. Assembly 248

4. Error Handling 248

4.1. Handling an Error 248

4.2. LED Patterns, Errors, and Solutions 248

4.2.1. Missing Files 249

4.2.2. Gantry 250

241

4.2.3. Probe 250

4.2.4. Beam Actuator 250

4.2.5. Invalid Switchboard Input 251

4.2.6. Rail Actuator 251

5. Adding X-Beam 251

5.1. Creating the BoltPatternXXX.csv file 251

5.2. Creating the CalibrationXXX.csv file 252

5.3. Adding the ID code to Import.py 253

5.4. Optional csv file Debugging 253

5.5. Optional Documenting 253

6. Machine Service 255

242

1. User Interface Panel Buttons
This section addresses the User Interface Panel’s buttons of the XBAS.

1.1. Three Position Rotary Switch

The three position switch serves the purpose of letting the user select one of three modes for the

XBAS to be in. The three states are:

1. Calibration Mode: The XBAS enters a mode designed to calibrate the variance of height of

the rails the gantry runs along out of the measurements used to level the X-Beam in the

Assembly mode. In order to run the Calibration mode, see Calibration under XBAS

Operation.

2. Sleep Mode: In this mode, the system resets by zeroing all the motors and actuators

before going to sleep; waiting for the user to turn it to either the Calibration or Assembly

mode. When the user does select either Calibration or Assembly, the system zeroes itself

again.

3. Assembly Mode: The XBAS will proceed to assemble the X-Beam which consists of three

steps:

a. Leveling the X-Beam

b. Straightening the rails

c. Torqueing down bolts

243

Figure 1. User Interface Panel Buttons from which the user will control the operations of the XBAS.

The XBAS should be positioned so that the user can easily access these buttons.

1.2. Green Button or Go

The green button starts the process selected by the 3-position switch. For example, if the user has

selected the Assembly mode, pressing Go will start the Assembly process. Be aware that if the

green LED is not lit, then the XBAS is not ready to perform the selected mode and will ignore

inputs from pushing the green button until it is done. This is indicated by the green LED turning on.

1.3. Red Button or Emergency Stop

This is the Emergency Stop Button. When pressed, it stops all activity of the XBAS. When released,

the machine will restart, losing all progress.

The Emergency Stop follows the standard convention for usage. Press down the button to engage.

Turn counterclockwise to disengage.

244

1.4. Piano Switchboard

The switchboard allows the selection of various options for the XBAS. For example, one

combinations of switches could indicate the user is calibrating the machine for a 500mm X-Beam

whereas another combination means the machine is being calibrated to a 600mm X-Beam.

Figure 2. Above to the right is an image of the piano switchboard located in the bottom right area

of the electronics. On the left is a drawing of the switch board showing which switch is which and

what position correlates to on or off.

The 5 switches can be toggled to various positions, different combinations correlating to a number

from 1 to 32. This is done by converting the switches into a binary number where each switch

represents a bit and adding 1. For example, if switches 2 and 4 are on and the rest are off, that

correlates to the binary number 10 (I.E. 01010 = 10). Add one to that, and the switchboard reads

as option 11. This information is used by the Import.Song(), Import.Calibration(), and

Import.BoltPattern() functions to identify the documents necessary for the XBAS to work with the

X-Beam selected. For further details of how to edit Import.Song() in order to edit the combinations

of the switchboard, refer to section 5.3. For further details of how the program works, please refer

to the program.

2. Nucleo Board Program Files
This section lists out the files on the pyboard and what they are for.

2.1. CalibrationXXX.csv

Contains distances locating points where the XBAS will calibrate as well as the resulting calibration

data from the system. There should be a CalibrationXXX.csv file for every X-Beam the system has

stored where XXX is a unique ID code for said X-Beam. This file is used in the Calibration and

leveling part of the Assembly mode. The system cannot run either modes if the CalibrationXXX.csv

 1 2 3 4 5

On

Off

1

0

245

file for the X-Beam selected by the piano switchboard is not present. See Section 1.4. Piano

Switchboard for how to select the X-Beam or see 5.2. for directions to creating the

CalibrationXXX.csv file.

2.2. BoltPatternXXX.csv

Contains bolting pattern of how far to travel to the next bolt and which side to bolt indicated by L,

R, or B for left, right, and both respectively. This file is used in the Assembly mode to press down

the rails using the actuators and bolting down the screws. There is a BoltPatternXXX.csv file for

every X-Beam the system has stored where XXX is a unique ID code for said X-Beam. The leveling

and assembly functions of the Assembly mode will not be able to finish if the file for the X-Beam

being assembled is not present. Details about creating the BoltPatternXXX.csv file can be found in

Section 5.1.

2.3. ErrorReport.txt

This text file contains a report detailing the last error to occur. It should also include possible

solutions to the error that occurred. Note, this file will update; however if the user is connected to

the pyboard via micro-usb, the file may appear to not update. This is fixed by ejecting the pyboard,

disconnecting, and reconnecting the pyboard. If this file is not present, it will be created by the

program if an error does occur.

2.4. main.py

This file contains the main program as well as a number of functions used for error

handling, homing, and the functions for the Calibration, Sleep, Leveling, and Assembly

modes.

2.5. setup.py

This file contains the pin and object definitions that the system uses as well as a number of

functions such as FileCheck() which are imported and used in a lot of the other program

files.

2.6. BeamActuator.py

This file contains the functions used to run and operate the Beam Actuator. It contains

three functions as well as code that import objects needed for said functions from the

setup.py.

2.7. Gantry.py

This file contains the functions used to run and operate the Gantry. It contains three

functions as well as code that import objects needed for said functions from the setup.py.

246

2.8. Import.py

This file contains the functions used to import the BoltPattern and Calibration csv files and

to read the piano switch board to determine the X-Beam being edited.

2.9. encoder.py

This file contains a class called QuadEncoder which is used to manage quadrature

encoders. This is used to read measurements from the Heidenhain probe.

2.10. Probe.py

This file contains the functions used to run and operate the Heidenhain probe. It contains

four functions as well as code that import objects needed for said functions from the

setup.py and uses the QuadEncoder class from encoder.py to keep track of position.

2.11. RailAct.py

This file contains the functions used to run and operate the rail actuators. It contains four

functions as well as code that import objects needed for said functions from the setup.py.

2.11. l6470nucleo.py

This file contains the functions used to run and operate the stepper drivers for all of the

stepper motors. It contains a class with many class members used in the stepper motor

operations.

2.12. task_share.py

This file contains a class called Share which is used to create buffer like variables which

can be used to share information between functions while protecting said information from

corruption from interrupts.

2.13. boot.py

This script file is a python file used by pyboards for initialization. This file is critical for the system’s

operation.

2.14. pybcdc.inf

This system initialization file is used when connecting to the terminal for controlling the pyboard.

It is not necessary to the function of the board; however, the user may not be able to access the

pyboard.

247

3. XBAS Operation
Below are the steps and detailed descriptions for operating the XBAS. Please refer to the User

Interface Panel for details of the individual buttons, switches, and indicators.

3.1. Calibration

In order to calibrate the XBAS, the user will require 1 gage block. After obtaining said block, the

first step for the user is to set the XBAS to the calibration mode by setting the three position rotary

switch to Calibrate.

After the user has set the machine to calibrate, it will do some initialization. This is indicated by

the Yellow LED. Wait for the Yellow LED to turn off and the green LED to turn on. Once the green

LED is on, press the Go button. It may take a moment, but the gantry will run to the first

calibration point. Again, wait for the green LED. Once you have the green LED, hit go. The probe

will lower and take a measurement. After completing this measurement, the gantry will move to

the next position. Again, wait for the green LED before hitting go. After the user hits go, the probe

will take the second and final reading and the machine will home the system. The light will turn

green indicating it is ready to calibrate again if you hit go. Otherwise, turn the 3-position switch

back to sleep and hit go.

If you wish to view the calibration data, please view section 4.3.4 for details.

3.2. Preparing the X-Beam for Assembly

The X-Beam and rails must be cleaned and inspected for no significant scratches, dents, or

extreme deformation. The rails are cleaned with Lithium-based grease and the X-beam is cleaned

with Lithium-based grease as well.

3.3. Loading

The user loads the XBAS by taking the X-Beam prepared as in Section 3.2. and placing one end on

the line constraint. Then push the X-Beam slowly into the machine until it reaches the bolt atop

the hardstop. If necessary, help the X-Beam up onto the hardstop. DO NOT HIT the beam actuator,

the Metro Probe, or the rail actuators.

After the X-Beam has been placed, attach the rails to the X-Beam with the bolts in the holes, but

not torqued down.

248

3.5. Assembly

After the X-Beam has been loaded and the rails loosely attached, select the Assembly mode option

on the 3-position switch if you have not already done so and wait for the green LED to turn on if it

hasn’t already. After the user has the green LED, they can press the green button to start the

assembly. The XBAS will assemble the machine and will turn the green LED light back on, signalling

the XBAS has completed its assembly of the X-Beam.

4. Error Handling
When an error occurs, the XBAS will buzz at 1 second intervals and display an LED pattern specific

to the error. This section talks about how to handle errors, what each LED pattern means, and give

possible solutions to fixing those errors.

4.1. Handling an Error

When an error occurs, hit the go button to turn off the sound. Take your time to figure out what

the error was and address it. When you are ready, hit go again and the machine will run.

4.2. LED Patterns, Errors, and Solutions

Below in table 1 is a list of the possible errors that can occur as well as LED patterns that are

associated to that error. Possible solutions are proposed in the subsections of this section below

the table.

Table 1. LED Error Patterns

Error Green LED Yellow LED Red LED Relevant Section

Missing File On On On 4.2.1.

No Bolt Pattern File Blinking Blinking Blinking 4.2.1.

Gantry Actuator Error On On Off 4.2.2.

Rail Actuator Error Blinking Blinking Off 4.2.6.

Beam Actuator Error On Off On 4.2.4.

Probe Error Off On On 4.2.3.

249

4.2.1. Missing Files

This error occurs if the FileCheck() function detects that a system critical file is missing. The

program will write what files are missing to the ErrorReport.txt file.

In order to access this file, the user must connect to the pyboard via the microusb cord.

Note, if the user is already connected when the ErrorReport.txt file is generated, the user

may have to unplug the cord reconnect. If the user has to do this, please eject the pyboard

from the computer as one would eject a USB drive. Once the user has connected to the

pyboard, the ErrorReport.txt file can be accessed like how one would access a USB drive.

After seeing the ErrorReport.txt file, reupload the missing files from a backup drive.

The files that should be on the pyboard are:

1. BeamActuator.py

2. boot.py

3. encoder.py

4. Gantry.py

5. Import.py

6. l6470nucleo.py

7. main.py

8. Probe.py

9. RailAct.py

10. setup.py

11. task_share.py

Note, if the issue persists, there are two possible issues not mentioned above. First, it is

possible that the FileCheck() function is checking for files that it should not be checking

for. There are two fixes for this, both are listed below.

One, replace all files on the pyboard with back up files.

Two, access main.py using a python script editor and find the function FileCheck(). There is

a variable called FileList which is a list of strings of all the files that the system checks for.

Make sure that all the files it is looking for is on the pyboard.

The second issue is that the missing file may be the Calibration or BoltPatern csv file for

250

the X-Beam selected by the piano switchboard. See section 5 for creating these two files.

4.2.2. Gantry

This error occurs if the gantry motor has been stalled. Clear the machine of obstructions

and run the machine again.

If the problem persists, then check the actuator, leadscrew, and shaft coupling for the

gantry. Make sure they all function, are not broken, and are properly installed.

If all of the above systems are fine, check the back emf levels for the gantry’s actuator, if

this is set too low, then the actuator may stall out at a much smaller load than it is capable

at handling.

4.2.3. Probe

This error occurs if the probe detects is measurements are invalid. This can be caused by

one of three things. First, this can be caused by an obstruction which can be solved by

ensuring that the probe has a clear path down to the point of measurement and resuming

the program.

The second possible problem is similar to the first which is that the probe has attempted

to move past its maximum allowed position. This error should only occur if the system is

not loaded correctly in which case the error is solved by loading the machine. If the probe

is obviously triggering this error well before it should, check the Probe() function in the

code and locate the variables ReadingLwrLimit and ReadingUpprLimit. Check that these

values are correct.

The third problem has the same solution as the second issue. If the probe is getting

readings, but not accepting them, then it's possible that the range of acceptable values in

the program is not wide enough and may have to be changed.

4.2.4. Beam Actuator

If this error occurs, then the beam actuator stalled out. Possible issues is that the beam

actuator has been loaded past its maximum rating and cannot lift the X-Beam. Try to run

the system once more, making sure no objects or extra weight is being exerted on the

251

actuator. If the problem persists, then it is likely that there is an issue with the actuator

itself. If the actuator is fine, check the back emf levels for the beam actuator, if this is set

too low, then the actuator may stall out at a much smaller load than it is capable at

handling.

4.2.5. Invalid Switchboard Input

This error occurs when the piano switchboard has an invalid switch combination. First,

check the combination. If the combination is correct, check the file Import.py. In the

Song() function, there is a section of code of if and else if statements. Check that the

switch combination that you have selected has a corresponding variable Length value.

Note that these values must be integers.

4.2.6. Rail Actuator

This error occurs if either of the rail actuators stall out outside of a range of permissible

values. Possible errors include an obstruction or software limits being incorrect. The

former is solved by ensuring the rail actuators have a clear path to the rails they are

pressing down on and that said rails are present. The ladder is solved by checking and

editing the range of acceptable values defined by the variables floor and ceiling.

5. Adding X-Beam
This section contains step by step directions for creating CalibrationXXX.csv and

BoltPatternXXX.csv files, adding those files’ ID code (XXX) to the Import.Song() function, and

suggested method for debugging the two csv files, and directions to editing and updating the

flowcharts if the user so chooses to.

5.1. Creating the BoltPatternXXX.csv file

1. Open Excel

2. Open the Engineering drawing for the X-Beam you are writing file this for

3. In Column B, write out the distances of the bolts you want bolted on the first pass for the

RIGHT SIDE

a. i.e. write out the distance from the near edge of the X-Beam to the bolt to be

torqued in the order you want. For example, torque down every other bolt

including the 4th to last bolt. Then add the third to last and the last bolt.

4. In Column A, write R next to all the values you just wrote out

5. On the next row in column B after all the stuff you wrote, repeat step 3 for the LEFT SIDE

252

6. In Column A, write L next to all the values you just wrote out

7. Highlight all the data you wrote

8. In the toolbar, select Data

a. At the top 4 tabs over from Home

9. Select Sort, and Sort by column B from smallest to largest.

10. Now in column C and D, repeat steps 3 to 6 (with column C instead of A and D instead of

B) except now you are recording the positions of all the bolts that haven’t been called out

in steps 3 to 6

11. Sort these data points (Sort by column D) from largest to smallest

12. Copy and paste these below the data in column A and B, then delete the source data in C

and D

13. Insert two lines above the data (right click on row number to add rows)

14. Copy all data in A and B, then right click on cell A1 and say paste special, Transpose.

15. Delete the source data (ie everything that you didn’t paste)

16. Save File as BoltPatternXXX.csv where XXX is the identifying number of this X-Beam.

Recommend using the X-Beam Length. XXX must be the same as CalibrationXXX.csv for

this X-Beam

Figure 3. Image of top view of X-Beam with labels of which side is right and left with regards to the

linear encoder.

5.2. Creating the CalibrationXXX.csv file

Write out the data from cells in A1 to A2 as identified below.

A1) The distance to the near side of the X-Beam. Indicated by variable NearSide.

253

A2) The distance to the far side of the X-Beam. Indicated by variable FarSide.

Delete all other data. Note, A3-A5 are used by the program, so if you’re editing the calibration csv

file, don’t change these or you will have to run the calibration mode.

Save File as CalibrationXXX.csv where XXX is the identifying number of this X-Beam. Recommend

using the X-Beam Length. XXX must be the same as BoltPatternXXX.csv for this X-Beam.

5.3. Adding the ID code to Import.py

1. Open the program Import.py, preferably using a python editor such as spyder3.

2. Scroll down to all of the “elif Number == …” statements in the function Import.

3. Choose a Number and replace the ErrSong.put(1) with Length = XXX where XXX is a

number.

o Recommended that XXX is the length of the X-Beam

o If there are no numbers left, you can add numbers up to a total of 32 options.

4. When done, save and close the program.

5.4. Optional csv file Debugging

If you want to check or debug either of the csv files, connect a computer to the pyboard using the

micor-usb cable and a software like putty. Run the Import.BoltPattern() or Import.Calibration()

functions through the command window. If there is an error, they should print an error indicating

the error, which row, which spot, and what is in the spot that the function identified as an

incorrect input.

5.5. Optional Documenting

It is recommended that you change the visio program flow chart/state diagram to reflect your

changes as it is easier to read than the program for some. Requires Microsoft Visio 2016 or later

versions.

1. Open the state diagram with Visio and navigate to the Import.Song() page using the tabs

at the bottom of the window.

a. If you don’t see the tab, there should be an AllΔ tab. Click on that and a drop up

menu should appear with all the pages in the document should appear.

2. On the right side, there are many boxes indicating ErrSong.put(1). Change the one you

changed in the program by checking the diamond blocks for the Number associated to

that ID.

254

255

6. Machine Service

Table 2. Summary of Maintenance Schedule for Parts

Part Manufacturer How Often Replace/Calibrate

Rails and Bearings IKO 6 months

Rail Actuator Extensions Misumi USA 6 months

Torque Limiters Fix it Sticks 6 months

Metro M-60 Probe Heidenhain 6 months

Gantry Actuator Leadscrew Misumi USA 6 months

Gantry Actuator Nut Misumi USA 6 months

Gantry Actuator Support Misumi USA 12 months

Hardstop Made in House 12 months

LEDs Digi-Key Undetermined

Position Switch Digi-Key Undetermined

Green Button Digi-Key Undetermined

Red Button Digi-Key Undetermined

Soft Point Constraint (Set Screw) Misumi USA 6 months

256

Appendix R: Reference Documents

