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STATEMENT OF DISCLAIMER 

This project is the result of a class assignment; thus, it has been graded and accepted as fulfillment of the 

course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information 

in this report is done at the risk of the user. These risks may include catastrophic failure of the device or 

infringement of patent or copyright laws. California Polytechnic State University, San Luis Obispo and 

its staff cannot be held liable for any use or misuse of this project.  
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Executive Summary 
 

This project, known as “Megan’s Treadmill,” was brought to the California Polytechnic State University 

(Cal Poly) mechanical engineering senior project class for the 2016 – 2017 school year by Michael Lara. 

Michael, the sports manager for San Luis Obispo County Special Olympics, has been sponsoring senior 

projects at Cal Poly for nine years. This project revolves around Megan, a 21-year-old Special Olympian 

in the local San Luis Obispo area who loves to move.  Due to a visual impairment, Megan is limited in 

the amount of time she can be active, as she relies on the help of a partner when she exercises. The goal 

of this project was to adapt a standard treadmill to provide a safe and accessible environment for Megan 

to exercise independently. 

 

During our team’s design development phase, we identified three functions that our design had to 

incorporate to fully solve the problem: controls, feedback, and support. All the components of our final 

design contribute to one of these function categories. 

 

The new control system was designed to be simple, intuitive, and accessible to Megan. To organize all 

the possible functions, controls were separated into primary and secondary groups. Primary controls 

consist of the commands essential to operation, including turning the treadmill on and off, pausing, and 

changing speeds. These commands are given through physical inputs located on the control panel, as they 

provide quick response and tactile feedback. There are two buttons (on/off and pause) and a rotary switch 

(speed levels). Secondary controls include the nonessential commands that add to the workout 

experience. The Amazon Alexa system was integrated to allow Megan to use voice commands to receive 

various data readouts (speed, distance travel, time of workout) and control music. 

 

The feedback systems provide information about the operation of the treadmill and Megan’s status. Our 

team implemented tactile feedback to help Megan stay centered on the treads and auditory feedback to 

inform her of the treadmill’s status. There is also a sensor grid providing information of Megan’s status 

to the control unit. With this information, the control unit can implement the correct protocols for the 

given situation.  

 

The support system allows Megan to physically interact with the treadmill safely. The railing system is 

bolted to a plywood base to provide strength and stability. The side rails extend along the entire treadmill 

to provide support for Megan during operation and as she gets on and off the treadmill. There are also 

multiple gripping surfaces for Megan to hold while exercising to ensure comfort and safety. 

 

To address the mechanical and electrical aspects associated with this project, multiple engineering 

disciplines were necessary. To this end, our team consisted of two mechanical engineers and one 

computer engineer. The different knowledge bases of our team assisted in producing a versatile and 

robust design. The mechanical and electrical components of our design were integrated to function 

cooperatively as an independent system. The final product contains both this new system and the original 

Woodway treadmill, creating a brand-new workout experience. 
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1. Introduction 

Megan is a 21-year-old Special Olympian in the local San Luis Obispo area who loves to move.  Due to 

a visual impairment, Megan is limited in the amount of time she can be active, as she relies on the help 

of a partner when she exercises. For example, during the school year, Megan participates in the Friday 

Club in the local recreation center where she teams up with a kinesiology student to obtain physical 

activity. She also competes every year in the Special Olympics held at Cuesta College. Megan races in 

the 50- and 100-meter dash holding a baton attached to a rope as a guide.  Her other source of training is 

on a treadmill; however, she is dependent on a guide to help her walk safely. While she enjoys this, 

Megan would like to be able to exercise safely without relying on assistance.  

 

Michael Lara, the sports manager for San Luis Obispo County Special Olympics, has been sponsoring 

senior projects at California Polytechnic State University (Cal Poly) for nine years. Mr. Lara wanted to 

help Megan increase her physical activity and find more independence, so he brought this project, known 

as “Megan’s Treadmill,” to the mechanical engineering senior project class. The goal of this project was 

to adapt a treadmill to provide a safe and accessible environment for Megan to exercise independently. 

 

Our team consisted of three senior engineering students attending Cal Poly: Daniel Byrne (ME), Michael 

Peck (ME), and Eddie Ruano (CPE). The different knowledge bases of our team assisted in producing a 

versatile and robust design. This final design report documents the full design process for this project, 

from start to finish.  In this report, our team will highlight the many steps we took to produce our final 

detailed design, as well as the process of turning this design into a fully functional product.  

 

2. Background 

2.1 Benefits of Physical Activity 

Routine physical activity promotes a healthy mental state with reduced stress and balanced mood. 

Individuals with disabilities who get consistent physical activity tend to have an improved quality of life, 

balance, and muscle strength1. The recommended amount of weekly physical activity is two hours; 

however, achieving this goal can prove difficult for various reasons. An individual with a disability might 

find themselves in need of direct supervision because of poor accessibility or concerns of safety, but this 

should not be a deterrent for anyone wishing to improve their quality of life. As such, Special Olympics 

advocates a philosophy and mission to help those with intellectual disabilities discover new abilities, 

skills, and strengths through awareness and opportunity.   

 

2.2 Donation of Treadmills 

Michael Lara and Special Olympics managed to secure a donation of two Desmo Model treadmills from 

Cal Poly’s recreation center for this project. This donation aided in keeping the overall cost of the project 

low and provided a base structure from which our team could add to and adapt to shape our final product. 

Being industrial-grade treadmills, they are reliable in their design; however, they lack the accessibility 

and safety features needed to accommodate Megan. The Woodway Desmo Model treadmill with the 

upgraded Personal Trainer Display is shown in Figure 1, and its specifications and other information can 

be found in Appendix A. Further details on the operation of the treadmill are available in section 4.3 

Technical Content. 
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The Desmo treadmill features two curved rails which support the display and attach into the base of the 

treadmill about three quarters from the front. Any user input is made via the pad buttons on the display 

board of the treadmill which, in turn, conveys information back to the user via an array of five window 

LED segment displays and a center display board. After spending some time operating the treadmill, our 

team discovered that there is only audible feedback in response to control buttons presses. These beeps 

do not provide any discernable feedback except that a command has been input. The control buttons also 

provide little to no haptic feedback. These are a few examples demonstrating that the donated treadmill 

is not currently equipped with the necessary features to provide Megan with a secure workout experience. 

When Megan wishes to be active, she requires direct supervision, which places an added responsibility 

on her family and prevents her from being an independent woman. To increase Megan’s physical activity, 

she needs a system to allow her to easily and independently access her workout, all while maintaining a 

high level of safety. 

 

2.3 Market Comparison 

While researching related products on the market, our team highlighted the control/feedback systems and 

stabilization features that each product offered. It is possible to purchase a system today that is 

specifically designed to provide individuals with visual impairments with a safe workout experience; 

however, none of the systems we examined fully met the design criteria. Our team familiarized ourselves 

with related products that could serve as potential solutions for Megan based on her established needs. 

During this preliminary research phase, we came across two manufacturers whose treadmills most 

aligned themselves with the requirement criteria from our initial meeting with Megan, her mother, and 

Michael Lara. One of these manufacturers, Cybex, targets more of a general audience with their products; 

however, they offer much less in terms of safety than LiteGait, which targets more of the professional 

medical community. Although overall cost was not a major focal point of our preliminary research, we 

did notice that the Cybex products cost much less than those offered from LiteGait. 

Figure 1: Woodway Desmo treadmill. 
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The Cybex 625T model2, seen in Figure 2, boasts 

American with Disabilities Act (ADA) compliance 

and surpasses Inclusive Fitness Initiative (IFI) 

standards while maintaining a price just under a 

couple thousand dollars. While it offers raised 

iconography and large buttons, it does not offer 

braille text for control functions. Furthermore, it 

lacks a safe mount and dismount mechanism that 

would allow Megan to easily step onto the 

treadmill in a controlled way. Another concerning 

feature is the lack of fully extended side rails for 

support. The side rails cut off around three-quarters 

of the length of the belt and could prove 

problematic if Megan needed to hold onto 

something near the rear of the treadmill. To help 

deal with accidental falls, a lanyard is available at 

the front of the system that, when pulled out, 

initiates the stop protocol on the device. This feature is desirable since it provides an immediate response 

in the event of a fall and was taken into consideration throughout the design process. 

The LiteGait Gatekeeper GK2200T treadmill3, seen in Figure 3, shares many of the same pitfalls as the 

Cybex 625T. However, it did provide keen insight and inspiration, as their harness systems, like those 

seen in Figure 4, provide the maximum amount of safety. The Gatekeeper is mainly targeted at 

individuals recovering from trauma and broader rehabilitation purposes; however, it is still much more 

accommodating to a person with a visual impairment than a standard treadmill. Despite the emphasis on 

rehabilitation, it lacks a full set of rails as well as a system of upright support. The LiteGait harness 

systems, which are marketed as complementary systems, are adjustable platforms that are independent 

from the underlying treadmill. While the independence from the treadmill is a nice feature, we were more 

interested in building a permanently attached system with a high degree of adjustability.  

  

Figure 2: Cybex Total Access treadmill. 

Figure 3: LiteGait Gatekeeper GK2200T treadmill. Figure 4: LiteGait harness system. 
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2.4 Handheld Controllers 

While researching the LiteGait models, our team came across a handheld remote, seen in Figure 5, which 

allows clinicians to regulate the speed, incline, and stop functions of the treadmill. One of the main 

concerns we initially had about Megan’s user experience on the treadmill was the ease with which she 

would interface with the system. One of the most destabilizing moments on a treadmill is the point at 

which the user reaches to input controls at the front of 

the treadmill. We concluded that it would be greatly 

beneficial to Megan if she could constantly retain the 

operation controls to the treadmill in her hands.  

Our team agreed that any controls would need to be 

simple, accessible, and intuitive. By eliminating 

direct access to unneeded functions like incline 

adjustments and workout selections, we added 

another layer of protection against accidental input. 

The controls being simple and intuitive directly 

impacts the quality and speed of the inputs and 

feedback being presented to the on-board 

computation unit. The faster Megan can interact with 

inputs and feedback of the treadmill, the better 

equipped the system will be to process all the 

incoming information, including any relevant sensor data, and react in a controlled way.  

With regards to accessibility, having raised iconography, like the Flipper universal remote, shown in 

Figure 6, would give Megan a much clearer sense of exactly what she can input in an easy-to-learn way. 

Our team focused on sensory feedback options, such as different materials and braille overlays, during 

our extended research of remote solutions.  

 

 

 

 

 

 

 

 

 

 

Outside the scope of workout equipment, we also examined various gaming system controllers, including 

the Nintendo Wii and Sony PlayStation 4 controllers, which offer a multiplicity of features including 

wireless connectivity, multiple sensor processing, and multifaceted user feedback options. The 

PlayStation 4 controller, shown in Figure 7, has the most features packed into a small ergonomic design: 

Figure 5: LiteGait remote controller. 

Figure 1: Flipper universal remote. Figure 2: PlayStation 4 controller. 
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programmable vibration patterns, onboard speaker for direct audible feedback, and Bluetooth 

connectivity for wireless handling.  

Another example of a product that has been adapted for people with visual impairments is the system 

implemented at some crosswalks. Many cross walks now use vibration and a high-pitch beeping noise to 

notify pedestrians that it is safe to cross the road4. Some streets even have a voice stating which street is 

safe to cross at the intersection. These modes of feedback are extremely useful to someone with a visual 

impairment because they do not have to rely on the typical visual traffic signals to safely arrive at their 

destination. 

The Desmo treadmill currently has controls for incline functions, different programmed workouts, and 

other features that do not necessarily correlate with Megan’s needs. While we do not want to remove 

these functionalities and features, we want to restrict the ability to inadvertently trigger these during 

Megan’s use of the treadmill.  

 

2.5 Extra Features 

In addition to the remote, the sensor data provided on the LiteGait also piqued our interest because it 

allowed the clinician to view and track the following user information: speed, cadence, stride and step 

time, stride and step length, and so on. Although the Gatekeeper treadmill only used this data for logging 

and clinician analysis, it could also be processed in real time. Processing proximity data would allow the 

treadmill to offer a checks and balances approach to Megan’s input and offer yet another layer of error 

protection. 

The possibility of alerts and notifications for Megan’s family was discussed with Michael Lara and 

Megan’s mother. We researched real time video streaming options and found that the implementation of 

such a system would be reliant on the connectivity of the treadmill. Lightweight systems like the 

Raspberry Pi would allow this type of communication to be implemented using built-in tools. 

More details on the feasibility of these features which fall outside the main scope of the project, including 

Braille Note connectivity, are discussed in greater detail in Chapter 4. Not all of the features discussed in 

this section were included in the final product.  

3. Objectives 

Megan loves to walk and be active, and she wants to be able to use a treadmill on her own. The primary 

goal of this project is to provide a safe and accessible environment for Megan to exercise on a treadmill. 

This is a satisfactory goal, but to create the best design that truly solves the problem, we needed to 

discover what was necessary for a successful product. To do this, our team met with Megan, her mother, 

Sonya, and Michael Lara. We then came up with a list of customer requirements that our design should 

encompass. All the requirements are designed to ensure Megan’s safety and give her independence while 

exercising. In this section, we will summarize this list of requirements, how we developed them into 

specifications that can be measured, and how they affected the designed solution. 

 

3.1 Customer Requirements 

After our first formal meeting and interview with Megan, her mother, and Michael, our team identified 

the following as the customer’s requirements: 

● Limit the maximum speed of the treadmill. 

● Implement a procedure to stop the moving belt under special circumstances. 
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● Ensure there is an accessible and safe way for Megan to get on and off the treadmill. 

● Implement protection in the event Megan does fall. 

● Incorporate input controls that are accessible to individuals with a visual impairment. 

● Incorporate a system that gives feedback which allows Megan to understand what the treadmill is 

doing. 

● The design should allow Megan to independently operate and adjust settings, etc. 

● There should be little or no restriction on Megan’s movement to provide a pleasant and natural 

experience. 

● The design of Megan’s grip location should be comfortable and natural. 

● Incorporate a way to log statistics such as elapsed time, total miles walked, etc. and make them 

available to Megan and her family. 

● The design should include a means of upper body exercise for Megan while walking on the 

treadmill. 

● The adaptations to the treadmill should be relatively small so the treadmill can be stored/used in a 

space such as a bedroom. 

● The adaptations to the treadmill should not affect the ability to transport the treadmill. 

● The design should be versatile or adaptable so that the restrictions on maximum speed, etc. can 

scale to match Megan’s fitness and capabilities. 

 

Our team used these customer requirements to develop engineering specifications which can be measured 

and tested to ensure the design meets the needs listed above. This was accomplished using a process 

called Quality Function Deployment (QFD) which will be explained next. 

 

3.2 Quality Function Deployment 

Our team used a quality function deployment diagram to transform our customer requirements into 

engineering specifications. Our team’s QFD diagram can be seen in Appendix B. The diagram ensures 

that every requirement is accounted for in the specifications and that every specification is necessary to 

fulfill the customer needs. A relative weight was calculated for each specification based on the 

conjunction of two factors. First, we assigned a number (1-5 in our case) to each requirement which 

represents the initial weight/importance of the requirement. Second, these weights were modified based 

on the dependency or relationship between the requirements and each specification. So, the more an 

engineering specification fulfills the customer requirements, the higher relative weight or importance of 

the specification. 

 

From the QFD diagram, we found that the specifications with the greatest importance are Megan’s 

stabilization, some safety features such as the maximum allowable speed, and Megan’s ability to operate 

the treadmill independently. These factors guided our work throughout the design phase. Quality 

Function Deployment also allows current products or solutions to be measured against the needs and 

specifications that have been identified. From this analysis, we concluded that the accessible treadmills 

and LiteGait harness systems provide many great features but ultimately fail to provide a safe 

environment that encourages autonomous use for Megan. The goal of our design was to incorporate the 

good features of these alternatives and correct the shortcomings. 

 

From our QFD diagram, our team created a specification table (Table 1). This table lists each 

specification, their maximum or minimum allowable value, their assessed risk, and how we ensured the 

final product complies with these specifications. The risk refers to the risk that each specification could 

not be met in the final design. The options for risk are low (L), medium (M), or high (H). Megan’s 

stabilization, or her ability to walk comfortably and smoothly, is the highest risk and our biggest concern 
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for the design. The final column in the table refers to the method of validation and includes these types: 

testing (T), analysis (A), and inspection (I). 

 

Table 1. Engineering specifications table. 
Specification 

Number 
Parameter Description 

Requirement or 

Target 
Tolerance Risk Compliance 

1 Maximum Speed 6 (ft/s) Max L T 

2 Maximum Acceleration 1 (ft/s^2) Max L T 

3 Maximum Height 72 (in.) Max M I 

4 Maximum Floor Area 60 (ft^2) Max L I 

5 User Stabilization 
P.O.C. along 

entire treadmill 
Min H T 

6 Voltage Input 120 V Max L I 

7 Time to Learn 30 (min) Max M T 

8 Sliding Range of Motion (+/-) 6 in. Min M A, I 

9 Proper Wiring Continuity Min M I 

10 Proper Code High Load Min M T 

 

3.3 Discussion of Specifications 

1. The maximum speed is a critical specification for safety. We ensured that Megan can control the 

speed to match her comfort level and get feedback about her velocity. The target velocity is based on 

her current walking speed, but may be modified in the future.  

2. The acceleration is how fast the treadmill speeds up and slows down. This was modified to Megan’s 

comfort level based on testing results. 

3. The maximum height is important to storage as well as the ability for Megan to mount and dismount.  

4. Maximum floor area is important for the workspace designated for the project as well as the final 

storage area. 

5. Stabilization came out of the QFD as the greatest weighted attribute. Megan’s stability is the main 

factor for her safety while exercising. We designed our system so that Megan will always have a 

point of contact while exercising. 

6. The voltage input is a safety concern for electrical use as well as a factor for storage. We ensured that 

Megan and her family can safely operate the treadmill in their home. 

7. Time to learn is how long it will take for Megan to learn how to operate the treadmill and its controls, 

and is specific to Megan. We want her to feel comfortable on the treadmill so creating too complex 

of a system could deter her from exercising. Thirty minutes seems like a reasonable period of time to 

cover all the operation and safety features. 

8. The grip range of motion is based on the moving hand support. The range of motion of the grips is a 

safety factor. This specification helps keep Megan in a safe range on the treadmill. 

9. Proper wiring ensures that all of the connections of the Woodway and the new system are correct, 

and have continuity throughout the wire. To make sure there are no open loops in the system, the 

wiring was inspected and tested during the manufacturing process. 

10. The proper commands must be communicated to the control module even during a time of a high 

load case. The treadmill must respond correctly to whatever Megan inputs. The new system needs to 

be able to take multiple inputs and properly relay the correct commands to the treadmill.  

 

The specifications were critical when entering the testing phase of the project. All the test plans discussed 

in Chapter 8 were designed to ensure that the targeted goals could be met.  
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4. Design Development 

To understand our final product, this report includes all the stages of our design process. Because of this, 

many aspects from our preliminary and detailed designs (Chapters 4 and 5) were altered, added to, or 

eliminated in the final product for feasibility or improved quality. The information of this chapter will 

provide insight into our team’s thought process and the progression of design aspects throughout 

development of the project. 

 

This project was unique in that we had a singular customer, Megan. This means that any decisions that 

were made needed to keep her needs as the priority. To start off the project we wanted to get to know 

Megan’s personality and her walking style. Due to Megan’s participation in Cal Poly’s Friday Club, we 

had a simple line of communication. Our team recorded video of Megan on the treadmill to gain a better 

understanding of her walking/running pattern. This helped us conduct some physical testing and analysis 

needed throughout the manufacturing and testing process. Another distinctive part of this project was the 

modification of a Woodway treadmill.  The overall design was built upon the existing platform. Because 

the treadmills were already donated, we conducted initial testing on the treadmill to help with the design 

process. Our team continued to work with Megan and the treadmill as we moved through each phase of 

the project. 

 

Based on the background research and specifications outlined in our QFD, the overall design of this 

project focuses on two main criteria: safety and independence. Based on these criteria, our team 

determined the most important specifications to develop related functions, as seen in Figure 8. 

 

 
Figure 8. Critical specifications and their respective functions. 

 

The three subsystems that we identified were controls, feedback, and support. Each of these systems 

assist Megan in safely interacting with the treadmill while promoting an independent workout 

environment. Our team focused on these three categories as we generated ideas for our conceptual design.  

 

4.1 Concept Generation 

To identify the best design, our team used a variety of ideation methods to generate ideas to solve the 

problem. During this idea generation stage, no ideas were excluded, regardless of their feasibility. This 

lack of judgement allowed our team to be creative and find a wide variety of solutions, which positively 

impacted our final conceptual design. 

 

The first ideation methods our team used were brain-sketching and brainstorming. Brain-sketching calls 

for each team member to draw an aspect of the design. After five minutes, we passed our drawings to 

another teammate, who made additions to the original drawing. This method provided the opportunity 
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for one idea to spark another and develop into something new. Next, we completed a brainstorming 

session in which we wrote all ideas that came to mind on sticky notes. This provided a free-flowing 

environment which allowed our minds to wander to different parts of the design. These methods 

prevented any judgement being passed on the ideas because they were done individually and in silence. 

Our team was then able to look back at the large variety of ideas we generated and start to categorize 

them. 

 

After the initial ideation sessions, we started to focus on categories of ideas for the different functions 

that our product would have to perform. Our team created classifications such as control methods, 

feedback from the treadmill, systems to prevent falling, and modes for mounting and dismounting the 

treadmill. We took all our ideas and sorted them into these categories to help us compare them. This 

method also allowed our team to employ a different ideation approach by concentrating on individual 

focused parts of the design. 

 

Once our team had generated as many ideas as possible for each category, we began to narrow them 

down by eliminating those that were not feasible. We then created a morphological table with the 

remaining ideas listed in their categories. By choosing one idea from each category, our team "built" 

different, complete systems that could serve as our design. Lastly, our team created physical prototypes 

to help evaluate some of our preliminary concepts. The results of this process will be discussed more in 

the following chapter. 

 

As mentioned previously, our team split up our design into three functions that would deliver a successful 

product for Megan. The following sections highlight some of the conceptual ideas that were produced 

for each of these functions. 

 

Control Ideas 

The first controller concept was a remote-control system, like one used for a television or the remote used 

in the LiteGait system. The inspiration for this idea came from Megan's participation in the Special 

Olympics where she holds a baton as a guide while she runs. This remote controller could be a substitute 

for the baton as it provides familiarity and a way for Megan to control the treadmill. This remote would 

serve as an accessible controller for someone with a visual impairment by using a mixture of geometries, 

texture and braille.  A prototyped version of this can be seen in Figure 9.  

 

The remote controller idea was bridged to another idea, where the controller would be part of a mounted 

system which Megan could hold onto. This system could be implemented as a one- or two-handed system. 

The one-handed approach would allow Megan to always have free motion of one arm, while the two-

handed system would provide the possibility of having more controls or a more intuitive and simple 

design. Sketches of the controller-mounted ideas can be seen in Figure 10. 
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        Figure 9. Prototyped baton.                          Figure 10. Sketch of two-handed controller. 

Another idea our team generated was the use of elliptical poles, adding aspects of an elliptical machine 

to the treadmill. These poles would provide support for Megan to hold onto without needing an actual 

control system as the machine would be self-powered. This is a simpler interface that limits the output of 

the treadmill to match Megan's output, thus keeping her safe. This idea was very appealing because it 

added another layer of exercise for Megan.  

 

Our team's last main idea for the controls system was a system of "smart sensors." These sensors would 

be located on grips and along the treadmill and would receive data on how Megan was moving.  This 

could provide the treadmill with a kinematic and kinetic profile of Megan, and the data would be sent to 

a control system. This system would ideally change the treadmill's output to adapt to Megan's immediate 

needs.  

 

Feedback Ideas 

The first two ideas for feedback systems were audible; one providing a voice, which gives the status of 

the treadmill, and the other using sound effects to signal what the treadmill is doing. The voice feedback 

would state important statistics, such as the speed of the treadmill or time spent exercising, or whether 

the treadmill was speeding up or slowing down. The signaling by sound effects would work in a similar 

way by using different noises, tones, or intensities to distinguish exactly what the treadmill was doing. 

 

Vibration would provide direct physical feedback to Megan to indicate the treadmill's motion. This would 

operate similarly to the noise feedback, as the vibrations would differ based on the changes of the 

treadmill. For instance, the vibration could lose intensity over time to match the treadmill's decreasing 

speed, thus, providing intuitive feedback to Megan. 

 

The treads of the treadmill could also be modified to provide feedback. Our team's idea was to add 

material on the outer sides of the treads. If Megan were to step on this material, she would know she was 

walking near the outside edges of the treadmill, and she would be able to correct her position by moving 

back to the center. The amount of material, its positioning, and its properties (such as firmness) could be 

optimized so it was comfortable to walk on, while providing obvious feedback of Megan's location. This 

method was prototyped, with string and foam, and proved to be very informative, as seen in Figure 11. 
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Our team's final feedback concept utilizes a trackpad which would be located on a hand-held controller. 

This trackpad would track Megan’s location on the treadmill and give her physical feedback via a small 

moving knob known as the “location indicator.” A "strike zone," meaning a safe area in the center of the 

moving treads, would be programmed into the controller and physically marked on this trackpad. If she 

moved too far forward, backward, or to the sides, the trackpad would notify Megan, through the moving 

indicator, to give her feedback on her position so she could correct it. A sketch of the trackpad can be 

seen in Figure 12. The trackpad would be set into the controller that she is holding to ensure that she is 

getting constant feedback. 

 

       
 

 

 

Support Ideas 

From our research, we knew the LiteGait harness would provide complete support; however, this 

approach is too restrictive to Megan's motion and independence. The belt harness system is a modification 

of the full harness system. As can be seen in Figure 13, a belt would be fitted around Megan's waist and 

would be connected to stationary mounts through resistance bands. As Megan moved away from the 

center of the treadmill, the resistance bands would provide some force to help guide her back to the 

center. The positioning of the bands could be adjusted to allow for natural arm movement. 

 

Another support system idea was referred to by our team as "The Claw." Megan would wear harness 

straps which would be attached to a rigid shaft support in front of her. A sketch of the rigid support is 

shown in Figure 14. This system would allow for limited 3-D movement in a set range on the treadmill. 

By mounting to her chest, this system would provide Megan with almost complete free range of motion, 

with the added safety benefit of a harness system. If she fell, the system would detect the fall and support 

her weight to allow her to maintain or regain a standing position. “The Claw” relies on a rigid connection 

between Megan and the treadmill/supporting assembly to support Megan in the event of a fall. 

 

Figure 11. Added material on treadmill 

for sensory feedback. 
Figure 12. Sketch of trackpad 

feedback system. 
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A system of sensors could be used to calculate Megan's position and movement. This information could 

be relayed to the treadmill's control system (which our team would modify). From this information, the 

control system would regulate the output of the treadmill to ensure Megan's safety. This system allows 

for freedom of movement but would need to be combined with other features to be a robust design. These 

first three conceptual ideas all allow for some arm movement.  

 

The next two ideas restrict some arm motion; however, they provide more stability and comfort for 

Megan. The first is what we called the "buddy system." This idea was conceived when our team met with 

Megan at Friday Club in the rec center. For our design, instead of Megan holding onto her buddy's arm, 

she could hold onto a grip. Grips on both sides would allow her to switch arms and the grips' locations 

could be adjusted to provide ultimate comfort for Megan. 

 

The last conceptual idea also includes grips for Megan to hold. This grip would mimic a steering wheel 

in form, so her hands would be in front of her. These grips would be mounted to a telescoping collar so 

that Megan could move forward and backward to give her some flexibility of motion. The design could 

also incorporate some form of arm motion to provide more balanced exercise. Also, the controls would 

be accessible on the gripping system allowing for Megan's safe use of the treadmill. 

 

4.2 Idea Selection 

After eliminating the lesser ideas, our team utilized a decision matrix process to help hone in on the best 

ideas of each function.  Since our system is broken into three functions, we developed three Pugh decision 

matrices for each function to evaluate the ideas against each other.  The Pugh matrices allowed us to 

weigh certain criteria for each function to compare our generated ideas to an existing datum.  The most 

important criterion for each matrix was accessibility for someone with a visual impairment. The main 

analysis performed involved motion studies on a solid model of the treadmill, seen in Figure 15.  

 

Figure 13. Prototyped resistance belt. Figure 14. Sketch of claw grip system. 
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Figure 15. SolidWorks model of treadmill used for reference. 

 

When developing the criteria for each function, we had to focus on the objective for this project: to 

develop a safe and independent workout environment for Megan on the treadmill. To help ensure that 

everyone on the team was comfortable with the direction of the project, we created individual Pugh 

matrices for each function. After comparing our results, we produced a singular Pugh matrix for each 

function that reflected our collective thoughts.  The Pugh matrices compare the generated ideas against 

a datum, or existing product.  The existing controls on the Woodway Treadmill are the keypad buttons 

located on the control panel at the front of the treadmill.  The existing feedback system is a screen at the 

front of the treadmill and beeping noises from the button input. Lastly, the existing support system 

consists of the angled side rails. 
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Controls Selection 

Table 2 overviews the Pugh decision matrix for the controls system, which compared the baton, two-

handed mounted controls, one-handed mounted controls, smart sensors, and elliptical poles to a datum 

of keypad buttons.  The primary, secondary, and redundant system are marked in the matrix to designate 

the order of the ranking. The highest weighted design considerations were the accessibility of the controls 

for someone with a visual impairment, ergonomics, and simplicity to design/incorporate. While all of the 

alternatives came in close rating, the highest rated designs were the baton and two-handed system, with 

smart sensors coming in close behind. The highest ratings for these were driven by their associated 

feedback methods, as well as their ergonomics. The lowest rated design was the elliptical pole setup due 

to the need to reconfigure the treadmill to be self-powered. Both the baton and two-handed mounted 

controller system provide great ease of use since the controls are so accessible. Our final design 

implemented the more cautious, mounted controller as it provides support and some freedom of motion. 

 

Table 2. Pugh matrix for controls system. 

Controls Pugh Matrix 
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Accessible to a visual impairment 5  + + + + + 

Automatic Feedback 2  S + S + + 

Number of Control Surfaces 1  + + S - - 

Simplicity to Incorporate 3  S S + - - 

Time to Learn 1  + S + + S 

Ergonomics 4  S + S S S 

Non-Restrictive 3  + - - + - 

Sum of Positives 4 4 3 4 2 

Sum of Negatives 0 1 1 2 3 

Sum of Sames 3 2 3 1 2 

Weighted Sum of Positives 10 12 9 11 7 

Weighted Sum of Negatives 0 3 3 4 7 

TOTALS 10 9 6 7 0 

 

 

  

Primary System 

Secondary System 

Redundant System 
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Feedback Selection 

Feedback is critical to assist Megan when she uses the treadmill. Without strong feedback from the 

treadmill controls, her ability to assess whether the treadmill is functioning properly to her desired 

settings is greatly hampered. Table 3 details the Pugh decision matrix for the feedback system which 

compares sound, material/texture, vibration, voice response, and the trackpad to a datum of the screen on 

the treadmill. The main design considerations were the accessibility for someone with a visual 

impairment, as well as how intuitive the feedback was. The sound and vibration both scored well due to 

the simplicity of their design and accessibility, with material/texture close behind due to its ergonomics 

and ability to produce strong feedback. The trackpad idea scored poorly because of its difficulty to 

incorporate into the treadmill and the added complexity for Megan. Our team decided to propose the 

sound system because we thought it will be preferable to vibration for Megan, so vibrational feedback 

became our alternate design. Although the voice response did not score as high, if Megan responds well 

to voice feedback, we kept it as a possible solution in the final design instead of regular sound feedback. 

The addition of material to the treads of the treadmill became our redundant feedback system as it would 

act in conjunction with the audio feedback and support systems to provide extra safety. 

 

Table 3. Pugh matrix for feedback system. 

Feedback Pugh Matrix 
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Accessible to a visual impairment 5   + + + + + 

Intuitive Feedback 4   + S + + S 

Quantity of Information 2   + S S S - 

Simplicity to Incorporate 3   + + + - - 

Types of Feedback 2   - S S + S 

Time to Learn 1   - + + + - 

Ergonomics 2   + + S + S 

Reaction to Feedback 3  + + + S S 

Sum of Positives 6 5 5 5 1 

Sum of Negatives 2 0 0 1 3 

Sum of Sames 0 3 3 2 4 

Weighted Sum of Positives 19 14 16 14 5 

Weighted Sum of Negatives 3 0 0 3 6 

TOTALS 16 14 16 11 -1 

Primary System 

Secondary System 

Redundant System 
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Support Selection 

While all functions are critical in ensuring safety, the support function is arguably the most directly 

responsible. Table 4 overviews the Pugh decision matrix for the support system, which had to balance 

the safety of the system with the independence it allows. Compared to the side rails on the current 

treadmill, the evaluated systems included the following: “The Claw” grip, a support belt, sensors for fall 

protection, the buddy system, and a telescoping controller. The main considerations were the 

restrictiveness and the ergonomics. The lowest rated system was the belt because, after making a 

prototype, it was clear that it was too restrictive and would be too uncomfortable while walking. The 

winning design was the telescoping controller due to the freedom it provides as well as the integrated 

feedback. Megan is used to holding onto some sort of support while exercising, so this design is very 

familiar and comfortable for her. 

 

Table 4. Pugh matrix for support system. 

Support Pugh Matrix 

 Solution Alternatives 
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Accessible to a visual impairment 5   + + + + + 

Restrictiveness 4   + + + S + 

Simplicity to Build 3   - S S + - 

Time to Equip 3   - - + + + 

Ergonomics 4   + + + S + 

Fall Prevention 3   + S - S S 

Adjustability 2   + - - - + 

Sum of Positives 6 5 5 5 1 

Sum of Negatives 2 0 0 1 3 

Sum of Sames 0 3 3 2 4 

Weighted Sum of Positives 19 14 16 14 5 

Weighted Sum of Negatives 3 0 0 3 6 

TOTALS 12 8 11 9 15 
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Redundant System 
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Overall System Selection 

The Pugh matrices for each function were put into a general matrix, shown in Appendix C, to help weigh 

the overall design. After our team debated the comparison of ideas, we determined a strong combination 

of the designs, shown in Table 5. 

 

Table 5. Initial system design proposal. 

 Controls Feedback Support 

Primary Baton/Two-Hand Sound Telescoping Controller 

Redundant Smart Sensors Material/Texture Sensor Fall Detection 

Alternate One-Hand Remote Vibration Claw Grip 

 

The primary level includes the main features with which Megan interfaces. Because Megan will be 

directly using these components, ergonomics and ease of use were the primary concern in the design.  

We want Megan to be comfortable while interacting with the treadmill; therefore, we want to provide as 

much mobility as possible. Since safety is critical, the redundant systems are in place to act as a backup 

for Megan in case she loses contact with one of the primary systems. Alternate systems were included in 

case we found that Megan or her parents did not feel comfortable with the primary system, or, in the 

worst-case scenario, if our team found that one of the systems needed to be scrapped in the manufacturing 

phase.   

 

There were some design considerations that required feedback from Megan and her family.  Appendix D 

outlines the decisions that were needed for each subsystem to complete the design for the treadmill. These 

decisions had a direct impact on how Megan interacts with the treadmill so our team adjusted throughout 

the design phase to fit her preferences. Some examples of these customer decisions included her resting 

hand height, voice feedback, and the location of the support system (hands, waist, arms, and so on). Due 

to the compressed timeline of senior project, after affirming the primary and redundant systems with the 

sponsor of the project, our team began the detailed design phase. 

 

4.3 Technical Content 

To ensure a successful project, the selected ideas needed to be technically evaluated. The analysis needed 

for the preliminary design was centered around proof of concept for the ideas generated. The feasibility 

of a concept was not important in the idea generation phase, but it became critical when entering the idea 

selection phase. Due to the interdisciplinary nature of our group, there was a healthy mix in our 

approaches to the solution, and for this reason, the analysis for our preliminary design was split between 

the mechanical and electrical systems.  

 

Mechanical Systems 

The mechanical systems include any physical component with which Megan interacts. Because our team 

decided not to modify the physical system of the treadmill, we did not need to worry about analyzing the 

existing Woodway Desmo treadmill.  Even though we have reverse engineered some treadmill system 

processes that are active during operation, our team has avoided removing any internal components to 

keep the original product intact. The two functions that are most associated with the mechanical systems 

are the controls and support functions. Based on the idea selection process, our primary design was a 

baton/two-handed controller system on a telescoping arm. A solid model of our initial concept was built 

around the treadmill, shown in Figure 16. 
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Figure 16. SolidWorks model of preliminary design system.  

 

Figure 16 shows the various systems that were included in the preliminary design to help Megan while 

on the treadmill. In this design, the added side rails are positioned on the inside of the existing side bars, 

along the track, and are at waist height for Megan to hold while exercising. Like most rail systems, the 

side rails were specified to be made mostly of metal. They wouldn’t need to carry an extremely large 

load, but there could be little to no deflection if Megan put her full weight on the rails.  The side rails 

would also need to be able to support the controller and any other additional features. While the side rails 

are important in helping Megan move along the treadmill, the primary support system is the telescoping 

controller. This controller is designed to have linear motion along the treadmill, preventing Megan from 

swaying to the side while on the treadmill. To ensure that Megan is in a safe area on the treadmill, the 

telescoping arm design has a limited range of motion.  If Megan is walking slower than the treadmill’s 

speed, she will begin to drift toward the back of the treadmill. Once the arm extends to its maximum 

allowable range, a slowing command engages to help Megan return to the centered location on the 

treadmill. While Megan will be getting feedback from the controller and sound system, this design calls 

for some form of material feedback be mounted to the bottom bar of the side rails. There are different 

materials, such as a brush or foam, that could be implemented to keep Megan in line on the treadmill.  

Material could also be added onto the treads with either an adhesive or pin.  

 

In this preliminary design, the side rails are mounted to the ground to provide a stable base for support.  

Using standard tubing, the side railing could be cut and joined to create a support system specifically 

designed for Megan. The telescoping arm should have a resistance to motion away from the designated 

"safe zone" on the treadmill. A spring could be used to pull the telescoping arm back to a neutral state. 

Also, the treadmill would be alerted by a sensor mounted to the telescoping arm if Megan goes too far 

back on the treadmill, and a protocol would be triggered to help correct this. 

 

Since safety is a key concern in this project, possible safety hazards are outlined in a safety hazard 

checklist, seen in Appendix E. This checklist has been updated to reflect the safety hazards associated 

with our detailed design.  Every aspect of the design is built in to help protect Megan while she interacts 

with the treadmill. Life cycle of the treadmill is not a concern because Woodway offers a warranty for 
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150,000 miles of use on their treadmills. Since the main design is being placed on an external system, the 

loading on the treadmill itself will not be significant; however, the railing system will be analyzed for 

any possible loading scenarios. The main analysis needed for mechanical systems are tolerance fits and 

kinematic studies. 

 

Computer & Electrical Systems 

Interfacing with the existing electrical systems of the treadmill was crucial to the success of this project 

as time constraints did not allow for an overhaul of electrical controllers. Initial analysis of the internals 

of the treadmill provided us with a broad understanding of the control systems. The main driveshaft 

shown in green in Figure 17 is operated by a 110 Volt, 2 horsepower, brushless servo motor. The use of 

a brushless motor provides improved efficiency and lifespan, but also requires that a separate drive board 

controller be interfaced; this onboard drive controller will remain on the system.  

 

The brushless servo motor controller receives an 

analog input from an electronic interfacing unit 

that regulates the overall state of the treadmill, 

as well as serves as the main computational unit. 

Shown in red on the diagram in Figure 17, it lies 

directly next to the servo motor controller and is 

also custom manufactured by ESI Electronic 

Product Corp. for Woodway USA.  

 

Because of the custom nature of the board, 

extensive testing and reverse engineering was 

needed to ultimately discover its full 

functionality. Research into the ESI Electronic 

Product Corp yielded only that the Connecticut 

based company specializes in development of 

fitness equipment-based boards. Although time 

consuming, it is possible to reverse engineer and 

decipher the analog signal patterns needed to 

operate the brushless servo. The board itself 

likely takes care of the precise timing needed to 

ensure smooth operation as well as constant 

torque from the brushless servo motor.  

 

The signals of focus are those coming from the main interface unit, shown in blue in Figure 17, which 

acts as the primary computational unit for the treadmill.  

Figure 17. Frame diagram of 

Woodway Desmo treadmill. 
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When a user activates the treadmill from the user 

interface shown in red in Figure 18, the input travels 

down the side rails and into the 8-bit AVR based 

interfacing unit where it is processed. Feedback is 

then returned via a communication protocol such as 

RS232 to the user interface logic board, which then 

visually displays state information to the runner. 

Information such as current speed, and incline are 

presented on one of the five separate seven-segment 

displays and central liquid crystal display.  

 

The main interfacing unit that receives this input is 

shown in Figure 19, and we can see that the board is 

also made by ESI Electronic Prodcut Corp. They 

also developed the motor controller shown in Figure 

20. This led our team to believe that ESI was 

responsible for the complete implementation of the 

computational aspect of the Desmo Treadmill. Since 

both the main interface unit and the motor controller 

driver were produced by the same company, we 

assumed that the protocols involved in the 

communication of these devices was strictly 

proprietary in nature. This is directly opposed to the 

open source based design we implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preliminary Interface Plan 

To accommodate the new inclusive controls and proposed sensors, a system with strong computing power 

is necessary. Due to its small size, small economic impact, and broad support, our team selected the 

Raspberry Pi 3 Rev. B microcontroller, shown in Figure 21 with specifications in Appendix F, for our 

main computational system.  

 

Using the GPIO pins, electrical relays, and a possibly smaller AVR based microcontroller to interface 

with the existing system on the treadmill, sensor data can be analyzed and the treadmill can be controlled 

Figure 18. Upper rail diagram of Woodway 

Desmo treadmill. 

 

Figure 19. ESI Corp main interface unit. Figure 20. ESI Corp brushless servo 

motor control unit. 
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accordingly. Furthermore, the onboard WIFI and 

Bluetooth connectivity make the Raspberry Pi 3 a prime 

candidate to spearhead our computational efforts and 

provides a stable platform for sensor and controller 

development.  

 

If our scope had changed based on Megan’s preferences, 

the Raspberry Pi 3 would have given us the option to 

implement a computational solution if needed. The 

controller runs on the open source Linux environment, 

which has a large and supportive community and allows 

for ease of future development or modification.  

 

The microcontroller in Megan’s controls does not need to be very powerful; however, it still needs to 

capture and relay information to the Raspberry Pi for processing with relative ease and speed. This 

process becomes faster if signals are hard wired into the Pi, and placing another computational unit inside 

the controller offers yet another platform for future development. The preliminary data flow chart, 

available in Appendix G, lays out a basic map of how we want the Desmo Treadmill response to be 

achieved. Inserting another computational unit between the existing main interface unit and the user 

input, allows us to be able to temporarily ignore the reverse engineering aspect of deciphering the 

protocols necessary for operation of the treadmill functions. Eventually, the main interface unit could be 

completely replaced by our system, thereby removing a possible point of unforeseen error and failure. If 

the decision to remove that board’s function was made, we would not want to physically remove it as it 

could serve as a possible backup protocol system in the case our system fails.  

 

5. Detailed Design Phase 

In our team’s preliminary design, we presented controls, feedback, and support as the three functions our 

design must incorporate to fully solve the problem. Due to the interdisciplinary nature of our team, the 

final design was segmented into mechanical and electrical systems. Although the designs of the various 

systems were separated by discipline, the overall focus of the project remained the same. Every 

component and configuration chosen for the final design needed to ensure that the system would help 

keep Megan safe and allow for accessibility to her workout. The preliminary design succeeded in laying 

the groundwork for the overall concept, giving way to the following detailed design. This final design, 

seen in Figure 22, resembles the preliminary design, from Figure 16; however, it contains much more 

detail. Every component has been researched and validated for the design. In addition to the mechanical 

design seen below, the electronic components are imbedded into the existing treadmill’s body to act as a 

bridge between our newly-designed system and the original treadmill. The subsystems described below 

are divided based on their components or how they were manufactured, but each contributes to the three 

main functions of controls, feedback, and support. The four systems outlined in the design description 

are the controller assembly, the railing system, the tactile feedback, and electronic system. The systems 

describe the primary and redundant systems from Table 5. Alternative systems were not included in this 

version of the design, but were available in the event one of the current systems was an issue.  

 

This chapter provides the specifics of the final, detailed design that our team presented for our critical 

design review. As mentioned before, many aspects of this design were altered or substituted during the 

manufacturing process of the final product. These changes were implemented to fix an unforeseen issue 

that arose or to improve a component, increasing the quality of the final system. These changes are 

documented in the following chapters, especially Chapter 6. Manufacturing and Assembly.  

Figure 21. Raspberry Pi 3 Model B. 
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Figure 22. The solid model of the treadmill for the detailed design. 

 

5.1 Controller Assembly 

The controller assembly, seen in Figure 23, consists of the main gripping system and the control panel, 

which contains the input controls. The primary system from Table 5 is a two-handed controller; however, 

we updated the system to have a two-handed grip with a control box in the center.  The control panel was 

designed with extra space in the event it was desired to add more inputs. Both these systems were to be 

attached to the horizontal rail spanning the width of the treadmill. The controller assembly is the 

subsystem that Megan will be directly interfacing with most of the time; therefore, it was crucial that we 

optimized it for her. 
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Figure 23. The controller assembly of our detailed design consists of the gripping system and the control 

panel.  

 
5.1.1 Details 

In the conceptual design phase, the controller assembly was general, incorporating only the concepts of 

an ergonomic gripping system and accessible controls. The detailed design provides more specific 

information and contains an alternate solution for the gripping system. The primary design utilizes road 

bike handlebars for Megan to hold while exercising, and the backup design is a custom, angled bar grip. 

The primary design of the handlebars was implemented in the final product, but both designs are 

discussed in the following section. In the detailed design, the control panel is centered on and attached to 

the horizontal rail. It contains a two-button switch (start and stop) located on the left side and a rotary 

switch located on the right (speed level selection). Braille labels are designed to mark the buttons and 

rotary switch, allowing Megan to understand the purpose of each input. This will be very helpful when 

she is getting familiar with the controls. The control panel was designed to be attached with brackets 

while the gripping system would be welded to plates slotted into the horizontal rail. 

 
5.1.2 Analysis 

As mentioned before, Megan will be interfacing constantly with the controller assembly, so it must be 

ergonomic and accessible. Specifically, the gripping system was designed to be comfortable for Megan’s 

hands and overall upper-body posture. Our team measured Megan’s hand to compare to anthropometric 

data to determine the optimal size of the diameter of the grips. The data consists of five main 

measurements of the hand including the total hand length and width, and finger length. This data and 

Megan’s personal measurements can be found in Appendix H. Precise measurements are hard to obtain; 

however, Megan’s hand size falls somewhere between the 5th and 50th percentiles5. The maximum grip 

diameter for females of the 5th percentile is 43 millimeters or about 1.69 inches. Based on this data, our 

team proposed a diameter size of the grips between 1 and 1.5 inches, which is smaller than the maximum 

grip size for the 5th percentile. On the other hand, we wanted to ensure the grip was not too small as that 

would force Megan to squeeze tightly to obtain a secure grip. The road bike handlebars are made of 

tubing slightly less than 1 inch in diameter; however, the addition of grip tape increases this measurement 

and was found to be comfortable to Megan. 
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The shape of the gripping system was also important. Road bike handlebars have vertical shafts connected 

to a horizontal piece by a curved portion, which allows for a few different hand positions. The alternate 

design, seen in Figure 24, employs angled bars in addition to the horizontal grips. Both these options 

provide comfortable and varied hand positions. 

 

       
Figure 24. Alternate gripping system, which would’ve been made of bent or welded aluminum. 

 

The analysis completed for the control panel was focused on the accessibility and intuitiveness of the 

input controls. A few different input setups were considered before the final design was completed. As 

mentioned earlier, there is a two-button switch: on/start and stop/off. The on/start button turns the 

treadmill and the computer system on to idle mode. The stop/off button’s function depends on the current 

state of the treadmill. If it is in motion, pressing the button slows the treadmill down to zero speed. In the 

event the treadmill is already stopped, the stop/off button powers down the electronics of the system. It 

is imperative that the stop button be very easy to find and engage, which is why we chose a button. The 

two-button setup was chosen for its accessibility to the controls while providing a clear and easy method 

to stop the treadmill on command.  

 

The other switch on the control panel is the rotary switch with five levels that represent each speed level, 

each corresponding to a different, predetermined speed. Our team decided preset speeds were the best 

option considering that most people only use a few different speeds when exercising on a treadmill. The 

0.1 mph increments are so small that they don’t provide a noticeable difference. The preset speeds also 

give a better sense of the intensity of the workout. The use of the rotary switch also provides variety in 

the types of inputs Megan will use. If our team designed for every input to be a button, every time she 

input a command, Megan would have to read the braille writing or spend time finding the correct button. 

With this design, she will instantly know what input she is touching based on its physical properties.  

 

The last component of the controller assembly to be discussed is the control panel housing. As mentioned 

before, our team wanted the control panel to be easily customizable in case we needed to add an extra 

input or if Megan’s parents desired another feature. For this reason, we decided the housing would be 

manufactured out of ABS plastic by a 3-D printer. This allows for the component to be redesigned and 

produced very quickly if a change needs to be made.  

 

5.1.3 Material/Component Selection 

Essentially all common road bike handlebars are made of aluminum. If the custom gripping system was 

selected, aluminum would have been used because it is light weight and would not create a galvanic cell 

with the current structure. This would’ve also allowed for welding the grips to the sliding arm. 

 

The specific two-button and rotary switches our team chose for the design can be seen in Figure 25.. The 

start button is slightly enclosed so it cannot be mistaken for the stop button, and, just as importantly, there 

is no hindrance when attempting to press stop. The rotary switch can be oriented any direction so that it 
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will be most intuitive for Megan. As explained in the last section, the control panel housing will be made 

with ABS plastic. There is no need for this controller housing to be made of a stronger material because 

it won’t be taking any significant loads, and ABS is ideal because of the low cost and specific stiffness. 

 

                          
Figure 25. The two-button input and rotary switch specified in the detailed design of the control panel. 

 

5.2 Railing Assembly 

Shown in Figure 26, the railing assembly is the main component that makes up the primary structure of 

the support system. The Woodway Desmo treadmill does have side rails equipped; however, they are not 

comfortable to grip for an extended period. The side railing’s two primary goals are helping Megan keep 

her balance and providing different feedback to Megan and the on-board computer.  The railing system 

is designed to be fixed to the ground to provide a sturdy frame to assist Megan’s balance throughout her 

workout.  While the side rails remain fixed, the middle bar is free to move in one dimension along the 

treadmill.  

 

 
Figure 26. Solidworks assembly of the detailed design of the railing system. 
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5.2.1 Details 

The treadmill is approximately 70” long, 38” wide and 62” tall. The new side rails extend past the length 

of the treadmill and are placed in between the treadmill’s existing side rails at a distance of approximately 

24” apart. Based on measurements of Megan’s elbow and hand positions while on the treadmill, an initial 

height for the bars was set at 48” from the ground (the treadmill base is approximately 9” tall). The side 

rails, made from T-Slot Aluminum, are a straight forward design focused on supporting Megan.  The 

more complex system is the sliding controller. The initial design for the sliding component was a 

stationary bar rigidly connected to the side rails with a controller attached to a telescoping arm that moved 

forward and backward.  This method was replaced with a middle bar that slides along the side rails, with 

the controller assembly rigidly attached.  

 
5.2.2 Analysis 

The two main features analyzed for the railing system were the tolerances for the assembly and the 

identification of a proper linear telescoping method for the controller.  Initially, the railing system was 

going to use telescoping structural square tubing to provide a sturdy frame at a low cost; however, there 

were a few problems with this method. The initial analysis performed looked at the structural strength of 

the square tubing.  A static load, using a conservative estimate of Megan’s weight multiplied by a safety 

factor of two was applied. Due to the small load, this test passed with a large margin of safety, as seen in 

Table 6. 

 

Table 6. Initial structural analysis of square structural tubing. 

Material 1018 CD Units 

Outer Section Length (a) 1.5 in 

Inner Section Length (b) 1.25 in 

Length of Tubing (l) 12 in 

Ultimate Strength (Fult) 53700 psi 

Young's Modulus (E) 2.97E+07 psi 

Shear Modulus (G) 1.16E+07 psi 

Area Moment of Inertia (I) 0.2184 in^4 

Section Modulus (Z) 0.2912 in^3 

Radius of Gyration 0.5637 in 

Cross Section Area (A) 0.6875 in^2 

Case 1: Pure Axial Loading 

Applied Load (P) 150 lbf 

Safety Factor (FS) 2 - 

Axial Stress 3600 psi 

Axial Deflection (d) 0.00018 in 

Case 2: Applied Moment 

Moment (M) 225 lbf-in 

Transverse Stress 12361 psi 

Transverse Deflection (y) 0.0266 in 
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While the loading was not a problem for the structural steel, other issues proved to be more problematic. 

The first issue with steel was the connections.  Making the frame requires bonding metal bars to provide 

a sturdy surface. A welded joint would provide a strong bond between steel components, but then it would 

be extremely difficult to adjust the frame later. For example, if Megan decided the sides were a little too 

high, our team would be forced to either cut down the leg, or grind down the weld and reset the bonded 

joint at a new point. Aluminum T-slot came up as alternative method for making the frame. Published 

loading data, available from the manufacturer of T-Slot, and shown in Figure 27 and Appendix I, proved 

that the T-slot bars would be strong enough and provide the desired adjustability for the frame. The main 

design concern for the assembly was dimension tolerances. Since we already had the Desmo modeled in 

Solidworks, we tested the spacing of components in a 3-D assembly. Since most parts are stock, the 

Solidworks models are mostly pulled from McMaster-Carr and 80/20 Inc.  

 

 
Figure 27. Loading cases for Series 1515 T-Slot aluminum from T-Slots. 

 

Another downfall of the structural steel was the high friction inside the telescoping arm. Since the fit had 

about an 1/8” clearance and was just a rough metal to rough metal sliding surface, the motion for the non-

stationary telescoping tube wouldn’t have been easy. Some form of lubrication would need to be 

maintained to help Megan move the controller. Using T-Slot allowed for two linear bearings to be placed 

along the side rails to slide the middle bar back and forth.  T-Slot allows for the metal bars to be fastened 
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together due to an extrusion along the edges. The cross section of a T-Slot bar can be seen in Figure 28.  

A 1.5-inch width square bar was selected based on the measurements of Megan’s hand, and because it 

compared to the grips on the current treadmill. The measurements were also compared to the published 

grip sizing for Megan’s hand size.5 

 

 
Figure 28. Cross section of aluminum T-Slot. 

 

The next component analyzed for the detailed design was the sliding arm, which allows Megan to move 

fluidly along the treadmill, while giving the treadmill feedback of Megan’s location on the treadmill. The 

sliding assembly is mounted to the side rails in two places. There are two bearings positioned on each 

side rail: one that is stationary and one that slides. The middle bar is fastened to the two moving, linear 

bearings that are free to move along the side rails. The original design utilized linear gas springs to help 

restrict the movement of the linear bearings, as seen in Figure 29. Once the linear bearings were installed, 

we found the gas springs to be unnecessary because of the natural resistance between the T-Slot and 

linear bearings.    

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Detailed design of the sliding arm configuration with linear speed limiters. 
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5.2.3 Material/Component Selection 

For our detailed design, the frame was specified to be built with aluminum T-Slot extrusions. All the 

brackets, linear bearings, and mounting equipment were to be made of aluminum as well. The exception 

to the aluminum are the zinc-coated steel fasteners and the stainless steel linear speed limiter.  Zinc coated 

steel and stainless steel do not typically corrode with aluminum under standard atmospheric conditions, 

and the treadmill will ultimately remain in a stable home environment.  The 15 series (1.5” x 1.5” cross 

section) grade of T-Slot was chosen over the 10 series (1.00”x1.00” cross section) because it is stronger 

and provides an easier grip size for Megan. Plastic T-Slot covers were inserted along the railing to provide 

a smooth surface for Megan to hold onto. An exploded assembly of the mechanical components, from 

the Critical Design phase, for the rail system can be seen in and in Appendix J.  

 

The fasteners for the T-Slot are specified in the catalog, but are generally a 5/16”-18 thread. One 

component that was not confirmed in this detailed design was the base leveling foot. The treadmill will 

ultimately go to Megan’s home; however, the exact location and its conditions were uncertain at this 

stage. The selection of this component will be discussed in Chapter 6. 

 

5.3 Tactile Positioning Feedback System 

The tactile positioning feedback system was designed based on the ideation concept of material feedback 

as a redundant system. The concept was renamed to more accurately describe the system and its function. 

With Megan holding onto the grips with both hands, there is very little chance of lateral motion towards 

the sides of the treadmill. If she is only using one hand to hold on though, this chance increases. The side 

rails are present to help ensure Megan does not step off the side of the treads; however, the tactile 

positioning feedback system was designed as a redundant safety system to alert Megan as to her position 

on the treadmill. 

 

5.3.1 Details 

There were many attributes of this system that were researched and evaluated to find the best solution. 

These aspects included the type of material, the amount of the material, where it is located on the treads, 

its firmness, and how it could be attached. Some physical testing was completed to estimate the optimal 

positioning of the material. We determined that every other tread would have a bumper 2 in. from either 

ends of the tread. This may seem to provide very little room for error; however, the width of each tread 

is only 20 in. When walking on a treadmill, lateral motion is not very natural so to traverse more than 2 

in. laterally in a single step is extremely unlikely. The positioning of the material on each tread can be 

seen in Figure 30. 
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Figure 30. Positioning of the silicone bumpers 2 inches from the edge of each tread. 

 

5.3.2 Analysis/Component Selection 

Three of the materials considered were foam, rubber, and silicone. Each of these are soft and, if sized 

correctly, would not provide negative feeling if stepped on. They also would retain their original form 

after being stepped on, which is crucial for the design. Focus was then shifted to the availability of stock 

parts that could be used in the design. Stock parts of the correct size and shape would allow us to simply 

attach these pieces onto the treadmill without the need for customization or more expensive components. 

 

A search was completed for already-manufactured components that could be purchased for use on the 

treadmill. Our team found silicone bumpers available on sites such as Amazon. These silicone bumpers 

are used mostly as spacers for glass tables and dampers for cabinet doors. They are hemisphere-shaped, 

come in a variety of sizes, and contain an adhesive on the flat back, which can be used to stick it to 

another object, such as a tread. To help decide which bumper to use, our team ordered some samples. 

The final component selection can be seen in the following section. 

 

5.4 Electronics System Assembly 

While the mechanical systems, outlined above, keep Megan physically engaged with the system, the 

brain of the project lies in the electronics system. A new electronics system was designed to build on top 

of the existing system of electronic hardware in a way that would retain stock functionality and integrate 

the added safety features. This new system is comprised of two smaller subsystems: a sensor array 

comprised of a diverse selection of capture sensors and an autonomous control module capable of 

adjusting the workout conditions to remain within safe parameters. The control module, named DESI for 

Dynamic Engagement through Sensor Intelligence, transforms the stock treadmill into a personal 

assistive trainer capable of monitoring and engaging with Megan in the safest way possible. 

5.4.1 Details 

Analysis of the existing electrical system yielded essential information regarding the methods of 

interaction and the flow of data between electrical subsystems which is visually summarized below in 

Figure 31.  

2 in. 
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As mentioned in Section 4.3 Computer & Electrical Systems, the existing electrical system uses three 

logic boards to perform all tasks associated with basic operation. The lines of communication used to 

relay information between the boards were traced and probed to gather necessary information regarding 

electrical compatibility. Since the schematics of the logic boards are not available for reference, special 

attention was placed into identifying places where access would be the safest and most viable option. 

Three methods of entry, visually shown in Figure 32, were found in the existing system, of which the J10 

connection was deemed the best injection site since the communications across that line were still not yet 

acted upon by the main interface. This meant that an external source could route these communication 

signals to its location and reinterpret them in a manner of the source’s choosing before sending them back 

emulating the original user interface panel. A second control interface, DESI, is designed to employ this 

technique to operate the treadmill autonomously using real time sensor data to provide the safest possible 

workout environment for Megan. A key detail going forward, however, is the possibility that the DB9 

port, shown in blue in Figure 32, could be a more viable option for command injection into the main 

interface unit. While this is still not yet fully confirmed, if authentication is not performed by the main 

interface unit at the site during the RS232 handshake, then a USB to Serial adapter would be a simpler 

and more cost-effective option. Regardless, both methods of entry achieve the same purpose and are 

considered as substitutable protocols moving forward. 

 

Figure 31: A simplified model of the existing electrical system.  
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To summarize, the new electronics system assembly consists of two core subsystems and a smaller 

optional subsystem, which allow for seamless integration into the existing hardware of the treadmill. 

 

DESI: Dynamic Engagement through Sensor Intelligence  

The core component of the electronics system assembly is the central control unit which, through 

continuous sensor readings and user input, provides a safe workout experience for Megan. 

 

Sensor Grid:  

The variety of sensors provides the necessary information to DESI to operate the treadmill. The sensor 

grid gathers information about Megan’s status on the treadmill, and gives feedback to the central control 

unit. 

 

Gate Module: 

This key component allows us to control the source of the input location from either the stock user 

interface or directly from the DESI communication. It also acts as a buffer and signal booster as DESI is 

not able to produce high voltage swings like those seen on the RS232 protocol. 

 

5.4.2 Analysis 

DESI: Dynamic Engagement through Sensor Intelligence 

Many treadmill accidents occur when the user loses track of their position on the treadmill, leading to a 

temporary vertigo, or fails to keep up with the selected speed. The latter is then compounded by the 

inability to reach the speed controls usually placed at the front of a treadmill, as is the case with our 

Woodway Desmo. 

Figure 32. Breakdown of interface board: methods of entry. 

 



 

 

 Team Megan’s Treadmill | Final Design Report 

 

The mechanical systems and controller eliminate this source of instability by restricting lateral movement 

and by keeping Megan within range of the controls. However, we still believe the safest location for 

Megan is in the first 20 cm of drift backward, allowable by the sliding arm. One solution is the constant 

readjustment of speed in the situation where too much backward drift was detected. Since the system is 

to be as self-sustaining as possible, a way the new control module could perform this constant checking 

and correcting was developed.  

 

Although far from being considered artificial intelligence, the programming behind DESI was inspired 

by the actions of Megan’s supervisors during her workouts and the idea of introducing self-responsive 

feedback loop that would drive the system to a point of assured safety. Twin ultrasonic sensors statically 

positioned on each sliding arm capture the distance traveled in the negative Y direction as shown in 

Figure 33. Using this distance, DESI can then decide whether Megan is in a stable region or has traveled 

too far towards the end of the treadmill. Furthermore, if the distance is deemed to fall into this region, a 

correction of speed is directly issued to the main interface unit. After this correction is issued, DESI 

probes the sensors again to check if there was an improvement in location and reissues another correction 

until the speed is lowered enough to where Megan can reenter the safe zone of operation.  

 

Figure 33. Detailed design location of various sensors on the railing assembly. 

 

The speed adjustment loop relies on the sensor data provided by the ultrasonic sensors to be accurate, or 

unnecessary interruptions of speed will occur when corrupt data is received: hence, why two sensors are 

used instead of one. Validity checks are performed on inputs as they are received to ascertain that the 

error between both distances received are within an acceptable bound.  
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Additionally, the system uses a capacitive touch sensor to assure that Megan is always in contact with 

the controller or side rails. Multiple channels of input are used for Megan to be able to freely move her 

hands along the various gripping surfaces without causing DESI to initiate emergency protocols in the 

event of permanent loss of contact. Figure 34 shows the different operation modes that DESI will run 

through using the relationships in Figure 35.  

 

 

 

 

 

 

 

 

 

Figure 35. Subsystem relationships after DESI insertion.  

 

Figure 34. DESI modes of operation.  
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Sensor Grid: 

For DESI to accurately determine the belt speed and workout conditions, it relies on a grid of sensors that 

continuously capture and relay data. Two ultrasonic proximity sensors mounted on the railing assembly 

monitor the distance that Megan has traveled backward from the natural resting position of the rails. 

Capacitive grip sensors mounted to the inside of Megan’s contact points on the gripping surfaces give 

insight to the presence of Megan and vitals such as temperature and heartrate. These sensors also act as 

an emergency stop. as loss of contact immediately terminates the workout and places the system in 

emergency mode. Although the camera that monitors Megan is only active in emergency mode, it too 

can be queried by DESI and could provide feedback such as motion detection. 

 
With the current stock treadmill, when the user enters a command on the user interface unit (Figure. 18, 

Red), that command triggers the logic board within that subsystem. This subsystem finds the location 

and function of the command entered and then stores the status of the treadmill in its local memory. 

Concurrently, a series of electrical signals are issued down a 7-pin cable directly into the J10 port 

connection on the main interface unit where it gets translated and acted upon. This process of 

communication must remain intact if we wish to retain all stock functionality. Accordingly, a special 

module called GATE is necessary to act as a “high-tech crossing guard” in that it will only allow input 

from one line to enter the main interface unit at any given time. After analyzing all incoming input, DESI 

either issues a correction to the speed of the belt, however minute it might be. To accomplish this, DESI 

translates the correction command into a series of electrical signals that exactly matches what the stock 

board would issue for that same command.  

 

This allows us to maintain all stock functionality as a default, in case guest users wish to use the treadmill 

system, and minimizes errors since the existing onboard error system would check the incoming input a 

second time after acceptance. 

 

5.4.3 Component Selection 

Control Unit Platform Selection  

As mentioned in the preliminary interface plan, the chosen platform for the central control unit needs to 

be one with more computing power than the average microcontroller. After looking for cheaper 

alternatives, it was clear that the Raspberry Pi 3 module was the best choice when considering stock 

onboard features, available support, and portability with respect to cost. Table 8 demonstrates the 

favorability of the Raspberry Pi 3 module in contrast to other platforms taken into consideration. 
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Table 8. Specifications of various possible control units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As with most generic developer chipsets, the Raspberry Pi 3 is bundled with a large selection of external 

features such as an onboard WIFI receiver and four available USB 2.0, which gives us a large integration 

set for only $40. Other boards such as the BeagleBone have built in analog to digital converters, which 

would have been useful during integration of the sensors, but it offers less in terms of community support. 

 

Proximity Sensor Selection 

The DESI control system requires constant knowledge of where Megan is positioned on the treadmill to 

accurately and safely maintain a workout state. There are multiple ways in gaining this information such 

as using an infrared or ultrasonic sensor. The SR04 ultrasonic sensor was selected for its acceptable 

accuracy and superior price point. 

 

Table 9. Possible electronic proximity sensor components. 

 Sharp IR MaxBotix EZ0 SR04 MaxBotix EZ1 

 

    

Cost $20.00 $29.95   $6.95 $49.95 

Accuracy 71% 87% 67% 99% 

Type IR Ultrasonic Ultrasonic Ultrasonic 

 

 

 

 
BeagleBone 

Black 
Intel Galileo Raspberry Pi 3 Arduino Yun 

     

Cost $55.00 $79.95   $39.95 $44.95 

Support Forums Intel Forums  RPi Foundation 

Arduino 

Community 

CPU  ARM v7 Intel Quark1000  ARM v7 ATMega32u 

Speed 1.0 GHz 400 MHz  1.2 GHz 400 MHz 

Inputs  57 34 30 25 

USB 1 1  4 1 

Memory  512 MB 256 MB  512 MB 128 MB 
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Voice Sensor Selection 

Voice control was a feature that we realized would not the safest way to interface Megan with the core 

treadmill functions. The main concern was the delayed and error prone nature of voice command 

software. Noise from the operation of the treadmill, along with the distortions in voice attributed to an 

increased heart rate, would pose significant problems when trying to parse audio input and transform it 

into Megan’s intended command. The implementation of the algorithms necessary to parse this input 

would have been tedious, time consuming, and almost impossible to fully test. Inspired by the new 

Amazon Echo devices, which offer a multitude of functions based on voice input, we decided that an 

additional set of available commands should be set aside for Megan. A scalable list of commands could 

then, in effect, be available for immediate use and give us a way to add or remove features in software 

rather than dealing physical representations. 

 

Amazon AWS Services allow network devices to use Alexa’s API interface if the user of the device 

registers the application with Amazon and abides by their terms and conditions. With these keys and use 

of special Curl libraries, we can emulate the behavior of an Amazon Echo device on the DESI control 

module. A diagram of this implementation and a list of possible prompts and responses are shown in 

Figure 36 and Table 10, respectively. 

 

 

 
Figure 36. Data flow of DESI voice commands. 
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Table 10. List of DESI voice commands and responses. 

Commands Variations Action 

“Hello” 
Hey, Hi, Howdy, Greetings, 

What’s Up 
Replies to asker, “Hello.” 

“How fast am I going” How fast, Say Speed 
Replies to asker:  

[Current Speed]  

“How far have I traveled” How far, Say distance 
Replies to asker: 

[Current Distance Travelled] 

“Play music” Music, tunes, jams 
Replies to asker: “Okay” 

[Actions Music Library Task] 

 

Camera Feed Selection 

Although the camera system is only activated when Megan’s parents activate the camera or the treadmill 

enters emergency mode, it was still essential to choose a system that is reliable and efficient when 

capturing data. Video capture and relay is a memory and processing heavy operation, and the less we 

load on the DESI handler, the smoother the sensor loop feedback performs. Because of this, the native 

Raspberry PiCam, shown in Figure 37, was chosen to be the visual capture unit. Since the Raspberry Pi 

3 has a Camera specific port built into it, as well as the driver built into the underlying operating system, 

the use of an external library and is not needed. This means less overhead for the DESI Handler and more 

efficiency in the overall system. 

 

 

 

 

 

 

 

 

 

 

 

Capacitive Sensor Selection 

To detect Megan’s presence on the treadmill, we needed a way to verify she was gripping the controls 

with her hands. Initially, we believed that the proximity sensors would perform that task; however, after 

noticing problems in the way the SR-04 sensors handled detecting clothing and moving objects, we opted 

for a direct line of communication to her hands. A capacitive sensor would allow us to detect current 

flow out of a set of 12 channels along the gripping surfaces to verify that Megan’s contact with the support 

system. Availability of this type of sensor is limited, but the MPR121 by Adafruit is the most efficient 

and cost effective at $7.95.  

 

 

 

 

Figure 37. The Raspberry PiCam and ribbon attachment cable. 
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6. Manufacturing and Assembly 

As discussed in the previous two chapters, many aspects of the detailed design were changed during the 

manufacturing phase. As our team worked through the implementation of our various systems, it became 

clear that some adjustments and adaptations were necessary to produce the best product possible. As with 

the other phases of this project, the fabrication was divided between the mechanical and electrical 

systems, culminating in the integration of the two. The realization of our final product and the major 

changes are highlighted in this chapter. 

 

6.1 Mechanical Systems 

The first step in the mechanical process was to assemble the aluminum T-Slot to form the rails along the 

treadmill. The T-Slot was cut to length before being shipped and was validated when the parts arrived. 

All the rails were laid out to check for proper clearance with the existing treadmill and were then joined 

together using fasteners for the T-Slot. The original design had the rails sitting on caster feet; however, 

when the rails were put together, it was clear that the caster feet did not provide the needed stability to 

support Megan safely while on the treadmill. The caster feet were replaced with base feet that were bolted 

down to a ¾” thick plywood base, which sits underneath the treadmill. The weight of the treadmill ensures 

that the plywood provides a stable and rigid base. The plywood was then painted black for aesthetics and 

to help detect any future cracks or chips in the wood. The difference between the two mounting bases 

can be seen in Figure 38. 

 

      
Figure 38. The difference between the original caster foot (left) and the implemented base foot bolted 

down to plywood (right).  

 

Once the vertical supports were established, the horizontal bars were placed along the treadmill and 

fastened with T-Slot specific bolts and nuts. Cross bars were added for increased stability, and one linear 

bearing was placed on each rail. A picture of the barebones model can be seen in Figure 39. 
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Figure 39. Two images of the barebones railing system. 

 

Originally, the horizontal bar was a single piece of square T-Slot; however, for improved sliding motion 

and robustness, a double piece of T-Slot was used instead. When bolted to the linear bearings, four screws 

were engaged on each side instead of the original two. The detailed design also specified linear speed 

limiters (dampers) to help restrict the sliding motion, ensuring the bar would not slide too quickly. After 

implementing the linear bearings and the horizontal bar, it was clear that the inherent resistance to sliding 

made the dampers unnecessary. This resistance was due to the looseness of the linear bearings on the T-

Slot, which allowed them to twist. This extra degree of freedom made the system under-constrained and 

caused the bar to move less effectively. Spacers were added in between the metal and plastic, within the 

linear bearing, to help address this issue. Once the linear bearings were properly engaged with the T-Slot, 

the twisting motion significantly decreased and the sliding motion improved. However, the linear speed 

limiters were still unnecessary and left out of the final product.  

 

Although the sliding motion had been improved, there was still another issue. Originally, the handlebars 

were going to be mounted to the top of the sliding bar. Due to the distance between the force applied to 

the handlebars and the axis of the sliding motion, a torque was produced that prevented the rail from 

sliding smoothly. To address this problem, the handlebars were attached to the front of the sliding arm to 

allow for a force in the plane of motion. With the absence of torqueing on the system, the bar now slides 

effectively but still with some resistance, preventing a fully free sliding motion. Our team also had to 

determine the handlebar’s method of mounting. The final product contains pipe clamps with rubber 

inserts to firmly attach the handlebars to the horizontal rail. In order for the handlebars to be mounted 

with four pipe clamps to provide rigidity, two extra pieces of square T-Slot were added on top of the 

original horizontal rail. This change and the handlebar mounting can be seen in Figure 40. 

 

 
Figure 40. Mounting for the handlebar grips. 
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Once the all the components were in place and the sliding motion with the linear bearings was optimized, 

we fastened “stoppers” to the rail. The stoppers are made of the linear bearing profiles, with two holes 

drilled in the top to mount to the rails. A total of four stoppers to keep the sliding motion confined to a 

set range. Drawings for these can be seen in Appendix K. Figure 41 shows the handlebars in the correct 

position for easy sliding motion, with a pair of stoppers in view.  

 

 
Figure 41. Image of the entire sliding rail assembly. 

 

After the stability of the rails and the sliding of the horizontal bar had been finished, all the different types 

of sensors and the control panel were mounted and integrated with DESI. Mounts for the ultrasonic 

sensors and speaker were 3-D printed with ABS plastic. A picture of the sensor and the mount is shown 

in Figure 42. The slot in the back part of the case (bottom of image) is to allow for wire to go to the sensor 

chip, and the holes on the side are for 5/16” fasteners for the T-Slot. The proximity sensors are mounted 

on a cross bar in front of the sliding arm and are aimed at the sliding arm to detect where Megan is at on 

the treadmill.  Originally, the capacitive sensors were going to be connected directly to the side rails, but 

since the aluminum is anodized, our team attached conductive tape to the various gripping surfaces. The 

conductive tape allows for us to designate a “safe zone” of rail area so that Megan does not move too far 

back on the treadmill while holding onto the side rails. Figure 43 shows an example of some of the area 

with conductive tape.  

 

                          
 

 

 

In the detailed design, the control box was to be 3-D printed so it could be easily customized to fit our 

input controls. The product data for the proximity and capacitive sensor can be seen in Appendix L and 

the drawing for the case can be seen in Appendix M. In our final product, a standard electrical box was 

Figure 42. Proximity sensor in its 3-D 

printed mounting case. 

Figure 43. Right side rail with the 

conductive tape attached. 
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machined to house the buttons and rotary switch. This method proved to be even easier than printing a 

housing. Different control inputs were also used because of their lowered electrical requirements, which 

can be seen in Figure 44. The buttons are still easy to find and provide an audible and tactile click when 

pressed. The implemented rotary switch is like the switch specified in the detailed design. The product 

information for the buttons and switch can be seen in Appendix N.  

 

 
Figure 44. Implemented control panel inputs. 

 

The tactile feedback bumpers were placed on the treads to alert Megan when she gets too close to the 

sides of the treadmill. Our team acquired sample bumpers for physical testing. From this testing, we 

decided to use bumpers made of polyurethane instead of silicone because of its increased durability, size, 

and firmness. Also from this testing, our team found that the bumpers could be placed on every other 

tread. The tactile feedback can be seen in Figure 45. This help offset the higher price point of the 

polyurethane bumpers. While these bumpers do have adhesive on the bottom, they were super glued to 

the treads to help prevent them from falling off over time. The product details for the bumpers can be 

seen in Appendix O. Braille stickers were printed with a braille labeler to help Megan identify each 

control on the control box. 

 
Figure 45. Tactile Feedback bumpers glued to treads. 

 

The final mechanical components implemented were the side railing rubber inserts, which can be seen 

on top of the rail in Figure 41. These inserts were added to provide increased comfort for Megan when 

she grips the side railing. 
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Since certain components were changed between the critical design phase and the final product, an 

updated solid model was created as a representation for the new system. Figure 46 displays the 

differences between the 3-D models of the critical design phase and the final product. The main changes 

between the two systems were the mounting base, the handlebar placement, and the removal of the linear 

speed limiters.  

      
Figure 46. Detailed design 3-D model (left) vs. final 3-D model (right) of the treadmill system. 

 

A 3-D assembly drawing can be seen in Appendix P along with product sheets from various T-Slot 

components used in the design, seen in Appendix Q. 

 

6.2 Electrical Systems 

Initial reverse engineering of the Woodway treadmill’s electrical systems was successful, as the initial 

assessment of the stock boards’ method of communication between each other was confirmed. The user 

interface module sends commands to the main interface board via a solid clock line and a data line 

corresponding to typical rs232 protocol. Figure 47 details the signal pattern of one of these signals in 

relation to the ground wire after a simple speed up command was issued.  
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The signals coming from the user interface board were measured with a Rigol DS1054Z, 50 MHz 

oscilloscope, and they revealed that a swing voltage of around 10 volts DC was being used. This was 

concerning because it was much higher than the normal operating voltage of the Raspberry Pi 3 module. 

Furthermore, as more signals were analyzed, our team encountered abnormalities in the pattern of sending 

and receiving signals. Figure 48 shows a strange signal pulse that was periodically sent to the main 

interface board even when no command had been issued. Since it did not increase or decrease in relation 

to different speeds, we ruled out any typical application of the signal such as pulse-width modulation or 

status code sending. After a few weeks spent analyzing these signals with no real progress, a decision 

was made to fall back to a secondary method of accessing the controls of the treadmill.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.1 Wired Systems 

The decision to access the controls through a secondary method was not based solely on the inability to 

confirm the purpose of the signals discovered on the oscilloscope. Special precautions and circuitry were 

Figure 47. Oscilloscope capture of speed up command. 

Figure 48. Unknown periodic control signal sent to main interface module. 
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necessary to step down the high voltage signals to those which were safe for the Raspberry Pi 3 module 

to read and recreate. Research into voltage level converters was performed to evaluate whether variations 

of fast-switching modules would be enough to step down signals to a voltage low enough to safely enter 

the Raspberry Pi 3 general purpose input/output pins (GPIO pins). 

 

Additionally, after searching for procedural documents relevant to the use of serial on the Raspberry Pi 

3 module, our team found that modifying libraries and creating the code to make the necessary tweaks 

would be excessive, tedious, and error prone. 

 

Our team transitioned to the secondary method of access into the treadmill’s controls, being sure not to 

disturb the robust functionality of the stock treadmill.  

\ 

The exposed user interface board with the J14 connector, uncoupled from the touchpad controls, 

remained on the treadmill throughout the wiring process. These pins were divided into groups of high 

voltages capping at 3.3 volts, pins directly tied to ground, and one specific pin with a periodic signal. 

This pin was later confirmed to control the keypad logic on the stock touchpad of the treadmill. As seen 

on the computer board, these pins are traced upward and taken directly underneath the resistive touch 

LCD screen. These pins also attach to a set of pins on the backside of the board. Figure 49 shows the 

molex connector, which exposed certain patterns of pins that were attached to the connector on the front 

of the board. Following these connections, we discovered that the rail controls were directly tied to these 

pins, and that they reacted to simple state changes from low voltage when pressed and active high voltage 

when released.  

 

 

Figure 49. Molex connection on the front of the Woodway display board. 

 

Because of the simplicity of the button design, our team tested numerous combinations of pins and 

produced a library of nearly every possible relationship between pin short combinations and their 

corresponding button input on the control panel. For instance, when the top pin, Pin 14, was attached to 

Pin 13 via a 56 ohm resistor, the command for start was read and the treadmill activated. Eventually, 

every command was reverse engineered and discovered to be rudimentary in terms of complexity. This 

method of sending information to the treadmill was far more beneficial to our goals since error checking 
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would be performed at the Woodway board and our own logic. Also, this method eliminated the need to 

create a converter to translate the signals provided by our hardware to those needed by the treadmill.  

 

The next step was achieving full automation of commands with the use a multiple channel relay board. 

The SainSmart 16 channel relay board was chosen to act as a buffer between the Raspberry Pi 3 module 

and the user interface board. The board uses 12 volts external power and could tie into 16 different 

combinations of pin arrangements. We focused on the primary commands needed for the project and left 

all other commands as secondary feature commands that would be built upon if extra time was available. 

Each channel on the SainSmart relay board is completely isolated from the trigger circuitry. This acts as 

a line of defense for the Raspberry Pi 3 module, as any voltage surges from the user interface board would 

not negatively affect the main operation of the DESI code. One issue with the board was that the 16 pins, 

which act as signal triggers for the relays, were operating at a voltage of 5 volts through a regulator 

capable of supplying up to 3 amps. The pins were also active low. This means that the signal controlling 

the pins needed to be close to 0 volts, and the pins were going to be needed to handle the surge of current 

coming from the activation of these pins when a relay was triggered. Since the GPIO pins operate at a 

strict voltage of 3.3 volts, level shifters were researched and applied to safely regulate the voltage at both 

ends of the nodes.  

 

6.2.2 System Interfacing 

Megan’s family stressed that they also wished to retain normal functionality to ensure that the treadmill 

was operational by members of the family beside Megan. Because of this request, the touch controls will 

remain fully operational and will work in conjunction with the onboard controllers on DESI. This was 

accomplished by forking the input wires, as shown in Figure 50, and tying one end of the wires to the 

relay switchboard and the other back into the touch pad controls’ bus line.  

 

 
Figure 50. Checking the readings from the Woodway treadmill to replicate commands.  

 

The control box contains a rotary switch that is initially set to have five different speed levels. There are 

additional slots that can be utilized on the rotary switch, and, in the future, Megan’s family could add 

different speed settings. Currently the initial position is set to speed “0,” where the treadmill does not 

move. The other four positions contain the four speed levels, ranging from 2.0 to 3.5 mph. The Raspberry 

Pi, relay board, and other electrical components sit in a junction box with a power input at the front of 

the treadmill.  
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The flow of inputs through the treadmill can be seen in Figure 51. When laying out all the wiring between 

the controls, DESI, the relay board, and the treadmill itself, it was essential to make good connections. 

With all the various command inputs, there are numerous cables that run from system to system. Even 

with color coding of the wires, it was still extremely important to check the path of each wire, to ensure 

that it was on the correct line. To prevent bad connection points between the wires, boards, and chips, 

each connection was soldered together. The soldering helped keep the joint from coming apart, and to 

provide a strong electrical connection. Heat shrink was placed over all the wire connections to prevent 

any electrical interference. 

 

 
Figure 51. The electronic control input flow. 

 

Once the primary commands were initiated, the sensor grid was set up. The ultrasonic sensors were placed 

in front of the sliding bar, and the capacitive sensors were wired around the rails and handlebar.  DESI 

uses the responses from the sensors to determine the operational status of the system. If DESI detects 

certain irregularities, it will automatically activate the proper emergency protocol for the situation.  

Activating secondary features was the final step for the electronics. DESI is set to run through Amazon’s 

Alexa service to provide the ability for Megan to use voice commands for secondary features from DESI. 

Because launching the entire Alexa platform on the Raspberry Pi 3 proved to be CPU intensive, our team 

decided to modify an Amazon Echo Dot to activate on a keyword detected by DESI. Using the Snowboy 

KITT Hotword Detetction platform to listen for the hotword “DESI” (using a Python script running 

simultaneously in the operating system), we could trigger a separate relay only when the hotword was 

spoken. We removed the trigger button from the Amazon Echo Dot, wired it to the relay board to simulate 

a button press, and ultimately caused the Echo Dot to listen for commands coming from Megan. This 

was done in order to give the service a more personalized feeling, as DESI is a more inviting trigger word 

that the four default options provided by Amazon. The underlying trigger word, “ECHO,” for the 

Amazon Echo is also always active and is ready for use in case the triggering software fails to capture 

the DESI hotword.  

 

6.2.3 Code  

DESI was coded in a Python environment. While C is a more robust programming language, it would 

have been extremely time intensive to build all the necessary commands needed for this code. The code 

was split into three main scripts, DESIConfig, Sentinel, and Mission Control. There are multiple reasons 

to break up a program like this into multiple sets. One reason is that debugging becomes much easier 

when you can look at smaller individual programs as opposed to an enormous single process.  

 

Relay 
Board 

DESI 
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DESI is the main program that has all the pin allocations and paths for the treadmill responses. This 

basically acts as the translator between the control box, relay board, and Woodway computer.  DESI also 

regulates the feedback to Megan based on the inputs sent from the Raspberry Pi to the Woodway. The 

relays are initiated based on the control input from the user. Sentinel’s main function is to check for any 

errors while the treadmill is in operation. To help make the code robust, our team ensured that the 

programming was structured in a multi-level system.  

 

The highest tiers are protected by functions working at lower tiers. Drivers are imbedded in the system 

to collect and store data from the sensor outputs, which are then routed to the higher-tiered programs. 

Sentinel ensures that all the functions, running throughout the various programs, are operating in a proper 

and efficient manner. For example, to stop multiple audio feedback responses from overlapping at the 

same time, Sentinel utilizes a “mute speech” function.  

 

Mission Control is another script that was created to help optimize the workload of the program. While 

DESI maps out the commands and Sentinel checks the commands, Mission Control operates the system. 

Mission Control is where the states for the dynamic sensor controls are located. The proximity and 

capacitive sensor logic is all based in Mission Control. While all the code is critical in the operation of 

the treadmill and DESI, Mission Control provides the direct link to the states of the treadmill based on 

the inputs from the user and sensors. While DESIConfig, Sentinel, and Mission Control are the main 

programs running within the system, there are other important, low-level functions that run through the 

computers of the system. 

 

As the creator and implementer of these computer and electrical systems, Eddie Ruano has much more 

information on the technical details. Because this senior project was based in the mechanical engineering 

department, much of the detail, including the code itself, was excluded. 

 

7. Safety Considerations 

Safety has been of the utmost concern during all stages of the design and manufacturing processes. The 

safety concerns that are present in the system have been addressed, and the methods our team used to 

mitigate these issues will be discussed. The safety hazard checklist discussed in chapter 4 was relevant 

in making the safety decisions.  

 

The first set of safety considerations involves Megan’s interaction with the treadmill. One of the primary 

concerns is Megan’s ease of getting on and off the treadmill, so, in a previous design, a step was included 

at the back of the treadmill. However, through testing with Megan, it was decided that the side rails were 

sufficient support. The side rails reach past the end of the treadmill so Megan has support before she even 

interacts with the actual treadmill. The biggest safety concern is Megan’s loss of balance while 

exercising. To mitigate this risk, many safety measures were implemented: the main gripping system, the 

full-length side rails, and the stop button. In the event Megan falls, the emergency stop procedure, induced 

by information provided by the capacitive sensors, turns off the treadmill to prevent further injury. The 

last safety concern is Megan’s transition from holding the main grips to holding the side rails, and vice 

versa. As a part of Megan’s introduction to the treadmill system, she will be coached on the process of 

transferring hand positions. As Megan becomes familiar with the system, this process will be second 

nature for her. 

 

The next set of considerations relates to the mechanical design. The first concern was the stability of the 

side rails: they cannot deflect significantly from any force Megan could produce. The base feet mounted 

to the plywood base provides a very stable base, and the T-slot was sized to take any loads Megan could 
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produce. Testing of this safety concern is discussed in the following chapter. Another area of concern is 

the presence of pinch points due to the sliding rail assembly. Earlier designs contained compression 

springs (located on the front side of the sliding rail) and speed reducers (located on the back side of the 

sliding rail); since these components were eliminated, so were their pinch points. There is wiring running 

to the control panel and the capacitive sensors, which Megan could potentially catch her hand on. To 

mitigate this possibility, the wiring is run in sheathing and is tucked away in the grooves of the T-Slot as 

much as possible. 

 

The last set of safety considerations revolve around the electrical and computer systems. Loss of 

feedback, providing incorrect feedback, and the full shutdown or failure of one of these systems are 

concerns that need to be addressed. Our team has thoroughly tested any scenario that we could foresee 

be encountered and have ensured that the electrical and computer systems operate correctly. As a final 

precaution, we have implemented automatic shutdown protocols in the event a system does fail. 

 

8. Testing 

The controls, feedback, and support systems were all tested extensively to ensure that the treadmill 

operates at peak performance and Megan’s workouts are safe and enjoyable. Each function had various 

methods of testing. 

 

Controls 

The controls were tested for irregular triggering, which occurs when a change of state happens. Once this 

was accomplished, we performed a stress test in which unlikely transitions and inputs were performed to 

try and break the DESI listening software. Interference testing was then performed to assure that external 

presses on the touchpad would not hamper our ability to communicate with the treadmill via the relay 

board. 

 

Feedback 

The proximity sensors were tested and calibrated to ensure accurate data of Megan’s location is provided 

to DESI. The capacitive sensors were tested in sections; each section was based on a different point of 

contact independent of other points. The audible feedback of the included speaker was tested to ensure 

that DESI’s response and the volume and power levels were appropriate. 

 

Support 

The stability and sturdiness of the rails were tested qualitatively by our team. Though not perfectly rigid, 

the horizontal rails are able to support approximately 200 pounds at any point without a noticeable 

deflection. The sliding arm was confirmed to have a range of motion of 10 inches.  

 

Based on the specifications outlined in Section 3.2, a test plan was created to validate that the criteria are 

satisfied by the final product. An outline of the plan can be seen in Table 11. Some of the test plans focus 

on gathering quantitative datum while others focus on qualitative data. Qualitative data was taken for 

more ergonomic features on the treadmill, like stabilization and time to learn.  The test results, along with 

the DVP&R can be seen in Appendix R. An important aspect of the time to learn specification is the 

operator’s manual, which can be seen in Appendix S. 
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Table 11. Specification List for Testing 

SPECIFICATION TEST PLAN 

MAX SPEED 

 

1. Take measurements of treadmill track length 

2. Make a visible mark on one of the treads (bright foam pad) 

3. Set treadmill to desired speed controls 

4. Have 2 people recording time/how many passes the mark makes over 

1-2 minutes. 

5. Convert the distance covered over the speed to calculate an average 

velocity 

6. Compare to desired speed input 

 

MAX 

ACCELERATION 

 

1. Confirm velocity settings  

2. Have treadmill start from rest and go up to various speeds  

3. Have user gauge how appropriate accelerations are set 

- Team member does preliminary testing, then confirm with 

Megan’s family 

4. Modify the change in speed ratio to desired acceleration 

 

MAX HEIGHT 

 

1. Have rail posts bolted to wooden platform. 

2. Adjust horizontal bars to user preference 

3. Ensure clearance with existing treadmill structure 

 

MAX FLOOR 

AREA 

 

1. Check final area so that treadmill safely fit on the plywood base area, 

and the plywood base would fit in the final location for the treadmill. 

 

USER 

STABILIZATION 

 

1. Identify all joints in system 

2. Apply approximately 200 pounds to worst case loading areas 

3. Check for deflections (linear and angular) 

4. Look for any high sources of stress concentrations 

5. Perform a torque check on fasteners to ensure they are fully tightened 

down 

 

VOLTAGE INPUT 

 

1. Identify all sources of voltage input within system 

2. Use voltmeter to determine the largest voltage areas 
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 Table 11. Specifications List for Testing (cont.) 

SPECIFICATION TEST PLAN 

TIME TO LEARN 

 

1. Write User Manual for treadmill operations 

2. Go through user manual with an individual who has not been 

associated with the project. 

3. Record time for operation 

4. Go through manual with Megan and her parents (possibly her coach) 

5. Lead her through operation procedure 

6. After final installation in her home, confirm that she can independently 

run through all operations. 

 

SLIDING RANGE 

OF MOTION 

1. Place sliding bar on side rails with handlebars 

2. Ensure that the middle bar is perpendicular to the horizontal bars 

3. Slide middle bar along the horizontal rails to check for linear motion 

4. Place “stoppers” on horizontal rails and tighten them down 

5. Measure distance that middle bar can travel 

PROPER WIRING 

 

1. Visual inspection to ensure all wires are connected to DESI and 

treadmill computer and are out of the way of the user 

2. Check to see if primary functions are working from direct laptop input 

3. Test control button inputs 

4. Validate inputs/outputs from sensor grids 

 

Proximity Sensors 

i) Check value of distance output with ruler 

ii) Test commands for different readouts (check different safety zones) 

iii) Ensure treadmill gives proper response for each zone 

 

Capacitive Sensors 

i) Ensure that the conductive tape and wiring do not interfere with 

sliding arms 

ii)  Test that all areas on treadmill give proper readouts on laptop 

iii) Check input and output from DESI from sensor readouts 

iv)   Test for longevity of conductive tape layout 

 

5. Validate through any emergency protocol systems 

6. Validate response of secondary functions 

7. Ensure that no components overheat after prolonged use 

 

PROPER CODE 

1. Check to see if primary functions are working from direct laptop input 

2. Run through sensor grids to check input/outputs (see wiring tests) 

3. Check control buttons are properly functioning 

4. Validate emergency protocol 

5. Validate secondary functionality 
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The first phase of testing evaluated the basic functions and overall quality of the design. Our team 

analyzed the accessibility and ergonomics of the process of entering and exiting the treadmill. The 

responses to input commands and the audio feedback system were monitored in this phase to ensure they 

functioned for every possible scenario. The second phase of testing included assessment of the motion of 

the horizontal rail. Our team monitored and evaluated DESI’s response to the linear motion of the rail to 

ensure the response was appropriate. 

 

When developing the proper software and algorithms for our DESI controller, we adopted the 

Incremental Build & Test philosophy which advised small implementations followed by rigorous testing. 

Large programming builds such as this one require multiple layers of abstraction and algorithm 

development; therefore, it was in our best interest to build from the lowest level of software to higher-

level language implementations.  

 

The lower level code that communicates with each sensor from the sensor array is written in a with 

debugging fashion, in which print data and error failure codes, mapped to each individual failure point, 

are left in the final compile. Usually when launching a firmware, the debugging information is removed 

to improve the speed and size of the system and the file system footprint; however, such debugging trace 

calls posed no serious speed reduction for DESI.  

 

Upper level error handling is a more structured protocol regarding the chaining of actions implemented 

when a specific error happens. While in low level error handling, the error is simply passed up the data 

flow chain, upper level error handlers must identify the error and act accordingly. If we deemed the error 

of great importance or hindrance to the safe operation of the treadmill, it was immediately sent to the 

Emergency State until fixed. 

 

9. Cost Analysis 

This project received funding for $1000.00 through the CP Connect Fund at Cal Poly. The CP Connect 

Fund’s goal is to “create opportunities for donors, faculty and students to collaborate on interdisciplinary 

educational projects by facilitating access to: potential projects, resources, relevant information, 

connections with corporate partners, and the interdisciplinary community of Cal Poly.”6 While cost 

played a large factor when choosing components, the first concern was quality. Since this product is 

going into full use at Megan’s home, it was critical that we did not cut corners on components unless the 

alternative product provided equal or improved quality. The bill of materials, shown in Appendices T 

and U, is broken into mechanical and electrical component sections to help maintain the original budget. 

 

The mechanical components in the controller assembly played a minor part of the budget; however, they 

were critical in the overall design.  The buttons, switch, and control box are stock parts that were 

purchased through Amazon. Our team also had access to a personal 3-D printer off-campus which was 

used to prototype and manufacture certain parts, such as the proximity sensor mounts. The road bike 

handlebars were bought second-hand at a discounted rate.  

 

All the rails were made of T-Slot, which is more expensive than general structural steel tubing. We used 

T-Slot because it provided acceptable material qualities and a superior fastening method allowing for 

adjustments throughout the build. The total length of T-Slot needed for the side rails and middle bar was 

approximately 400” (33’). At $0.53 an inch, the T-Slot cost was a significant part of the budget.  The 

other significant costs came from the linear bearings, used for the sliding arm. Fortunately, multiple 

distributors offer student discounts, which greatly reduced the price7. The rail system is a critical part of 

the overall focus to keep Megan both safe and independent while operating the treadmill, which is why 
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we allowed it to absorb a significant portion of the budget. Stock parts were chosen to save money, ease 

the manufacturing process, and allow for easier repair, if necessary. 

 

The tactile feedback was a small portion of the budget. There are 60 treads on the Woodway treadmill, 

so a total of 60 bumpers were used. A total of 80 bumpers were ordered, so there are extra in the event 

some of them fall off. This design’s ability to be repaired, or replaced, is cost effective and robust. 

Appendix T shows the bill of materials for the mechanical systems. 

 

The electronic systems components are broken into three categories: the control unit, the sensor grid, and 

the feedback module.  A breakdown of costs for the electrical components can be seen in Appendix U. 

The three “big ticket” items are the Raspberry Pi 3 Module, the Raspberry Pi camera, and the microphone.  

Another key component was the Amazon Echo, which provided the secondary voice control features. All 

the electrical components can be found through Amazon and Adafruit. Some of the materials, including 

wire and soldering materials are included as initial estimates for cost and may be adjusted for the final 

product. 

 

The cost estimate from the critical design phase was approximately $600, which was an underestimate 

of the actual cost of the project. There were multiple costs that proved necessary after entering the 

manufacturing phase. The main costs came from adding stability to the rails with new base feet and extra 

cross bars of aluminum T-Slot. Other miscellaneous costs for the mechanical systems included a plywood 

base, paint for the wood, clamps for the handlebars, and a few other smaller items used for prototyping 

and testing. The actual overall cost of the project was approximately $980 which was still within the 

$1000.00 CP Connect fund.  

 

10. Maintenance and Repair Considerations 

A new Woodway Desmo treadmill warranty lasts ten years for the frame, five years for the drive, motor, 

and belt, and three years for the rest of the components. Since the treadmill was donated by Cal Poly’s 

Recreation Center, the warranty from Woodway has been voided, but it did go through a full-service 

inspection by from a Woodway-certified technician, Roberto Espinosa.  He checked the treadmill to 

ensure it was properly working before releasing it to our group for the project. Roberto has been an 

extremely helpful resource for information about the maintenance and internal workings of the treadmill 

and has provided guidance of how to integrate our new system with the treadmill. We have performed a 

full inspection of the treadmill and additional systems during the Hardware Testing Review as well as 

before delivering it to Megan’s home. 

 

A full user and maintenance manual for the new components has been provided to Megan and her family 

to assist them with operations. This includes the operating procedure for the treadmill and any required 

maintenance for the system. Woodway’s maintenance manual and user guide for the Desmo treadmill 

has also be provided to Megan’s family.  

 

As discussed in the cost analysis, stock parts were chosen to save money, ease the manufacturing process, 

and allow for simple repairs in the future. The only custom parts designed for this project are the holes 

in the junction box and the proximity sensor cases.  It is very unlikely that these components will fail; 

however, if they do, the engineering drawings for the components will be included in the repair 

guidelines. This will allow for an inexpensive replacement for any damaged components.  
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11. Management Plan 

The project was a full team collaboration; however, each team member managed certain subsystems for 

the duration of the project. The titles and responsibilities for each team member were subject to change 

as the year progressed and the project evolved. These leadership roles were critical to ensure an even 

division of labor as well as optimal efficiency throughout the project. 

 

Eddie Ruano - Research & Electronics System Lead 
Eddie was the lone computer engineer of the team and had experience in programming and electronic 

component design.  The research lead was responsible for compiling any research that was collected 

throughout this project.  The role of electronics system lead involved heading up design and procurement 

of any electronic systems throughout the project as well as overviewing the necessary computer 

programming.   

 

Daniel Byrne - Controller Design & Communications Lead 
The controller design lead oversaw the development of the interface between the user and the treadmill 

system, including the points of contact and control inputs. This position also included the responsibility 

of ensuring the final product was accessible and ergonomic for the user. The communications lead 

oversaw communicating with the sponsor, the client, and any external sources related to the project.       

 

Michael Peck – Rail System Design & Project Management Lead 
The rail system design lead oversaw the development of the support system that directly provides a safe 

workout environment. This position also supervised the computer modeling and bill of materials of the 

system and overall progress of manufacturing. The project manager’s role was to track the progress of 

the team throughout the year as well as keep track of funds for the project.  

 

Our team was held to certain deadlines for the project.  This project started with ideation and ended with 

testing of the final manufactured product; by the end of Spring Quarter the project was complete. Table 

12 displays an outline of critical dates and milestones for the project. 

 

Table 12. Project milestone timeline 

Milestone Data 

Project Proposal October 25, 2016 

Preliminary Design Review November 15, 2016 

Critical Design Review February 7, 2017 

Manufacturing and Test Review March 16, 2017 

Senior Project Expo June 2, 2017 

 

A more detailed breakdown of our team’s design process for the year can be found in Appendix V. The 

Gantt chart summarizes all the phases of this project, from ideation through testing. Our team used this 

schedule as a reference of time frame for the project to help stay on track.  
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12. Conclusion 

Our team’s final system fulfills all the criteria specified during the preliminary stages of this project, and 

we believe it achieves the goal of providing Megan with a safe and independent workout environment. 

One of the interesting aspects of this project is the integration of both mechanical and electrical 

components into a cohesive, independent system. The final product contains both this new system and 

the original Woodway treadmill, creating a brand-new workout experience. 

 

Due to constraints on time and resources, some compromises were made throughout the timeline of this 

project, but our team is very proud of the final product we developed through Senior Project. When 

looking back at the preliminary design, it is remarkable how much the design has evolved. Throughout 

the process, many challenges arose; however, our team met those challenges head on. Senior Project has 

truly been a culminating educational experience to our college career.  We hope that this treadmill system 

and DESI can help Megan enjoy her workouts and continue to have a happy and healthy lifestyle!   
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Appendix A: Woodway Treadmill -  Desmo Product Information 
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Appendix B: Quality Function Deployment 
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Appendix C: Pugh Matrix for Overall System 

 

 

Pugh Matrix – System Level 

 Solution Alternatives 

Key Criteria Im
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m
il
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P
ri
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y
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ec
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n
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Accessible/Effective Controls 5   + - S   

Accessible/Effective Feedback 5   + + +   

Freedom of Movement 2   S + S   

Simplicity to Design/Build/Test 4   S - +   

Time to Learn 1   + - S   

Ergonomics 4   + + S   

Ease of Use (Independence) 3   + S +   

Level of Safety 5  S + -   

Versatility/Adaptability 1  - - -   

Sum of Positives 5 4 3   

Sum of Negatives 1 4 2   

Sum of Sames 3 1 4   

Weighted Sum of Positives 18 16 12   

Weighted Sum of Negatives 0 10 5   

TOTALS 18 6 7   

 

  



 

 

 Team Megan’s Treadmill | Final Design Report 

 

Appendix D: Preliminary Design Feedback Flowchart 
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Appendix E1: Safety Hazard Checklist 

 

 
  

MEGAN’S TREADMILL Sarah Harding 
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Appendix E2: Safety Hazard Checklist 

  

Description of Hazard Planned Corrective Action 
Planned 

Date 

Actual 

Date 

Pinch Points 

The railing assembly will have moving points; 

therefore, we need to ensure that there are no sharp 

edges or corners. We intend to fillet the edges of the 

design and cover the slots in the railing with plastic 

to keep smooth contact points for Megan. 

04/17 06/17 

High Acceleration 

The treadmill can accelerate and decelerate at a 

severe rate, however we will limit this in our stop 

procedure. 

04/17 06/17 

Moving Mass 

The only moving mass will be Megan on the 

treadmill and the sliding arm. The goal of this 

project is to safely constrain Megan when she is 

using the treadmill to ensure that she is always safe.  

04/17 06/17 

Electrical Voltage 

The treadmill does use a voltage greater than 40V 

however the electrical components are all housed 

away from the user. The plug for the treadmill is a 

110V with a side prong. The team does not intend to 

make any changes to the current power system of the 

treadmill besides altering the control and feedback 

input/outputs.  

*This issue was discussed with the advisor and 

decided it is not a safety issue. 

04/17 06/17 
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Appendix F: Raspberry Pi 3 Specifications 

 
 

  



 

 

 Team Megan’s Treadmill | Final Design Report 

 

Appendix G: Computational Data Flow Chart 
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Appendix H: Megan’s Traced Handprint with Measurements 
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Appendix I: TSLOTS Vendor Loading Data for Railing 
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Appendix J: Exploded Assembly of Rail System from CDR 
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Appendix K: Drawing of “Stopper” (Linear Bearing Profile with Hole Placement 
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Appendix L1: Product Data Sheet for Proximity Sensor (1) 
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Appendix L1: Product Data Sheet for Proximity Sensor (2)
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Appendix L2: Product Data Sheet for Capacitive Sensor 
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Appendix M: Drawing of Proximity Sensor Case 
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Appendix N1: Rotary Switch Product Information 
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Appendix N2: Electronic Button for Control Panel – Product Information 
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Appendix S: Rubber Bumpers  
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Appendix P: Assembly of Final Rail System 
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Appendix Q1: Drawing of Base Feet 
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Appendix Q2: Product Description for T-Slot Plastic Cover 
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Appendix Q3: Product Description for Linear Bearing 
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Appendix Q4: Product Description for Corner Brackets 
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 Appendix Q5: Product Description for T-Slots Railing 
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Appendix Q6: Double T-Slot Extrusion 

 

 

  

NUMBER
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Information in this drawing is provided for reference only.
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Appendix R1: DVP&R 
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Appendix R2: TEST SHEET – MAX SPEED 

GOAL: To determine the maximum speed that the treadmill will reach with 

DESI’S Control System 

DATE: 6/8/17 

PARTICIPANTS: Daniel Byrne, Michael Peck, Eddie Ruano 

Equipment: iPhone Timer 

STEPS: 
1. Take measurements of treadmill track length: 

 

21in/9 treads * 60 treads = 140” 

 

2. Make a visible mark on one of the treads (bright foam pad) 

 

3. Set treadmill to maximum speed setting – 3.5 mph = 61.60 in/min 

 

4. Have 2 people recording time/how many passes the mark makes over approximately 1 minute, 

three times. 

 

 

 Time of test interval Number of passes Comments 

TEST 

1 

Recorder 1 58.97 seconds 26.0  

Recorder 2 59.15 seconds 26.0  

TEST 

2 

Recorder 1 60.34 seconds 26.5  

Recorder 2 59.45 seconds 26.5  

TEST 

3 

Recorder 1 61.21 seconds 26.0  

Recorder 2 60.45 seconds 27.0  

AVERAGES: 59.93 seconds 26.3  

 

 

5. Use the number of passes, length of track, and time of the test interval to calculate an average 

velocity: 

 

Velocity = Number of Passes * Length of Track / Time of Test Interval 

  Velocity = (26.3 passes) * (140 in/pass) / (59.93 seconds) = 61.52 in/s 

 

6. Compare to desired speed input: 

% DIFFERENCE = (DESIRED VALUE – ACTUAL VALUE) / DESIRED VALUE * 100% 

% DIFFERENCE = (61.60 – 61.52) / 61.60 *100 = 0.137 % error 
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Appendix R3: TEST SHEET – MAX ACCELERATION 

GOAL: To determine the maximum acceleration that the treadmill will reach 

with DESI’S Control System 

DATE: 6/8/17 

PARTICIPANTS: Daniel Byrne, Michael Peck, Eddie Ruano 

Equipment: Control System 

STEPS: 
1. Confirm Velocity Settings 

 

2. Outline possible speed changes 

 

There are 5 speed settings (0 being off, 4 being maximum) 

 

3. Go through extreme speed changes to get a qualitative reaction to the acceleration between 

speeds. 

 

 Observations 

Speed 0 -> 1 

 

This sets the treadmill to 2.0 mph. The treadmill takes about a second to 

start speeding up. It gets to 2.0 mph in a comfortable time. 

 

Speed 1 -> 2 

 

Very smooth transition between neighboring speeds when speeding up 

 

Speed 0 -> 4 

 

Speed 4 is 3.5 mph. The increase in speed is quick, but there is a decent 

lead in time to allow the user to catch up to the main speed. 

 

Speed 1 -> 0 

 

The pause from 2.0 mph to 0 is not abrupt. It takes about 1.5 second 

from hitting the pause button to coming to a complete stop. 

 

Speed 2 -> 1 

 

Very smooth transition between neighboring speeds when slowing down 

 

Speed 4 -> 0 

 

It takes approximately 2 seconds from hitting the pause button to being 

at a complete stop. This motion feels very reasonable. 

 

 

4. Adjust accelerations based on user reaction 

 

- Typical treadmill accelerations were acceptable. 

- Megan’s family was comfortable with current treadmill transitions, and we did not interfere 

with any of the accelerations.  
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Appendix R4: TEST SHEET – MAX HEIGHT 

GOAL: Validation of maximum height of new rail system 

DATE: 5/29/17 

PARTICIPANTS: Daniel Byrne, Michael Peck, Eddie Ruano 

Equipment: Tape Measure 

STEPS: 
1. Identify four tallest point on rail system 

 

2. Measure from base of plywood to highest point 

 

 

 Location Height 

Point 1 Vertical Rails 48” 

Point 2 Horizontal Rails 45.5” 

Point 3 Sliding Arm (w/ control box) 50” 

Point 4 Handle bars 52 

 

 

3. Compare to maximum height to acceptance criteria 

 

- Falls within limit of max height (60”) by 8” 
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Appendix R5: TEST SHEET – MAX FLOOR AREA 

GOAL: Validation of maximum floor area of entire system 

DATE: 5/29/17 

PARTICIPANTS: Daniel Byrne, Michael Peck, Eddie Ruano 

Equipment: Tape Measure 

STEPS: 
1. Identify maximum dimensions 

 

2. Measure sides of plywood 

 

 

 Location Length 

Side 1 Bottom 48” 

Side 2 Left 90” 

Side 3 Top 48” 

Side 4 Right 90” 

 

 

3. Calculate Floor Area 

 

Area = Max Length 1 * Max Length 2 

= 48” x 96” = 4320 in^2 = 30 ft^2 

 

4. Compare to acceptance criteria 

 

Exactly equal to criteria 

 

  



 

 

 Team Megan’s Treadmill | Final Design Report 

 

Appendix R6: TEST SHEET – USER STABILIZATION 

GOAL: To validate the stabilization of the rail system along the treadmill 

DATE: 6/8/17 

PARTICIPANTS: Daniel Byrne, Michael Peck, Eddie Ruano 

Equipment: T-Slot Rails/Grip, Calipers 

STEPS: 
1. Ensure all fasteners are screwed into platform and rails 

 

2. Apply transverse loads to individual rail bars 

 

 

3. Note any critical areas of deflection: 

 

- Max deflection at center, but less than 0.05” which is acceptable for an 80“ rail 

 

4. Apply 200 lbs (approximate body weight of team member) to center of rails to measure 

deflection at point of load 

 

- Deflection is not noticeable from naked eye, which is  

 

5. Go through extreme speed changes to get a qualitative reaction to the how well the rails support 

the user between speeds. 

 

- Rails provide transverse support, but have some axial movement, due to poor joints into 

wood base. Once the base is secure, the stability should improve 
 

6. Adjust any fasteners based on user reaction 

 

- The rail assembly remained firmly joined together, however the screws that were placed into 

the plywood base became to come out. This was due to some bad initial drilled holes and 

excessive loading during testing. A new base has been procured and is ready for installation. 
 

7. Torque down fasteners to appropriate conditions, then validate critical areas assessed in part 2 

 

- All fasteners on rails torqued to 10 lb-in 
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Appendix R7: TEST SHEET – VOLTAGE INPUT 

GOAL: Ensure that voltage levels are at proper readings in critical 

components of the treadmill/DESI 

DATE: 6/8/17 

PARTICIPANTS: Daniel Byrne, Michael Peck, Eddie Ruano 

Equipment: Multi-meter 

STEPS: 
1. Isolate critical voltage areas 

 

2. Measure voltage readings at the critical areas for various load conditions 

 

 

Area Voltage Reading Allowable Voltage 

Power Supply 110 V (AC) 110 V (AC) 

Raspberry Pi 5 V (DC) 5V 

Relay Board 12 V (DC) 12 V 

Speaker 5 V (DC) 5 V (DC) 

Woodway Board 16 V (DC) 16 V (DC) 

 

 

3. Compare max readings to acceptance criteria 

 

- All zones pass acceptance criteria 
 

  



 

 

 Team Megan’s Treadmill | Final Design Report 

 

Appendix R8: TEST SHEET – TIME TO LEARN 

GOAL: To make sure that the components in the system are intuitive, the time 

it takes for Megan and her family to learn the operation of the 

treadmill will be assessed 

DATE: 6/8/17 

PARTICIPANTS: Daniel Byrne, Michael Peck, Eddie Ruano 

Equipment: Timer, User’s Manual 

STEPS: 
1. Bring in someone who hasn’t been involved with the project 

 

2. Run them through the treadmill operations to see how long it takes for them to operate all 

treadmill functions on their own 

 

TIME: 30 minutes 

 

3. Introduce Megan and her family to the treadmill and DESI 

 

4. Allow them to look through the User’s Manual 

 

5. Assist Megan with the physical characteristics of the treadmill 

 

6. Demonstrate the functionality of the treadmill 

 

7. Have the family try to operate the treadmill with our help 

 

8. Have the family operate the treadmill with no assistance from the team 

 

- This will happen upon delivery of the treadmill 
 

 

 

 

 

 

TOTAL TIME: TBD 
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Appendix R9: TEST SHEET – SLIDING RANGE OF MOTION 

GOAL: Validation of the sliding arm of the rail system 

DATE: 6/8/17 

PARTICIPANTS: Daniel Byrne, Michael Peck, Eddie Ruano 

Equipment: Tape Measure 

STEPS: 
1. Install slider “stoppers” 

 

2. Measure distance between the centerline of each pair of “stoppers” on each rail: 

 

- 8” 
 

3. Measure distance from front of treadmill to the fully extended sliding arm: 

 

- 25” 

 

4. Compare distances to acceptance criteria - Pass 

 

5. Go through extreme speed changes to get a qualitative reaction to the how well the rails support 

the user between speeds. 

 

- Sliding rail holds up for all speeds in ranage 
 

6. Make any adjustments and note changes to fasteners on sliding arm or horizontal rails to ease 

sliding motion 

 

- Once the handlebar was adjusted to the front of the sliding rail, the linear motion has been 

relatively smooth. There is still some resistance, but that internal resistance has allowed for 

some  
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Appendix R10: TEST SHEET – PROPER WIRING/CODE 

GOAL: Validation of the control system/sensor grid 

DATE: 6/8/17 

PARTICIPANTS: Daniel Byrne, Michael Peck, Eddie Ruano 

Equipment: Control Systems/Sensor grids, Tape Measurer 

STEPS: 
1. Ensure that DESI is getting correct response from IR Proximity sensors by validating readout 

with physical measurements of proximity with tape measurer within 5%. 

 

Proximity Sensor Reading Physical Measurement Pass/Fail 

5.04 cm 5.0 cm Pass 

8.45 cm 8.375 cm Pass 

13.84 cm 13.75 cm Pass 

 

2. Test capacitive tape on aluminum handlebar and grip by ensuring that DESI gets a proper 

response when someone is in contact/not in contact with the system 

 

- Constant resistance throughout capacitive sensor under 200 ohms 

- Red wire – 34 ohms 

- Blue wire – 21 ohms 

- Green wire – 132 ohms 

  

3. Validate the “turn on” and “turn off” process of DESI by using the switches on the control box 

 

- Start down and Shutdown procedures are fully operational from beginning to end 

 

4. Starting at zero, go through each possible speed change to ensure that treadmill adjusts to 

changes in speed. 

 

 Pass/Fail 

1 up increments Pass  

2 up increments Pass 

3 up increments Pass 

4 up increments Pass 

1 down increments Pass 

2 down increments Pass 

3 down increments Pass 

4 down increments Pass 

 

5. Run through test multiple times and note any times that system deviates from planned routine 

 

- There are still certain bugs that need to be worked out before delivery of the system: 

a) Pause features are not 100% accurate 

b) Capacitive sensors on handlebars can lag on readings 
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c) Switching speeds when the treadmill is pause mode does not always update in DESI 

d) Shutdown procedure is still not active 100% of the time 

 

- Proposed solutions: 

a) Go through code and find out which cases the pause is failing in 

b) Add additional nodes to capcitive grid to make picking up touch easier on capacitor 

c) Updating logic in code for when the treadmill is paused 

d) Go through shutdown procedure and determine where code is failing 

 

6. Use voice commands for secondary features 

 

- Music playlists – Through Pandora 

- Speed Readout – Not currently fully operational 

- Distance Traveled – Not currently fully operational  

- Time of Workout – Not currently fully operational 
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Appendix S: Operator’s Manual 
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1. Introduction 

This document is intended to provide information on the operation and maintenance of the Woodway 

Desmo treadmill and the new mechanical and electrical systems integrated with the treadmill. Our team’s 

focus was to develop a product to give Megan a pleasant workout in a safe environment. Since Woodway, 

the developer of the treadmill, has published a great deal of information on general maintenance of the 

treadmill, the user manual will mostly focus on the operation and maintenance of the systems designed 

by our team. Because Megan will be the primary user of the treadmill, the default settings on the treadmill 

are set to her preferences. Our goal has been to make a system that is as intuitive and easy to use as 

possible. One of the most exciting features of the treadmill is the dynamic sensor grid, which adds an 

extra layer of safety to the treadmill. We hope that Megan will enjoy this system and continue exercising 

for many years to come!  

 

 

Final Product 

 

2. Treadmill Operations 

2.1 Overview of Railing 

The rails along the treadmill are designed to provide stability for Megan as she gets onto the treadmill, 

during operation, and as she gets off. The rails are made of aluminum T-Slot, which provides for 

adjustable settings. The rails contain four base feet mounted to a sheet of plywood to provide a strong 

and stable base. Each base foot is attached with four 5/16” hex head screws and washers. The posts are 

positioned with two at the front and back of the treadmill with about two feet of spacing between them. 
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There are two 80-inch rails that extend the length of the treadmill and attach to the vertical rails. The 

sliding component, integrated between the side rails, is in place to allow for Megan to walk naturally at 

a comfortable speed and move back and forth along the treadmill, within a safe range of approximately 

10 inches. The handlebars and control box are mounted to the sliding arm for Megan to operate the 

treadmill comfortably.  

 

 
 

The treadmill also has two sets of bumpers near the edges of the treads to provide tactile feedback to the 

Megan. If Megan starts to walk too close to the edge of the treadmill, she will feel the bumps along the 

edge and can readjust toward the center. 
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2.2 Overview of Controls 

The controls for the treadmill are separated into primary and secondary controls. Primary controls are 

critical to the basic treadmill functions, such as starting, stopping and changing speeds. Secondary 

controls include all non-critical features including various feedback parameters. All the primary controls 

will be operated with physical buttons and switches, while the secondary controls will make use of the 

Amazon Echo and will be voice-controlled. The controls box has braille stickers that mark “ON/OFF”, 

“PAUSE” and “SLOW/FAST”. 

 

 

 

 

 

2.3 Startup 

Before turning on the treadmill, ensure that the treadmill is plugged into an outlet that has a slot for a 

rotated power cord. If the treadmill is not plugged in, then the treads on the treadmill will be able to roll 

freely on the bearings of the treadmill.  There is a switch at the bottom on the right side of the treadmill 

that must be turned on for the treadmill to be operational. The location of the switch is shown in the 

pictures below. 

 

            
 

Power Switch for Woodway Treadmill 

ON/OFF PAUSE SLOW/FAST 
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Once the treadmill is plugged in and has been switched on, it takes about 10-20 seconds for DESI to boot 

up. After waiting the 10-20 seconds, Megan can start DESI by hitting the white button on the control 

box. DESI will announce that it has been turned on.  

 

NOTE: The speed setting on the rotary switch must be set to zero before DESI will allow the 

treadmill to start speeding up. If it is not, DESI will announce the error and wait for the switch to 

be returned to the zero-speed position. 

 

2.4 Changing Speeds 

After Megan has started DESI, she can choose from various speed settings. The speeds are chosen with 

a rotary switch that contains five positions. Turning the switch clockwise will increase the speed, and 

turning the switch counterclockwise will decrease the speed. The treadmill will initially be set to a 

minimum speed of 2.0 mph with steps of 0.5 mph up to a maximum speed of 3.5 mph. The treadmill’s 

speed will be slightly adjusted based on the sensor readings, but will always run by default at the correct 

speed that is associated with the switch position. 

 

 

 

 

 

 

 

 

 

 

 

2.5 Voice Commands 

While using the treadmill, Megan will be able to use voice commands to operate various features on the 

treadmill. Since the technology that drives the voice recognition is not flawless, all oral commands will 

operate secondary functions. Some of these functions include getting a voice readout for current speed, 

distance traveled, time of workout, etc. To activate the voice control Megan must trigger voice controls 

in the system by saying “DESI,” then she can give a command. Here are some examples of voice 

commands: 

“DESI … How long have I been working out?” 

“DESI… What is my speed?” 

“DESI… How far have I walked?” 

 

 

The speaker and microphone will be mounted to the front of the treadmill and near the original control 

system, respectively. Megan can plug in her iPod with an auxiliary cable to listen to music during her 

workout.  

 

2.6 Stopping and Shutdown Protocol 

There are multiple stop protocols for the treadmill. The primary way for Megan to pause the treadmill is 

to hit the center “PAUSE” button on the control box, sending the treadmill to a pause mode. To resume 

the workout, press the “PAUSE” button again. NOTE: WHEN THE TREADMILL IS UNPAUSED, 
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0 – 0.0 mph 

1 – 2.0 mph 

2 – 2.5 mph 

3 – 3.0 mph 

4 – 3.5 mph 
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IT WILL RETURN TO THE SPEED SETTING IT WAS ON BEFORE PAUSING! DESI will 

announce the speed of the treadmill every time the user changes speeds.  

 

When Megan is done with her workout, she must pause the treadmill and set rotary switch to the zero 

position (the order is not important). Once DESI has completely stopped, Megan can turn off the system 

by hitting the ON/OFF button once. DESI will announce that the system is turning off.   

 

There are also multiple emergency stop protocols built into DESI. The dynamic sensor grid has inputs 

from ultrasonic proximity sensors and capacitive sensors placed around the rail system seen below.   

 

       
 

 

The proximity sensors are fixed to a stationary cross bar, located in front of the sliding rail, and are set to 

detect the sliding rail’s location along its constrained path. If the sensors detect that Megan has been in 

the fully extended position for more than a few seconds, the treadmill will slow down in small increments, 

until Megan is able to keep pace closer to the front. If Megan remains at the back of her range of motion 

for a certain period of time, the treadmill will pause to allow her to reset the speed setting.  

 

The other key sensor on the treadmill is the capacitive sensor. A conductive copper tape has been attached 

at all the gripping surfaces to ensure that there is always a point of contact for Megan while using the 

treadmill. If the sensors detect that Megan is not in contact with any of these surfaces, an emergency stop 

protocol will go into effect. Depending on the speed of the treadmill, DESI will end all the operations on 

the treadmill within seconds and notify an emergency contact to assist Megan. This will activate a camera 

feed of the treadmill to be sent to a desired phone for viewing. 

 

3. Maintenance 

The Woodway treadmill has a 100,000-mile warranty. The treadmill still has a significant lifetime left, 

and has been recently inspected and cleared by a certified Woodway from Cal Poly. There is some simple 

maintenance for the Desmo model treadmill that is specified by Woodway. See Attachment 1 for 

Woodway’s User Manual to get the full details on maintenance of the treadmill. All of the 5/16” screws 

that are put on the T-Slot are rated to 10 ft-lb of torque; however, if you are not in possession of a torque 

wrench, hand tighten the fasteners all the way down to ensure none of the joints are loose. It is 

recommended that the rails are inspected every 2-3 months to check for any loose joints. The fasteners 

on the T-Slot require a 3/16” Hex Key for adjustments.  
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3.1 Railing System  

The rails are made entirely from aluminum T-Slot. Most of the components have been anodized, which 

means that they are resistant to rust and minor surface damages. Over time, it is likely that the parts will 

endure cosmetic scratches; however, that will not affect the performance or quality of the overall system.  

The rails are set on base feet that are fastened down to a ¾” plywood base with 5/16” lag screws with 

hex-heads.  

One of the main reasons the T-Slot was chosen for the rail system was for adjustability. The rails can be 

moved up and down for various heights. If Megan ever feels uncomfortable with the current position, the 

horizontal rails can be lowered along the vertical posts by loosening the fasteners, moving the rails to the 

desired height, and tightening the fasteners back down. The fasteners for all of the rails are 5/16” screws, 

which are tightened into nuts placed inside the T-Slot. There are two cross bars along the rails for added 

stabilization. Since there is a grip inserted in the back half of the side rails, if the sliding linear bearings 

need to be removed, it is necessary to remove the cross bars at the front of the treadmill. All the T-Slot 

pieces have plastic caps on the end, which are held in place with push-in fasteners. 

 

 

 

The sliding arm is placed on two linear bearings that sit on each horizontal rail. The control box and 

handlebar sit on top of the sliding arm to provide an extended zone of operation for Megan on the 

treadmill. The sliding rail can be taken off the linear bearings by removing the fasteners on the bottom of 

the bearings. Note that these fasteners are not tightened down all the way to allow for easier movement 

along the rails.  

 

The sliding arm is limited by two stoppers that are fastened onto the horizontal rails.  If Megan wants to 

adjust the range of the sliding arm, the stoppers can be moved by loosening the fasteners and sliding them 

along the horizontal rail. There is a handlebar that is set on the front of the sliding arm. This handlebar is 

set in line with the linear bearings to help for a smooth sliding motion as Megan moves along the 

treadmill. If Megan wants to work out without the sliding arm, it is possible to lock the arm by completely 

restricting the motion with the stoppers.  

 

 

 

 

END CAP WITH 

PUSH IN FASTENER 
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3.2 Tactile Feedback System 

The tactile feedback is a series of bumpers that are glued along the treads. There is a total of 60 bumpers 

that are stuck along the edge of the treads to alert Megan when she gets off-center. Each bumper comes 

with adhesive on the base and have also been super glued to the treads. While the bumpers are firmly 

placed on the treads, we have provided some extra bumpers to act as replacements in case some get forced 

off. When replacing a bumper, try to remove as much of the original glue on the tread, before installing 

the new one (or the old bumper if it is found and in good condition still). 

 

3.3 Electrical System 

The electrical system has a good amount of wires and code associated with it. It has been tested to last 

over time; however, it should be examined periodically to ensure that there are no issues with the system. 

The first thing to check is for loose wires. All the wires have been covered, taped down, glued, or put in a 

protective sheath. If you see any exposed metal wiring, outside of the electronic box, immediately cover 

it with some electrical tape. It is important to ensure that no wire gets in the way of the treads to avoid 

tripping Megan and prevent from damaging the treadmill. If something looks conspicuous or dangerous, 

do not hesitate to call one of the team members, and we will try to diagnose the issue. The only electrical 

components that may need to be replaced over time are the copper tape and the SD card in the Raspberry 

Pi. The replacement procedure can be seen in the following section.  

 

4. Troubleshooting 

4.1 Sensor Failure 

If the sensors are not working properly, there are two main places to check: the physical connections of 

the sensors and the code. The proximity sensors are stationary and have soldered connections, so there 

should be very little wear to the system over time. If the proximity sensors are not giving the correct 

feedback of the system, first ensure that the proximity sensor is fastened down properly to the stationary 

cross bar. If the proximity sensors are fastened down, check that all the wires are securely connected. 

The capacitive sensors are made up of a network of conductive copper tape. While the tape has a strong 

Proximity Sensors 

Control Box 

Linear Bearings 

Stoppers 

Handlebar 
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adhesive, it is possible that over time the tape may peel. With a multimeter, it is possible to check if the 

connection is maintained by checking the resistance from one end of the tape to another. If you do not 

have a multimeter, a visual inspection should be sufficient in finding a break in the line. If there is a gap 

between the copper tape, all you need to do is patch over the missing area to reconnect the circuit.  

 

 
 

If there are no obvious signs of damaged wire or tape, it is possible that there is a problem with the 

Raspberry Pi. We have attached a spare copy of DESI on an SD card that is located inside the electronics 

box. All you need to do is turn off the system, switch out the SD cards, and let the system boot up. The 

extra SD is just a backup, so please notify one of the members on the team if you end up switching it out.  

 
 

4.2 Sliding Rail 

If the sliding bar begins to catch along the rails there are a few possible ways to change the system. If the 

bar is rotating too much, the fasteners on the bottom of the linear bearings may be too loose. The fasteners 

use a 1/4” Hex-Key. Lightly tighten all the fasteners on each linear bearing to help keep the track in-line. 

SD CARD 

SLOT 
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If the side rails do not look parallel, then it may be necessary to adjust the end of the rails. To adjust the 

side rail, loosen the fasteners that connect the side rail to the bracket on the vertical rail and realign the 

horizontal rail.  
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Appendix T: Bill of Materials for Mechanical Systems 
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Appendix U: Bill of Material for Electrical Systems 
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Appendix V1: Full Year Gantt Chart 

 

Fall Quarter 

 
 

Winter Quarter: Part 1 
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Appendix V2: Full Year Gantt Chart 

  

Winter Quarter: Part 2 

 
 

Winter Quarter: Part 3 
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Appendix V3: Full Year Gantt Chart 

 

Spring Quarter 

 


