
	
	 	

C a l i f o r n i a 	 P o l y t e c h n i c 	 S t a t e 	 U n i v e r s i t y 	

An	Analysis	of	Heroku	and	AWS	for	
Growing	Startups	
Colton	Stapper	
This	project	presents	information	on	the	architecture	of	modern	cloud-hosting	platforms,	and	
gives	an	analysis	of	two	common	Platform-as-a-Service	companies:	Heroku	and	AWS.	

Spring	17	

08	Fall	

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@CalPoly

https://core.ac.uk/display/84280173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	 1	

Table	of	Contents	
	
Introduction	...	2	
The	Problem	..	2	
Scope	of	Work	...	2	
Solution	..	2	

Background	...	3	
Infrastructure-as-a-Service	(IaaS)	...	3	
Platform-as-a-Service	(PaaS)	...	3	
Software-as-a-Service	(SaaS)	...	3	
Cloud	Computing	Architecture	..	4	
Database	Server	..	4	
Application	Server	...	4	
Web	Server	..	4	
Load	Balancer	..	5	

Cloud	Computing	Hosting	Platforms	..	5	
Amazon	Web	Services	(AWS)	..	5	
Heroku	...	5	

Frameworks	and	Libraries	..	6	
ReactJS	Library	..	6	
Python	Django	REST	Framework	..	6	

Description	..	6	
Specification	..	6	
Unique	AWS	configurations	..	7	

Evaluation	...	7	
Metrics	...	7	
Experiments	...	8	
Configuring	AWS	Elastic	Beanstalk	..	8	
Load	and	Scale	Testing	...	9	
Load	Test	Results	...	10	
AWS	and	Heroku	Costs	..	11	
Recommendation	...	12	

Conclusion	...	12	
Works	Cited	..	13	
	 	

	 2	

Introduction	
	

The	Problem	
A	local	San	Luis	Obispo	startup,	PolyRents,	aims	to	streamline	the	rental	housing	
application	process	by	having	both	tenant	applicants	and	landlords	use	a	single,	organized	
online	platform.	They	launched	their	beta	with	landlords	a	few	weeks	ago	and	plan	to	have	
several	thousand	users	in	the	next	year.	PolyRents	already	has	a	React-based	web	
application	running	with	a	Python	Django	REST	API	that	is	deployed	on	the	Heroku	cloud-
hosting	platform.	
	
In	preparation	for	their	expansion,	PolyRents	reached	out	asking	for	help	with	their	back-
end	infrastructure	needs.	PolyRents	wants	help	exploring	cloud-hosting	alternatives	like	
Amazon	Web	Services	(Amazon),	to	learn	how	to	make	a	robust	backend	development	and	
deployment	pipeline.	They	would	like	to	know	about	modern	infrastructure	techniques	to	
optimize	scalability,	response	times,	and	to	reduce	overall	cost	to	the	company.	PolyRents	
wants	to	know	at	what	point	the	use	of	an	abstracted	infrastructure	service	is	no	longer	
worth	the	cost,	and	when	they	should	switch	to	a	cheaper	alternative.	
	

Scope	of	Work	
The	project	requires	four	main	components:	research,	metrics	and	criteria,	
implementation,	and	evaluation.	First,	the	project	requires	research	on	the	cloud	compute	
architecture.	How	do	Heroku	and	Amazon’s	pricing	models,	implementations,	and	user-
configurations	differ?	To	what	extent	does	each	cloud-hosting	platforms	differ,	and	what	
metrics	and	criteria	should	be	chosen	to	measure	the	costs	and	advantages?	The	project	
will	consist	of	a	technical	specification	that	outlines	the	different	pieces	of	software	that	
will	be	implemented	to	evaluate	the	metrics.	After	analysis	of	the	results,	final	
recommendations	will	be	made	to	the	PolyRents	development	team.	
	

Solution	
The	project	will	analyze	the	cost-benefit	of	Heroku	and	Amazon’s	features	and	predict	if	
and	when	PolyRents	should	switch	to	AWS	based	on	the	evaluation	of	the	criteria.	If	the	
project	is	able	to	answer	their	questions	about	the	future	of	the	development	of	their	
backend	software,	then	it	can	be	considered	a	successful	solution	to	the	company’s	
problem.		

	 3	

Background	
	
To	understand	the	scope	of	the	project	
requirements,	some	general	technical	details	must	
be	defined.	These	terms	will	help	to	explain	which	
services	Heroku	and	AWS	are	trying	to	cater,	and	
which	components	are	user-configurable.	
	

Infrastructure-as-a-Service	(IaaS)	
Infrastructure	is	the	foundation	for	the	cloud	
compute	model.	“IaaS	provides	hardware	such	
as	CPUs,	memory,	storage,	networks,	and	load-
balancers”		(Hassan).	In	order	to	run	applications	in	a	scalable,	reliable,	and	secure	way,	
developers	cannot	just	run	their	program	locally;	they	need	to	deploy	their	software	on	a	
cluster	of	trusted	servers.	The	servers	should	have	regular	maintenance,	like		“examining	
folder	permissions,	ensuring	adequate	redundancy	of	systems,	installing	security	patches,	
and	reading	server	logs	for	security	alerts”	(ECC	IT	Solutions).	Companies	like	Amazon	and	
Microsoft	are	IaaS	providers		(Richman)	because	they	setup	and	maintain	data	centers	for	
developers	to	use.	
	

Platform-as-a-Service	(PaaS)	
Platform-as-a-Service	is	a	cloud-computing	environment	that	helps	developers	write,	run	
and	manage	the	lifecycle	of	their	applications.	“The	service	provider	not	only	is	responsible	
for	provisioning	and	managing	the	lower	level	infrastructure	resources,	but	also	for	
providing	a	fully	managed	application	development	and	deployment	platform	(Joshi).	Both	
Amazon	and	Heroku	are	PaaS	providers	because	they	give	developers	tools	to	deploy	their	
applications	on	the	necessary	infrastructure.	
	

Software-as-a-Service	(SaaS)	
Software-as-a-Service	is	the	product	that	end	users	interact	with.	Usually	in	the	form	of	a	
subscription,	clients	pay	to	use	a	SaaS	product	online	that	is	hosted	on	centralized	servers	
(Sandoval).	“SaaS	services…may	be	designed	to	access	hardware	resources	only	through	a	
PaaS	layer”	(Hassan).	PolyRents	can	be	considered	a	SaaS	in	this	instance,	since	the	product	
is	a	scalable	service	that	interacts	with	a	PaaS	to	host	the	site	and	store	data	in	a	centralized	
way.	

Figure	1	-	Cloud	Compute	Pyramid.	The	higher	
the	pyramid	goes	the	more	abstraction	there	is,	
but	the	less	control	there	is	over	the	lower	
layers	(Sandoval).	

	 4	

Cloud	Computing	Architecture		
	
The	cloud-compute	model	is	a	combination	of	
IaaS	and	PaaS.	“Cloud	computing	is	the	on-
demand	delivery	of	compute	power,	database	
storage,	applications,	and	other	IT	resources	
through	a	cloud	services	platform	via	the	
Internet	with	pay-as-you-go	pricing”	
(Amazon).	Each	cloud-hosting	provider	has	
different	hardware	and	features,	but	the	
cloud-compute	architecture	typically	has	the	
following	components:	
	

Database	Server	
A	database	server	is	either	a	computer	dedicated	to	large-object	data	store,	or	a	computer	
that	has	database	software	installed	so	that	it	can	store	data	while	running	websites	or	
applications	alongside	it.	PolyRents	currently	uses	Heroku	Postgres	Database	Server	to	
store	user	information.	
	

Application	Server	
An	application	server	is	a	computer	that	runs	developer	applications.	Commonly	written	in	
Python,	Ruby	or	Java,	the	back-end	application	takes	HTTP	requests	from	the	web	server	to	
present	dynamic	web	information,	perform	computations,	or	store	data	in	a	database.	
PolyRents	deploys	a	Python	Django	REST	application	to	talk	to	the	web	server	and	
database.	
	

Web	Server	
“A	web	server	stores	and	delivers	the	content	
for	a	website”	(NGINX).	A	PolyRents	client	
accesses	the	website	on	their	web	browser,	
asking	for	data	using	HTTP	requests.	The	web	
server	sends	the	client	HTTP	responses	with	
data,	such	as	HTML	documents	or	images	

(Ubuntu).	PolyRents	uses	Gunicorn,	a	pure-
Python	HTTP	web	server,	to	run	their	
application	and	take	concurrent	client	
requests.	

Figure	2	–	Cloud	Compute	Architecture		(Alur).	Load	
balancers	receive	requests	from	end	users	and	
forward	them	to	different	data	centers.	Then,	
Distributed	web,	application,	and	database	servers	
handle	the	requests.	

Figure	3	–	Web	and	Application	Servers	
(TutorialsPoint).	The	client	asks	the	web	server	for	
static	data	in	the	form	of	HTTP	requests,	and	the	web	
server	makes	calls	to	the	application	server	to	access	
other	data	stores,	like	database	servers.	

	 5	

Load	Balancer	
Once	multiple	application	and	web	servers	are	deployed,	what	happens	when	all	user	
traffic	is	sent	to	the	same	servers,	and	there	are	other	idle	servers	awaiting	workload?	Load	
balancers	are	a	piece	of	hardware	or	software	that	“distribute	client	requests	or	network	
load	efficiently	across	multiple	servers”	(NGINX).	Load	balancers	also	detect	unhealthy	
servers	and	reroute	future	user	traffic	to	healthy	instances	(Amazon).	Load	balancers	
provide	higher	availability	and	reliability	in	the	cluster,	and	add	the	flexibility	to	easily	
increase	or	decrease	the	size	of	the	cluster	in	response	to	user	traffic.	
	

Cloud	Computing	Hosting	Platforms	

Amazon	Web	Services	(AWS)	

Services	
Amazon	provides	a	cloud	compute	service	platform	called	AWS	to	help	developers	deploy	
highly	available	and	scalable	backend	and	web	applications.	They	have	services	like	Elastic	
Compute	(EC2),	Elastic	Load	Balancing	(ELB),	Lambda,	Auto	Scaling,	Simple	Storage	Service	
(S3),	Relational	Database	Service	(RDS),	CloudFront	content	delivery	network,	and	Elastic	
Beanstalk	(Amazon	Web	Services).	These	services	integrate	with	each	other	and	have	
individual	pricing	models.	

Elastic	Beanstalk	
Elastic	Beanstalk	is	meant	to	act	as	a	Heroku	competitor.	“AWS	Elastic	Beanstalk	is	an	easy-
to-use	service	for	deploying	and	scaling	web	applications	and	services	developed	
with…Python…on	familiar	servers	such	as	Apache”	(Amazon	Web	Services).	Elastic	
Beanstalk	configures	EC2,	S3,	RDS,	and	ELB	instances	for	the	developer	to	quickly	deploy	
their	application.		AWS	gives	the	developer	dedicated	EC2	instances,	meaning	that	they	
have	root	access	to	the	compute	server	and	can	SSH	directly.	
	

Heroku	
Heroku	acts	as	a	middleman	between	the	application	developer	and	AWS.	Heroku	tries	to	
abstract	the	complexity	of	DevOps	from	the	developer	by	offering	PaaS	software	that	gives	
the	user	a	smooth	web	interface	and	CLI	to	easily	deploy	their	applications.	Instead	of	
giving	developers	a	dedicated	EC2	instance,	Heroku	deploys	many	different	developer	apps	
on	what	they	call	“web	dynos”,	which	are	shared	AWS	EC2	instances.	Because	other	
developers	run	their	applications	in	isolated	containers	alongside	each	other	sharing	
resources,	it	is	possible	that	“these	dyno	types	may	experience	some	degree	of	
performance	variability	depending	on	the	total	load	on	the	underlying	instance”	(Heroku).	
Heroku	has	not	published	the	extent	that	neighbors	affect	a	developer’s	application	in	a	
dyno.	

	 6	

Frameworks	and	Libraries	

ReactJS	Library	
React	is	“a	JavaScript	Library	for	building	user	interfaces”	(Facebook).	PolyRents	built	their	
web	application	using	the	React	library.	
	

Python	Django	REST	Framework	
Django	is	a	Python	Web	framework	meant	to	make	programming	web	applications	simpler	
(Django).	PolyRents	implemented	their	API	using	Django	REST	Framework,	a	toolkit	built	
for	developers	to	help	write	Python	REST	APIs.		

Description	

Specification	
To	understand	the	advantages	and	costs	of	Heroku	and	AWS,	this	project	will	deploy	
PolyRents’	application	in	an	Elastic	Beanstalk	environment	and	a	Heroku	environment:	
	
	
	
	
	
	
	

	
	

Heroku	 AWS	Elastic	Beanstalk	

[Security	Group]	

….	

Manual	Scaling	(1…N)	

Elastic	Load	Balancer	

Shared	EC2	Instance	

Web	Server	

PolyRents	Web	
Application	

Application	Server	

PolyRents	API	Application	

Shared	EC2	Instance	

Web	Server	

PolyRents	Web	
Application	

Application	Server	

PolyRents	API	Application	

….	

Auto	Scaling	(1…N)	

Elastic	Load	Balancer	

Dedicated	EC2	Instance	

Web	Server	

PolyRents	Web	
Application	

Application	Server	

PolyRents	API	Application	

Dedicated	EC2	Instance	

Web	Server	

PolyRents	Web	
Application	

Application	Server	

PolyRents	API	Application	

Auto	Scale	
Group	

Heroku	
PostgreSQL	

AWS	RDS	
PostgreSQL	

Flood.io	Cloud	Load	
Testing	Service	

Fake	Users	(1…1000)	

…	

Flood.io	Cloud	Load	
Testing	Service	

Fake	Users	(1…1000)	

…	

Figure	4	–	Project	Specification.	

	 7	

Figure	4	shows	the	individual	components	of	each	PaaS	architecture	and	their	handling	of	
web	requests.	Although	similar	architecturally,	Heroku	and	AWS	provide	access	to	and	
configuration	of	different	components.		
	

Unique	AWS	configurations	
	
AWS	gives	the	lead	developer	the	ability	to	configure	specific	security	rules	for	other	
developers,	labeled	[Security	Group]	in	Figure	4.	These	security	rules	give	specific	
permissions	to	members	of	a	team,	preserving	Fail-Safe	defaults	and	preventing	developers	
from	accessing	parts	of	the	project	that	they	should	not	have	permission	to	see.	Heroku	on	
the	other	hand	does	not	give	the	developer	this	granularity.		
	
AWS	also	allows	developers	to	configure	Auto-Scaling	rules,	allowing	simple	EC2	instances	
to	scale	automatically	according	to	traffic	demand.	Heroku	only	allows	this	kind	of	scaling	
for	their	most	expensive	servers.	Costs	and	tradeoffs	will	be	analyzed	in	the	next	section	to	
determine	if	AWS	will	be	a	better	option	for	PolyRents.	

Evaluation	

Metrics	
Heroku	and	AWS	will	be	evaluated	on	the	following	metrics:	
	

• Scalability	
• Total	cost	
• Efficiency	
• Availability	
• Response	times	
• Error	rates	
• Configuration	time	
• Deployment	time	
• Maintenance	time	

	
The	last	three	metrics	are	of	great	importance	to	the	CTO	of	PolyRents	–	he	is	concerned	
that	the	time	required	learning,	configuring,	and	maintaining	an	AWS	environment	is	not	
worth	the	potential	lesser	costs.	
	
	
	
	
	

	 8	

Experiments	

Configuring	AWS	Elastic	Beanstalk	
Getting	an	Elastic	Beanstalk	environment	setup	takes	slightly	longer	than	Heroku	because	
AWS	requires	the	developer	to	configure	additional	policies.	This	is	a	table	listing	the	time	
it	took	to	configure	AWS	Elastic	Beanstalk,	including	the	debugging	time:	
	
Installing	the	AWS	EB	CLI	 1	minute	

eb	init	–	initialize	the	application	
AIM	credentials,	setting	user	permissions	and	getting	keys	
	

5	minutes	

eb	create	–	setting	environment	and	DNS_CNAME	names	 1	minute	

eb	deploy	–	deploy	the	application	to	the	environment	(failed	the	first	time,	fixed	errors	
below).	

1	minute	

Issue	with	adding	other	packages	
Add	.config	file	in	.ebextensions	to	install	git	and	postgres	packages	

30	minutes	

Issue	with	WSGI	set	to	a	default	path	and	could	not	be	found.	
Had	to	specify	“polyrents/wsgi.py”	

30	minutes	

Set	the	DJANGO_SETTINGS_MODULE	and	PYTHONPATH	in	another	.config	file	to	point	the	EC2	
instances	at	the	correct	settings	file	(polyrents.settings.development),	and	the	right	python	
path	(/opt/python/current/app/polyrents:$PYTHONPATH).		

10	minutes	

Modify	the	Heroku	DATABASE_URL	code	to	use	the	new	AWS	RDS	Postgres	hostname	
information.	

15	minutes	

Stuck	on	incorrect	dj-stripe	installation	because	of	invalid	egg	info	(not	a	problem	with	AWS)	 3	hours	

Stuck	on	incorrect	database	module	import	–	was	importing	MySql	instead	of	PostgreSQL	
(from	an	incorrect	copy	and	paste	from	AWS	docs).	

2	hours	

Time	re-setting	the	environment	because	of	modifying	the	RDS	instance	from	small	size	to	
micro	size,	adjusting	configuration	settings.	

30	minutes	

Time	trying	to	modify	the	number	of	running	processes	(could	not	get	this	to	work	on	the	
Apache	server).	

1	hour	

	

Figure	5	-	The	time	of	configuring	the	AWS	Elastic	Beanstalk	environment.	

	
Total	time	to	learn	and	configure	environment:	8	hours	of	time.	
	
However,	once	a	developer	has	learned	and	gone	through	the	process	of	launching	an	
Elastic	Beanstalk	environment,	all	configurations	and	setups	afterwards	are	much	faster.	
Many	issues	arose	from	the	unfamiliarity	of	working	with	Elastic	Beanstalk	before.	
	
Deployment	time	is	relatively	quick,	between	10	–	20	seconds.	

	 9	

Load	and	Scale	Testing	
PolyRents	will	eventually	have	thousands	of	users	but	do	not	have	that	amount	of	traffic	at	
the	moment.	Load	tests	are	required	to	measure	the	response	times	and	scalability	of	the	
two	platforms.	To	model	the	influx	of	thousands	of	users,	a	cloud	load	testing	service	called	
Flood.io	will	be	used	to	perform	these	large-scale	tests.	Flood.io	takes	as	input	a	list	of	REST	
API	requests	to	call	and	the	number	of	users,	and	simulates	user	requests	by	sending	
thousands	of	requests	per	second	to	the	Heroku	and	AWS	PolyRents	applications.	The	flow	
of	requests	that	Flood.io	will	send	and	receive	can	be	seen	in	Figure	4,	and	the	variables	
involved	in	the	experiment	are	in	Figure	6:	
	

AWS	Elastic	Beanstalk	URL:	http://polyrents-api-loadtest1.us-west-1.elasticbeanstalk.com	
Heroku	base	URL:	http://polyrents-api-loadtest.herokuapp.com	
	
Number	of	concurrent	users:	1000	users	
	
REST	APIs	to	hit:	

• GET	/api/tenant/application/bio	
• GET	/api/tenant	
• PUT	a	long,	new	bio	to	/api/tenant/application/bio	
• PUT	a	short,	new	bio	/api/tenant/application/bio	

	
Controlled	variables:	

• Time	of	experiment	(8pm)	
• Length	of	experiment	(25	minutes)	
• Location	of	requests	(same	node	region	–	US	N.	California)	
• Same	maximum	number	of	concurrent	requests	(1000	users)	
• Same	ramp-up	interval	of	concurrent	requests	(ramp-up	every	30	seconds)	
• Tear-down	and	re-create	the	environment	before	every	test	

	
Figure	6	–	Load	and	scale	tests.	Flow.io	will	hit	the	Heroku	and	AWS	endpoints	with	

1000	concurrent	simulated	users	in	controlled	tests.	

	
Results	of	the	tests	are	shown	in	Figures	7	and	8.	

	
	
	
	
	
	
	

	 10	

Load	Test	Results	

Heroku	Results	

Figure	7	–	Gunicorn	WSGI	server	running	on	Heroku.	
	

AWS	Elastic	Beanstalk	Results	
	

	
Figure	8	–	Apache	WSGI	server	running	on	AWS	Elastic	Beanstalk	with	one	EC2	instance.	

	
Heroku	dynos	had	inconsistencies	–	every	test	produced	a	different	Flood.io	graph.	AWS	
performed	in	a	sinusoidal	way,	responding	to	a	lot	of	requests	quickly	and	then	more	
slowly.	In	contrast,	Heroku	would	slow	down	suddenly	at	large	intervals	–	this	appears	to	
be	part	of	the	resource	management	that	Heroku	forces	upon	developers	since	the	
applications	are	running	on	shared	EC2	instances.	
	
Heroku	had	considerably	worse	response	rates	–	AWS	responded	to	requests	after	about	
13	seconds	on	average,	and	Heroku	responded	about	26	seconds	on	average.	The	two	
platforms	did	successfully	complete	about	the	same	amount	of	requests	during	the	
experiments.	
	

	 11	

AWS	and	Heroku	Costs	
	
Heroku	and	AWS	offer	different	tiers	for	servers,	databases	and	load	balancers	that	have	
different	pricing.		

Heroku	
	
Type	 Cost	per	hour	 Cost	per	month	

Heroku	Postgres	(Hobby	add-on)	 N/A	 $9	

Heroku	Web	Dyno	(Standard)	 N/A	 $25	

Load	Balancer		 N/A	 N/A	

Figure	9	–	cost	of	components	under	the	Heroku	platform	(Heroku).	

During	development,	PolyRents	is	using	a	cheaper	database	and	server,	so	their	monthly	
costs	come	to	about	$7	instead	of	the	projected	$34.	
	

AWS	
	
Type	 Cost	per	hour	 Cost	per	month	

RDS	PostgreSQL	(t2	micro)	 $0.024	 $17.28	

EC2	instance	(t2	small	–	2GB	Ram)	 $0.031	 $22.32	

Elastic	Load	Balancer	instance	(Classic)	 $0.028	 $20.16	

S3	instance	 $0.026	per	GB	 About	$0.026	

Figure	10	–	cost	of	components	under	the	AWS	platform		(Amazon).	

The	AWS	costs	are	under	the	assumption	that	the	compute	cluster	is	running	24	hours	a	
day,	when	realistically	the	service	will	be	less	utilized	at	night	and	in	the	morning.	All	of	
these	costs	are	covered	under	AWS	Free	Tier	for	a	year,	so	like	Heroku,	there	is	little	to	no	
price	during	the	early	development	of	the	application.	
	
AWS	allows	the	developer	to	configure	Auto-Scaling,	giving	the	compute	cluster	the	ability	
to	scale	out	during	high	traffic	points	of	the	day.	When	PolyRents	has	more	users,	Auto-
Scaling	would	cut	down	the	wasteful	spending	that	they	occur	now	on	the	Heroku	dynos	at	
night	when	there	is	less	traffic.	This	will	keep	their	service	highly	available	and	cheaper	
with	little	added	maintenance	or	configuration.	
	

	 12	

Recommendation	
	
PolyRents	should	switch	to	AWS	as	soon	as	their	user	traffic	gets	near	200	requests	a	
second.	At	that	traffic,	Heroku	response	times	will	become	slow	(1	–	5	seconds),	and	their	
service	will	become	nearly	unusable.	Once	spending	about	5	–	8	hours	of	configuration	time	
and	migrating	their	databases,	their	service	would	be	completely	usable	on	AWS	and	
PolyRents	could	Auto-Scale	their	platform	during	peak	usage	times.	
	
This	project	can	be	considered	a	success	because	it	answered	PolyRents’	core	question	
wondering	when	they	should	be	concerned	about	switching	to	alternative	cloud	hosting	
platforms.		

Conclusion	
The	project	was	an	incredibly	educational	experience	–	I	chose	the	topic	of	cloud	
infrastructure	and	hosting	because	it	is	becoming	increasingly	more	important	in	an	
expanding	IoT	and	SaaS-based	economy.	In	fact,	California	Polytechnic	State	University	just	
announced	that	it	will	switch	its	technologies	to	use	an	AWS	cloud-hosting	environment.	
	
It	is	important	to	consider	the	security	of	these	applications.	It	is	not	ethically	responsible	
to	let	the	cloud-hosting	platform	abstract	the	infrastructure	away	to	the	point	that	
developers	cannot	control	the	access	permissions	of	their	backend	applications	and	
servers.	AWS	maintains	this	control	by	giving	users	the	ability	to	define	clear	security	rules	
around	every	service.		
	
A	future	direction	that	is	more	complex	would	be	finding	the	best	combination	of	all	types	
of	Heroku	dynos	and	AWS	components	by	tweaking	configurations.	This	work	would	find	
the	optimal	combination	for	growing	startups	to	deploy	their	applications	in	a	relatively	
cheap	but	available	and	scalable	environment.	
	
	
	
	

	
	
	
	
	

	 	

	 13	

Works	Cited	
	
Alur,	Sandeep	J.	Enterprise	Integration	and	Distributed	Computing:	A	Ubiquitous	

Phenomenon.	September	2008.	Microsoft	Corporation.	
<https://msdn.microsoft.com/en-us/library/cc949110.aspx>.	

Amazon.	Amazon	Web	Services	(AWS)	-	Cloud	Compute	Services.	2017.	
<https://aws.amazon.com>.	

Amazon	Web	Services.	Overview	of	Amazon	Web	Services.	April	2017.	
<https://d0.awsstatic.com/whitepapers/aws-overview.pdf>.	

Django.	Django	Documentation.	2017.	Django	Software	Foundation.	
<https://docs.djangoproject.com/en/1.11/>.	

ECC	IT	Solutions.	Server	Maintenance	and	New	Server	Installation.	2017.	
<https://eccitsolutions.com/services/server-maintenance-and-new-server-
installation/>.	

Facebook.	React	-	A	JavaScript	library	for	building	user	interfaces.	2017.	Facebook.	
<https://facebook.github.io/react/>.	

Hassan,	Qusay.	"Demystifying	cloud	computing."	The	Journal	of	Defense	Software	
Engineering	1	(2011):	16-21.	

Heroku.	Dynos	and	the	Dyno	Manager	|	Heroku	Dev	Center.	2017.	Heroku.	
<https://devcenter.heroku.com/articles/dynos>.	

Joshi,	Sunil.	What	is	Platform-as-a-Service	(PaaS)?	17	February	2014.	
<https://www.ibm.com/blogs/cloud-computing/2014/02/what-is-platform-as-a-
service-paas/>.	

NGINX.	NGINX	|	High	Performance	Load	Balancer,	Web	Server,	&	Reverse	Proxy.	2017.	
<https://www.nginx.com/resources/glossary/>.	

Richman,	Dan.	Microsoft	Azure	just	behind	Amazon	Web	Services	in	Gartner’s	new	IaaS	
rankings.	4	August	2016.	GeekWire,	LLC.	
<https://www.geekwire.com/2016/microsoft-azure-just-behind-amazon-web-
services-gartners-new-iaas-rankings-google-distant-third/>.	

Sandoval,	Kristopher.	Living	in	the	Cloud	Stack	–	Understanding	SaaS,	PaaS,	and	IaaS	APIs.	
8	July	2015.	Nordic	APIs.	<http://nordicapis.com/living-in-the-cloud-stack-
understanding-saas-paas-and-iaas-apis/>.	

TutorialsPoint.	Web	Server.	2017.	TutorialsPoint.	
<https://www.tutorialspoint.com/internet_technologies/web_servers.htm>.	

Ubuntu.	Web	Servers.	2017.	Ubuntu.	<https://help.ubuntu.com/lts/serverguide/web-
servers.html>.	

	
	
	
	

