Danalog: Digital Musical

Synthesizer

Spring 2017

Evan Lew
Bryan Bellin
Jordan Wong

Vikrant Marathe

Table of Contents

. Introduction Pg.7

II. Product Design Engineering Requirements Pg. 8

IV. System Design - Functional Decomposition (Level 1) Pg. 11
V. Technology Choices and Design Approach Alternatives Considered Pg. 13
VI. Project Design Description Pg. 17
VII. Physical Construction and Integration Pg. 35
VIII. Integrated System Tests and Results Pg. 39
IX. Conclusions Pg. 48
A. Analysis of Senior Project Design Pg. 51
B. Parts List and Costs Pg. 56
C. Project Schedule - Time Estimates & Actuals Pg. 58
D. PC Board Layout (if applicable) Pg. 60
E. Program Listings (for software/firmware) Pg. 74

List of Tables and Figures

Tables
Table 6.1: PCB layout points of interest Pg. 26
Table 8.1: Design versus Product Performance Pg. 48
Figures
Figure 2.1: Level 0 Blackbox Diagram Pg. 9
Figure 4.1: Level 1 block diagram of system Pg. 12
Figure 5.1: Allocation of rotary switches, encoders, potentiometers Pg. 16
Figure 6.1: MIDI specification circuit reference Pg. 17
Figure 6.2: MIDI circuit schematic (left) and layout (right) Pg. 18
Figure 6.3: Typical diode connected keyboard matrix circuit topology Pg. 18
Figure 6.4: Spreadsheet of k25m pinout Pg. 19
Figure 6.5: Keyboard multiplexer circuit Pg. 19
Figure 6.6: Encoder pulse relationships Pg. 21
Figure 6.7: Encoder circuit Pg. 21
Figure 6.8: Potentiometer circuit Pg. 22
Figure 6.9: Pin assignment spreadsheet for the Arduino mega Pg. 23
Figure 6.10: Top level schematic showing circuit sub-blocks Pg. 24
Figure 6.11: PCB layout without traces or copper fill Pg. 25
Figure 6.12: Front panel design Pg. 28
Figure 6.13: Chassis design Pg. 28
Figure 6.14: 3D model with KiCad PCB included for dimensions checking Pg. 29
Figure 6.15; Prusa i3v 3D printer Pg. 30
Figure 6.16: General software architecture Pg. 32
Figure 7.1: Overview of internal device construction and organization Pg. 35

Figure 7.2a: Diode connected keyboard multiplexer layout Pg. 36

Figure 7.2b: Rotary switches and buttons multiplexer layout Pg. 36

Figure 7.3: Both LCD displays connected to the main PCB via wires Pg. 37

Figure 7.4: 3D model of the chassis Pg. 38

Figure 7.5: Chassis with internal hardware Pg. 38

Figure 8.1: MIDI receiver circuit Pg. 39

Figure 8.2: Breadboard realization of the figure 8.1 Pg. 40

Figure 8.3: MIDI pattern inside of Logic Pro X Pg. 40

Figure 8.4: MIDI signal interpreted by the Saleae Logic analysis software Pg. 41

Figure 8.5: Keyboard multiplexer circuit Pg. 42

Figure 8.6: SPI level shifter test setup Pg. 43

Figure 8.7: SPI level shifter circuit schematic Pg. 44

Figure 8.8: TXB0106 level shifter propagating signals from one voltage domain to | Pg. 44
the other

Figure 8.9. FM synthesis minimum latency test Pg. 45

Figure 8.10. Signal to Noise Ratio Test Pg. 46

Acknowledgements

Without the help of Cathy Wicks at Tl who generously donated 4 ezDSP ¢5535 development

boards to our team we would not have been able to make as much progress as we did.

Without the help of Dr. Wayne Pilkington, our advisor, our project would have never made it off

the ground.

Acknowledgements

Without the help of Cathy Wicks at Tl who generously donated 4 ezDSP c5535 development

boards to our team we would not have been able to make as much progress as we did.

Without the help of Dr. Wayne Pilkington, our advisor, our project would have never made it off

the ground.

Abstract

The Danalog is a 25 key portable digital music synthesizer that uses multiple synthesis methods
and effects to generate sounds. Sound varieties included three synthesis methods including FM,
subtractive, and sample-based, with up to eight adjustable parameters, at least four effects,
including reverb, chorus, and flange, with five adjustable parameters, and at least two note
polyphony, and a five band equalizer. The user would be able to adjust these effects using

digital encoders and potentiometers and view the settings on two LCD screens.

The final project was unable to meet the original design requirements. The FM synthesis
method was primarily working in the end product. The synthesizer was built to produce three
note polyphony. The LCD screen displayed the information about the synthesis method as the

user plays.

|. Introduction

The purpose of this project was to create a portable, inexpensive digital music synthesizer for
amateur musicians. The intended customer base consists of young, amateur musicians who

don’t have a big budget for a more expensive music synthesizer.

The market requirements for this product are as follows:
- The Danalog Synthesizer will be inexpensive at less than $200
- The design will be sleek and lightweight to promote portability
- There will be up to eight adjustable synthesis parameters
- There will be up to five adjustable effects parameters

- Five band equalizer

Our intended customer is an amateur musician seeking an inexpensive digital synthesizer to

create a wide array of user-defined sounds.

Several other companies have their own digital synthesizers equipped with numerous features.
The Danalog’s main competitors would be the Yamaha Reface, Korg Minilogue, Roland
Boutique, and Arturia MicroBrute. The lowest price of these is the Arturia MicroBrute at $299 -
which the Danalog has beat by $100. The Danalog digital synthesizer is also smaller than the

other competitor’s options.

ll. Product Design Engineering Requirements

Functional and Feature Requirements

The Danalog Synthesizer will produce notes over a 2 octave range via Frequency
Modulation Synthesis, with two note polyphony.

The chassis will be made from lightweight plastic that is easy to carry and hold.

All components, peripherals, and circuit boards are industry standard and well
supported.

The encoders, potentiometers, and switches will be strategically placed in a manner that
follows the logical path of the signal from generation, to equalizing, to modulating.

The processing will be split among two IC’s: The ATmega2560 for peripheral
information, and the TMS320C5535 for Digital Signal Processing.

Performance Specifications

Low latency (<3ms delay) production of notes
Instant visual feedback (<3ms) on pressed note
Internal rechargeable battery of 5 hour life

Able to run on 5V 500mA USB power

Low noise audio outputs. 90dBc S/N with +4dBu max output

Level 0 Blackbox Diagram

User Input (Keys, r/,— \

) Balanced Line
Potentiometers, — Output
Encoders, etc. P
i LCD Vi |
5V Power Supply —— Danalog Musm - - Fgedmlascl::a
Synthesizer
MIDI Input ——— —» Digital Audio Output

- /

Figure 2.1: Level 0 Blackbox Diagram

User Input

All of the user inputs are translated into 8-bit signals, handled by the ATMega2560
microcontroller. This includes MIDI protocol, potentiometer positions, encoder rotation direction,
switch and button positions (via mux), for a total of 30 bytes. All of them are traced to an

Arduino Mega development board on a PCB where the ATMega chip resides.
5V Power Supply

The synthesizer is powered via 5V 500mA USB power or a 5 volt battery. There is a level shifter

as well, because the Arduino Mega board runs on 5V while the TMS320C5535 runs on 3.3V.
MIDI Input

An optional external MIDI input is available too, which will override the bytes sent by the in-built

keyboard.
User Interface

The user can control the type of synthesis (FM, Subtractive, Sample), and shift octaves on the
keys using the rotary switches. With the encoders, the user can control the ADSR envelope of
the audio wave, select the digital effects that will be utilized, and control their parameters. For

example, for the reverb effect, the user may be able to control the delay time (10-200 samples)

between each reverberation as well as the attenuation constant (0.1-0.99). The potentiometers

are used to control the audio equalizer, by setting the gains (-12dB - +12dB) at specific
frequencies to attenuate and boost certain frequency ranges. There are also potentiometers
used to modulate a user-defined parameter, bend the master pitch, and control the master

volume.

The two LCD screens provide visual feedback for the user. The left one lets the user know the
type of synthesis and the ADSR envelope settings, and the gains of the equalizer. The right
screen displays the type of audio effect in use along with its respective parameters and their

settings.

[\VV. System Design - Functional Decomposition (Level 1)

The system can be broken down as shown in figure 4.1. The operation of the system can be
generalized as:
1. The user interacts with the device
a. Presses a key on keyboard
b. Sends a MIDI event
c. Changes a parameter on the front panel
2. The ATmega reads in information from the user
The C5535 requests an update on the status of the system
4. The ATmega responds with the latest information on key presses, parameter changes
and MIDI information
5. The C5535 generates a waveform based on the state of the system

The sound is enjoyed by the listener

Front Panel User Input

Encoders (19x) Potentiometers (8x) Switches + Buttons LCDs (2x)
38 8 a4
*intermediate mux
Back Panel
MIDI Input K25m Keyboard Line Qutput Headphone Qutput
- F
*intermediate mux
1MHz SPI
Arduino Mega (ATMega 2650) > C5535 ezDSP
L.
»~
A
:
- B8x8 LED matrix
Digital - Black g
Analog - Blue =
=
i)
-
Figure 4.1: Level 1 block diagram of system

https://www.draw.io/#G0B-VkPeyp09IOdUhncFl0bFFJSHc

V. Technology Choices and Design Approach Alternatives

Considered

DSP Selection

To build our music synthesizer we needed to select a proper digital signal processor. We ruled
out a standard microcontroller early on because of the intensive math we would need to be

doing. To figure out the computational requirements of our synthesizer we modeled our code in
MATLAB and counted the number to mathematical operations need to generate one sample of

audio. We made a couple of assumptions to simplify our estimation:
1. The sampling rate of our system would be 48kHz
2. The DSP would be able to complete a mathematical operation in one cycle

Using the following rough estimation we could guess the amount of processing speed needed to
generate sound:
operations

ClockFrequency = F, X
sample

Using my FM synthesis algorithm as a base case we estimated we would need a min
clock rate of 5MHz based on 48kHz sampling rate and 100 mathematical operations per
sample. In retrospect this was not a good assumption because the processor has to do other

operations to manage system resources.

Since Texas Instruments (TI) is the largest DSP vendor | browsed their selection to see if
they had any devices for our application. My criteria were:
1. The device must be able to fit in the form factor of our chassis
2. The device should be part of a development kit, for easy programming and debugging
3. The device must fit into our budget
4

. The device must satisfy our computational requirements

Luckily Tl has a category of evaluation modules called “ezDSP” that satisfy most of our project

requirements. We settled on the C5535 ezDSP because of it's price to performance ratio.

https://www.codecogs.com/eqnedit.php?latex=Clock%20Frequency%20%3D%20F_s%20%5Ctimes%20%5Cfrac%7Boperations%7D%7Bsample%7D

Arduino Mega (ATMega 2560)

Since the DSP was going to be solely focused on generating audio, it was decided that a
separate microcontroller be responsible for interfacing with the user. The jobs the
microcontroller would be responsible for are:

1. Checking encoders to see if a tick has occurred
Checking the values of the potentiometers
Updating the 2 LCD displays to show the current state of the system to the user
Reading the K25m external keyboard
Reading MIDI
Sending the data to the DSP via SPI

o o~ w DN

Since Jordan and | had positive experiences with the AVR toolset and the ATMega chip series
we decided that we would use an AVR to perform the aforementioned set of tasks. We had the
option to design the AVR right into our PCB which would have given us a smaller footprint and
access to all the pins on the device however we opted to use an Arduino Mega which has an
ATMega2560 onboard. The advantage of using a development board over an in house system
was that we wouldn’t have to design a power system, a programmer or a clock setup. Since no
one on the team had much experience designing any of those system we opted for the
ready-to-go package. Another added benefit was that if we had trouble writing our code in C we
could always fall back on the safety net of the Arduino ecosystem which has tons of examples

and a huge user ecosystem.
Circuit Integration

We had a couple of options for integrating all the circuit into a final product. We could have used
a breadboard to connect all the components together however this method likely be very messy
and hard to debug nor would it be space efficient nor would it be a realistic packaging method
for an off the shelf product. Furthermore we would always run the risk of having something
coming loose. The only advantage to using a breadboard would be last minute changes would
be possible. Instead of using a breadboard we also considered using a proto-board which would
be similar to the breadboard but less configurable but slightly more robust (physically and in
terms of electrical signal performance). Using a breadboard would allow us to have a custom

solution that would perform well once everything was connected. The disadvantage of using

protoboard would be the final product would be messy. A printed circuit board (PCB) would be a
clean solution however it would require detailed planning because manufacturing is typically
done in bulk and is expensive. Once the board is fabricated rework is difficult so care must be

taken to make sure the board works on delivery.
Displays

We decided that we wanted to provide visual feedback to the user about the status of the
system using character displays. Most LCD character displays require a 8-bit or 4-bit parallel
interface to communicate with the LCD. Since we anticipated being 1O limited on the
ATMega2560 we decided that it would be a worthwhile investment to use serial displays instead
of parallel displays. Sparkfun (sparkfun.com) sells a serial display which is simply adds an
intermediate processor to convert the incoming serial data to parallel data to send to the
displays. An added benefit of using serial displays is we can use the onboard UART peripheral
on the ATMega2560 to send the data to the display which frees up the processor to do other

tasks.
User interface controls

When planning out the user interface of the synthesizer we decided that knobs were the best
way for users to input commands and parameters into the device because most of the controls
on a typical synthesizer are variable in nature and humans are accustomed to using knobs to
adjust variable parameters. Some of the controls control discrete parameters such as synthesis
type and octave shift so we decided to use rotary switches which give a noticeable click to
signify a change in parameters. Others are more continuous in nature for example envelope
attack, reverb decay, and modulation ratio. For those knobs we have the choice of using rotary
encoders (which have a digital clicky feeling) and potentiometers (which have a smooth
continuous feeling). Figure 5.1 shows how we partitioned the potentiometer controls and

encoder controls.

!s..u

Encoder
Potentiometer

O ©
®

o

Figure 5.1: Allocation of rotary switches, encoders, potentiometers

Figure 5.1 shows how we allotted knob device type on the synthesizer front panel. Knobs a and
c represent synthesis method and octave shift controls both of which are discrete in nature (only
3 synthesis methods proposed on the device so we elected to use rotary switches with
predefined detents. Sections b and d are synthesis preset and synthesis parameter controls
respectively. Synthesis preset is a discrete control in that only one preset can be selected at a
time, which lends itself well to encoders. Synthesis parameters could be controlled by a
potentiometer or encoder but since we were limited in analog channels we opts to use

encoders. Same logic applies to the effects controls (section f).
Keyboard

We wanted the synth to be as interactive as possible. Some hardware synthesizer are only able
to receive MIDI information to create sounds and while this was an option for our synthesizer we
wanted the user to have a keyboard at the ready to make the experience as intimate as
possible. Our team didn’t have the design or manufacturing resources to build our own
keyboard so we decided to ride on the coattails of others and use a Roland k25m keyboard that

was designed to interface with Roland’s boutique line of hardware synthesizers.

16

V1. Project Design Description
Hardware

MIDI

We wanted our synthesizer to be a flexible hardware synth which
meant not only being able to receive input from an onboard keyboard
but also from a MIDI source. The first step to being able to process
MIDI input is to have a MIDI port on the device. This portis a 5 pin
DIN connector. MIDI is a serial protocol that operates with 5V

signaling. Figure 6.1 shows the standard MIDI reference design.

+5v Rd
280 ohmis
_ OPTO-S0LATOR
S5 Zr— 4 LT
T Rb 5; Yo " UART
© 0 220 0hm ¥ * 5
.:. _:l Wiy Dl i -
=2 NG 4 G”%
OPTIOMAL
220 Dhm /™
MIE! N AT
220 Ohm | !
M|
FROM
UART

M0l QT

Copyright 1985 MIDI Manufacturers Association

Figure 6.1: MIDI specification circuit reference

17

For simplicities sake we elected to only have a MIDI input. Using the reference design as a

guide we designed the circuit and layout shown figure 6.2

GND

din5—midi
NC Lo ¢
. > o 0.1uF &~
SHIELD |—£—o B6N137 of
Ne [2322 TR L INC vee -8 - e
VREF -4 22 4 2 | ANODE VE L
DATA |2 3 {catHope vo |- Amidi—ir
U502 ot 2

NC GND
Us04

Figure 6.2: MIDI circuit schematic (left) and layout (right)
The circuit shown in figure 6.2 connects to the UART peripheral on the ATMega2560.
Diode connected keyboard

The Roland k25m has a 16 pin connection. When we first received the keyboard there was no
documentation about the communication protocol. Based on our knowledge of how keyboards

are traditionally connected we assumed that the k25m was connected in the typical diode

connected fashion. Figure 6.3 shows how the topology of a standard diode connected keyboard

matrix.

'ﬁ' o o o o o o o
! b b
b1 D3 83 b4 B D5 25
k a k a k a a a
o o o

526 527 528 528

! : 525
! D33 }

Figure 6.3: Typical diode connected keyboard matrix circuit topology

539 535 536 537

r_j FRgICR g
r_j el gE gl
a2 g gt

Knowing that we had the 16 pin connector most likely contained the pinout for the the rows and
the columns we began to test which key corresponded to what row-column intersection. We

created the spreadsheet in figure 6.4 to track all the combinations.

Connector Pin 1 2 3 4 5 3 7 8

NO N1 N2 N3 N4 N5 N6 N7

16 RO C0 50 Co49 G#0 34 G#0 33 E118 E117 c22 c21

15 R1 C#0 48 C#0 47 A0 32 A0 31 F1186 F115

14 R2 DO 46 DO 45 A#O 30 A#0 29 F#1 14 F#113

13 R3 D#0 44 D#0 43 BO 28 BO 27 G111 G112

12 R4 EC 42 E0 41 C126 C125 G#1 10 G#19

11 RS FO 40 FC 38 Ci#1 24 C#123 A18 AT

10 R6 F#0 38 F#0 37 D122 D121 A#186 A#15

9 R7 GO 36 GO 35 D#1 20 D#119 B14 B13
second first second first second first second first

Figure 6.4: Spreadsheet of k25m pinout

Since the ATMega has limited IO we decided to use multiplexers to driver the rows and columns

of the keyboard matrix. Figure 6.5 is the circuit | designed to drive and read the keyboard matrix.

GND
|
€602
+5Y
matcaneq O-LuF o .
el lcr-"‘lH\.‘PIC Ji& | k25m-—connector
o 5 Ak WCC c 1 o =oli6 _ r0
= 5 AR A2 cl I ey o T
b e [e TG T sl o EV G
= A7 -AD ex 8 ex cer 3 i xd
6 A5 A3 ch 5l Ry 12 rb
[80 cS - 6 leg o peldl a5
2 VEE 51 o T A o Rl B W R
GND 52 e7 8 |9 r7 9 r7
U601 UEo3
GND
GND
c601

cp74HcLosy Ot
v Y

key—row—out<t

[L0k]
R601

GND

Figure 6.5a: Schematic of keyboard multiplexer circuit

19

1
GND

Figure 6.5b: Layout of keyboard multiplexer circuit
Encoders

Quadrature encoders operator on the principle of leading and lagging pulse phase. Each
quadrature encoder has to output signal lines. In our circuit topology each line is pulled high by
the internal pullup on the ATMega. When the encoder is turned it momentarily pulls the line low,
this corresponds to on “tick” or detent in the encoder. To determine the direction of rotation of
the encoder the microprocessor has to determine which pulse arrived first. Knowing the order in
which the pulses occurred corresponds to the direction of rotation. Figure 6.6 illustrates how

encoder pulse order relates to the direction of encoder motion.

20

First rising edge

e

Direction —————————3=

HIGH

Channal A ﬂ
(laacte) HIGH
Channel B ﬂ
HIGH
Channal A LOW

HIGH
Channel B — \

(leads)

First rising edge

- [iraction

Figure 6.6: Encoder pulse relationships

The circuit | designed to capture the encoder pulse is shown in figure 6.7. The circuit was

designed to be as simple as possible to minimize the amount of miniature components for hand

soldering. The capacitor size was selected to minimize the contact bounce (when the

mechanical components inside the encoder physically bounce creating multiple closely spaced

phantom edges).

Dsynth—param-enc—6-a

GND
C213
rotary_guad_enc _?ZZuF
A ;
=d¢—21¢
S5 L g
157 FARE™ o
0.22uF

GND

Dsynth—param—enc—6-b

Figure 6.7: Encoder circuit

21

Since there are 19 encoders on the board, this subcircuit is repeated 19 times connected to

different 10 ports on the ATMega.
Potentiometer

The 5-band equalizer uses potentiometers to give the user a smooth continuous feeling as they
turn the knob. The potentiometers also have a detent in the center to tactilely alert the user that
they are at 0dB. The circuit for monitoring the position of the potentiometer (figure 6.8) is very

simple.

n

v
RV301
“<Jeq_high

+

i

10k F—>

N3
=

Figure 6.8: Potentiometer circuit
In figure 6.8 the signal labeled eq_high goes directly to the ADC peripheral on the ATMega.
Serial displays

The serial displays were simple to configure, just one signal going from the ATMega UART

peripheral to the display via a cable connector.
Schematic Design

The first step to integrating all of the subcircuits into a single design was figuring out how all the
pins would connect to ATMega, since the ATMega would be functioning as the central
controller. To assign pins | created a spreadsheet that contained all the pins exposed by the
Arduino Mega breakout board. | began to assign pins based on what devices we had decided
we wanted on the device. Since | had a general idea what pin requirements those devices

would need | was able to allocate pins for them. Using a spreadsheet to keep track of pin

22

assignments allowed me to make sure that | was over assigning pins and to keep an eye out for

how much free IO we would have. Figure 6.9 shows a section of the Arudino Mega pin

assignment spreadsheet.

A

1

2 1
3 2
4 3
5 4
& 5
7 6
8 7
9 8
10 9
1 10
12 11
13 12
14 13
15 14
18 15
17 16
18 17
18 18
20 19
21 20
22 21
23 22
24 23
25 24
26 25
27 26

Pin Number |
L]

B
Pin Name
PG5 (OCOB)
PEO { RXDO/PCINTS)
PE1 (TXDO)
PE2 { XCKO/AIND)
PE3 (OC3A/AINA)
PE4 (OC3B/INT4)
PES (OC3C/INTS)
PEG (T3INTE)
PET { CLKO/CP3/INTT)
vCC
GND
PHO (RXD2)
PH1 (TXD2)
PH2 (XCK2)
PH3 (OC4A)
PH4 (OC4B)
PHS { OC4C)
PH6 (OC2B)
PBO (SS/PCINTO)
PB1 (SCK/PCINT1)
PB2Z { MOSI/PCINTZ)
PB3 { MISO/PCINT3)
PB4 (OC2APCINT4)
PB5 (OC1A/PCINTS)
PB6 (OC1B/PCINTS)
PB7 { OCOA/OC1C/PCINTT)

Lo}
Mapped Pin Name
Digital pin 4 (PWM)
Digital pin 0 (RX0)
Digital pin 1 (TX0)

Digital pin 5 (PWM)
Digital pin 2 (PWM)
Digital pin 3 (PWM)

vCC

GND
Digital pin 17 (RX2)
Digital pin 16 (TX2)

Digital pin 6 (PWM)
Digital pin 7 (PWM)
Digital pin 8 (PWM)
Digital pin 9 (PWM)
Digital pin 53 (SS)
Digital pin 52 (SCK)
Digital pin 51 (MOSI)
Digital pin 50 (MISO)
Digital pin 10 (PWM)
Digital pin 11 (PWM)
Digital pin 12 (PWM)
Digital pin 13 (PWM)

Synth PCB Net
Synth Mux 0

Synth Preset Encoder A
Synth Preset Encoder B
Synth Mux 1

MIDI input

Keyboard Column Mux Select 0
Keyboard Column Mux Select 1
Keyboard Column Mux Select 2
Keyboard Row demux Select 0

Keyboard Row demux Select 1
Keyboard Row demux Select 2
Keyboard Row demux Output
Synth Mux 2

E E
Net name Notes
sm0
No passive loads attached

sprea
spreb
sm1

midi-in

kesO
kes1
kcs2
krs0
spiss
spiclk
spimosi
spimiso
krs1
krs2
krout
sm2

Figure 6.9: Pin assignment spreadsheet for the Arduino mega

To integrate each of the subcircuits listed above into a single design | used a circuit capture and

layout tool called KiCad. KiCad allows the circuit designer to build schematics using hierarchical

blocks which allow for clean separation of subcircuits and block level elements. Figure 6.10

shows the top level schematic for the design. Note that there are no actual electrical

components or packages exposed at this level of the schematic, these are all tucked away

inside the sub-blocks.

23

Figure 6.10: Top level schematic showing circuit sub-blocks

Filling out the sub-blocks of the schematics was as simple as connecting up the circuits shown
in the subcircuits above, making sure that all the components corresponded to a front panel
device as designed, and then final making sure all the nets were connected correctly. A large
portion of the time | spent working on designing the schematic was dedicated to learning the
KiCad EDA toolset, as | had never used any large schematic capture and board layout package

before.
PCB Layout

Once the schematic was finalized (or at least mostly solidified). | began to layout the printed
circuit board. The first thing to do was figure out what the board outline would be since we knew
the form factor that chassis and board would have to fit inside of | created a rough outline of the
size of the PCB. It was important to have a rough outline because it allowed me to begin laying

out circuit components and get a price estimate for manufacturing a small batch of boards.

24

Since the board outline was not finalized | avoided placing components to close to the edge of
the board.

The team had already designed how the front panel should look, so | created 2D design in
Autodesk Fusion 360 (see Mechanical Design for more info) of the front panel. Autodesk Fusion
360 is able to export a DXF which conveniently KiCad can import into a PCB layout onto a user
defined layer. Thus, | exported the 2D drawing of the front panel interface and imported it into

KiCad so | could place the components in the correct spot. Figure 6.11 shows the board outline

(yellow), the components and the DXF guide (white).

Figure 6.11: PCB layout without traces or copper fill

Next was to start adding traces to connect components (mainly back to the Arduino Mega).
Since KiCad doesn’t have a built-in auto router | had to manually route all the traces. | became
stuck when trying to route all the signal lines for the 19 encoders, so unfortunately | had to go
back to the pin assignment spreadsheet and rearrange some of the encoders to make them
easier to route. This is generally not great practice to let layout constraints drive schematic
design however in this case it was the easiest way for me to resolve this issue. | focused only
on connected signal lines and then leaving grounding for a ground fill. Since this board is only 2
layers and | need both layer for routing | won'’t be able to take advantage of power ground
planes so I'll be left with using a ground fill-in to connect nets to ground. Using a fill-in (or a
ground plane) is advantageous for many reasons namely: it proves a low impedance path to

ground, it provides some shielding and noise reduction and it saves the designer the time of

25

have manually route each ground connection by hand. Table 6 shows close-ups of interesting
sections of the final PCB layout. Note that some of the images in Table 6 are shown without the

ground fill-in just for ease of viewing the traces

Table 6.1: PCB layout points of interest

High density traces required me to the thin
the trace size to 15 mil (0.015 inches). Since
these traces aren’t carrying power or high

frequency signals this was ok.

Even though the ground fill-in was able to
connect most ground net on the board
together, there was a couple of sections that
became “islands” where they were completely
walled off from the rest of the ground fill-in.
The solution was to use “via stitching” to
connect the island ground section to the

ground fill-in on the layer opposite side.

This is one of the two audio buffers designed
by Bryan Bellin and laid out by me. Note the
use of thick traces to have as clean signals

as possible.

26

MIDI optocoupler circuit layout

K25m keyboard receiver circuit. 2
multiplexers were used to minimize the 10

needed from the ATMega. Note that there

a problem made in the schematic capture.

however only pin 6 is connected (via the

ratsnest line).

was a layout mistake here that stemmed from

Pins 6, 7, 8 should all be connected to ground

Chassis Design

The chassis was designed in Autodesk Fusion 360. The first step as noted earlier was to take

the team designed front panel and turn it into a dimensioned sketch, figure 6.12.

27

2 300.00
710
Sl 3000 |
20 87.30 I o
= & QFS S 2 =
= = £ | Cg=—
= A =
P 400 i = 1l [0 | w [
P -% H e
—E 0 ® |
= @43 525
I

128.00

—o
o
[
U}

TeO-o--& -

5
L)
o
o
18 .00
X}
o
o =
=] =1
, |21 |

(145.00) 25.00 80.00 40.00

10.00

Figure 6.12: Front panel design

This front panel was the driving component for the rest of the design. Once the front panel was
designed | was able to design the rest of the chassis around. The modules that are designed to
find inside of the keyboard have the dimensions 308mm x 130mm x 51mm. Using those

dimensions as a guideline | designed the bottom piece of the chassis, figure 6.13.

Figure 6.13: Chassis design

28

The 3D model generated by KiCad was imported into Autodesk Fusion 360 to check that the
model’s dimensions we correct most importantly to verify that clearances and cutouts were

correctly spaced. The model with the 3D model of the PCB is shown in figure 6.14.

Figure 6.14: 3D model with KiCad PCB included for dimensions checking

Once the board and chassis were checked to make sure they fit together, the chassis was ready
to print. 3D printing was done on my home printer, the MakerFarm 8” Prusa i3v, figure 6.15.

Black PLA (Polylactic Acid) was used to print the chassis.

29

Figure 6.15: Prusa i3v 3D printer

Software

ATMega 2560

The ATMega is a low power RISC processor. It has limited hardware capabilities and therefore
all the code written for it is essentially custom for that application since no Real Time Operating

Systems (RTOS) exist for low performance chips.

To review, the task that the ATMega needs to perform are:

Checking encoders to see if a tick has occurred

Checking the values of the potentiometers

Updating the 2 LCD displays to show the current state of the system to the user
Reading the K25m external keyboard

Reading MIDI

Sending the data to the DSP via SPI

o gk~ w DN =

30

Timing for these tasks determines how often they need to be run. The time between encoder
pulses is on the order 10ms, that means we need to check each encoder at least every 10ms or
service the routine that does every 10ms. The potentiometers are absolute references that do
not change very quickly therefore they can checked every 100ms. Updating the LCD’s needs to
reflect the state of the system without too much noticeable latency, conservatively this should be
around 10ms. The keyboard and MIDI should be read as fast as possible to keep the audio
latency as low as possible. Musicians are sensitive to latency upwards of 10ms. Everything in
the chain between the key press and the output sound will add latency so it is important to keep
everything as fast as possible. The data send over SPI contains all the information that the
ATMega has gathered, including note information. This should be as fast as possible therefore it
will be interrupt driven to reduce latency. All other operations (other than SPI) will run in the

main loop.
C5535

The DSP will have two main jobs: most importantly generating audio and secondly getting the
latest system information from the ATMega over SPI. Fortunately the C5535 comes with a chip
support library (CSL) developed by Texas Instruments and a real time operating system (RTOS)
called DSP/BIOS 5.42. The combination of the CSL and the RTOS allows us to write code at a
higher level of abstraction without having to worry about extremely low level chip details. The

high level software architecture is shown in figure 6.16.

31

Main Loop

TASK: Generate
1. Checking encoders to see if a tick = % 256 word buffer
has occurred AUd 10
2. Checking the values of the
potentiometers , 1. Determine which audio half
3. Updating the 2 LCD displays to of the audio buffer 1o write +
show the current state of the 1o
system to the user 5 p MIDI inf i DMA,
4. Reading the K25m external 3 G::.-!r?:rate A::ﬁc;rma on
keyboard 4. Write samples 1o buffer
5. Reading MIDI ; ¥ L 2
6. Sending the data to the DSP via ¢
5Pl
125
T Global Variables
Global Variables Latest information about: *
+ Encoders DAC
Latest information about: = Potentiometers
« MIDI packets
+ Encoders + Switches
= Potentiometers
« MIDI packets
« Switches T
SPI ISR »| Data

Send request over SPI to
retrieval the latest data for
encoders, potentiometers,

Receive message from DSP and
send out requested data

Figure 6.16: General software architecture

DSP/BIOS takes care of balancing the time spent on servicing the Generate Audio task versus
servicing the Get Data. It is imperative that we do not drop samples so the Generate Audio task

has a higher priority than the Get Audio task.

To make audio generation efficient many steps were taken to minimize the processing power

need to generate a sound.

The example code included with the TI C5535 ezDSP starter kit used the simplest method to
generate audio: a lookup table of sinusoid points and a main loop that polled the 12S peripheral
to see if it was ready to accept a new sample. This method contains few lines of code but it

doesn’t leave the CPU free to do anything else.

32

https://www.draw.io/#G0B-VkPeyp09IOY20yb25aM19hYzQ
https://www.draw.io/#G0B-VkPeyp09IOY20yb25aM19hYzQ

The logical fix to this issue is to use the built-in DMA peripheral. The DMA, short for direct
memory access controller, is designed to solve problems like this. It works by offloading the task
of transferring data from the CPU to the DMA controller. The DMA has access to the same
addressing space as the CPU so in our case we can configure the DMA to look at a specific
block of memory and transfer that block of memory to the 12S. The DMA is also configured to
generate an interrupt once it is half way through the block of memory, this way the CPU can
refill the other half of the block of memory with new samples so the DMA always has new data

to send to the 12S. In this implementation we were generating audio inside the ISR.

Generating large amount of samples or doing any large amount of processing inside a hardware
interrupt (HWI1) is generally not a good idea because when the system is inside a HWI the
scheduler cannot interrupt to service another task. The solution is semaphores. A semaphore
allows different parts a system to communicate about the status of a resource by posting to and
pending on a semaphore. This allows us to generate all the audio samples inside a task (rather
than a HWI) which is nicer from a programming paradigm perspective. This also gave us a

performance boost.

The compiler also has functionality to further optimize code by performing numerous
optimization techniques that are beyond the scope of this project. However we can take
advantage of them! Compiling with the -03 flag allows the compiler to make performance
optimizations at the expense of code size. Since our program wasn’t pushing the memory
footprint of the device this was a worthwhile tradeoff. Furthermore, the T/ C5000 DSP
Programming Guide give advice on how to further optimize C code for speed. For our

application we can take advantage of a compiler directive called MUST_ITERATE
#pragma MUST _ITERATE(12C_BUFFER_SIZE, 12C_BUFFER_SIZE)

This allows the compiler to perform more aggressive optimizations knowing that the loop will run
exactly I2C_BUFFER_SIZE times. Under the hood the compiler maybe unwrapping the loop to

get rid of unnecessary branch statements or using efficient hardware loop routines.

We could achieve another performance boost if we were able to use exclusively 16bit integer
math, however due to overflow from arithmetic operations 32bit integer math is necessary for

our algorithms.

33

Other simple things can make substantial performance improvements as well. Declaring
variables outside the scope that they are going to be cuts of the compiler from performing some

optimizations. Using arithmetic shifts can also be faster than regular division in some cases.
FM Synthesis

The sound generation technique that | implemented is known as frequency modulation
synthesis. In its most basic form frequency modulation consists of two oscillators: a carrier and a
modulator. The carrier frequency is modulated by the modulating wave, resulting in a waveform
that changes frequency very rapidly. Depending the modulation ratio (the ratio of the modulator
frequency to the carrier frequency) and the modulation depth (how much the modulator affects
the carrier wave) the resulting waveform can contain many rich harmonics. Since we are using a
fixed point processor with limited computational bandwidth we pregenerated all the sinusoid

math so during runtime the sine calculation was reduced to a simple lookup.

To make the sounds generated by the FM synthesis engine sound dynamic and organic | added
ADSR envelopes to both oscillators. An ADSR (Attack Decay Sustain Release) envelope gives
the user the ability control to amplitude of the oscillator output with respect to time . This is
especially powerful with FM synthesis because by changing the amplitude of the modulating
waveform you can change the harmonic content of the final waveform with respect to time.

Many cool effects can be created by experimenting the the envelopes.

34

VII. Physical Construction and Integration

Physically the Danalog synthesizer consists of

1. Main PCB: The PCB connects all the devices together and functions mechanically to
hold all the components neatly in place inside the enclosure.

2. Arduino Mega: The Arudino Mega functions to interface with all the user input controls. It
communicates all the fundamental information to the C5535 via a SPI communication
bus

3. Tl ezDSP C5535: This device is responsible for interpreting the information sent by the
Arduino and generating sound.

4. 3D printed chassis: Encloses all components

The PCB functions as the harness for all the front panel interface controls, which consist of
rotary quadrature encoders, rotary potentiometers, linear potentiometers, and rotary switches.
The organization of the user interface was decided by the team during the initial planning phase.

All interconnections on the PCB were made to accommodate the initial user interface design.

Figure 7.1: Overview of internal device construction and organization

Each device is routed to pins on the Arduino Mega board. Since the amount of IO needed was

slightly more than the Arduino Mega provided we used multiplexers between the diode

35

connected matrix keyboard (figure 7.2a) and between the rotary switches and front panel
buttons (figure 7.2b)

& | .$

i

e
R
L]
-
Ty
tw
on
e

Figure 7.2a: Diode connected keyboard multiplexer layout

Figure 7.2b: Rotary switches and buttons multiplexer layout

The device also has two displays for outputting information about the state of the synthesis
engine and the state of the effects processor. The displays were purchased from sparkfun as
separate units not soldered to the the main circuit board. These displays were used because of
their simple serial interface which allowed us to use a hardware UART to communicate with the

display

36

(@ |1 LLLTI T

£
3
)

o~ oooo°0°°°n O
o >

3327 o

Figure 7.3: Both LCD displays connected to the main PCB via wires

(9L,
o

Since the both the Arduino Mega and Tl ezDSP both can be driven by 5 volts USB power there
was no need to design any sort of power system. Additionally since the devices are low power,
as USB devices usually are, there is no need for any form of heat sinking inside of the

enclosure.

The chassis was 3D printed on Evan Lew’s home 3D printer. Due to sizing constraints the
chassis was printed in two halves and then glued together to form the final chassis. Figure 7.4
shows the 3D model of the chassis and figure 7.5 shows the real life chassis supported by the

keyboard.

37

Figure 7.4: 3D model of the chassis

-y
o

s
_1:3‘, ol | e ol
Ciy o e
:) |

0

kiaa

Figure 7.5: Chassis with internal hardware

38

Vllla. Individual Subsystem Tests and Results
MIDI

This test was conducted to verify the operation of the MIDI receiving circuitry for the danalog
music synthesizer. Figure 1.1 shows the circuit under test. Note that the external connection

labeled “midi-in” is connected to UART?Z2 (labeled pin 17) on the Arudino Mega development

board. Goals for this test are as follows.
1. Verify the MIDI receiver circuit works as designed
2. Create proof of concept code to interface with the MIDI receiver

3. Obtain metrics for software timing constraints

+5V
din5—midi
NC L
SHIELD —2— 6N137 ol
NC — T4 —1 'ne vce -2 Jx
VREF |2 ZA0 2] ANODE VE L
DATA [—2 " . 3 | cCATHODE voO |2 . Amidi—in
us02 % I'nc GND 3
U504
GND

Figure 8.1: MIDI receiver circuit

Note that “din5-midi” is simply the MIDI connector which only uses two pins. MIDI is isolated so
the information is transmitted through the optocoupler (6N137). The circuit was created in a

breadboard shown in figure 1.2. D501 was not included as it is a protection diode that is not

active during normal operation.

39

Figure 8.2: Breadboard realization of the figure 1.1

To simulate the circuit a midi interface was connected to a laptop with Logic Pro X. Logic was
configured to send a repeating sequence of sequential notes as shown in figure 1.3. An

M-AUDIO 1x1 midi interface was used to translate the data into midi format.

Figure 8.3: MIDI pattern inside of Logic Pro X

To verify that the midi sequence was being generated properly, a Saleae Logic 8 to view and
interpret the midi signal on the microcontroller side (not the isolated side). Figure 2.4 shows the

signal in the Saleae Logic software decoded. The signal was correct.

40

MoteOn Channel: 0 [0b 1001 0000] Key Channel: 0 [0b 0011 1110] Velocity Channel: 0 [0b 0101 0000]

Figure 8.4: MIDI signal interpreted by the Saleae Logic analysis software

To receive the midi messages on the Arudino Mega, UART2 was configured with the following

parameters:

e 31250 baud

e No Parity
e 8 bit word
e 1 stop bit

Once the UART peripheral detects new data an interrupt service routine is called putting the
new data into a circular buffer which is read by the main program loop. To view the midi data,
the main loop formats and sends a string out of UARTO which is connected to the USB over
serial chip so it can be view on a PC. Listed below is the main loop code and the midi reception

code.
Roland k25m Keyboard

To test the Roland k25m keyboard the circuit shown in figure 8.5 was prototyped in a
breadboard. Leads were connected from the k25m connector to the breadboard to simulate
plugging the keyboard into a physical connector and the Arduino Mega was used to interface
with the two multiplexers . Unfortunately no photos were taken of the test setup, but the big

picture was very similar to the other test setups.

41

k25m—connector

cl 1 0 RO 116 r0
cl 2 % Ri 15 ri
o] Ry |4 2
re
ty ' 4 R3 A3 13
ch 0 Ry 12 i
th 6 {5 pe 11 15
o T A o Rl B W R
sl 5 8 o P S
U602

A
£ g
g
.
=\
p
ol
(o
un
Lk
f=a
I o
=
=
%{‘

(- S ST
row—out< R e BT
T L g L13 r0
19 5 las ay 42 rD

b F soptl

Ll vee 512D

—8 onp sz 2

U603

Figure 8.5: Keyboard multiplexer circuit

The Arudino Mega was programmed to drive the column multiplexer in a step sequence rotating

through all possible output pins. For every column that was asserted high each row was

checked to see it a voltage was present, if a voltage did in fact exist that would indicate that the

key corresponding to that column-row location. To be able detect velocity (the force with which
the key was pressed) two switches slightly offset in depth are assigned to each key. This way
they get triggered at slightly different times. The less time between switch presses, the harder

the key was pressed.

The code must keep track of what state the note is in: off, on or contact (when the first switch
has been pressed but the second switch hasn’t been pressed yet). A simple struct keeps track
of what state the note is in, what the velocity of the note is (if it has been pressed). An
2-dimensional array holds all the structs for safe keeping, the array indices correspond to the

column-row position.

42

During testing there was some trouble with false triggered notes however after some debugging

| found that the power and ground connections on row multiplexer were not correctly attached.
Level Shifter

The level shifter is responsible for bridging the 5V main system with the 3.3V DSP domain. The
only communication between the two domain is the SPI bus which should be able to run in the
low MHz range. If the level shifter is capable of converting signals in the low MHz range than the
systems should be able to reliably communicate. Figure 8.6 shows the breadboard setup with

the TXB0106 6 channel bi-directional level shifter in a breakout board.

a
.

o
]

Figure 8.6: SPI level shifter test setup

The original TXB0106 on the breakout board was soldered poorly and likely was exposed to
excessive heat thus it did not perform at all. This was an important lesson for the actual PCB.
After soldering another device to a breakout board taking care to not put too much heat into the
device the same circuit was configured and ready to test. The circuit was setup in a similar

fashion to the way it was outlined in the schematic in figure 8.7.

43

U402

S¢——2{GND oE
- 10 fgg 46 L
L ies a5 £
1z gy Al |2
1% | 55 2 il
14 1 g2 8 ;
Do 15 fvcep veoa 2 Py
t
C402 16 {gq Al L c4d3

GND GND
éﬁ GND GND

Figure 8.7: SPI level shifter circuit schematic

2
: txb0106 :
0.1 uf : % 0.1 uf

Only channel 2 was tested (I assumed that they would all perform the same). The rest were all
tied to ground to avoid bus contention issues. To verify that the device was performing to
specifications a square wave was applied to the one of the voltage domains to simulate a clock
input or a data signal. Then we checked the corresponding pin on the opposite voltage domain
side. Figure 8.8 shows an oscilloscope capture showing the signal propagation from one voltage

domain to the other.

1 200w 2 0.0s 500.08/

Measurement Menu

Figure 8.8: TXB0106 level shifter propagating signals from one voltage domain to the other

The measurement on the right side of figure 8.8 verify that the device is functioning correctly at
1MHz.

44

VIllb. Integrated System Tests and Results

The FM synthesis works. The latency is tested by having the arduino send a pin high when a
key is pressed and measuring the delay between that transition and the start of the note being
played.

MSO-H 30128, MYE1260143 Tue dug 11 225313 2015

1800/ 2 200%/ J.5B0s 1.000%/ stop ' 1814

Agilent

SoUrce ; Units

1 ~P-

Figure 8.9. FM synthesis minimum latency test.

It should be noted that latency varied. We found the minimum latency to be 2.64 milliseconds

while maximum extended to 5.36 milliseconds. This meets our specifications as it is not noticed

45

by the human ear.

RSO 30124, MYS1 250143 Wed Aug 1200:30:20 2015
y 20.00%/ ; ! 125%

] . = LU U=

i Agilent -

10.0:1]
10.0:1

Figure 8.10. Signal to Noise Ratio Test.

The signal to noise ratio can be determined by having a singular tone play and performing an
FFT on the signal. As shown above a tone peak appears but along with unintended harmonics.
Using cursors the difference between the tone’s peak and the noise level is around 45 dBV.
This did not meet our original specification as we aimed to have 90 dBV. The output is
admittedly a little noisy to the human ear but this could be due to the probes. While connecting

the probes the noise became much more apparent with increased volume.

Table 8.1: Design versus Product Performance

Minimum Maximum
Signal to Noise Ratio 44 dBV 44 dBV
Latency 2.64 milliseconds 5.36 milliseconds

46

Summary: The FM synthesis has relatively met our predefined specifications. The output is a
bit noisier when probing but sounds fine without. Latency is low enough for the synthesis to be

considered in real time.

47

IX. Conclusions

Our final product wasn’t what we pictured it would be at the beginning or our senior project
journey. In retrospect, the original design was very ambitious given our time constraints and
collective design experience. However, we did end up with a functioning product that with

continued effort could reach our initial design specifications in many aspects.

Our design was successful in the following areas:
e Designed functioning PCB that was fabricated by a 3rd party vendor
e Designed and manufactured a chassis

e Created a FM synthesis engine that responds to user input on a musical keyboard

Our design fell short in the following areas:
e \We were not able to create a 5 band equalizer
e We were not able to create an effects section

e We did not completely finish the chassis of the device, namely the front panel and knobs

From a technical standpoint we had two main specifications achieve 90dB of signal to noise and

have a key-press latency of less than 3ms.

We failed to meet the 90dB SNR performance specification because we decided during the
design phase that we didn’t have the expertise to design a full or audiophile DAC so we resorted
to using the DAC on the C5535 ezDSP board which saved us engineering effort but caused us
to miss our audio output SNR specification. In the end our output SNR was around 40dB which
isn’t close to our original spec. The resulting audio was not noticeably noisy but certainly not

dead quiet. In retrospect the 90dB spec may have been overly aggressive.

The key-press specification was a much more reasonable spec (and arguable more important).

We were able to meet this specification with a key-press latency or around 2.5ms.

If we had to start this project over again there would a couple main items that would help us

achieve our design specifications.

e Design our own onboard DAC, this would allow us to get a performance boost and be
easier from an integration standpoint. Additionally it would be good design experience

for the team

48

e Start programming the DSP much earlier in the design phase. DSP programming
happened too late in our project cycle for us to be able to consider alternative software
architectures and programming paradigms. If we started DSP programming from the get
go we would have hit critical issues sooner and had more time to recover. Since the

team was relatively inexperienced in DSP programming this hit us hard.
Lessons learned

1. Double check pad sizes. | had based the pad sizing for the encoders based on the
datasheet drawing however the holes | had drilled in the PCB were not wide enough to

fit the through hole pins of the encoders. This is an annoying problem with an easy fix.

2. Be careful with connectors and clearances. The right angle connector for the ezDSP is
very poorly designed because it doesn’t allow the ezDSP board to sit against the carrier
board without wedging the connector. In our case, partially due to the fact that our
surface mount soldering abilities were limited, the connector just broke of the board
completely leaving us with an extremely messy rework situation. If we had know that the
connector specced for the device had this limitation we could have designed a

breadboard to work around the issue.

3. Make sure 3D models are accurate. The initial 3D print had some clearance issues that
were not caught in the initial inspection because the 3D models for the 4 inch jacks were

slightly undersized.
4. Don'’t underestimate software complexity. Self explanatory.

5. Get the team onboard early. Each team member was writing DSP code independently
linking against different libraries, building in different environments, and working in
different projects. When it came time to integrate code from different team members
code bases the process was messy and at times prevented us from making progress

entirely.

6. Pay attention to ERC. | made the mistake of glossing over the issues raised by the ERC
in the schematic capture tool. When the PCB came back | had forgotten to connect three

adjacent pins to ground. The mistake was although the wires crossed in the schematic

49

no junction was present resulting in no ratsnest in the layout tool. The fix was easy (a

simple solder bridge) but the potential for problems could have been large.

Verify all your assumptions. | mistakenly thought the SPI peripheral pinout on the was
flipped in slave mode. This is not true. We didn’t encounter this issue because we had to
do a heavy work-around for the connector but a the potential for disaster was there. A

simple check of the datasheet would have avoided this.

50

A. Analysis of Senior Project Design

Project Title: Danalog

Student’s Names: Evan Lew, Vikrant Marathe, Bryan Bellin, Jordan Wong

Advisor’s Name: Wayne Pilkington Advisor’s Initials: Date: 6/16/17
Summary of Functional Requirements:

The Danalog produces audio via FM synthesis with two note polyphony. It has a
controllable ADSR envelope and phase between the carrier and modulating wave. There is also
a digital equalizer to boost/attenuate certain frequency ranges, a master volume/pitch fader, and
a modulation wheel that can affect a user defined parameter with ease. Finally, up to two digital
effects (reverb, flange, chorus, etc) with adjustable parameters can be applied to the audio
signal. All settings are displayed between two LCD screens.

Primary Constraints:

- Given a fixed point DSP chip, we were restricted to fixed point computations, greatly
preventing accuracy in calculations which could have been achieved with a floating point
processor.

- Using TI's dsplib for optimized fixed point processing created a large detour that
unfortunately led to no results. The FFT function for our equalizer required a twiddle
factor table to multiply the signals with the factors, but we could not get the the table to
be read properly in our program.

Economic:

Several hundred man-hours were put into product design, subcircuit building/testing, subcircuit
integration, and programming the Danalog. A total of $792.70 was needed to make the project a
reality. Several components and peripherals were needed, and a PCB had to be built and
printed to connect the peripherals together. The chassis and keys were made from plastic, the
PCB was made from fiberglass and copper, and many of the components as well as the
development board were made of plastic, fiberglass, and various metals.

51

The vast majority of costs accrue in prototyping the product, researching and developing, and
ordering all the necessary components. With an optimum design established, the cost to build a
single Danalog will be significantly reduced, and we are confident we will be able to establish a
strong customer base that will buy the product, which will compensate for the costs and
eventually lead to a profit at the peak of its sales.

Originally, the project was estimated to cost $300. At the end, all the materials ended up costing
$469.19. The bill of materials is shown as follows:

Price Order

K25M Keyboard from
$106.67 Amazon

Sparkfun order (Buttons,

LCD Screens, MIDI

Connector, Jumper Adapter,
$98.29 Header

Digikey order (Pots,

Encoders, Rotary switches,

Multiplexers, Diodes, Audio
$119.26 Jacks, Amplifiers)

$23.98 2 Arduino Megas
$12.96 DSP connector
$96.00 PCB
$3.61 USB adapter
$8.42 USB cable

The prototype included the purchase of many extra components in case of part failure or
damage, therefore the cost would most likely be around $400, therefore selling at a price of
around $450 would easily create a large profit for our company.

The products would emerge as soon as the first mass shipment of Danalog is complete, which
would most likely occur about a year from the completion of the prototype. We expect a long

shelf life of about 10 years with no maintenance costs.

Our original estimated development time is as follows:

52

Winter Quarter 2017
Week Coowi w2 ws w4 ws we W7 ws | we Wi
Month T ' ' . FEB ' C OMAR

Day [| % | =22 | 8 | & | 1 | =20 27 | & | 13
ok I I I I I I I I I
Hardware Design
Hardware Simulation
Software Design
Design Review

Parts Research & Testing
Select Components . . . |
Research Cost-Effective Components . . .
Purchase Components

Microcontroller

Main Code |

Winter project timeline

Spring Quarter 2017

Week oW1l w2 ws | wd | ws W6 w7 wa wo w10 W11
Month . APR ' ' MAY JUNE

Day | & | 8 | w7 | 2 | 1 8 15 22 29 5 12

Microcontroller

Debug Code

Ensure Proper Operation

PCB Fabrication & Layout

Design & Layout

Assembly & Testing |

Full System Integration [| [

Ful Bredbord Tesng [N —

System Packaging
Reports & Presentations
Senior Project Report
User Manual
Demonstration
Senior Project Expo

Spring project timeline (estimated)

53

Our actual development time:

Spring Quarter

2017

Week w1t w2 W3 w4 W5 We w7 W8 W9 W10 W11
Month APR MAY JUNE

Day 3 10 17 24 1 8 15 22 29 5 12

Microcontroller

s coie IEENERER I

Ensure Proper

Operation

PCB Fabrication
& Layout

Design & Layout ---

Assembly &
Testing

Full System
Integration

Full Breadboard]
e
System Packaging IR

Reports &
Presentations

EEEEEE
Report
[

User Manual

June
Demonstration 16

Senior Project June
Expo 2

Once project ends, perhaps we will work to improve on the shortcomings of the prototype in
order to meet the expectations of the beginning of the project.

Environmental:

54

Aside from the raw metal ore and plastics being manufactured to produce this product, there is
no significant environmental impact from this product.

Manufacturability:

Since our PCB was printed by a third party company, it was important to verify the design is
correct before sending out an order for the print. Also, the chassis had to be created one half at
a time due to fact that we were using a group member’s 3D printer.

Sustainability:

There are not really any issues associated with maintaining the synthesizer. One upgrade that
could possibly help is using a floating point digital signal processor in order to use decimal
numbers in the C code for the DSP chip, making it easier to program accurate filters for signals.
Ethical:

None.

Health and Safety:

One potential concern with safety is the possibility of ear damage due to long exposure to audio
by our users, or from accidentally setting the volume too high.

Social and Political:

This product is intended to mainly impact the amateur music industry, providing music
enthusiasts an opportunity to toy with different sounds and experience the Danalog synthesizer.

Development:

One important technique used for this project is the ping-pong buffer. This was necessary for
real time signal generation. Essentially, while the ping buffer was being written to by the audio
generator, the pong buffer was being read by the DMA, and vice versa. This prevented any loss
of time in outputting the audio signals without losing samples.

55

B. Parts List and Costs

Yellow means that accurate price information for volume parts was unavailable

Unit cost (@

Package Quantity [Designation 1000) Total
ra49c 3 [1-4in_jack $2.05 6.15
C_1206_HandSoldering 4110.22uF $0.02| 0.74415
R_1206_HandSoldering 6 [10k $0.01 0.0366
R_1206_HandSoldering 11220 $0.01 0.0061
SPST_SW 3|SW_PUSH $0.86 2.58
SOIC-24W_7.5x15.4mm_Pitch1.27mm 1|(CD74HC4067 $0.33 0.3296
LCD 1{20x4-Icd $26.96 26.96
LCD 1{16x2_lcd $22.46 22.46
LED-MATRIX-CONNECTOR 1 [led-matrix-kit $8.96 8.96
TSSOP-16_4.4x5mm_Pitch0.65mm 1|txb0106 $0.72| 0.72306
MEC1-130-XX-XX-D-RAX-NP-SL 1|EZDSP-P2 $4.31 4.31
midi 1 |din5-midi $1.76 1.76
DIP-8_W9.53mm_SMD 1(6N137 $0.40| 0.39502
SOIC-16_3.9x9.9mm_Pitch1.27mm 2|CD74HC4051 $0.21| 0.42024
2X8-SHROUD-CON 1 |k25m-connector $2.98 2.98
D_SOD-323_HandSoldering 1{IN914 $0.03| 0.02952
BOURNS-PTA3043 1110k $0.74 0.74
C_1206_HandSoldering 710.1uF $0.02| 0.12705
C_1206_HandSoldering 81220uF $0.55| 4.38256
R_1206_HandSoldering 8150k $0.01 0.0488
R_1206_HandSoldering 2100k $0.01 0.0122
LOG-PANEL-POT 1|(POT_Dual $1.00 1
35RAMT2BHNTRX 1 [35rasmt2bhntrx $0.72 0.715
SOIC-8_3.9x4.9mm_Pitch1.27mm 2(LM833 $0.17 0.3467
Potentiometer_Bourns_PTV09A-4_Horizont

al 5(10k $0.46 2.28
C&K-RM1XX 1 |rotary_switch $1.47 1.4663

56

C&K-RM1XX 1 |rotary_switch5 $1.47 1.4663
Potentiometer_Bourns_PTV09A-2_Vertical 2110k $0.46 0.912
rotary_quad_en

TT-EN12-HN 19]c $0.43 8.208
exDSP c5535 1 $100.00 100
Arduino Mega 1 $12.00 12
PCB 1 $2.76 2.762
Chassis 1 $20.00 $20.00

Grand Total 235.3112

57

C. Project Schedule - Time Estimates & Actuals

Our original estimated development time is as follows:

Winter Quarter 2017
Week Cowt . w2 ws | w4 W5 we w7 w8 we Wi
Month AN ' ' . FEB ' MAR

Day [s | 1 | =28 | 8 | 8 | 13 | =0 27 | 8 | 13
i | | | | | | | | |

Hardware Design
Hardware Simulation
Software Design

Design Review

Parts Research & Testing
Select Components
Research Cost-Effective Components .
Purchase Components .

Microcontroller
Main Code |

DSP Syrthesizer _ _ _ T
Winter project timeline

Spring Quarter 2017

Week w1 waz wa Wi w5 we w7 we we w10 w11
Month . APR | | Y JUNE

Day [2 | . | w7 | =24 | 1 8 15 22 29 5 12

Microcontroller

Debug Code
Ensure Proper Operation

PCB Fabrication & Layout

Design & Layout
Assembly & Testing | | |
Full System Integration

Reports & Presentations

Senior Project Report

User Manual

Demonstration

SeniorProctExgo [N O R
Spring project timeline (estimated)

Our actual development time is on the next page

58

Actual Development Time
Spring Quarter 2017

Week w1 w2 w3 w4 W5 W6 Wz w8 W9 W10 @ W11
Month APR MAY JUNE
Day 3 10 17 24 1 8 15 22 29 5 12

Microcontroller

veugcoce NN N T N A

Ensure Proper
Operation

PCB Fabrication &

Layout

Design & Layout ---

Assembly & Testing ---
Full System

Integration

Full Breadboard]
e
System Packaging I .

Reports &
Presentations

Senior Project
Report

User Manual

June
Demonstration 16

Senior Project Expo

59

D. PC Board Layout

60

1 | 3 4 5
Sheet: synth—controls
synth—param—enc—0—ap—spe0a
synth—param—enc—0—bo—>sPe0b
synth—param—enc—1-ap—spela
synth—param—enc—1-bo—sPelb
synth—param-—enc—2—a0b—>SPe23
synth—param—enc—2—bo—SPe2b
synth—pavam—enc—B—aD—Spegg SHIELD101
synth—param—enc—3—bO—3P€ AREF
synth—param—enc—4—ab—SPe4a AREF -
synth—param—enc—4—b—SPe4b Gnp3 (SD3T——o—f) 13 sm2 V&
synth—param—enc—5-a0n—SPed3 13 12 trout
synth—param—enc—5-bo—SPeESD +3V3 RST 12 (re2
synth—pavam—enc—6—aD—5P963 sy 4‘_5_ RST 11 _;I.;I.Ekrs1) Sheet: ezdsp
synth—param—enc—6—bo—SPebD A 5v 3V3 10 _Lk::zo Sglii*>$w*$5
synth—param—enc—7—ab—SPe73) 5V 92— SPICK_1spi—clk
y p enc aly 8 kcs2 spimosi
synth—param—enc—7-bC—SPe7b 34 ? g:g% g:gi 8 sEimisoi>$pT7m°$T
synth—preset—aCr—SPres . S AL 7L kesl e
synth—preset—b—3Pr€ 66 kesO File: ezdsp.sch
eqgh____ ADO | ,ng 5|5 sprea
synth—mux—0Cf—SM9 eqhm___ADL |0 e emo
synthfmuxfi[}—smi eqm_____AD2 | ,.p5 3|3 sml
synthfmuxf2D—§m§ eqlrnl¢ AD3 52 spreb
synth—mux—3D— eql____ AD& | ,pu %0 —1 Sheet: keyboard
master—vol AD5 . o v
synth—mux—outC{—Smout fxm___AD6 | hor Aruino RO tzzg:gteyicotumisetectio
fxp____AD7 | ,p7 Tx3 14 fxdrx kcs2fokiyi&m?i;iitiﬁ
synth—display—rx—Sdrx Ry 45 smout y
spe7b__ ADB 16 krout__lqyey—row—out
File: synth—controls.sch — g | AD8 TX2 =R i y ou
' ’ spebb___ ADO | ,pg Rx2 |12 ¥ midi=in krsO__lyey—row—select—0
SPEEE& AD10 Txq 48 sdrx krﬂ—(]ke;—row—setect—i
Sheet: fx—controls §E§3b% AD11 RX1 ;g‘sm3 krs2__ key—row—select—2
;x%—seteci—g—gg—;ﬁzg spe2b AD13 :Bg 22? 51 % File: keyboard.sch
f><i:se ec :0: fxip0a spelb AD14 | pn1s 3
x1l—param aly spe0b AD15
fx1—param—0—bO—x1p0b AD15 Y A 3
fxifparamflfaD—ij'Pia 5V_5 w
fx1—param—1-bof—fx1pib GND4 | ¢y 52 fx1p1b Sheet: io—contrals
el —param—2—ap—x1p2a = GND5 pAQ 22— Tx1p
x1-pa a GND5 23 fx2pla master—vol
fx1—param—2-bD—x1p2b e piss 53 PAL I —2 il —Pp master—volume—fader
fx1—param—3—-aD—x1p3a s '?clk 52| Po0-(5%) o 2‘fx2p b midi—in__b migii
fxifparam—beD—ij-'ﬁb NOTE: these are spi?niso =1 PB1_(SCK) PA3 g: f§2gég Dmidi—in
backwards because .. > .——2—1 PB2_(MOSI) PAY —£2—n -
%2 —select—0—aD—fx2sa the atmega is the SLAVE spimosi____ 50| pg3 (v50) pas 27 fx1p2a File: To—controls.sch
fx2-select—0-bOr—X2sb | 28 fx2p0a
spela 49 PA6 p
fx2fparam707a[>—;§§ggz spela 48 ;:t? pa7 |29 fx1p2b
RS = et S ———
fu2— param—1-b—x2plb pee 46 _fpL3 pce 3L fx2p2a
fuo—param—7—a—x2p2a Spesa_"5 PLG pes |32 x1p0a
fu2— param—2— b x2p2b SPE63_““ PLS pey |33 x2p2b
fx2—param—3—aL—x2p3a spe7a_43 PLE pcs |34 fxisb
fuo— param—3— b x2p3b spefa____ 42 lpy pco |35 fx1p3a
fx2p3b___ 41 |peo pey 28 Pxdlse
eq_high<q—=ah fx2sa____ 40 | pc, pco (3L xlp
eq_high_mid G—=edhm fx2p3a____39 |,
eq_midG—=<4m fx2sb_ 38 |pp5
quow,mid(—gg:m
eq_low—
o ARDUINO_MEGA_SHIELD
fx—display—rx(—fxc‘rx
fx—mod D—IXM
fx—pitchD—T*P
File: fx—controls.sch Sheet: /
File: synth.sch
Title:
Size: Ak | Rev:
KiCad E.D.A. kicad 4.0.6 Id: 1/6
1 : 3 7 5 67

1 | 2 | 3 4 | 5 |
+5V
GND GND
C201 €209 =
N
rotary_quad_enc rotary_guad_enc I o
- ’ l— A MDsynth—pavam—enc—O—a - A 0.22uF synth—param-enc—-4-a -
O =
&4 Ry o5 Dsynth—param—enc—0-b &4 ey 515 Dsynth—param-enc—4-b SW_PUSH S
U201 U209 0.22uF
0.22uF 0.22uF rotary_switch e
oND o GND GND
GND
GND SN s o w5y
€222
C203 Cc211 SW202 I+ L5V
rotary_quad_enc rotary_guad_enc CD74HCL067 0.1uF o
R o AL [0220F 0 v o ram—enc—1-a . [AL LDOQZUF synth—param-enc—5-a synth—mux—outd L FIN/OUT vee 24 §
5:] 2 —C'_\—la_ﬁizTDsynthfpa(amfencfi—b 54 M B o 515 D synth—param—enc-5-b § \Z :g 53 Sw%:_ .
| =
U202 U206 P 1o L2t €220 SW_PUSH <
0.22uF 0.22uF 5 |5 111 |20
6 |3 112 |19 0.22uF
GND GND 712 113 |18
8 11y s (47 GND
GND GND 9 16 2
"o 10 115 15 z +5V
C205 C213 11 S0 _E b
t d rotary_guad_enc 12 ot 2 13
rotary_quad_enc . _ I GND S3
[— A 1 10.22F synth—param-enc—2-a - A 1 10.220F synth—param-enc-6-a U210
S 5l s g3 rotary_switchg
o B 206 synth—param—-enc—-2-b o B —-WDsynth—param—enc—é—b oND SW205
U203 U207 221 e
o
0.22uF 0.22uF - 5 SW_PUSH
3 O—w 0.22uF
GND GND 4
GND GND O 5 hs GND
€207 €215 SW20
rotary_quad_enc I rotary_guad_enc I D synth—mux-0
- 5 l— A 1 [0.22F synth—param-enc—3-a - 5 A 1 10.220F synth—param-enc—7-a th—zc[)synth—mux—i
2] 2] —ux—
3 Lo }-3 synth—param—enc—3-b 3 Lo} 3 51g D synth—param—enc—7-b :ﬁth—mti—B
U204 c208 U208 <
0.22uF 0.22uF
GND GND
GND 20x4—1cd
synthfdisplayfrx[)o—; RX [20xk LCD
c217 54—3 \c/;gg
rotary_guad_enc
1 [0.22uF \;
o c'_| A j-—wsynth—preset—a +V U211
5 4 =115 T31g D synth—preset-b
U209
0.22uF
GND
Sheet: /synth—controls/
File: synth—controls.sch
Title:
Size: Ak [Date: Rev:
KiCad E.D.A. kicad 4.0.6 Id: 2/6
1 I 2 I 3 4 5 I 62

(O

+5V

RV$01
eq_high
+5V
RV$02
eq_high_mid
eq_mid

+5V
rVBou
2 Jeq_low_mid
R 5
2Jeq_low

GND

GND

C301

rotary_
g . 8 €302
U301
0.22uf
GND
GND
€303
rotary_quad_enc 0.22uF
[
2 2
R G Ky -
U302 50

rotary_quad_enc

2 2
24

rotary_quad_enc

0.22uF

305

<«
=
a o

N

0.22uF

g

U303

0P

€306

.22uF

o

[l
z =z
o o

I

07

242
3

L
LS5

0.22ufF

rotary_quad_enc

U304

i

€308

22uF

o

[2)
=z =
o o

I(‘)[
W
I=3
o

4_2_

LA

.22uF

GND

LS5]

U305

C310

il

0.22uF

o
=z

D

quad_enc
(— A —1L(0‘2ZUF >fxl-select—0-a

fx1—select—0-b

fx1—param-0-a
fx1—param-0-b

fxl—param-1-a
fx1—param—-1-b

fxl—param-2-a
fx1—param—-2-b

fx1—param-3-a
fx1—param-3-b

GND

GND

rotary_

GND

C311

. 8 €312
U306
0.22uF
GND
GND
€313
rotary_quad_enc IO.ZZuF
5 A
<|— Cr Iy 3 i
U307~ LSt
0.22uF
GND
GND
€315
rotavy,auad,exc 1 0.220F
> N
1 g3
U308 €316
0.22uF
GND
GND
€317
rotavy,auad,exc 1+ J0.220F
2 N
. 5 . €318
U309
0.22uF
GND
GND
€319
rotary_quad_enc I0.22uF
2 LA
. 8 €320
U310
0.22uF

GND

quad_enc
(— A —3LL(O’22“F >fx2-select-0-a +5V

fx2—select-0-b RY}06
fx—mod
Ll
GND
+5V
RVED7
fx2—param—0-a fx—pitch
Lal
fx2—param—-0-b
GND
fx2—param—-1-a
fx2—param—-1-b
fx2—param—-2-a
fx2—param—-2-b 16x2_lcd
. 1
fx—display— rxD———=——=— RX
S¢—2 6o
3 Jvee
\L U311
+5V

fx2—param-3-a
fx2—param—-3-b

Sheet: /fx—controls/
File: fx—controls.sch

Title:

Size: Ak [Date: Rev:

KiCad E.D.A. kicad 4.0.6 Id: 3/6
1 2 | 3 | 4 I 5 63

GND
x\-‘
S5
U402 EZDSP-P2 U403
[a)
2¢—2(oew o8 S¢—L— e GND —5—[>5
. 10 7 3
spi—ssD B6 A6 ~ SPI_CS1 GPI013
spi—clkD> 11 15 A5 B =1 SPLCLK GPI012 _g_W
spi—mosiD> 12 1 gy Al 15. ™ ; SPLTX opio1s —-
spi—misoD> 13 1 g3 A3 N SPLRX GND |—20
~ 1o B2 A2 3 L eno GND [—12
o VCCB VCCA GND GND
* cuoiﬁ B1 = 4 %4—% GND GND ig pe
50106 L 12¢_5DA cpio16 (—18 e
0.1uF 0.1uF 19 1i2c.scL GPI017 A‘
GND GND N, "
GND Raa—] 1252-CLK GPio11 2
GND GND N2> 1252.RX GPI010
‘L 1252_DX Gplo5 |—28
chot e PR GPio4 30 %
+5VI I 23— oo GND %DS
0.1uF 1 led—matrix—kit ‘L 1251_CLK UART_RTS 3_‘
= 5| Ve R 1251_RS UART_CTS [—36
A 3o ‘—37 1251_DX UART_RX [—38
P ey Ko 1251FS UART_TX |—10 o
W g l—"i VCC_3V3 VCC_USB_DUAL 4‘2.
V5oL 2: VCC_3V3 VCC_USB_DUAL (— 2
1250_CLK SPI_CS3
N7 | égg §>L< VCC_USB_DUAL |48 | 45V
Naug |50 I 50
K2 1250_DX GPAIN3
‘L 1250_FS GPAIN2 5‘2.
Koo SPLCS2 GPAINL 3% 0
,‘55 SPI_CS0 GPAING [—28
% VCC_3V3 VCC_USB_DUAL 23
R=2— vee s VCC_USB_DUAL
Sheet: /ezdsp/
File: ezdsp.sch
Title:
Size: Ak [Date: Rev:
KiCad E.D.A. kicad 4.0.6 Id: 4/6
) i i] 64

1 [2 | 3 | 4 [5
TIH
wl s 3 to headphone output
N "
~N
from dsp
i 1-4in_jack
o
35rasmt2bhntrx 128 L1 (Tt
(left |2 e 21 (R)ri
] 1 58 3 (R)right
((RS))”&FS l. Eél (S)GND
U501 i U508
GND
GND 2? II +5V
[wn
Tl 3 R
3 m ke RV501
N
N 2 master—volume—fader
Lal
GND
to left line GND
1-4in_jack
O 1 TI (Mleft in5—midi C501 R
.| E (R)right din "L’éd‘ 1
> o
< Q (S)6ND SHIELD -2 S — , 6N137 . R
< U507 NC =2y a2 "] NC vce ' 0
GND VREF |2 2252 2_{ ANODE VE L -
il DATA -5 2 CATHODE VO g . dmidi—in
U502 NC GND
GND L3
U504
GND
to right line
1-4in_jack
22 TI (Tleft
TI 3 (R)right
3 S (S)GND
o~
N U506
e
L Sheet: /io—controls/
GND File: io—controls.sch
Title:
Size: Ak [Date: Rev:
KiCad E.D.A. kicad 4.0.6 Id: 5/6
1 | 2 | 3 | 4 I 5 [615)

>
+

GND
€602
+5V
0.1uf
CD74HCA4051
C‘*ﬁ& A& VCC
c6 2 c2

s niid

c7 4 a0 |13 ¥ cO
c5 5 A 0 12 ' c3

GND

A5 A3
6 1 F so L[>key—columﬁ—select—()
7 {VEE s1 L[>key—columﬁ—select—i
8 {onD s2 9—Dkey—column—select—2
ueo1

k25m—connector

16 _ r0
L 0 RO
_20¢1 g |a5perd

1

2

_ 31 R |14 ¥ 2
4 1cs R3 |13 ¥r3

ch_ %5 12 ®r

ch R4 .
6 fcs ps il '6
; c6 RoL0 T

(A v —

GND

€601

+5V
CD74HC4051 0-1uf
—xe{ A vee 12 —

A6 A2

key—row—out<

A a1 |14 1l
a0 L1310

—e| A7
r5 A5 A3 L1213

3 6 | f sofll Dkey—row—select—0
<[> VEE S1 key—row-select—1
GND S2 key—row—select-2
U603
N
GND GND
Sheet: /keyboard/
File: keyboard.sch
Title:
Size: Ak [Date: Rev:
KiCad E.D.A. kicad 4.0.6 Id: 6/6
2 | 4 ©b

® e @ _

Sheet:

File: synth.kicad_pcb

Title:

Size: USLegal ‘ Date: ‘ Rev:

KiCad E.D.A. kicad 4.0.6 ‘ Id: 1/1
1 2 3 4 [6

67

3 L 6 7
(O]
0@
®e@®
@)
PEPOOECDE
/;
1 e ® ®
0 @ g®: 0@ O e
EOE!E -.EEB IE?)IEIIJE)
o‘. _ _
ODIOOIOIIOIOIC . A0 OERHO @:] []@
en e eune e ne ®
@)uin@ %GH» I??)lil% @
<)
$® @ @
LHJ QIO
Sheet:
File: synth.kicad_pcb
Title:
Size: USLegal ‘ Date: ‘ Rev:
KiCad E.D.A. kicad 4.0.6 ‘ Id: 1/1
3 4 [6 7

68

= o S
~
~
~
ksl
= ..
|
ﬁ >
2
3
a
©
na08
©
[
.o o
212
©
- n = =
5] o
= ©
o
cats [erd] cate cate €250 © =
2 <
_ — _ _ _ _ 5 _
= ©
i~ .
caor — — — — _ = o<
_ < = Tane K= Tars < i
_ = H
TS cIT C212 C21) < 9|
s M=
- ©
22le I No
= w L wnx
o S5 B 2
3 = 2
a
-
D207
_caos _caoe _ca0@ 208 210
07] cz00 “c20y 208
[
n200
H «
S
cste sty
rw — —
Drbm csTe 372
v/v
n20 3
€
M
~
S nvos
— csts cs10
ST €S0a
cso08 cs00
€S0y €S2
I~
cso¢ _
— €303
— ¢so7
€S02 _
91 118
4 4
B E
- - -
AR08 5A203
= o S

69

2 3 5 6
R505
b RV301 - __R506
= o N €507 [g‘ ‘5503, —
] 3 - i 3 7
SW202 O % Ro12 I Ciﬁ |18 | < > i ua02
v © R510 [— 502
‘ ‘& U503 = ey OO0
€222 | \g ‘ %) 3\ | 00 E
- Q 508 — 509 oo
- 403 RV302 §‘ ‘
S &
S s — (.
E — I
- | < > U603
C402
I B
— — — et
uz01 30 —
— <602
RV303 o
uzog ’7 Q Q l g
I
[] O
L L | L |
SW201
Loown Uont u302 U307
= oo oo
O e %28
o Q Q g
5 —
E
| ‘g SW203 i | | | |
e T L _ L L 1 L 1 | < > U303 U308 X o o=z chot
U202 u204 U206 uzo08 e ve =
HG 000000000000 00O0O00O s s
0000000000000 00000
o Swa0e |
I8 S RV305
i - usos o U309 o
R | < >
€221 1 L L | L | ! [:‘
%\ | SW205 U201 U203 U205 u207 Q Q
1
usosL _ | ustol | L
Sheet:
File: synth.kicad_pcb
Title:
Size: USLegal ‘ Date: ‘ Rev:
KiCad E.D.A. kicad 4.0.6 ‘ Id: 1/1
2 3 [6

70

2 3
® °© o oo °° oo ® |
O O O 3 o o 0 O
0%0 o ’ ’ (o) (o)
2ol O o (o) K - O
o (o) (@) " = = [| (@) 08
(o] = = " ° §
(]
(o]
‘0 0 ©
]
§:§ O o 0o om 10 om QO
SS [I | [|
£5 00000000
o o §5 ooo [X-X] 00000000
Em S5
o000 §§ . "I | "B |
mm S5 o) O @) @) @)
§5 (e} | I | | I |
= ° . 000 ooo
C?o% 000 O 000
OO
[I | OLELE®)
OrgO O ®O OO OmEO Ol IO . ©
L | LI] LI | LI | S 000 000 o ©
o ooo 000 ooo 000 o
o 00000
0o [oYeXeXeYoXeXeXoXoXeXeXoXoXeXo o oXe)
o 000000000000000000 on 1Q on Q0
o H B | I |
o O OO O e O OmrBEO o 000 000
[I | EE EE °
ooo 000 oo0o0 ooo o
(I Oom 10 om 1 o
ooo 000 (o) o]
Sheet:
File: synth.kicad_pcb
Title:
Size: USLegal ‘ Date: ‘Rev:
KiCad E.D.A. kicad 4.0.6 | 0: 1/t
1 2 3 4 [6

71

0"

o

‘0

000

0%
g 0
OO0

O O

o000

00O

000

O O O O
mm OFf gm=mQ 3
O w,_ ®0O °
os I°. O°F
Em: = gmhi
H u

Em o
== o 3
o
o
o
000 O 000

O O O
o
ooo 000 8
o O O o
o000 000 g

o

(o} o
- ©O
™ H E
H =
o.oo sz O
o) © O amz (O
H o
E N o o9
[|
[|
o O O . = =
= = 00000000
coo ooo _ ¥ = Z 00000000
= -IIIIIIII
@) O O
pnnnnnn
000 000
o O © o
000 000 o O
| |
00000
O O O
000 [e N ole]
O @) @)
O o 3
oo0o0 (XX} [oXo)) 4
Sheet:
File: synth.kicad_pcb
Title:
Size: USLegal ‘ Date: ‘ Rev:
KiCad E.D.A. kicad 4.0.6 ‘ Ild: 1/1

I 6

72

Sheet:
File: synth.kicad_pcb

Title:

Size: USLegal | Date:

KiCad E.D.A. kicad 4.0.6

73

E. Program Listings (for software/firmware)

DSP directory structure

F—— audio

F—— Icon\r

}—— singen.c
F—— singen.h
F—— sintable.c
L— sintable.h

+—— TIcon\r

—— envelope.cC
—— envelope.h
—— fm.c

—— fm.h

—— ringbuf.c

L— ringbuf.h

— global vars.h

— hello.tcft

—— Icon\r
— fetch data.c
—— midi.c
—— midi.h
— midi queue.c
—— midi queue.h

— main.c

-— pconfig

——— Icon\r
—— aic3204.
—— aic3204.
—— 12s dma.
— 1i2s_dma.h
—— spi config.c
—— spi config.h

Q 5 Q

#include

#include
#include

#define

Intl6 ai

"aic3204.h"

"ezdsp5535.h"
"ezdsp5535_i2c.h"

AIC3204_I2C_ADDR 0x18

3204 _init() {

/* Configure AIC3204 x/

AIC3204_rset(0O,
AIC3204_rset(1,

0x00);
0x01);

EZDSP5535_waitusec(1000); //
AIC3204_rset(©, ©0x01); //
AIC3204_rset(1, ©0x08); //
AIC3204_rset(2, ©0x01); //
AIC3204_rset(123,0x05); //

EZDSP5535_waitusec(50000);
AIC3204_rset(@0, 0x00);

/* PLL and Clocks config and Power Up

AIC3204_rset(27, ©oxeod
AIC3204(Master)

)i //

Select page ©

Reset codec

Wait 1ms after reset

Select page 1

Disable crude AVDD generation from DVDD
Enable Analog Blocks, use LDO power
Force reference to power up in 40ms
Wait at least 40ms

Select page ©

*/

BCLK and WCLK are set as o/p;
=0

PLLCLK <- MCLK, CODEC_CLKIN

Data ofset
PLL setting:

PLL
PLL
PLL
For

setting:
setting:
setting:
32 bit cl

J=7

HI_BYTE(D=1680)
LO_BYTE(D=1680)

ocks per frame in Master

AIC3204_rset(28, 0x00); //
AIC3204_rset(4, ©0x03); //
<-PLL CLK
AIC3204_rset(6, ©0x07); //
AIC3204_rset(7, ©0x06); //
AIC3204_rset(8, ©0x90); //
AIC3204_rset(30, 0x88); //
mode ONLY
//

AIC3204_rset(5, ©0x91); //

EZDSP5535_waitusec(10000); //

AIC3204_rset(13, 0x00); //
0x0080 DAC oversamppling

AIC3204_rset(14, 0x80); //
0x0080

AIC3204_rset(20, 0x80); //

decimation filters 1 to 6
AIC3204_rset(11, ©x82); //
AIC3204_rset(12, 0x87); //
AIC3204_rset(18, 0x87); //
AIC3204_rset(19, 0x82); //

/* DAC ROUTING and Power Up */

AIC3204_rset(©, ©0x01); //
AIC3204_rset(12, 0x08); //
AIC3204_rset(13, 0x08); //
AIC3204_rset(©, ©0x00); //
AIC3204_rset(64, 0x02); //
AIC3204_rset(65, 0x00); //
Left
AIC3204_rset(63, oxd4); //

channel

BCLK=DAC_CLK/N =(12288000/8)
32xfs

PLL setting: Power up PLL, P=1 and R=1

Wait for PLL to come up
Hi_Byte(DOSR) for DOSR

1.536MHz

128 decimal or

Lo_Byte(DOSR) for DOSR 128 decimal or

AOSR for AOSR 128 decimal or 0©x0080 for

NDAC
MDAC
NADC
MADC

set NDAC
set MDAC
set NADC
set MADC

to
to
to
to

value
value
value
value

and
and
and
and

Power
Power
Power
Power

up
up
up
up

N NN

Select page 1

LDAC AFIR routed to HPL

RDAC AFIR routed to HPR

Select page ©

Left vol=right vol

Left DAC gain to 0dB VOL; Right tracks

Power up left,right data paths and set

75

AIC3204_rset(©, ©0x01); // Select page 1
AIC3204_rset(16, 0x00); // Unmute HPL , @dB gain
AIC3204_rset(17, 0x00); // Unmute HPR , @dB gain
AIC3204_rset(9 , 0x30); // Power up HPL,HPR
EZDSP5535_waitusec(100); // Wait

/* ADC ROUTING and Power Up */
AIC3204_rset(@, ©0x01); // Select page 1
AIC3204_rset(52, Ox30); // STEREO 1 Jack
// IN2_L to LADC_P through 40 kohm
AIC3204_rset(55, 0x30); // IN2_R to RADC_P through 40 kohmm
AIC3204_rset(54, 0x03); // CM_1 (common mode) to LADC_M through 40
kohm
AIC3204_rset(57, Oxc@); // CM_1 (common mode) to RADC_M through 40
kohm
AIC3204_rset(59, 0x00
AIC3204_rset(60, 0x00
AIC3204_rset(©, 0Ox00
AIC3204_rset(81, Oxco
AIC3204_rset(82, 0x00
AIC3204_rset(©, 0Ox00

// MIC_PGA_L unmute

// MIC_PGA_R unmute

// Select page ©

Powerup Left and Right ADC
// Unmute Left and Right ADC
// Select page ©

~— N N N N N
Ne ~e ~e¢ ~o ~e ~e =~

EZDSP5535 Waltusec(lee // Wait
return 0;
¥
Intlé6 AIC3204_rset(Uintlé regnum, Uintlé regval)
{
Uint16 cmd[2];
cmd[@] = regnum & Ox007F; // 7-bit Device Register
cmd[1] = regval; // 8-bit Register Data

EZDSP5535_waitusec(300);

return EZDSP5535_I2C_write(AIC3204_I2C_ADDR, cmd, 2);

76

#include "ezdsp5535.h"

Intl6 aic3204_init(void);
Intl6 AIC3204_rset(Uintlé regnum, Uintlé regval);

77

* envelope.c

*

* Created on: May 29, 2017
* Author: evan

*/

#include "envelope.h"

void createEnvelopeConfig(EnvelopeConfig *ec, Intlé a, Intlé6 d, Intlé s, Intlé

r) {

ec—>attack = a;

ec—->decay = d;

ec—>sustain = s;

ec—>release = r;
ec—>attack_step_cnt = a *x 4;
ec—>decay_step_cnt = d * 4;
ec->release_step_cnt = r x 4;
¥

Envelope createEnvelope(EnvelopeConfig *ec) {
Envelope e;
e.env_config = ec;
e.env_state = ENV_ATTACK;
e.env_val = 0;
e.step_cnt = 0;
return e;
¥
Intl6 envelopelncrement(Envelope *xe) {
if (e->env_state == ENV_ATTACK) {
if (e->env_val <= 255) {
if (e->step_cnt < e->env_config->attack_step_cnt) {
e->step_cnt++;
} else {
e->step_cnt = 9;
e—>env_val++;
h
} else {
e—>env_state = ENV_DECAY;
e->step_cnt = 0;
¥
¥
else if (e->env_state == ENV_DECAY) {
if (e->env_val > e->env_config->sustain) {
if (e->step_cnt < e->env_config->decay_step_cnt) {
e->step_cnt++;
} else {
e->step_cnt = 0;
e->env_val——;
h
} else {
e—>env_state = ENV_SUSTAIN;
e->env_val = e->env_config->sustain;
ks
} else if (e->env_state == ENV_RELEASE) {
if (e->env_val > 0) {

78

if (e->step_cnt < e->env_config->release_step_cnt) {
e->step_cnt++;
} else {
e->step_cnt = 0;
e—>env_val——;
¥
} else {
e—>env_state = ENV_INACTIVE;
e—>env_val = 0;
¥
¥

return e->env_val;

79

* envlope.h

k

* Created on: May 29, 2017
* Author: evan

*/

#ifndef ENVLOPE_H_
#define ENVLOPE_H_

#include <std.h>

typedef enum {
ENV_ATTACK, ENV_DECAY, ENV_SUSTAIN, ENV_RELEASE, ENV_INACTIVE
} EnvelopeState;

typedef struct {
Intl6 attack;
Intl6 attack_step_cnt;

Intl6 decay;
Intl6 decay_step_cnt;

Intlé sustain;

Intl6 release;
Intl6 release_step_cnt;

} EnvelopeConfig;

typedef struct {
EnvelopeConfig *xenv_config;
// State variables
EnvelopeState env_state;
Intl6 env_val;
Intlé6 step_cnt;

} Envelope;

void createEnvelopeConfig(EnvelopeConfig *ec, Intlé a, Intlé6 d, Intlé s, Intlé
r) ;

Envelope createEnvelope(EnvelopeConfig *ec);
Intl6 envelopelncrement(Envelope *xe);

#endif /*x ENVLOPE_H_ */

80

/* Standard C includes x/
#include <stdio.h>

/* DSP/BIOS headers */
#include <std.h>
#include <tsk.h>
#include "hellocfg.h"

/* ezDSP C5535 board specific headers x/
#include "ezdsp5535.h"

/* C55xx chip support library headers x/

/* Danalog headers x/

#include "../pconfig/aic3204.h"
#include "../pconfig/i2s_dma.h"
#include "../pconfig/spi_config.h"
#include "../io/midi_queue.h"
#include "../global_vars.h"

volatile Intlé nothing = 0;

Void spi_get_midi(void)

{
while (1) {
Uintl6 message = SPI_MIDI_CMD;
//TSK_disable();
while (1) {
spi_write(&message, 1);
spi_read(midi, 3);
// if the fist byte is @, no new midi information
if (midi[@] == 0x00) {
break;
s
else if (midi[@] '= 0x90 && midi[0] '= 0x80) {
break;
b
//if ((midi[@] & ©0x80) == @) { break; } // this is a hack for the
slow avr isr
MidiPacket p;
p.midi_cmd = midi[®@];
p.note_id = midi[1];
p.velocity = midi[2];
midi_buffer_write(p);
b
//TSK_enable();
TSK_sleep(2);
b
s

Void spi_get_interface_controls(void)
81

Uintlé counter = 0;
Uintl6 message;
while (1) {
switch(counter) {
case 0:
message = SPI_SWT_CMD;
TSK_disable();
spi_write(&message, 1);
spi_read(&switches, 1);
TSK_enable();
break;
case 1:
message = SPI_ENC_CMD;
TSK_disable();
spi_write(&message, 1);
spi_read(encoders, 19);
TSK_enable();
break;
case 2:
message = SPI_POT_CMD;
TSK_disable();
spi_write(&message, 1);
spi_read(pots, 8);
TSK_enable();
break;
default:
while (1); // error
¥

counter = (counter + 1) % 3;
TSK_sleep(1000);

/*

* gen_sound.c

k

* Created on: May 6, 2017
* Author: evan

*/

#include "fm.h"

/* Standard C includes x/
#include <std.h>

#include <stdio.h>
#include <tsk.h>

/* DSP/BIOS headers */
#include "hellocfg.h"

/* ezDSP C5535 board specific headers x/
#include "ezdsp5535.h"

/* Danalog headers x/

#include "../audio/singen.h"
#include "../audio/sintable.h"
#include "../global_vars.h"
#include "../io/midi.h"
#include "envelope.h"

#include "ringbuf.h"

EnvelopeConfig mod_env_cfg, car_env_cfg;
FMNote note;

Intlé6 mod_ratio
Intl6 mod_depth

1;
1;

FMNote midi_to_fm_note(MidiPacketx p) {
FMNote n;
n.pitch = convert_to_freq(p->note_id);
n.velocity = (Intl6é) p->velocity;
n.mod_env = createEnvelope(&mod_env_cfg);
n.car_env = createEnvelope(&car_env_cfg);
sin_compute_params(&n.mod_sin, n.pitch * mod_ratio);
sin_compute_params(&n.car_sin, n.pitch);
return n;

Void generate_samples_tsk(Void)
{

createEnvelopeConfig(&car_env_cfg, 9, 0, 250, 100);
createEnvelopeConfig(&mod_env_cfg, 0, 0, 100, 100);

83

while (1) {
SEM_pend(&ping_pong_sem, SYS_FOREVER);
//createEnvelopeConfig(&car_env_cfg, encoders[10], encoders[11],
encoders[12], encoders[13]);
//createEnvelopeConfig(&mod_env_cfg, encoders[14], encoders[15],
encoders[16]1, encoders[171]);

MidiPacket p;
if (midi_buffer_size() > 0) {
while (midi_buffer_size() > 0) {
p = midi_buffer_read();

if (midi_packet_type(p) == MIDI_NOTE_ON) {
add_note(&p, mod_ratio);

ks

else if (midi_packet_type(p) == MIDI_NOTE_OFF) { //
MIDI_NOTE_OFF
release_note(&p);

// determine which buffer to fill
Intl6 xleft_output, *right_output;
if (CSL_DMA1_REGS->DMACHOTCR2 & 0x0002) { // last xfer: pong
left_output = left_pong;
right_output = right_pong;
} else {
left_output = left_ping;
right_output = right_ping;
}

Intl6 i;
#pragma MUST_ITERATE(I2S_DMA_BUFFER_SIZE,I2S_DMA_BUFFER_SIZE)
for (1 = ©; 1 < I2S_DMA_BUFFER_SIZE; i++) {
Intl6 output = 0;
Intlé counter;
for (counter = 0; counter < NOTE_BUF_LEN; counter++) {
FMNote *n = ¬e_buflcounter];
if (n->car_env.env_state != ENV_INACTIVE) {
Int32 mod = ((envelopeIncrement(&n—>mod_env) x (Int32)
sin_gen(&n->mod_sin, ©))) >> 8;
Int32 mod_scaled = (mod >> 3) * mod_depth;

output += ((envelopelncrement(&n->car_env) x (Int32)
sin_gen(&n->car_sin, mod_scaled))) >> 10;

by

left_output[i] = output;

84

right_output[i] = output;
} // end for
} // end while (1)

/*

* gen_sound.h

%

* Created on: May 6, 2017
* Author: evan

*/

#ifndef GEN_SOUND_H_
#define GEN_SOUND_H_

#include <std.h>

#include "../io/midi.h"
#include "envelope.h"
#include "../audio/singen.h"

typedef struct {
Intl6 pitch;
Intl6 velocity;
Envelope mod_env;
Envelope car_env;
SinState mod_sin;
SinState car_sin;

} FMNote;

FMNote midi_to_fm_note(MidiPacket* p);

#endif /* GEN_SOUND_H_ */

/*

* global_vars.h

k

* Created on: May 25, 2017
* Author: evan

*/

#ifndef GLOBAL_VARS_H_
#define GLOBAL_VARS_H_

#include "ezdsp5535.h"
#include "io/midi_queue.h"
#include "fm/fm.h"
#include "audio/singen.h"

// SPI recieving data structures
extern Uintlé encoders[19];
extern Uintlé pots[81];

extern Uintlé switches;

extern Uintl6 midi[31]1;

// I2S/DMA buffers for audio output

#define I2S_DMA_BUFFER_SIZE 128

extern Intlé left_ping[I2S_DMA_BUFFER_SIZE];
extern Intlé6 left_pong[I2S_DMA_BUFFER_SIZE];

extern Intlé right_ping[I2S_DMA_BUFFER_SIZE];
extern Intlé right_pong[I2S_DMA_BUFFER_SIZE];

// Midi buffer
extern MidiPacket midi_buffer[];

extern FMNote note;

extern SinState ss_carrier;
extern SinState ss_mod;

#endif /* GLOBAL_VARS_H_ */

87

/*

*

i2s_dma.c

*

Created on: May 8, 2017
* Author: evan

*/

#include <stdio.h>
#include "ezdsp5535_i2s.h"
#include "i2s _dma.h"
#include "hellocfg.h"
#include "soc.h"

#include "cslr.h"

#include "cslr_sysctrl.h"
#include "csl_gpio.h"
#include "csl i2s.h"
#include "csl intc.h"

#include "../global_vars.h"

#pragma DATA_ALIGN (left_ping, 4)
Intl6 left_ping[I2S_DMA_BUFFER_SIZE];

#pragma DATA_ALIGN (left_pong, 4)
Intl6 left_pong[I2S_DMA_BUFFER_SIZE];

#pragma DATA_ALIGN (right_ping, 4)
Intl6 right_ping[I2S_DMA_BUFFER_SIZE];

#pragma DATA_ALIGN (right_pong, 4)
Intl6 right_pong[I2S_DMA_BUFFER_SIZE];

CSL_DmaRegsOvly dma_reg;

void 1i2s_dma_init(void)
{

CSL_Status status;

// Configure I2S

CSL_I2sHandle i2sHandle;

I12S_Config i2sConfig;

i2sHandle = I2S_open(I2S_INSTANCE2, DMA_INTERRUPT,

/* Set the value for the configure structure x/

I2S_CHAN_STEREO) ;

88

i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.
i2sConfig.

status =

dataFormat
dataType
loopBackMode
fsPol
clkPol
datadelay
datapack
signext
wordLen
i2sMode
clkDiv
fsDiv
FError
OuError

I2S_DATAFORMAT_LJUST;

I2S_STEREO_ENABLE;

I2S_LOOPBACK_DISABLE;

I2S_FSPOL_LOW;

I2S_RISING_EDGE; //I2S_FALLING_EDGE;
I2S_DATADELAY_ONEBIT;
I2S_DATAPACK_DISABLE;
I2S_SIGNEXT_DISABLE;

I2S_WORDLEN_16;

I2S_SLAVE;

I2S_CLKDIV2; // don't care for slave mode
I2S_FSDIV32; // don't care for slave mode
I2S_FSERROR_DISABLE;

I2S_OUERROR_DISABLE;

I12S_setup(i2sHandle, &i2sConfig);

CSL_I2S2_REGS—>I2SINTMASK &= OxFF80;
I12S_transEnable(i2sHandle, TRUE);

// Init DMA

status =

DMA_init();

/* Set the reset clock cycle x/
CSL_FINS(CSL_SYSCTRL_REGS->PSRCR, SYS_PSRCR_COUNT,

CSL_DMA_RESET_CLOCK_CYCLE);

CSL_FINST(CSL_SYSCTRL_REGS->PRCR, SYS_PRCR_DMA_RST, RST);

/* Enable the corresponding DMA clock from PCGCR Registers x/

CSL_FINST(CSL_SYSCTRL_REGS->PCGCR1, SYS_PCGCR1_DMAOCG,
CSL_FINST(CSL_SYSCTRL_REGS->PCGCR2, SYS_PCGCR2_DMA1CG,
CSL_FINST(CSL_SYSCTRL_REGS->PCGCR2, SYS_PCGCR2_DMA2CG,
CSL_FINST(CSL_SYSCTRL_REGS->PCGCR2, SYS_PCGCR2_DMA3CG,

ACTIVE);
ACTIVE);
ACTIVE);
ACTIVE);

/* enable ch4 DMA interrupts */
CSL_SYSCTRL_REGS—->DMAIER = 0x0010;

/* Clear all DMA interrupt flags x/
CSL_SYSCTRL_REGS—->DMAIFR = OxFFFF;

//IRQ_clear (DMA_EVENT);.

// Configure DMA

// Left DMA config

CSL_DMA_Handle
CSL_DMA_Config
CSL_DMA_ChannelObj

left_dmaConfig.
left_dmaConfig.
left_dmaConfig.
left_dmaConfig.
left_dmaConfig.

autoMode
burstlLen
trigger
dmaEvt

pingPongMode

left_dmaHandle;
left_dmaConfig;
left_dmaChannelObj;

CSL_DMA_PING_PONG_ENABLE;
CSL_DMA_AUTORELOAD_ENABLE;
CSL_DMA_TXBURST_1WORD;
CSL_DMA_EVENT_TRIGGER;
CSL_DMA_EVT_I2S2_TX;

89

left_dmaConfig.dmalnt
left_dmaConfig.chanDir
left_dmaConfig.trfType
left_dmaConfig.datalen
left_dmaConfig.srcAddr
left_dmaConfig.destAddr

CSL_DMA_INTERRUPT_ENABLE;
CSL_DMA_WRITE;
CSL_DMA_TRANSFER_IO_MEMORY;
I2S_DMA_BUFFER_SIZE *x 4;
(Uint32)left_ping;
(Uint32)0x2A08;

left_dmaHandle = DMA_open(CSL_DMA_CHAN4, &left_dmaChannelObj, &status);
DMA_config(left_dmaHandle, &left_dmaConfig);

dma_reg = left_dmaHandle->dmaRegs;

DMA_start(left_dmaHandle);

// Left DMA config

CSL_DMA_Handle right_dmaHandle;
CSL_DMA_Config right_dmaConfig;
CSL_DMA_ChannelObj right_dmaChannelObj;

CSL_DMA_PING_PONG_ENABLE;
CSL_DMA_AUTORELOAD_ENABLE;
CSL_DMA_TXBURST_1WORD;
CSL_DMA_EVENT_TRIGGER;
CSL_DMA_EVT_I2S2_TX;
CSL_DMA_INTERRUPT_DISABLE; // rely on

right_dmaConfig.pingPongMode
right_dmaConfig.autoMode
right_dmaConfig.burstlLen
right_dmaConfig.trigger
right_dmaConfig.dmaEvt
right_dmaConfig.dmalnt
iterrupt from left
right_dmaConfig.chanDir
right_dmaConfig.trfType
right_dmaConfig.datalen
right_dmaConfig.srcAddr
right_dmaConfig.destAddr

CSL_DMA_WRITE;
CSL_DMA_TRANSFER_IO_MEMORY;
I2S_DMA_BUFFER_SIZE * 4;
(Uint32)right_ping;
(Uint32)0x2A0C;

right_dmaHandle = DMA_open(CSL_DMA_CHAN5, &right_dmaChannelObj, &status);
DMA_config(right_dmaHandle, &right_dmaConfig);

dma_reg = right_dmaHandle->dmaRegs;

DMA_start(right_dmaHandle);

/* Clear DMA Interrupt Flags */
IRQ_clear (DMA_EVENT);

/* Enable DMA Interrupt x/
IRQ_enable(DMA_EVENT);

b

void dma_isr(void) {
if (CSL_SYSCTRL_REGS—>DMAIFR & 0x0010) { // ch4 interrupt, left channel
SEM_post(&ping_pong_sem);
CSL_SYSCTRL_REGS->DMAIFR |= 0x0010; // clear interrupt
} else {
while(1);
¥

90

91

/*

*x 12s_dma.h

*

* Created on: May 8, 2017
* Author: evan

*/

#ifndef I2S_DMA_H_
#define I2S_DMA_H_

#include "csl dma.h"

void i2s_dma_init(void);
void dma_isr(void);

#endif /*x I2S_DMA_H_ */

92

/* Standard C includes x/
#include <stdio.h>

/* DSP/BIOS headers x/
#include <std.h>
#include "hellocfg.h"

/* ezDSP C5535 board specific headers x/
#include "ezdsp5535.h"
#include "ezdsp5535_i2c.h"

/* C55xx chip support library headers x/
#include "csl_pll.h"

#include "csl_general.h"

#include "csl_pllAux.h"

/* Danalog headers x/

#include "pconfig/aic3204.h"
#include "pconfig/i2s_dma.h"
#include "pconfig/spi_config.h"
#include "io/midi_queue.h"

PLL_Obj pllObj;
PLL_Config pllCfg1l;

PLL_Handle hP11;

PLL_Config pllCfg_12p288MHz
PLL_Config pllCfg_40MHz
PLL_Config pllCfg_60OMHz
PLL_Config pllCfg_75MHz
PLL_Config pllCfg_100MHz
PLL_Config pllCfg_120MHz

{0x8173, 0x8000, 0x0806, 0x0000};
{0x8988, 0x8000, 0x0806, 0x0201};
{0x8724, 0x8000, 0x0806, 0x0000};
{0x88ED, 0x8000, 0x0806, 0x0000};
{0x8BE8, 0x8000, 0x0806, 0x0000};
{O0Xx8E4A, 0x8000, 0x0806, 0x0000};

//PLL_Config pllCfg_12p288MHz
//PLL_Config pllCfg_4OMHz
//PLL_Config pllCfg_60MHz
//PLL_Config pllCfg_75MHz
//PLL_Config pllCfg_100MHz
//PLL_Config pllCfg_120MHz

{0x82ED, 0x8000, 0x0806, 0x0200};
{0x8262, 0x8000, 0x0806, 0x0300};
{0x81C8, 0xBO0O, 0Ox0806, 0x0000};
{0x823B, 0x9000, 0x0806, 0x0000};
{0x82FA, 0x8000, 0x0806, 0x0000};
{0x8392, 0xA00O, 0Ox0806, 0x0000};

PLL_Config *pConfigInfo;

#define CSL_TEST_FAILED (1)
#define CSL_TEST_PASSED (0)

Void main()
{

printf("Initializing bsl\n");

93

EZDSP5535_init();

/*xkk PLL init skkkskk/
CSL_Status status;

status = PLL_init(&pllObj, CSL_PLL_INST_0);
1f(CSL_SOK != status)
{

printf("PLL init failed \n");

return (status);

b
hP11l = (PLL_Handle) (&pl10bj);
PLL_reset(hP1l);

status = PLL_bypass(hP1l);

1f(CSL_SOK != status)

{
printf("PLL bypass failed:%d\n",CSL_ESYS_BADHANDLE);
return(status);

}

/* Configure the PLL for 60OMHz x/
pConfigInfo = &pllCfg_120MHz;

status = PLL_config (hP11l, pConfigInfo);
1f(CSL_SOK != status)
{
printf("PLL config failed\n");
return(status);

}

status = PLL_getConfig(hPll, &pllCfgl);
if(status != CSL_SOK)

{
printf("TEST FAILED: PLL get config... Failed.\n");
printf ("Reason: PLL_getConfig failed. [status = 0x%x].\n", status);
return(status);
¥
printf("REGISTER ——— CONFIG VALUES\n");
printf("%04x ——— %04x\n",pllCfgl.PLLCNTL1,hP11->pllConfig—>PLLCNTL1);
printf("%04x ——— %04x Test Lock Mon will get set after PLL is up\n",
pllCfgl.PLLCNTL2,hP11->pl1lConfig—>PLLCNTL2);
printf("%04x ——— %04x\n",pllCfgl.PLLINCNTL,hP11->pl1Config—>PLLINCNTL);
printf("%04x ——— %04x\n",pllCfgl.PLLOUTCNTL,hP11->pl1Config—>PLLOUTCNTL);

EZDSP5535_waitusec(4000);

status = PLL_enable(hPll);

1f(CSL_SOK != status)

{
printf("PLL enable failed:%d\n",CSL_ESYS_BADHANDLE);
return(status);

94

}

printf("Init i2c\n");
EZDSP5535_I2C_init();

printf("Initializing aic3204\n");
aic3204_init();

printf("Initializing dma with i2s");
i2s_dma_init();

printf("Initializing spi");
midi_buffer_init();
spi_init();

/* fall into DSP/BIOS idle loop */

95

* midi_queue.c

k
* Created on: May 28, 2017
* Author: evan

*/

#include "midi_queue.h"
#include "../global_vars.h"

Uintl6 writelLoc, readLoc;
MidiPacket midi_buffer[MIDI_BUFFER_SIZE];

void midi_buffer_init()

{
writelLoc = 0;
readlLoc = 0;
¥
void midi_buffer_write(MidiPacket p)
{
midi_buffer[writelLoc] = p;
writeLoc = (writeLoc + 1) % MIDI_BUFFER_SIZE;
¥
MidiPacket midi_buffer_read(void)
{
if (midi_buffer_size() == 0) {
while (1); // tried to read from empty buffer
¥
MidiPacket p = midi_buffer[readLoc];
readLoc = (readlLoc + 1) % MIDI_BUFFER_SIZE;
return p;
¥
Uint16 midi_buffer_size(void)
{
return (writelLoc - readlLoc + MIDI_BUFFER_SIZE) % MIDI_BUFFER_SIZE;
b

96

/*

*x midi_queue.h

k

* Created on: May 28, 2017
* Author: evan

*/

#ifndef MIDI_QUEUE_H_
#define MIDI_QUEUE_H_

#include "ezdsp5535.h"
#include "midi.h"

#define MIDI_BUFFER_SIZE 16

extern Uintlé writeloc, readlLoc;

void midi_buffer_init();

void midi_buffer_write(MidiPacket p);
MidiPacket midi_buffer_read(void);

Uint16 midi_buffer_size(void);

#endif /x MIDI_QUEUE_H_ */

97

*x midi.c

* Created on: May 29, 2017
* Author: evan
*/

#include "midi.h"

MidiCommand midi_packet_type(MidiPacket p)
{
if (p.midi_cmd == 0x90) {
return MIDI_NOTE_ON;
¥
else if (p.midi_cmd == 0x80) {
return MIDI_NOTE_OFF;
¥
else {
return MIDI_UNKNOWN;
¥
¥

Intl6 midi_freql881 = {
28,29,31,33,35,37,39,41,44,46,49,52,55,58,62,65,69,73,78,82,
87,93,98,104,110,117,124,131,139,147,156,165,175,185,196, 208,
220,233,247,262,277,294,311,330,349,370,392,415,440,466,494,523,
554,587,622,659,699,740,784,831,880,932,988,1047,1109,1175,1245,
1319,1397,1480,1568,1661,1760,1865,1976,2093,2218,2349,2489,2637,
2794,2960,3136,3322,3520,3729,3951,4186

}i

Intlé convert_to_freq(Uintlé midi_note) { // NOTE the signed types
if (midi_note < 21 || midi_note > 108) {
return 0;
} else {
return midi_freqlmidi_note - 2117;
b

98

/*

*x midi_utils.h

k
* Created on: May 29, 2017
* Author: evan

*/

#ifndef MIDI_UTILS_H_
#define MIDI_UTILS_H_

#include <std.h>

enum midi_cmd_type {
MIDI_NOTE_ON,
MIDI_NOTE_OFF,
MIDI_UNKNOWN

b

typedef enum midi_cmd_type MidiCommand;

struct midi_packet_struct {
Uintl6 midi_cmd;
Uintl6é note_id;
Uintl6 velocity;

}i

typedef struct midi_packet_struct MidiPacket;

MidiCommand midi_packet_type(MidiPacket);

Intl6 convert_to_freq(Uintlé6 midi_note);

#endif /* MIDI_UTILS_H_ */

99

*/

ringbuf.c
Created on: May 31, 2017
Author: evan

#include "ringbuf.h"

Intl6 note_buf_head = 0;
FMNote note_buf[NOTE_BUF_LENI;

void add_note(MidiPacket xp, Intl6 mod_ratio) {

¥

FMNote *n = ¬e_bufl[note_buf_head];
*n = midi_to_fm_note(p);

sin_compute_params(&n->mod_sin, n->pitch * mod_ratio);
sin_compute_params(&n->car_sin, n->pitch);

note_buf_head = (note_buf_head + 1) % NOTE_BUF_LEN;

void release_note(MidiPacket *xp) {

Intlé i;
for (i = ©; 1 < NOTE_BUF_LEN; i++) {
FMNote *n = ¬e_bufl[i];
if (n->pitch == convert_to_freq(p->note_id)) {
n—->car_env.env_state ENV_RELEASE;
n—>mod_env.env_state ENV_RELEASE;

100

/*

*

ringbuf.h
*

*

Created on: May 31, 2017
* Author: evan

*/

#ifndef RINGBUF_H_
#define RINGBUF_H_

#include "fm.h"
#include "../io/midi.h"

#define NOTE_BUF_LEN 2
extern FMNote note_buf[NOTE_BUF_LEN];
void add_note(MidiPacket *p, Intl6 mod_ratio);

void release_note(MidiPacket xp);

#endif /* RINGBUF_H_ */

101

#include "singen.h"

/* Danalog headers x/
#include "sintable.h"

void sin_compute_params(SinState *state, Int32 frequency) {
state->frequency = frequency;
state->step_delta = (frequency * 8192) / SAMPLE_RATE;
state->position = 0;

¥

Intl6 _decompress_sin(Intlé6 index) {
if (index > 8192|]| index < 0) {

// printf("ERROR: Index out of range. index = %d", index);
while(1);
¥
// 1if (index < SINTABLE_LENGTH) {
// return sintablel[index];
// %}
// else if (index < SINTABLE LENGTH x 2) {
// index = SINTABLE_LENGTH - (index — SINTABLE_LENGTH) - 1;
// return sintablel[index];
//}
// else if (index < SINTABLE LENGTH x 3) {
// index = index - 4096;
// return _sneg(sintable[index]);
//}
// else {
// index = SINTABLE_LENGTH - (index — SINTABLE_LENGTH) - 1;
// return _sneg(sintable[index]);
// %}

Intl6 multiplier = 1;

if (index >= 4096) {
multiplier = -1;
index = index — 4096;

}

if (index >= SINTABLE_LENGTH) { // reflect 3999->2000 to 1999->0
index = SINTABLE_LENGTH - (index — SINTABLE_LENGTH) - 1;
b

return sintablel[index] * multiplier;

}

Intl6 sin_gen(SinState xstate, Intl6 mod) {
Intl6 position_mod;
state->position = (state->step_delta + state->position) & 8191;
position_mod = (state->position + mod) & 8191;
return _decompress_sin(position_mod);

102

/*

* singen.h

k
* Created on: May 2, 2017
* Author: evan

*/

#ifndef SINGEN_H_
#define SINGEN_H_

#include "ezdsp5535.h"
#define SAMPLE_RATE 96000
struct sin_state {

Int32 position;

Int32 frequency;

Int32 step_delta;

Fi
typedef struct sin_state SinState;

Intl6 _decompress_sin(Intlé index);
Intl6 sin_gen(SinState xstate, Intlé6 mod);

void sin_compute_params(SinState xstate, Int32 frequency);

#endif /x SINGEN_H_ */

103

/*

sintable.c

*

*

*

Created on: May 2, 2017
* Author: evan

*/

#include "sintable.h"

const Intlé sintable[SINTABLE_LENGTH] = {

9, 25, 50, 75, 101, 126, 151, 176,

201, 226, 251, 277, 302, 327, 352, 377,

402, 427, 453, 478, 503, 528, 553, 578,

603, 629, 654, 679, 704, 729, 754, 779,

805, 830, 855, 880, 905, 930, 955, 989,

1006, 1031, 1056, 1081, 1106, 1131, 1156, 1182,
1207, 1232, 1257, 1282, 1307, 1332, 1357, 1383,
1408, 1433, 1458, 1483, 1508, 1533, 1558, 1583,
1609, 1634, 1659, 1684, 1709, 1734, 1759, 1784,
1809, 1835, 1860, 1885, 1910, 1935, 1960, 1985,
2010, 2035, 2060, 2086, 2111, 2136, 2161, 2186,
2211, 2236, 2261, 2286, 2311, 2336, 2362, 2387,
2412, 2437, 2462, 2487, 2512, 2537, 2562, 2587,
2612, 2637, 2662, 2687, 2712, 2738, 2763, 2788,
2813, 2838, 2863, 2888, 2913, 2938, 2963, 2988,
3013, 3038, 3063, 3088, 3113, 3138, 3163, 3188,
3213, 3238, 3263, 3288, 3313, 3338, 3363, 3388,
3413, 3438, 3463, 3488, 3513, 3538, 3563, 3588,
3613, 3638, 3663, 3688, 3713, 3738, 3763, 3788,
3813, 3838, 3863, 3888, 3913, 3938, 3963, 3988,
4013, 4038, 4063, 4088, 4113, 4138, 4163, 4188,
4213, 4237, 4262, 4287, 4312, 4337, 4362, 4387,
4412, 4437, LL62, 4487, 4512, 4536, 4561, 4586,
4611, 4636, 4661, 4686, 4711, 4736, 4760, 4785,
4810, 4835, 4860, 4885, 4910, 4935, 4959, 4984,
5009, 5034, 5059, 5084, 5109, 5133, 5158, 5183,
5208, 5233, 5257, 5282, 5307, 5332, 5357, 5382,
5406, 5431, 5456, 5481, 5505, 5530, 5555, 5580,
5605, 5629, 5654, 5679, 5704, 5728, 5753, 5778,
5803, 5827, 5852, 5877, 5902, 5926, 5951, 5976,
6001, 6025, 6050, 6075, 6099, 6124, 6149, 6174,
6198, 6223, 6248, 6272, 6297, 6322, 6346, 6371,
6396, 6420, 6LL5, 6470, 6494, 6519, 6544, 6568,
6593, 6617, 6642, 6667, 6691, 6716, 6748, 6765,
6790, 6814, 6839, 6863, 6888, 6913, 6937, 6962,
6986, 7011, 7035, 7060, 7085, 7109, 7134, 7158,
7183, 7207, 7232, 7256, 7281, 7305, 7330, 7354,
7379, 7403, 7428, 7452, 7477, 7501, 7526, 7550,
7575, 7599, 7624, 7648, 7673, 7697, 7721, 7746,
7770, 7795, 7819, 7844, 7868, 7892, 7917, 7941,
7966, 7990, 8014, 8039, 8063, 8087, 8112, 8136,
8161, 8185, 8209, 8234, 8258, 8282, 8307, 8331,
8355, 8379, 8404, 8428, 8452, 8477, 8501, 8525,

104

8550, 8574, 8598, 8622, 8647, 8671, 8695, 8719,

8744, 8768, 8792, 8816, 8840, 8865, 8889, 8913,

8937, 8961, 8986, 9010, 9034, 9058, 9082, 9106,

9131, 9155, 9179, 9203, 9227, 9251, 9275, 9299,

9324, 9348, 9372, 9396, 9420, 94LL, 9468, 9492,

9516, 9540, 9564, 9588, 9612, 9637, 9661, 9685,

9709, 9733, 9757, 9781, 9805, 9829, 9853, 9877,

9901, 9924, 9948, 9972, 9996, 10020, 10044, 10068,
10092, 10116, 10140, 10164, 10188, 10212, 10235, 10259,
10283, 10307, 10331, 10355, 10379, 10403, 10426, 10450,
10474, 10498, 10522, 10546, 10569, 10593, 10617, 10641,
10664, 10688, 10712, 10736, 10760, 10783, 10807, 10831,
10854, 10878, 10902, 10926, 10949, 10973, 10997, 11020,
11044, 11068, 11091, 11115, 11139, 11162, 11186, 11218,
11233, 11257, 11280, 11304, 11328, 11351, 11375, 11398,
11422, 11446, 11469, 11493, 11516, 11540, 11563, 11587,
11610, 11634, 11657, 11681, 11704, 11728, 11751, 11775,
11798, 11822, 11845, 11869, 11892, 11915, 11939, 11962,
11986, 12009, 12032, 12056, 12079, 12163, 12126, 12149,
12173, 12196, 12219, 12243, 12266, 12289, 12313, 12336,
12359, 12382, 12406, 12429, 12452, 12475, 12499, 12522,
12545, 12568, 12592, 12615, 12638, 12661, 12684, 12708,
12731, 12754, 12777, 12800, 12823, 12847, 12870, 12893,
12916, 12939, 12962, 12985, 13008, 13031, 13054, 13077,
13101, 13124, 13147, 13170, 13193, 13216, 13239, 13262,
13285, 13308, 13331, 13354, 13377, 13399, 13422, 13445,
13468, 13491, 13514, 13537, 13560, 13583, 13606, 13629,
13651, 13674, 13697, 13720, 13743, 13766, 13788, 13811,
13834, 13857, 13880, 13902, 13925, 13948, 13971, 13993,
14016, 14039, 14062, 14084, 14107, 14130, 14152, 14175,
14198, 14220, 14243, 14266, 14288, 14311, 14333, 14356,
14379, 14401, 14424, 14446, 14469, 14492, 14514, 14537,
14559, 14582, 14604, 14627, 14649, 14672, 14694, 14717,
14739, 14762, 14784, 14806, 14829, 14851, 14874, 14896,
14918, 14941, 14963, 14986, 15008, 15030, 15053, 15075,
15097, 15120, 15142, 15164, 15186, 15209, 15231, 15253,
15276, 15298, 15320, 15342, 15364, 15387, 15409, 15431,
15453, 15475, 15498, 15520, 15542, 15564, 15586, 15608,
15630, 15652, 15674, 15697, 15719, 15741, 15763, 15785,
15807, 15829, 15851, 15873, 15895, 15917, 15939, 15961,
15983, 16005, 16027, 16048, 16070, 16092, 16114, 16136,
16158, 16180, 16202, 16224, 16245, 16267, 16289, 16311,
16333, 16354, 16376, 16398, 16420, 16442, 16463, 16485,
16507, 16528, 16550, 16572, 16594, 16615, 16637, 16659,
16680, 16702, 16723, 16745, 16767, 16788, 16810, 16831,
16853, 16875, 16896, 16918, 16939, 16961, 16982, 17004,
17025, 17047, 17068, 17090, 17111, 17133, 17154, 17175,
17197, 17218, 17240, 17261, 17282, 17304, 17325, 17346,
17368, 17389, 17410, 17432, 17453, 17474, 17495, 17517,
17538, 17559, 17580, 17602, 17623, 17644, 17665, 17686,
17707, 17729, 17750, 17771, 17792, 17813, 17834, 17855,
17876, 17897, 17919, 17940, 17961, 17982, 18003, 18024,
18045, 18066, 18087, 18108, 18129, 18149, 18170, 18191,
18212, 18233, 18254, 18275, 18296, 18317, 18337, 18358,
18379, 18400, 18421, 18441, 18462, 18483, 18504, 18525,
18545, 18566, 18587, 18607, 18628, 18649, 18669, 18690,

105

18711, 18731, 18752, 18773, 18793, 18814, 18834, 18855,
18876, 18896, 18917, 18937, 18958, 18978, 18999, 19019,
19040, 19060, 19081, 19101, 19121, 19142, 19162, 19183,
19203, 19223, 19244, 19264, 19284, 19305, 19325, 19345,
19366, 19386, 19406, 19426, 19447, 19467, 19487, 19507,
19527, 19548, 19568, 19588, 19608, 19628, 19648, 19669,
19689, 19709, 19729, 19749, 19769, 19789, 19809, 19829,
19849, 19869, 19889, 19909, 19929, 19949, 19969, 19989,
20009, 20029, 20049, 20068, 20088, 20108, 20128, 20148,
20168, 20187, 20207, 20227, 20247, 20267, 20286, 20306,
20326, 20346, 20365, 20385, 20405, 20424, 20444, 20464,
20483, 20503, 20522, 20542, 20562, 20581, 20601, 20620,
20640, 20659, 20679, 20698, 20718, 20737, 20757, 20776,
20796, 20815, 20835, 20854, 20873, 20893, 20912, 20931,
20951, 20970, 20989, 21009, 21028, 21047, 21067, 21086,
21105, 21124, 21143, 21163, 21182, 21201, 21220, 21239,
21258, 21278, 21297, 21316, 21335, 21354, 21373, 21392,
21411, 21430, 21449, 21468, 21487, 21506, 21525, 21544,
21563, 21582, 21601, 21620, 21639, 21658, 21676, 21695,
21714, 21733, 21752, 21770, 21789, 21808, 21827, 21846,
21864, 21883, 21902, 21920, 21939, 21958, 21976, 21995,
22014, 22032, 22051, 22070, 22088, 22107, 22125, 22144,
22162, 22181, 22199, 22218, 22236, 22255, 22273, 22292,
22310, 22328, 22347, 22365, 22384, 22402, 22420, 22439,
22457, 22475, 22494, 22512, 22530, 22548, 22567, 22585,
22603, 22621, 22639, 22658, 22676, 22694, 22712, 22730,
22748, 22766, 22784, 22802, 22820, 22839, 22857, 22875,
22893, 22911, 22929, 22946, 22964, 22982, 23000, 23018,
23036, 23054, 23072, 23090, 23107, 23125, 23143, 23161,
23179, 23196, 23214, 23232, 23250, 23267, 23285, 23303,
23320, 23338, 23356, 23373, 23391, 23409, 23426, 23444,
23461, 23479, 23496, 23514, 23531, 23549, 23566, 23584,
23601, 23619, 23636, 23654, 23671, 23688, 23706, 23723,
23740, 23758, 23775, 23792, 23810, 23827, 23844, 23861,
23879, 23896, 23913, 23930, 23947, 23964, 23982, 23999,
24016, 24033, 24050, 24067, 24084, 24101, 24118, 24135,
24152, 24169, 24186, 24203, 24220, 24237, 24254, 24271,
24288, 24305, 24321, 24338, 24355, 24372, 24389, 24406,
24422, 24439, 24456, 24473, 24489, 24506, 24523, 24539,
24556, 24573, 24589, 24606, 24622, 24639, 24656, 24672,
24689, 24705, 24722, 24738, 24755, 24771, 24788, 24804,
24820, 24837, 24853, 24870, 24886, 24902, 24919, 24935,
24951, 24968, 24984, 25000, 25016, 25033, 25049, 25065,
25081, 25097, 25114, 25130, 25146, 25162, 25178, 25194,
25210, 25226, 25242, 25258, 25274, 25290, 25306, 25322,
25338, 25354, 25370, 25386, 25402, 25418, 25434, 25449,
25465, 25481, 25497, 25513, 25528, 25544, 25560, 25576,
25591, 25607, 25623, 25638, 25654, 25670, 25685, 25701,
25717, 25732, 25748, 25763, 25779, 25794, 25810, 25825,
25841, 25856, 25872, 25887, 25902, 25918, 25933, 25949,
25964, 25979, 25995, 26010, 26025, 26040, 26056, 26071,
26086, 26101, 26117, 26132, 26147, 26162, 26177, 26192,
26207, 26222, 26237, 26253, 26268, 26283, 26298, 26313,
26328, 26343, 26357, 26372, 26387, 26402, 26417, 26432,
26447, 26462, 26477, 26491, 26506, 26521, 26536, 26550,
26565, 26580, 26595, 26609, 26624, 26639, 26653, 26668,

106

26682, 26697, 26712, 26726, 26741, 26755, 26770, 26784,
26799, 26813, 26828, 26842, 26856, 26871, 26885, 26900,
26914, 26928, 26943, 26957, 26971, 26985, 27000, 27014,
27028, 27042, 27056, 27071, 27085, 27099, 27113, 27127,
27141, 27155, 27169, 27183, 27198, 27212, 27226, 27240,
27253, 27267, 27281, 27295, 27309, 27323, 27337, 27351,
27365, 27378, 27392, 27406, 27420, 27434, 27447, 27461,
27475, 27488, 27502, 27516, 27529, 27543, 27557, 27570,
27584, 27597, 27611, 27625, 27638, 27652, 27665, 27678,
27692, 27705, 27719, 27732, 27746, 27759, 27772, 27786,
27799, 27812, 27826, 27839, 27852, 27865, 27879, 27892,
27905, 27918, 27931, 27944, 27957, 27971, 27984, 27997,
28010, 28023, 28036, 28049, 28062, 28075, 28088, 28101,
28114, 28127, 28139, 28152, 28165, 28178, 28191, 28204,
28216, 28229, 28242, 28255, 28267, 28280, 28293, 28306,
28318, 28331, 28343, 28356, 28369, 28381, 28394, 28406,
28419, 28431, 28444, 28456, 28469, 28481, 28494, 28506,
28518, 28531, 28543, 28556, 28568, 28580, 28592, 28605,
28617, 28629, 28641, 28654, 28666, 28678, 28690, 28702,
28714, 28727, 28739, 28751, 28763, 28775, 28787, 28799,
28811, 28823, 28835, 28847, 28859, 28870, 28882, 28894,
28906, 28918, 28930, 28942, 28953, 28965, 28977, 28989,
29000, 29012, 29024, 29035, 29047, 29059, 29070, 29082,
29093, 29105, 29116, 29128, 29139, 29151, 29162, 29174,
29185, 29197, 29208, 29220, 29231, 29242, 29254, 29265,
29276, 29288, 29299, 29310, 29321, 29332, 29344, 29355,
29366, 29377, 29388, 29399, 29410, 29422, 29433, 29444,
29455, 29466, 29477, 29488, 29499, 29510, 29520, 29531,
29542, 29553, 29564, 29575, 29586, 29596, 29607, 29618,
29629, 29639, 29650, 29661, 29672, 29682, 29693, 29703,
29714, 29725, 29735, 29746, 29756, 29767, 29777, 29788,
29798, 29809, 29819, 29830, 29840, 29850, 29861, 29871,
29881, 29892, 29902, 29912, 29923, 29933, 29943, 29953,
29963, 29974, 29984, 29994, 30004, 30014, 30024, 30034,
30044, 30054, 30064, 30074, 30084, 30094, 30104, 30114,
30124, 30134, 30144, 30154, 30163, 30173, 30183, 30193,
30203, 30212, 30222, 30232, 30241, 30251, 30261, 30270,
30280, 30290, 30299, 30309, 30318, 30328, 30337, 30347,
30356, 30366, 30375, 30385, 30394, 30403, 30413, 30422,
30431, 30441, 30450, 30459, 30469, 30478, 30487, 30496,
30505, 30515, 30524, 30533, 30542, 30551, 30560, 30569,
30578, 30587, 30596, 30605, 30614, 30623, 30632, 30641,
30650, 30659, 30668, 30677, 30685, 30694, 30703, 30712,
30721, 30729, 30738, 30747, 30755, 30764, 30773, 30781,
30790, 30799, 30807, 30816, 30824, 30833, 30841, 30850,
30858, 30867, 30875, 30883, 30892, 30900, 30909, 30917,
30925, 30934, 30942, 30950, 30958, 30967, 30975, 30983,
30991, 30999, 31007, 31016, 31024, 31032, 31040, 31048,
31056, 31064, 31072, 31080, 31088, 31096, 31104, 31112,
31119, 31127, 31135, 31143, 31151, 31159, 31166, 31174,
31182, 31190, 31197, 31205, 31213, 31220, 31228, 31235,
31243, 31251, 31258, 31266, 31273, 31281, 31288, 31296,
31303, 31311, 31318, 31325, 31333, 31340, 31347, 31355,
31362, 31369, 31377, 31384, 31391, 31398, 31405, 31413,
31420, 31427, 31434, 31441, 31448, 31455, 31462, 31469,
31476, 31483, 31490, 31497, 315604, 31511, 31518, 31525,

107

b

31531,
31586,
31639,
316909,
31741,
31799,
31838,
31885,
31931,
31976,
32019,
32061,
32102,
32142,
321809,
32217,
32254,
32288,
32322,
32354,
32386,
32416,
32444,
32472,
32498,
32523,
32547,
325709,
32591,
32612,
32630,
32648,
32665,
32680,
32694,
32707,
32718,
32729,
32738,
32746,
32752,
32758,
32762,
32765,
32767,

31538,
31592,
31645,
31697,
31747,
31796,
31844,
31891,
31937,
31981,
32024,
32066,
32107,
32147,
32185,
32222,
32258,
32293,
32326,
32358,
323909,
32419,
32448,
32475,
32502,
32526,
32550,
32573,
32594,
32614,
32633,
326509,
32667,
32682,
32696,
32708,
32720,
327309,
32739,
32747,
32753,
32758,
32762,
32765,
32767,

31545,
31599,
31652,
31703,
31753,
31802,
318509,
31897,
31942,
31987,
320309,
32071,
32112,
32151,
321909,
32227,
32262,
32297,
323309,
32362,
32393,
32423,
32451,
32479,
32505,
32529,
32553,
32575,
32596,
32616,
32635,
32652,
32669,
32684,
32697,
32710,
32721,
32731,
32740,
32747,
32754,
32759,
32763,
32765,
32767,

31552,
31606,
31658,
31709,
31759,
31808,
31856,
31903,
31948,
31992,
32035,
32077,
32117,
32156,
32194,
32231,
32267,
32301,
32334,
32366,
32397,
32427,
32455,
32482,
32508,
32533,
32556,
32578,
32599,
32619,
32637,
32655,
32671,
32685,
32699,
32711,
32722,
32732,
32741,
32748,
32754,
32759,
32763,
32766,
32767,

31559,
31612,
31665,
31716,
31766,
31814,
31862,
31908,
31953,
31997,
32040,
32082,
32122,
32161,
32199,
32236,
32271,
32305,
32338,
323709,
32401,
32430,
32458,
32485,
32511,
32535,
32559,
32581,
32602,
32621,
32639,
32657,
32672,
32687,
32701,
32713,
32724,
32733,
32742,
32749,
32755,
32760,
32764,
32766,
32767,

31565,
31619,
31671,
31722,
31772,
318209,
31868,
31914,
31959,
32003,
32045,
32087,
32127,
32166,
32204,
32240,
32275,
32310,
32342,
32374,
32405,
32434,
32462,
32489,
32514,
32538,
32562,
32583,
32604,
32624,
32642,
32659,
32674,
32689,
32702,
32714,
32725,
32735,
32743,
32750,
32756,
32760,
32764,
32766,
32767,

31572,
31625,
31677,
31728,
31778,
31826,
31874,
31920,
31965,
32008,
32051,
32092,
32132,
32171,
32208,
32245,
32280,
32314,
32346,
32378,
32408,
32437,
32465,
32492,
32517,
32541,
32564,
32586,
32607,
32626,
32644,
32661,
32676,
32691,
32704,
32716,
32726,
32736,
32744,
32751,
32756,
32761,
32764,
32766,
32767,

31579,
31632,
31684,
31735,
31784,
31832,
31879,
31925,
31979,
32014,
32056,
32097,
32137,
32175,
32213,
32249,
32284,
32318,
32350,
32382,
32412,
32441,
32469,
32495,
32520,
32544,
32567,
32589,
32609,
32628,
32646,
32663,
32678,
32692,
32705,
32717,
32727,
32737,
32745,
32752,
32757,
32761,
32765,
32766,
32767,

108

/*

* sintable.h

*

* Created on: May 1, 2017
* Author: evan

*x/

#ifndef SINTABLE_H_
#define SINTABLE_H_

#include "ezdsp5535.h"
#define SINTABLE_LENGTH 2048

extern const Intlé sintable[SINTABLE_LENGTHI;

#endif /x SINTABLE_H_ */

109

/*
%k
k

*

*

*/

spi_config.c

Created on: May 25, 2017
Author: evan

#include "spi_config.h"
#include "csl_gpio.h"

#include "../global_vars.h"

#define SPI_RW_WAIT 100

SPI_Config spi_hwConfig;

// SPI data containers
Uint16 encoders[19];
Uintlé pots[81;

Uintl6 switches;
Uint16 midi[31];

void spi_init(void) {

[skskokokokskskskskokoksksk sk skokoksk sk sk skokokok sk sk sk sk ok ok ok ok
* Configure SPI peripheral *
sookokskskskokokokskskskskokoksksk sk skokoksksk sk skokskokskok sk ok /

// Copy and paste from CSL, but changed
// pin multiplexing mode to PPMODE_MODE6
volatile Uintl1é6 delay;

ioport volatile CSL_SysRegs *sysRegs;

sysRegs = (CSL_SysRegs *)CSL_SYSCTRL_REGS;
CSL_FINS(sysRegs—>PCGCR1, SYS_PCGCR1_SPICG, CSL_SYS_PCGCR1_SPICG_ACTIVE);

/* Value of 'Reset Counter' x/
CSL_FINS(sysRegs—>PSRCR, SYS_PSRCR_COUNT, 0x20);

CSL_FINS(sysRegs—>PRCR, SYS_PRCR_PG4_RST, CSL_SYS_PRCR_PG4_RST_RST);
for(delay = 0; delay < 100; delay++);

CSL_FINS(sysRegs—>EBSR, SYS_EBSR_PPMODE, CSL_SYS_EBSR_PPMODE_MODE1);
// End of CSL copy paste

hSpi = &SPI_Instance;

hSpi->mode = SPI_CS_NUM_1;
hSpi->opMode = SPI_POLLING_MODE;

spi_hwConfig.spiClkDiv 25;
spi_hwConfig.wLen SPI_WORD_LENGTH_S8;
spi_hwConfig.frlLen 1;

1
SPI_WORD_IRQ_DISABLE;
SPI_FRAME_IRQ_DISABLE;
SPI_CS_NUM_1;

spi_hwConfig.wcEnable
spi_hwConfig.fcEnable
spi_hwConfig.csNum

110

SPI_DATA_DLY_@;
SPI_CSP_ACTIVE_LOW;
SPI_CLKP_LOW_AT_IDLE;
SPI_CLK_PH_RISE_EDGE;

spi_hwConfig.dataDelay
spi_hwConfig.csPol
spi_hwConfig.clkPol
spi_hwConfig.clkPh

SPI_config(hSpi, &spi_hwConfig);

/ skskokskskokokskskok sk skok ok sk ok sk sk sk ok sk skok sk sk skok sk skok sk sk ok sk sk sk ok sk skok sk k
* Enable level shifter (set OE high) *
* GPIO pin 13 *
skokokskoskokskskok ok sk ok sk sk ok sk sk sk sk skok sk skok ok sk ok sk sk skok sk sk sk sk skok sk sk sk ok /
CSL_GpioObj gpioObj;
CSL_GpioObj *hGpio;
CSL_Status status;

hGpio = GPIO_open(&gpioObj, &status);

CSL_GpioPinConfig config;

config.pinNum CSL_GPIO_PIN13;
config.direction CSL_GPIO_DIR_OUTPUT;
config.trigger CSL_GPIO_TRIG_CLEAR_EDGE;

GPIO_configBit(hGpio, &config);
GPIO_write(hGpio, CSL_GPIO_PIN13, 1);
¥

void spi_write(Uintlé *write_buf, Uintl1é buf_len) {
// set frame length
CSL_FINS(CSL_SPI_REGS—>SPICMD1, SPI_SPICMD1_FLEN, buf_len-1);
//SPI_write(hSpi, write_buf, buf_len);

// swipped from cls_spi.c SPI_read

volatile Uintlé bufIndex;

Uintl6 spiStatusReg;

volatile Uint1é spiBusyStatus;
volatile Uint1é spiWcStaus;
volatile Uint1é delay;

/* Write Word length set by the user */
bufIndex = 0;

while(bufIndex < buf_len)

{

CSL_SPI_REGS—>SPIDR2
CSL_SPI_REGS—>SPIDR1
bufIndex++;

(Uint16) (write_buf[bufIndex] << 0x08);
0x0000;

/* Set command for Writting to registers x/
CSL_FINS(CSL_SPI_REGS->SPICMD2, SPI_SPICMD2_CMD, SPI_WRITE_CMD);

for(delay = 0; delay < SPI_RW_WAIT; delay++);

do

{
spiStatusReg = CSL_SPI_REGS->SPISTAT1;
spiBusyStatus = (spiStatusReg & CSL_SPI_SPISTAT1_BSY_MASK);
spiWcStaus = (spiStatusReg & CSL_SPI_SPISTAT1_CC_MASK);

111

Ywhile((spiBusyStatus == CSL_SPI_SPISTAT1_BSY_BUSY) &&
(spiWcStaus != CSL_SPI_SPISTAT1_CC_MASK));

void spi_read(Uintlé *read_buf, Uintlé buf_len) {

// set frame length
CSL_FINS(CSL_SPI_REGS—->SPICMD1, SPI_SPICMD1_FLEN, buf_len-1);

// swipped from cls_spi.c SPI_read
volatile Uintlé bufIndex;
Intlé spiStatusReg;

volatile Intlé6 spiBusyStatus;
volatile Intlé6 spiWcStaus;
volatile Uintl1lé6 delay;

bufIndex = 0;

/* Read Word length set by the user x/

while(bufIndex < buf_len)

{
// Clear spi data regs
CSL_SPI_REGS->SPIDR1
CSL_SPI_REGS->SPIDR2

.
1

0
0;

/* Set command for reading buffer x/
CSL_FINS(CSL_SPI_REGS->SPICMD2, SPI_SPICMD2_CMD,
CSL_SPI_SPICMD2_CMD_READ);

for(delay = 0; delay < SPI_RW_WAIT; delay++);
do

{
spiStatusReg = CSL_SPI_REGS->SPISTAT1;

spiBusyStatus = (spiStatusReg & CSL_SPI_SPISTAT1_BSY_MASK);

spiWcStaus = (spiStatusReg & CSL_SPI_SPISTAT1_CC_MASK);
} while ((spiBusyStatus == CSL_SPI_SPISTAT1_BSY_BUSY) &&
(spiWcStaus != CSL_SPI_SPISTAT1_CC_MASK));

// read data
read_buf[bufIndex] = (CSL_SPI_REGS->SPIDR1 & OxFF);
bufIndex++;

112

/*

* spi_config.h

k

* Created on: May 25, 2017
* Author: evan

*/

#ifndef SPI_CONFIG_H_
#define SPI_CONFIG_H_

#include "csl_spi.h"

#define SPI_MIDI CMD 0x01
#define SPI_ENC_CMD ©x02
#define SPI_POT_CMD ©x03
#define SPI_SWT_CMD 0Ox04

extern CSL_SpiHandle hSpi;
extern SPI_Config spi_hwConfig;
void spi_init(void);

void spi_write(Uintlé swrite_buf, Uintlé buf_len);
void spi_read(Uintlé6 xread_buf, Uint16 buf_len);

#endif /* SPI_CONFIG_H_ */

113

ATMega directory structure

—— SPI.c

—— SPI.h

F—— SynthMux.c
F—— SynthMux.h
— encoder.c
F—— encoder.h
F— k25m.c

— k25m.h

— lcd.c

— lcd.h

F—— main.c

F—— main.hex

— makefile

—— midi.c

F—— midi.h

—— potadc.c

—— potadc.h

— serial usb.c
L— serial usb.h

#include

"encoder.h"

#include <avr/io.h>

void check_encoder(Encoderx enc) {

if ((xenc->a_port & enc->a_pin) == enc->a_pin && enc->timer != 0) {
enc—->timer——;

¥

if ((xenc->a_port & enc->a_pin) == 0 && enc->timer == 0) {

if ((kenc->b_port & enc->b_pin) == 0) {

enc->count——;
} else {
enc->count++;

¥

enc->timer = 4;

}

void encoder_init(void) {

DDRE &= ~((1<<ENC_SYNTH_PRESET_A) | (1<<ENC_SYNTH_PRESET_B));
DDRL &= ~(OxFF); // entire port L
DDRD &= ~((1<<ENC_FX2_SELECT_B));
DDRG &= ~((1<<ENC_FX2_PARAM_3_B) | (1<<ENC_FX2_SELECT_A) | (1<<ENC_FX2_PARAM_3_A)

)i

DDRC &= ~(OxFF);
DDRA &= ~(OxFF);
DDRK &= ~(OxFF);

// Set pull ups

PORTE |
PORTL |
PORTD |
PORTG |
PORTC |
PORTA |
PORTK |

encoders[0]
encoders[0]
encoders[0]
encoders[0]

encoders[1]
encoders[1]
encoders[1]
encoders[1]

encoders[2]
encoders[2]
encoders([2]
encoders[2]

encoders[3]
encoders[3]
encoders[3]

.a_pin
.b_pin
.a_port
.b_port

.a_pin
.b_pin
.a_port
.b_port

.a_pin
.b_pin
.a_port
.b_port

.a_pin
.b_pin
.a_port

// entire port C
// entire port A
// entire port k

entire port C
entire port A
entire port k

1<<ENC_FX1_SELECT_A;
1<<ENC_FX1_SELECT_B;
&PINC;
&PINC;

1<<ENC_FX1_PARAM_0O_A;
1<<ENC_FX1_PARAM_0_B;
&PINC;
&PINC;

1<<ENC_FX1_PARAM_1_A;
1<<ENC_FX1_PARAM_1_B;
&PINA;
&PINA;

1<<ENC_FX1_PARAM_2_A;
1<<ENC_FX1_PARAM_2_B;
&PINA;

(1<<ENC_SYNTH_PRESET_A) | (1<<ENC_SYNTH_PRESET_B) ;
OxFF; // entire port L
(1<<ENC_FX2_SELECT_B);
(1<<ENC_FX2_PARAM_3_B) | (1<<ENC_FX2_SELECT_A) | (1<<ENC_FX2_PARAM_3_A);
OxFF; //
OxFF; //
OxFF; //

115

encoders[3].b_port

encoders[4].a_pin
encoders[4].b_pin
encoders[4].a_port
encoders[4].b_port

encoders[5].a_pin
encoders[5].b_pin
encoders[5].a_port
encoders[5].b_port

encoders[6].a_pin
encoders[6].b_pin
encoders[6].a_port
encoders[6].b_port

encoders[7].a_pin
encoders[7].b_pin
encoders[7].a_port
encoders[7].b_port

encoders[8].a_pin
encoders[8].b_pin
encoders[8].a_port
encoders[8].b_port

encoders[9].a_pin
encoders[9].b_pin
encoders[9].a_port
encoders[9].b_port

encoders[10]
encoders[10]
encoders[10]
encoders[10]

encoders[11]
encoders[11]
encoders[11]
encoders[11]

encoders[12]
encoders[12]
encoders[12]
encoders[12]

encoders[13]
encoders[13]
encoders[13]
encoders[13]

encoders[14]
encoders[14]
encoders[14]

.a_pin
.b_pin
.a_port
.b_port

.a_pin
.b_pin
.a_port
.b_port

.a_pin
.b_pin
.a_port
.b_port

.a_pin
.b_pin
.a_port
.b_port

.a_pin
.b_pin
.a_port

&PINA;

1<<ENC_FX1_PARAM_3_A;
1<<ENC_FX1_PARAM_3_B;
&PINC;
&PINC;

1<<ENC_FX2_SELECT_A;
1<<ENC_FX2_SELECT_B;
&PING;
&PIND;

1<<ENC_FX2_PARAM_0O_A;
1<<ENC_FX2_PARAM_0_B;
&PINA;
&PINA;

1<<ENC_FX2_PARAM_1_A;
1<<ENC_FX2_PARAM_1_B;
&PINA;
&PINA;

1<<ENC_FX2_PARAM_2_A;
1<<ENC_FX2_PARAM_2_B;
&PINC;
&PINC;

1<<ENC_FX2_PARAM_3_A;
1<<ENC_FX2_PARAM_3_B;
&PING;
&PING;

1<<ENC_SYNTH_PARAM_0O_A;
1<<ENC_SYNTH_PARAM_0O_B;
&PINL;
&PINK;

1<<ENC_SYNTH_PARAM_1_A;
1<<ENC_SYNTH_PARAM_1_B;
&PINL;
&PINK;

1<<ENC_SYNTH_PARAM_2_A;
1<<ENC_SYNTH_PARAM_2_B;
&PINL;
&PINK;

1<<ENC_SYNTH_PARAM_3_A;
1<<ENC_SYNTH_PARAM_3_B;
&PINL;
&PINK;

1<<ENC_SYNTH_PARAM_4_A;
1<<ENC_SYNTH_PARAM_4_B;
&PINL;

116

}

encoders[14]

encoders[15]
encoders[15]
encoders[15]
encoders[15]

encoders[16]
encoders[16]
encoders[16]
encoders[16]

encoders[17]
encoders[17]
encoders[17]
encoders[17]

encoders[18]
encoders[18]
encoders[18]
encoders[18]

uint8_t 1i;
for (i = 0;

.b_port

.a_pin
.b_pin
.a_port
.b_port

.a_pin
.b_pin
.a_port
.b_port

.a_pin
.b_pin
.a_port
.b_port

.a_pin
.b_pin
.a_port
.b_port

&PINK;

1<<ENC_SYNTH_PARAM_5_A;
1<<ENC_SYNTH_PARAM_5_B;
&PINL;
&PINK;

1<<ENC_SYNTH_PARAM_6_A;
1<<ENC_SYNTH_PARAM_6_B;
&PINL;
&PINK;

1<<ENC_SYNTH_PARAM_7_A;
1<<ENC_SYNTH_PARAM_7_B;
&PINL;
&PINK;

1<<ENC_SYNTH_PRESET_A;
1<<ENC_SYNTH_PRESET_B;
&PINE;
&PINE;

1< 19; i++) {

encoders[i].count = 0;

encoders[i].timer

¥

0;

117

#include <avr/io.h>

// Port
#define
#define
// Port
#define
#define
#define
#define
#define
#define
#define
#define
// Port
#define
// Port
#define
#define
#define
// Port
#define
#define
#define
#define
#define
#define
#define
#define
// Port
#define
#define
#define
#define
#define
#define
#define
#define
// Port
#define
#define
#define
#define
#define
#define
#define
#define

E

ENC_SYNTH_PRESET_A 3
ENC_SYNTH_PRESET_B 4

L
ENC_SYNTH_PARAM_0O_
ENC_SYNTH_PARAM_1_
ENC_SYNTH_PARAM_2_
ENC_SYNTH_PARAM_3_
ENC_SYNTH_PARAM_4 _
ENC_SYNTH_PARAM_5
ENC_SYNTH_PARAM_6
ENC_SYNTH_PARAM_7
D
ENC_FX2_SELECT_B 7
G
ENC_FX2_PARAM_3_B
ENC_FX2_SELECT_A 1
ENC_FX2_PARAM_3_A
C
ENC_FX1_PARAM_3_B
ENC_FX1_SELECT_A 1
ENC_FX1_PARAM_3_A
ENC_FX1_SELECT_B 3
ENC_FX2_PARAM_2_B
ENC_FX1_PARAM_O_A
ENC_FX2_PARAM_2_A
ENC_FX1_PARAM_0_B
A
ENC_FX1_PARAM_2_
ENC_FX2_PARAM_0_
ENC_FX1_PARAM_2_
ENC_FX2_PARAM_0_
ENC_FX2_PARAM_1_
ENC_FX1_PARAM_1_
ENC_FX2_PARAM_1_
ENC_FX1_PARAM_1_
K
ENC_SYNTH_PARAM_0O_
ENC_SYNTH_PARAM_1_
ENC_SYNTH_PARAM_2_
ENC_SYNTH_PARAM_3_
ENC_SYNTH_PARAM_4 _
ENC_SYNTH_PARAM_5_
ENC_SYNTH_PARAM_6_
ENC_SYNTH_PARAM_7_

B
A
A
B
B
A
A
B

struct enc_struct {
volatile uint8_t xa_port;
volatile uint8_t xb_port;

uint8_
uint8_
uint8_

t a_pin;
t b_pin;
t timer;

A
A
A
A
A
A
A
A

0
2
0

2

N OO &~

OFRPNWM~OIO N

B
B
B
B
B
B
B
B

NOOoPrPWNEO

OSFRPNWPOIO N

118

uint8_t count;
Fi
typedef struct enc_struct Encoder;

Encoder encoders[19];

void check_encoder(Encoderx);
void encoder_init(void);

119

#define F_CPU 16000000

#include
#include
#include
#include

#include

#include
#include

<avr/io.h>
<avr/interrupt.h>
<stdio.h>
<string.h>

"k25m.h"

"serial usb.h"
"midi.h"

void init_keys (void) {

DDRB &= ~(1<<PB6);
DDRH |= (1<<PH3)|(1<<PH4) | (1<<PH5) | (1<<PH6);
DDRB |= (1<<PB&)|(1<<PB5) | (1<<PB7);

// for debug

int i, 3j;

// DDRD |= (1<<PD@);

for (1 = @; 1 < KEY_ROW_COUNT; i++) {
for (j = ©; j < KEY_COL_COUNT; j++) {

keys[i][j].status =

KEY_OFF;

keys[il[j].contact_delta = 0;

keys[il[j].note_id =

}
}

strcpy(keys[01[0]
strcpy(keys[11[0]
strcpy(keys[2]1[0]
strcpy(keys[31[0]
strcpy(keys[41[0]
strcpy(keys[51[0]
strcpy(keys[61[0]
strcpy(keys[71[0]

strcpy(keys[01[1]
strcpy(keys[11[1]
strcpy(keys[21[1]
strcpy(keys[31[1]
strcpy(keys[41[1]
strcpy(keys[5]1[1]
strcpy(keys[61[1]
strcpy(keys[71[1]

strcpy(keys[01[2]
strcpy(keys[11[2]
strcpy(keys[2]1[2]
strcpy(keys[31[2]
strcpy(keys[41[2]
strcpy(keys[5]1[2]
strcpy(keys[61[2]
strcpy(keys[71[2]

strcpy(keys[01[3]

.note_name,
.note_name,
.note_name,
.note_name,
.note_name,
.note_name,
.note_name,
.note_name,

.note_name,
.note_name,
.note_name,
.note_name,
.note_name,
.note_name,
.note_name,
.note_name,

.note_name,
.note_name,
.note_name,
.note_name,
.note_name,
.note_name,
.note_name,
.note_name,

.note_name,

1+ 8%j + 60;

IIC @II);
IIC#@II);
IID @II);
IID#@II);
IIE @II);
IIF @II);
IIF#@II);
IIG @II);

IIG#@II);
IIA @II);
IIA#@II);
IIB @II);
IIC 1II);
"CH#H1");
"D 1");
"D#1");

"E 1");
"Eo1m);
"EH#1");
"G 1");
"GH1");
A1),
TA#L");
"B 1");

ng o);
120

¥

void init_timer@(void) {

1<<WGM@1; // oc@a oc@b both disconnected

= 256

TCCROA =

TCCROB = 1<<CS@1; // clk prescale

OCROA = 80; // 16MHz / 8 / 80 = 25kHz = 40us
TIMSKO = 1<<0CIEOGA;

}

static uint8_t key_column_count = 0;
static uint8_t key_row_count = 0;
static uint8_t cache_h, cache_b;
//ISR(TIMERO_COMPA vect) A
void poll_k25m() {
// PORTD |= (1<<PD@);

cache_h = PORTH;

cache_h &= ~COL_MSK;

cache_h |= COL_MSK & (key_column_count << COL_SFT);

PORTH = cache_h;

cache_h = PORTH;
cache_h &= ~ROW_MSK_H;

cache_h |= ROW_MSK_H & (key_row_count << ROW_SFT_H);

cache_b = PORTB;
PORTH = cache_h;
cache_b &= ~ROW_MSK_B;

cache_b |= ROW_MSK_B & (key_row_count << ROW_SFT_B);

PORTB = cache_b;

k = &(keysl[key_row_count][key_column_count/2]);

if (PINB & (1<<PB6)) |

if (key_column_count & 1) { // if column is odd (first contact)

if (k—->status == KEY_OFF
k—>status = KEY_CONTACT;
k—->contact_delta = 0;

s

else if (k—->status == KEY_

k—->contact_delta++;
}
}

else { // if column is even

) A

CONTACT) A

(second contact)

if (k—=>status == KEY_CONTACT) {

PORTD "= (1<<PDO);
k—->status = KEY_ON;
MidiPacket p;

p.status = MIDI_NOTE_ON;
p.note = k->note_id;

p.velocity = ~k->contact_delta;

mbuffer_write(p);

print_serial_usb("Key press detected. Buffer length = %u\n",

mbuffer_count());

// print_serial_usb("Key press detected.");

121

¥
else { // the switch is open, i.e. key is not pressed
if (k=>status == KEY_ON) {
k—->status = KEY_OFF;
MidiPacket p;
p.status = MIDI_NOTE_OFF;
p.note = k->note_id;
p.velocity = 0;
mbuffer_write(p);
} // KEY_ON
} // else: switch open

if (key_column_count == 6 && key_row_count == 0) {
key_column_count = 7;

¥

else if (key_column_count == 7 && key_row_count == 0) {
key_column_count = 0;

s

else if (key_row_count == 7) {

key_row_count = 0;

key_column_count++;
} else {

key_row_count++;

PORTD &= ~(1<<PD@);

122

#define COL_SFT 3
#define COL_MSK (7<<3)

#define ROW_SFT_H
#define ROW_MSK_H
#define ROW_SFT_B
#define ROW_MSK_B

1<<6)

—~wW~0

6<<3)
extern FILE uart_output;

enum key_status_enum {KEY_OFF, KEY_CONTACT, KEY_ON};
typedef enum key_status_enum KeyStatus;

struct key_struct {
KeyStatus status;
uint32_t contact_delta;
char note_namel[4];
uint8_t note_id;
}i
typedef struct key_struct Key;

#define KEY_ROW_COUNT 8
#define KEY_COL_COUNT 4
Key keys[81[41;

Key *k;

void init_keys(void);
void init_timer@(void);
void poll_k25m(void);

123

#include "lcd.h"

#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

FILE fx_lcd = FDEV_SETUP_STREAM(USART3_write_char, NULL, _FDEV_SETUP_WRITE);
FILE synth_lcd = FDEV_SETUP_STREAM(USART1_write_char, NULL, _FDEV_SETUP_WRITE);

void fx_cursor_move(int line, int row) {
USART3_write_char(OxFE, NULL);
int pos;
switch(line) {
case 0:
pos = 128 + row;
break;
case 1:
pos = 192 + row;
break;
default:
return;
break;
ks
USART3_write_char(pos, NULL);
¥

void synth_cursor_move(int line, int row) {
USART1_write_char(OxFE, NULL);
int pos;
switch(line) {
case 0:
pos = 128 + row;
break;
case 1:
pos = 192 + row;
break;
case 2:
pos = 148 + row;
break;
case 3:
pos = 212 + row;
break;
default:
return;
break;
}
USART1_write_char(pos, NULL);
¥

// LCD Synth

#ifndef F_CPU

#define F_CPU 16000000UL
#endif

124

#define BAUD 9600
#include <util/setbaud.h>
void fx_init(void){
/* Set baud rate *x/
UBRR3H = UBRRH_VALUE;
UBRR3L = UBRRL_VALUE;

#1if USE_2X
UCSR3A |= _BV(U2X0);
#else
UCSR3A &= ~(_BV(U2X0Q));
#endif

/* Enable transmitter x/

UCSR3B = (1<<TXEN3) | (1<TXCIE3);

/* Set frame format: 8data, 1stop bit */
UCSR3C = (3<<UCSZ30);

cbuffer_init(&fx_buf);
¥

int USART3_write_char(char c, FILE xstream) {
if (c == '"\n") {
USART3_write_char('\r', stream);
ks
cbuffer_write(&fx_buf, c);
return 0;

}

ISR(USART3_TX_vect)
{

fx_flush();
¥

void fx_flush(void) {
if (cbuffer_count(&fx_buf) > 0) {
UDR3 = chbuffer_read(&synth_buf);
¥
¥

// Synth

#ifndef F_CPU

#define F_CPU 16000000UL
#endif

#define BAUD 9600

#include <util/setbaud.h>

void synth_init(void){
/* Set baud rate x/

UBRR1H = UBRRH_VALUE;

UBRR1L = UBRRL_VALUE;
#1f USE_2X

UCSR1A |= _BV(U2X0);

#else

UCSR1A &= ~(_BV(U2X0Q));
125

#endif

/* Enable transmitter x/

UCSR1B = (1<<TXEN1) | (1<<TXCIE1);

/* Set frame format: 8data, 1stop bit */
UCSR1C = (3<<UCSZ30);

cbuffer_init(&synth_buf);
¥

int USART1_write_char(char c, FILE xstream) {
if (c == '"\n") {
USART1_write_char('\r', stream);
ks
cbuffer_write(&synth_buf, c);
return 0;

}

ISR(USART1_TX_ vect)

{

// PORTD "= (1<<PDO);
synth_flush();

// PORTD &= ~(1<<PD0);

¥

void synth_flush(void) {
if (cbuffer_count(&synth_buf) > @) {
UDR1 = cbuffer_read(&synth_buf);
¥
b

void cbuffer_init(CharBuffer xb)
{

b->write_loc = 0;

b->read_loc = 0;
h

void cbuffer_write(CharBuffer b, char c)

{
while (cbuffer_count(b) == CHAR_BUF_LEN - 1);
b->char_buffer[b->write_loc] = c;
b->write_loc = (b->write_loc + 1) % CHAR_BUF_LEN;

¥

char cbuffer_read(CharBuffer *b)
{
char ¢ = '\0';
if (cbuffer_count(b) > 0) {
¢ = b->char_buffer[b->read_loc];
b->read_loc = (b->read_loc + 1) % CHAR_BUF_LEN;
¥

return c;

¥

uint8_t cbuffer_count (CharBuffer xb) {
126

return (b->write_loc - b->read_loc + CHAR_BUF_LEN) % CHAR_BUF_LEN;
¥

127

#include <stdio.h>

#define CHAR_BUF_LEN 128

// Ring buffer
typedef struct {
volatile uint8_t write_loc;
volatile uint8_t read_loc;
uint8_t char_buffer[CHAR_BUF_LEN];
} CharBuffer;

void cbuffer_init(CharBuffer xb);

void cbuffer_write(CharBuffer b, char c);
char cbuffer_read(CharBuffer xb);

uint8_t cbuffer_count (CharBuffer xb);

// LCD

CharBuffer fx_buf;

void fx_cursor_move(int line, int row);

void fx_init(void);

int USART3_write_char(char c, FILE *stream);

void fx_flush(void);

extern FILE fx_lcd;

#define print_fx(...) fprintf(&fx_lcd, __VA_ARGS__)

// Synth

CharBuffer synth_buf;
void synth_cursor_move(int line, int row);
void synth_init(void);

int USART1_write_char(char c, FILE *stream);
void synth_flush(void);

extern FILE synth_lcd;

#define print_synth(...) fprintf(&synth_1lcd

|

VA_ARGS__)

128

/*

*

DANALOG.c

* %

Created: 5/25/2017 12:20:26 AM
Author : Vikrant

*

*/

#define F_CPU 16000000UL
#include <avr/interrupt.h>
#include <avr/io.h>
#include <stdio.h>
#include <util/delay.h>

#include "k25m.h"
#include "serial usb.h™
#include "SPI.h"
#include "SynthMux.h"
#include "lcd.h"
#include "potadc.h"
#include "encoder.h"
#include "midi.h"

int main(void)
{

/*Initialize Serial Printx*/
// USARTO_Init();

// /*xInitialize Keyboardx/
init_keys();
/117 init_timero();
mbuffer_init();

// /*Initialize Switches and Buttonsx/
// Synth_Mux_Init();

// /*Initialize Encoderssx/
encoder_init();

// /xInitialize ADCx/
// PotADC_Init();

// /xInitialize LCDs*/
synth_init();
// fx_init();

// /xInitialize SPIx/
SPI_SlaveInit();

// /*Enable Interruptsk/
sei();

// for debug
DDRD |= (1<<PDQ);

uint32_t counter = 0;
while (1)

129

/*Check Swtich and Button Positionsx*/
// if (counter == 0) {
// Synth_Mux_Select();
// }

/*Check Encodersx/
uint8_t 1i;
for (1 = 0; 1 < 19; i++) {
check_encoder(&encoders[il);
¥
// synth_cursor_move(0,0);
// print_synth("%03u", encoders[12].count);
// print_synth("buffer count = %04d", cbuffer_count(&synth_buf));

// synth_cursor_move(1,0);

// print_synth("counter = %04d", counter++);
// synth_flush();

// _delay_ms(1);

/*Check Potentiometer Positionsx/
// if (counter == 50) {
// PotADC_Poll();
// }

poll_k25m();

if (cbuffer_count(&synth_buf) == 0) {
if (counter++ == 1000) {

counter = 0;

synth_cursor_move(0,0);

print_synth("%03u %03u %03u %03u ", encoders[11].count, encoders[13
l.count, encoders[15].count, encoders[17].count);

print_synth("mDEP mATK mSUS DECAY");

print_synth("%03u %03u %03u %03u ", encoders[10].count, encoders[12
l.count, encoders[14].count, encoders[16].count);

print_synth("mR80 cATK cSUS PHASE");

synth_flush();

// print_serial_usb("MIDI buffer length = %u\r", mbuffer_count());
}
}

130

PORT=/dev/cu.usbmodeml1411

MCU=atmega2560

CFLAGS=-g -Wall -mcall-prologues -mmcu=$(MCU) -03
LDFLAGS=-W1,-gc-sections -W1l,-relax

CC=avr—-gcc

TARGET=main

OBJECT_FILES=main.o k25m.o lcd.o serial_usb.o encoder.o SynthMux.o
SPI.o potadc.o midi.o

all: $(TARGET).hex

clean:
rm —f *.0 *.hex *.obj *.hex

%.hex: %.obj
avr-objcopy -R .eeprom -0 ihex $< $@

%.0bj: $(0OBJECT_FILES)
$(CC) $(CFLAGS) $(OBJECT_FILES) $(LDFLAGS) -o $@

program: $(TARGET).hex

avrdude -p $(MCU) -c wiring -P $(PORT) -b 115200 -F -U
flash:w:$(TARGET).hex -D

131

#define F_CPU 16000000UL
#include <avr/io.h>
#include <avr/interrupt.h>
#include "midi.h"

MidiPacket midi_buffer[M_BUF_LEN];
uint8_t buf_write_loc, buf_read_loc;

#undef BAUD

#define BAUD 31250

#include <util/setbaud.h>

void USART2_Init(void){
/* Set baud rate *x/

UBRR2H = UBRRH_VALUE;

UBRR2L = UBRRL_VALUE;
#1if USE_2X

UCSR2A |= _BV(U2X2);

#else

UCSR2A &= ~(_BV(U2X2));

#endif

/* Enable reciver with interupts =/
UCSR2B = (1<<RXEN2) | (1<<RXCIE2);
/* Set frame format: 8data, 1stop bit */
UCSR2C = (3<<UCSZ20);

b

ISR(USART2_RX_vect)

{
// need to fix this later
//buffer_write(UDR2);

}

void mbuffer_write(MidiPacket p) {
if (!mbuffer_full()) {
midi_buffer[buf_write_loc] = p;
buf_write_loc = (buf_write_loc + 1) % M_BUF_LEN;
¥
¥

MidiPacket mbuffer_read(void) {
MidiPacket p;
if (!mbuffer_empty()) {
p = midi_buffer[buf_read_loc];
buf_read_loc = (buf_read_loc + 1) % M_BUF_LEN;
ks
return p;

¥

void mbuffer_init(void) {
buf_write_loc = 0;
buf_read_loc = 0;

s

uint8_t mbuffer_empty(void) {
132

return buf_read_loc == buf_write_loc;

¥

uint8_t mbuffer_full(void) {
return mbuffer_count() == M_BUF_LEN - 1;
¥

uint8_t mbuffer_count(void) {
return (buf_write_loc - buf_read_loc + M_BUF_LEN) % M_BUF_LEN;

¥

133

// Init UART RX to be compatible with MIDI
void USART2_Init(void);

#define MIDI_NOTE_ON ©b10010000
#define MIDI_NOTE_OFF 0b10000000

/* ==== MIDI buffer ==== %/
#define M_BUF_LEN 32

struct midi_packet_struct {
uint8_t status;
uint8_t note;
uint8_t velocity;

}i

typedef struct midi_packet_struct MidiPacket;

// MIDI state variables
extern MidiPacket midi_buffer[M_BUF_LEN];
extern uint8_t buf_write_loc, buf_read_loc;

// Buffer helper functions

void mbuffer_init(void);

void mbuffer_write(MidiPacket data);
MidiPacket mbuffer_read(void);
uint8_t mbuffer_empty (void);
uint8_t mbuffer_full (void);

uint8_t mbuffer_count (void);

134

//potadc

#include
#include
#include
#include
#include

uint8_t
uint8_t

void Pot
{
ADMU
ADCS
¥

void Pot
{ .
int
for(
{

}
adc_
//
for(
{

}

.C

"serial usb.h"
"potadc.h"
<avr/io.h>
<stdio.h>
<util/delay.h>

adc_cache;
adc_arrayl[81];

ADC_Init(void)

X = (1<<REFSO) | (1<<ADLAR);
RA = (1<<ADEN);

ADC_Poll(void)

i, 3i _
1=0; 1<8; 1i++)

adc_cache = ADMUX;
adc_cache &= ~(ADC_MSK);
adc_cache |= i;

ADMUX = adc_cache;

ADCSRA |= (1<<ADSC);

while (ADCSRA & (1<<ADSC));
adc_array[i] = ADCH;

array[5] = ~(adc_array[5]);

j=0; j<8; j++)

//print_serial_usb("%u\n", adc_array[jl);

135

//potadc.h

#include <avr/io.h>
#ifndef F_CPU

#define F_CPU 16000000
#endif

#define ADC_MSK 7

extern uint8_t adc_arrayl[8];

void PotADC_Init(void);
void PotADC_Poll(void);

136

#include "serial usb.h"
#include <avr/io.h>

FILE serial_usb = FDEV_SETUP_STREAM(USARTO_write_char, NULL, _FDEV_SETUP_WRITE)

1

#ifndef F_CPU
#define F_CPU 16000000
#endif

#define BAUD_TOL 5

#define BAUD 115200

#include <util/setbaud.h>

void USARTO_Init(void){
/* Set baud rate */

UBRROH = UBRRH_VALUE;
UBRROL = UBRRL_VALUE;
#1if USE_2X

UCSROA |= _BV(U2X0);
#else

UCSROA &= ~(_BV(U2X0));
#endif

/* Enable and transmitter x/
UCSROB = (1<<TXENO);
/* Set frame format: 8data, 1stop bit */
UCSROC = (3<<UCSZ00);
¥

int USARTO_write_char(char c, FILE xstream) {

while (!'(UCSROA & (1<<UDREQ)));

UDRO = c;

if (c == "\n') {

USARTO_write_char('\r', stream);

h

return 0;
// while (!'(UCSROA && (1<< TXC®))); // loop until tx complete is set
¥

137

#include <stdio.h>

void USARTO_Init(void);
int USARTO_write_char(char c, FILE kstream);
extern FILE serial_usb;

#define print_serial_usb(...) fprintf(&serial_usb, __VA_ARGS__)

138

//SPI.c

#include "potadc.h"
#include "encoder.h"
#include "midi.h"

#include "SPI.h"

#include <avr/io.h>

#include <avr/interrupt.h>
#include "serial usb.h"
#include <util/delay.h>
uint8_t spidata, spistat = 0;
uint8_t switches;

/*ISR State Variablesx/
uint8_t spi_tx_cnt = 0;
uint8_t spi_tx_type = 0;

// MIDI transfer state
#define MIDI_TX_STATUS_SENT 2
#define MIDI_TX_NOTE_SENT 1
MidiPacket current_packet;

void SPI_SlaveInit(void)

{
/* Set MISO output, all others input */
DDRB |= (1<<DDB3);
/* Enable SPI %/
SPCR = (1<<SPE)|(1<<SPIE);
sei();
b

ISR(SPI_STC_vect)
{
if(spi_tx_cnt>0)
{
if(spi_tx_type == SPI_MIDI_CMD)
{
switch (spi_tx_cnt) {
case MIDI_TX_STATUS_SENT:
SPDR = current_packet.note;
break;
case MIDI_TX_NOTE_SENT:
SPDR = current_packet.velocity;

break;
¥
spi_tx_cnt——;
¥
else if(spi_tx_type == SPI_ENC_CMD)
{
SPDR = encoders[19-spi_tx_cnt].count;
spi_tx_cnt——;
}
else if(spi_tx_type == SPI_POT_CMD)
{

139

SPDR = adc_array[8-spi_tx_cnt];
spi_tx_cnt——;
s
¥
else {
spidata = SPDR;
if(spidata == SPI_MIDI_CMD)
{
if (!mbuffer_empty()) {
current_packet = mbuffer_read();
SPDR = current_packet.status;
spi_tx_cnt = MIDI_TX_STATUS_SENT;
spi_tx_type = SPI_MIDI_CMD;
¥
else {
SPDR = 0;
¥
s
else if(spidata == SPI_ENC_CMD)
{
SPDR = encoders[0].count;
spi_tx_cnt = 18;
spi_tx_type = SPI_ENC_CMD;
¥
else if(spidata == SPI_POT_CMD)
{
SPDR = adc_arrayl[®@];
spi_tx_cnt = 7;
spi_tx_type = SPI_POT_CMD;
L
else if(spidata == SPI_SWT_CMD)
{
SPDR = switches;
L

140

#include <avr/io.h>
#include <stdio.h>

#define SPI_MIDI_CMD ©x01
#define SPI_ENC_CMD 0x02
#define SPI_POT_CMD 0x03
#define SPI_SWT_CMD 0Ox04

void SPI_SlaveInit(void);

char SPI_SlaveReceive(void);
extern uint8_t switches, spidata;

141

//Synth

#include
#include
#include
#include
#include

uint8_t

void Syn
{

¥

uint8_t

{
uint
uint
uint
uint
uint
uint

for(
{

Mux C file
"SynthMux.h"
"serial usb.h"
<avr/io.h>
<stdio.h>
<util/delay.h>

switches;
th_Mux_Init(void)

PORTJ |= (1<<PJO); //Set Pullup on PJO

DDRG |= (1<<DDG5); //Set PG5, PE5, PB7,
DDRE |= (1<<DDE5);
DDRB |= (1<<DDB7);
DDRD |= (1<<DDD2);

Synth_Mux_Select(void)

8_t cache_g
8_t cache_e
8_t cache_b
8_t cache_d
8_ t i=0;

8_t swl=0, sw2=0, sw3=0, sw4=0, swb=0;

OO

.
1
.
1
.
1
.
1

1=0; 1i<12; i++)

// Set SO

cache_g = PORTG;

cache_g &= ~(1<<PG5);

cache_g |= (1i&S0_MSK)<<S0O_SFT;
PORTG = cache_g;

// Set S1

cache_e = PORTE;

cache_e &= ~(1<<PE5);

cache_e |= (1i&S1_MSK)<<S1_SFT;
PORTE = cache_e;

//Set S2

cache_b = PORTB;

cache_b &= ~(1<<PB7);

cache_b |= (1i&S2_MSK)<<S2_SFT;
PORTB = cache_b;

//Set S3

cache_d = PORTD;

cache_d &= ~(1<<PD2);

cache_d |= (1i&S3_MSK)>>S3_SFT;
PORTD = cache_d;

_delay_us(1);

and

PD2 as outputs

142

if ((PINJ&(1<<PINJQ)) == 0)
{
switch(1)
{
case 0 :
swl = 5;
break;
case 1 :
swl = 3;
break;
case 2
swl = 4;
break;
case 3 :
swl = 2;
break;
case 4 :
swl = 1;
break;
case 5 :
sw2 = 2;
break;
case 6 :
sw2 = 3;
break;
case 7 :
sw2 = 1;
break;
case 8 :
sw3 = 1;
break;
case 9 :
swb = 1;
break;
case 10 :
sw4 = 1;
break;

¥
¥
switches = (swl<<5)|(sw2<<3) | (sw3<<2) | (sw4<<1)|sw5;
//print_serial_usb("%u\n",switches);
return switches;

143

//Synth Mux H file
#include <avr/io.h>

#ifndef
#define
#endif

#define
#define
#define
#define

#define
#define
#define
#define

F_CPU

F_CPU 16000000

SO_MSK
S1_MSK
S2_MSK
S3_MSK

SO_SFT
S1_SFT
S2_SFT
S3_SFT

extern uint8_t

ooA~ANBRE

= OB~ O

switches;

void Synth_Mux_Init(void);
uint8_t Synth_Mux_Select(void);

144

	dsp_code.pdf
	aic3204.c
	aic3204.h
	envelope.c
	envelope.h
	fetch_data.c
	fm.c
	fm.h
	global_vars.h
	i2s_dma.c
	i2s_dma.h
	main.c
	midi_queue.c
	midi_queue.h
	midi.c
	midi.h
	ringbuf.c
	ringbuf.h
	singen.c
	singen.h
	sintable.c
	sintable.h
	spi_config.c
	spi_config.h

	avr_code.pdf
	encoder.c
	encoder.h
	k25m.c
	k25m.h
	lcd.c
	lcd.h
	main.c
	makefile
	midi.c
	midi.h
	potadc.c
	potadc.h
	serial_usb.c
	serial_usb.h
	SPI.c
	SPI.h
	SynthMux.c
	SynthMux.h

