
Computer Vision Based Route Mapping

by Ryan Kehlenbeck and Zack Cody
Department of Computer Science and Software Engineering

California Polytechnic State University, San Luis Obispo

June 2017

Abstract

The problem our project solves is the integration of edge detection
techniques with mapping libraries to display routes based on images.
To do this, we used the OpenCV library within an Android applica-
tion. This application lets a user import an image from their device,
and uses edge detection to pull out a path from the image. The ap-
plication can find the user’s location and uses it alongside the path
data from the image to create a route using the physical roads near
the location. The shape of the route matches the edges from the given
image and the user can then follow along in real time. We chose this
project to further explore the use of technologies like computer vision
and web APIs, while also creating a useful app.

c© 2017 Ryan Kehlenbeck and Zack Cody

i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/84280176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

This project is relevant to us because
it allows us to further our current
knowledge we have gained while at
Cal Poly. Both of us have had ex-
perience within the past year work-
ing with web API’s but only ones
that provide little processing of infor-
mation we send to the cloud. This
project gave us the opportunity to
work with more well defined web
API’s provided by Google which are
much more verbose. In addition to
this we also learned about computer
vision techniques, specifically edge
detection. Neither of us have taken a
class where we were formally taught
about computer vision and so this
was a chance for us to learn new
technologies we could apply to future
projects.

Not only were we able to learn
more about these technologies, but
also got to solve a problem for a group
of users. People who are long distance
runners or bikers constantly are going
out in the world to either practice for
future competitions or because they
just enjoy the activity. Our applica-
tion gives an added user experience
to these users because they can now
have a mapping software that takes
the hassle away of figuring out long
routes they can take where they live.
Not only does our application give
them the option to define a distance

of the route that is generated, but
they can also have more fun by creat-
ing routes out of images which adds a
fun element. This can help eliminate
the mundane task of planning out a
route on a map themselves which in
the long run can save them time and
create a more fun experience overall.

Since we were attempting to solve
an actual problem that users face
this adds to the relevance of our
project. As software engineers we
spent the last four years learning
how to solve real world problems
that affect people. By going through
the process of identifying a problem
and developing a software solution to
the problem we have effectively used
many of the techniques and skills ac-
quired throughout our college expe-
rience making this project extremely
relevant to our success.

Some previous works that are sim-
ilar to our project are route genera-
tor applications. Most of these have
the user select various locations that
they want to stop at along the way.
There are a couple applications that
allow users to draw on the map and
then have that generate a route that
resembles what they drew. This is
the closest we found to actual appli-
cations that are similar to ours. How-
ever the one addition that makes ours
stand out is the image to route fea-
ture. There have been many other
projects that use edge detection in
applications such as facial recognition

1



or image overlay features. But from
market research it appears that our
application is the only one that inte-
grates these two technologies into a
single platform.

2 Implementation

We designed and implemented this
project as an application for the An-
droid operating system. After explor-
ing different relevant technologies, we
decided to use the OpenCV library
for the edge detection, the Google
Maps Android library for our map,
and Google Maps Web APIs for fit-
ting the route to the map. We began
by planning a feature set and timeline
for the project.

In order to follow some of the
principles of Agile software devel-
opment in our implementation, we
broke our feature set down into two
week sprints spanning two quarters.
Our first sprint was spent planning,
and building a user interface proto-
type. This includes the time we spent
drawing user interface sketches and
refining them out in Photoshop. We
were influenced by Material Design
and tried to make the app look and
feel like any other Android app. The
rest of the quarter was spent imple-
menting the core features of our app.
These features were edge detection
for the path, conversion of the path
to geographic coordinates, and con-

verting our path to a route on a map.

Figure 1: User interface sketches

Figure 2: User interface prototype

The second quarter was spent
improving our existing features and
adding a few new ones to the app.
We wanted to improve the paths that
were generated by the edge detec-
tion algorithm because they had lots
of imperfections. Other features we
added were the ability to select a start
location for the route, the ability to
save and load routes, a canvas to draw

2



paths instead of detecting them, and
location tracking.

Getting the edges from the im-
ages was the first problem we faced.
We researched how to perform edge
detection using OpenCV and decided
to use the Canny algorithm to locate
the edges and extract them from the
image. These paths were not perfect
so we gave the user the parameters
to adjust the results. We blur the
image and set a threshold for the
Canny algorithm, so these are the
parameters the user can adjust.

Figure 3: The edge detection config-
uration screen

However, the path still needed to
be manipulated because of other er-
rors that came up as a result of the
edge detection. The path contained
zig-zags that messed up our conver-
sion to geographic coordinates be-
cause these repeated segments would
use up significant portions of the user
specified route distance. If the user
wants to run two miles, but half of the
Cartesian path is a single segment re-
peated over and over again, the result
would be the user running back and
forth for the first mile and the rest
of the shape would cover the remain-
ing mile. Another restriction was the
API call we make to Google, which
limits us to paths of 100 points or
less, so the thousands we were get-
ting from the edge detection results
needed to be cut down.

We remove straight segments and
zig-zags by checking the angle be-
tween each pair of points and remov-
ing them if they are within a certain
threshold, usually just a few degrees.
If after performing the previous oper-
ation points still need to be removed,
we find the best points to remove by
determining how much the line will be
changed by removing that point. We
find a point on the straight line be-
tween each point’s neighboring points
that has a ratio equivalent to the ra-
tio of the distance from the original
point to its neighbors. The distance
between the original point and this
new point is our error metric and we

3



eliminate points beginning with those
with the smallest error, until we reach
our goal of 100 points.

Figure 4: When using real images,
the lines are often short and broken
up. The colored lines above are the
longest segments found from the im-
age on the left.

Once we had the points for our
path, we needed to convert them to
geographic coordinates so they can
be displayed on a map. To do this
we needed a starting geographic loca-
tion for each path and the total dis-
tance the path should cover, so we
prompt the user for this information.
We used an algorithm based on the
Haversine formula for calculating dis-
tances on a sphere, using the approx-
imate radius of the earth.

In order to get data about maps,
locations, and roads, we used Google
Maps APIs. This allowed us to dis-
play a map in the app, get the coordi-

nates of addresses as starting points,
get the user’s location, and fit the
path to roads. Since we converted
all of our points from cartesian space
to geographic coordinates, we simply
write them to a String in pairs and
send them to the Google Maps Snap
to Roads API, which returns either a
point per road along your path, or a
route that follows the roads and does
not cut through any buildings. For
the purpose of our app, we use the
latter feature and we display the re-
turned route on the map in the ap-
plication. If the user has given the
app permission to access their loca-
tion, they can use the app to track
their position on the route as they run
or cycle.

Figure 5: The map screen of our ap-
plication marking the user’s current
location.

4



Given the nature of our app, it
was very difficult to test. Aside
from the fact that Android user inter-
face components are hard to test, the
other features of our app are poten-
tially even harder to test. We verified
the performance of our app with man-
ual testing. The reasoning behind
this is that we did not have any way
to verify the results of edge detection
without looking at images. Even at
the end of the project, our lines aren’t
perfect, and there was no way for us
to guarantee a best contour from an
image. The other features of our app
work with web APIs, which we used
free payment tiers for, so we had a
limited number of calls and felt it was
best to assume we got proper data
from each API call. Ultimately, our
app doesn’t have any major flaws and
very rarely crashes, so we are satisfied
with the app’s performance.

3 Results

Here is an example flow of our appli-
cation.

5



The system image is simple to un-
derstand as all of the application can
operate in 3 screens. The first screen
displays options for generating new
routes or referencing old ones. In this
example I chose to create a new route
based on an image. Then in the next
screen I can see the edge that is gen-
erated from the image and play with
the computer vision options to get a
better edge. Finally on the last screen
my image is projected onto the streets
of Los Angeles where I can then fol-
low along in real time.

Overall from a holistic view, we
accomplished everything that we ini-
tially set out to do. There were a cou-
ple instances where we had to change
exactly how we were planning on im-
plementing certain features, but in
the end we found solutions to address
those issues. Specifically looking at

integrating into Google Maps, we had
hoped to export our users from our
app into theirs allowing users to use
a navigation app they may already
be comfortable with. But after our
research and attempted solutions we
could not find an elegant solution to
fully integrate into Google Maps from
our application. To work around this
we added in our own location ser-
vices. This allows our users to see
where they are and follow along the
route that we generated for them.
This still gives the illusion of naviga-
tion although it is not as engaging as
Google Maps is.

The current timeline of our
project has come to an end, but there
is still a lot of future work that our
application can gain from. The cur-
rent state of the application is a work-
ing state that provides users with the
functionality we promised. But we
believe this needs to be expanded
upon in order to truly make our ap-
plication a success. Specifically we
would like to address three main as-
pects we could improve in. Improving
the edge detection within the appli-
cation would greatly increase the ac-
curacy of the route that we produce.
In addition to this it would also al-
low more complex images to be pro-
cessed through our application. This
is a challenge for us currently because
we are strictly relying on the OpenCV
library to do the bulk of the work for
edge detection. At a certain point

6



if we want to expand this functional-
ity we might need to implement our
own edge detection algorithms. Fi-
nally to add to the user experience we
see potential for us to integrate more
with social media such as Twitter and
Facebook. This would allow users to
publish routes they made online and
create more of a community around
our app.

7



References

[1] “Contour / polyline simplification.” [Online]. Avail-
able: https://forum.openframeworks.cc/t/contour-polyline-
simplification/4461

[2] G. Android, “Making your app location-aware.” [Online]. Available:
https://developer.android.com/training/location/index.html

[3] ——, “Saving data.” [Online]. Avail-
able: https://developer.android.com/training/basics/data-
storage/index.html

[4] Google, “Google directions api documentation.” [Online]. Available:
https://developers.google.com/maps/documentation/directions/intro

[5] ——, “Google maps services documentation from github.” [Online].
Available: https://github.com/googlemaps/google-maps-services-java

[6] ——, “Google roads api documentation.” [Online]. Available:
https://developers.google.com/maps/documentation/roads/nearest

[7] P. S. H. Michael Garland, “Surface simplifica-
tion using quadric error metrics.” [Online]. Available:
https://people.eecs.berkeley.edu/ jrs/meshpapers/GarlandHeckbert2.pdf

[8] O. Ogbo, “How to use a web api from your android app.”
[Online]. Available: http://www.androidauthority.com/use-remote-
web-api-within-android-app-617869/

[9] S. Onyszko, “Opencv in advanced android development: Edge de-
tection.” [Online]. Available: https://blog.zaven.co/opencv-advanced-
android-development-edge-detection/

[10] A. Poliakon, “Importing custom map
into google nav.” [Online]. Available:
https://productforums.google.com/forum/#!topic/maps/DwPoT0pklas

[11] S. Schmitz, “Simplifying a contour to a fixed
length, to smooth over several frames.” [Online]. Avail-
able: http://stackoverflow.com/questions/23525856/simplifying-a-
contour-to-a-fixed-length-to-smooth-over-several-frames

8



[12] M. T. Scripts, “Calculate distance, bearing and more between
latitude/longitude points.” [Online]. Available: http://www.movable-
type.co.uk/scripts/latlong.html

[13] D. D. Waele, “Using google apis on your map
: Directions and places.” [Online]. Available:
https://ddewaele.github.io/GoogleMapsV2WithActionBarSherlock/part5

9


