

Procedurally Generated

Genetic Keys
Senior Project

Adam Levasseur

Advised by Prof. Zoë Wood

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/84280157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Levass2

Abstract
This project presents a method for creating multi-part models based on input keys to generate new,

variant models via genetic algorithms. By utilizing 3D models as modular parts, this method allows for

the generation of a unique, compound model based on one or multiple input keys. This paper explains

the process of creating and testing such generation styles using simple geometry to create more

complex, compound models.

Introduction
Repetitive loading of 3D models for the sake of small changes, or variants, can consume valuable time.

By loading fewer, modular 3D models and procedurally combining their geometry, an application can

use less time spent loading models and more time spent on the rest of the application. When

considering the application for video games, this style of procedural generation fits to create new and

often interesting content. The purpose of this project is to explore the process of creating a procedural

generation application and designing an evaluation function to automatically produce successor models.

The system designed for this project uses C++ as the language of choice and implements OpenGL

graphics and simulates physics based on the Bullet Physics engine. The OpenGL code used is an

adaptation of base code supplied by Professor Wood for the “Introduction to Computer Graphics”

course offered at CalPoly. This base code was originally designed to be able to display single, non-

partitioned .obj models and to utilize GLSL shaders for Phong-reflection shading—as designed during the

course. For this project, the base OpenGL code has been adapted to display multi-partitioned .obj

models and prepared in C++ classes for Bullet Physics implementation. The Bullet Physics engine was

originally implemented to simulate collisions and offer physics calculations for the simulated models.

Since the engine has been implemented with the modified OpenGL code, collisions can now be

simulated, but physics calculations and retrieving certain physics-based data for the simulated models

proved too limited to offer significant enough information. Therefore, the Bullet Physics engine is only

partially used, in this system, to handle mass and contact calculations while manual calculations are

used to fill most of the calculation voids [2].

Levass3

Figure A: Original Concept for Procedurally
Generated Melee Weapons

Figure B: Original Early Evaluation Criteria for
Generated Swords

 Center of mass within lower third of model to
simulate a balanced sword

 Top of model must merge to a single vertex

 Lower third of model must have at least one
separate material/mass to simulate a handle

Optional portions of model include:

 Pommel: separate material than handle to
bring center of mass closer to handle

 Guard/hilt: aesthetic portion that may also
bring center of mass closer to handle

 Handle Guard: aesthetic portion that alters the
center of mass to give the sword a direction
use; thus altering the performance of the
sword if implemented

The original objective and theme of this project was to procedurally create and evaluate 3D models of

melee weapons (e.g. axes, swords, shields, etc.). The original concepts and evaluation criteria can be

seen in Figure A and Figure B. However, due to the limitations of the Bullet Physics engine and the lack

of mechanical physics knowledge for measuring aspects like “sharpness” and blunt force, the project

was re-oriented to produce a simpler genetic algorithm for 3D keys. The rest of this paper focuses on

this new theme and the evaluation process.

Related Work

“Borderlands 2”

The game “Borderlands 2” was the initial inspiration of this project. In the game, the player

adventures through a post-apocalyptic style world seeking an ancient treasure while fending off

countless foes that block their way. One particularly mechanic that the game used was the

randomization of weapons. Each gun found in the game is procedurally generated based on a

set of possible attributes, model parts, materials, ammo type, and even the game’s internal gun

brands. Through this mechanic, a game that would usually have a simple, linear adventure path

becomes more interesting as the player searches for better weapons and further engaging with

the gameplay mechanics. The original objective of this project was to recreate this style of

procedural generation while comparing the generated models against each other to determine

the better model.

Levass4

Borderlands 2 Concept Art [1]

“Evolving Virtual Creatures” [3]

One paper that inspired the development of this project is the 1994 SIGGRAPH paper by Karl

Sims [1]. In this paper, Sims explains a method for procedurally generating 3D virtual creatures

using connected graphs, L-systems, and neural networks to generate both morphologies and

control behaviors. L-systems and graph-based models for procedural generation utilizes better

programming techniques as well as produces a cleaner, more organized structure for generating

new 3D models. L-systems, like the ones discussed in Sims’ conference paper, allow for greater

repetition of procedural generation in a modular format. Sims’ development created modular

appendages, each entailing their own style and magnitude of mechanical movement (i.e.

rotation, sliding, etc.). This type of development for procedural models allows for more

configurable generation where set limits can be used to produce less randomized results and

more specific model generation to satisfy a task or evaluation function. This particular strategy

for developing 3D models opens the way to more physically, practical tests as well as allowing

the combination of artificial intelligence techniques to enhance its procedural generation.

Levass5

Sims’ Diagram for Connected Graphs to Model Phenotypes [3]

Algorithm
Often geometry modelled in editing programs such as Blender and Maya are partitioned into separate

shapes or meshes, rather than one continuous mesh. These multi-part models allow for selective

graphical features like color, texture, and animation. This project utilizes the selectivity of multi-part

models to procedurally generate a multi-part model from an individual model.

This project uses one strategy for procedurally generating multi-part models using two input keys to

seed a pseudo-random number generator. The two keys are designated as the Trait and Mutation

Master seeds. The Trait seed determines both the number of components introduced to the original

mesh or model, and the number of transformations or traits that apply to each component. The

Mutation Master seed determines each component’s Mutation seed for applying transformations (e.g.

translation, rotation, or scale) as well as the magnitude of each of the applied transformations/traits.

Together, these two seeds are used with an initial mesh or model to generate a new multi-part model as

seen in Figure C.

Levass6

Figure C: Model Creation using Pseudo-Random Seeds

Trait Seed A
Produces

Translation to Model
Creation

4 (N) 4 Components to add

3 (T0) Component #0 has 3 traits

1 (T1) Component #1 has 1 trait

0 (T2) Component #2 has 0 traits

4 (T3) Component #3 has 4 traits

… unused

Mutation
Master Seed B

Produces

Translation to Model
Creation

8 (M0) Component #0 Mutation seed

17 (M1) Component #1 Mutation seed

47 (M2) Component #2 Mutation seed

24 (M3) Component #3 Mutation seed

… unused

M0 Seed (8)
Produces

Translation to
Component #0

Mutation(s)
(T0 = 3 traits)

2 Choose attachment point #2

8 Trait #0: Scale X

39 Trait #0: Magnitude: 39

12 Trait #1: Scale Z

73 Trait #1: Magnitude: 73

16 Trait #2: Rotation X

34 Trait #2: Magnitude: 34

... unused

M1 Seed (17)
Produces

Translation to
Component #1 Mutation(s)

(T1 = 1 trait)

4 Choose attachment point #4

2 Trait #0: Scale Y

31 Trait #0: Magnitude: 31

... unused

Trait Seed
The first key, or Trait seed, is shown in the upper-left table of Figure C. It uses the first number

generated, N, to determine the number of additional model geometries, or components, for the

initial model. The next N numbers generated by the first seed determine the number of

geometric transformations, considered as traits, for each component (T0, T1, …, TN - 1). Finally, for

aesthetic purposes, these N numbers generated are also used to color the component model.

Mutation Master Seed
The second seed is shown in the upper-right table of Figure C. It generates the next generation

of seeds that are used to determine which transformations are applied and their magnitudes

(M0, M1, …, MT - 1). This determination is done by using this second generation of numbers to

seed the pseudo-random number generator for randomly determining where and how to attach

the new components (numerically seen in the lower tables of Figure C). First, every component

is allowed one trait to randomly translate the component to one of the available attachment

points on the currently generated multi-part model (as seen in Figure D). After the component’s

attachment point is determined, the second generation of numbers are used to apply

transformations with random magnitudes (as seen in Figure E). Finally, after all trait

transformations have been applied, the algorithm translates the component to the attachment

point.

Levass7

Figure D: Parent model with attachment points displayed

Figure E: Component application to parent model

Levass8

Genetic Mixing
Once a model is constructed, it stores the original seed keys (Trait seed and Mutation seed) to allow for

the passing of “genes” to offspring models. When using two generated parent models, the offspring

model is created using a mixture of their seed keys (i.e. Trait seed from parent A and Mutation seed

from parent B). Figures F and G present a two generations of procedurally generated models using a

single-gene model to produce two variant, child models.

Parents

In Figure F, Parents A and B have been generated with different Trait and Mutation Master

Seeds. Looking at the Parent A image, an initial model (shown as the orange cuboid) with four

components (shown as the two purple and two blue cuboids). Similarly, in Parent B, an initial

model (shown as the orange cuboid) with three components (shown as the blue, red, and purple

cuboids) is generated.

Figure F: First (Parent) Generation of Keys

Parent A

Trait Seed: 208, Mutation Master Seed: 176

Parent B
Trait Seed: 243, Mutation Master Seed: 133

Children

In Figure G, Child B/A and A/B have been generated using the genotype seeds of the previous

generation (Parent A and B). In these images, Child B/A is seen to have a similar genotype as

Parent A while showing a similar phenotype as Parent B. The genotype of Parent A is shown as

the Mutation Master Seed is inherited and produces the similar model transformations and

placement as Parent A’s components. On the other hand, the phenotype of Parent B is shown

through the inheritance of the Trait Seed to produce the same number of components (three

components) and to generate the same random colors. Likewise, in Child A/B, the phenotype of

Parent A (through the number of components their colors) and the genotype of Parent B

(through the components’ mutation transformations and placements) are shown.

Levass9

Figure G: Second (Child) Generation of Keys

Child B/A

Trait Seed: 243, Mutation Master Seed: 176

Child A/B
Trait Seed: 208, Mutation Master Seed: 133

Results

Genetic Testing

Overall, this method of procedural generation is successful in creating new 3D multi-part

models. Given two input keys, the same model will always be produced. Similarly, given four

input keys, two parent models will be produced using the first two keys for one model and the

last two for the other. In this four-key method, the two models are then used to breed a new

combination or offspring model based on a mixture of the parents’ keys.

Evaluation

Finally, to evaluate and compare these models, a simple collision test was designed using the

Bullet Physics engine for the application of procedurally developing a key model. In this test, a

keyhole model is previously prepared and placed in the 3D space with an appropriate collision

mesh. If the generated model passes far enough passed the keyhole model, the test is

successful. The model is then tested using several orientations and given a score based on how

many tests were successful. Figure H shows examples of these orientations for one model

generation. In these images, the red background is the keyhole model whereas the grey center

is the hole for the key to pass through. On the other hand, Figure I shows the actual results after

running the evaluation iterations using single rotations in steps of 45 degree angles. This table

shows failure results only in Y-axis rotations since the generated object is significantly longer in

one dimension than the other two. Using an improved evaluation algorithm, testing can be

optimized to avoid future tests with similar rotations.

Levass10

Figure H: Example Evaluation Orientations for Trait Seed: 129, Mutation Master Seed: 39

Test #0, Rotation 0° about –axis, PASS

Test #2, Rotation 90° about Y–axis, FAIL

Test #3 , Rotation 135° about Y–axis, FAIL Test #9, Rotation 45° about X–axis, PASS

Levass11

Figure I: Evaluation Results for Trait Seed: 129, Mutation Master Seed: 39

Test Number Pass/Fail Rotation Axis Rotation Angle (degrees)

0 PASS Y 0

1 FAIL Y 45

2 FAIL Y 90

3 FAIL Y 135

4 PASS Y 180

5 FAIL Y 225

6 FAIL Y 270

7 FAIL Y 315

8 PASS X 0

9 PASS X 45

10 PASS X 90

11 PASS X 135

12 PASS X 180

13 PASS X 225

14 PASS X 270

15 PASS X 315

16 PASS Z 0

17 PASS Z 45

18 PASS Z 90

19 PASS Z 135

20 PASS Z 180

21 PASS Z 225

22 PASS Z 270

23 PASS Z 315

Reflections and Future Work

Generation

In this system, there are two major aspects to be improved: the variety of the procedural

generation and the evaluation function. As the implementation stands now, the procedural

generation generates much like a single gene and is, in fact, forced to output a mixture of the

two parents. By expanding the number of seeds used to generate a unique model, the genetic

variance would increase significantly, but the model class/data structure would become

increasingly more complex. Better programming practices, like stricter Object-Oriented

Programming, is advised for both code clarity and data organization. While C++ provides and

available class structure, further organization within the designed classes can improve quality

and speed of generations.

Levass12

Evaluation

Further work on this project will include analysis of this first evaluation to continue testing the

models until the best possible orientation is found. In the current implementation, the key

models are tested at eight rotations about each axis independently using a binary, pass/fail

function. A total of twenty-four current tests are implemented as a simplified collision-fitting

algorithm. In these tests, if the model can fall completely through the keyhole model, the test

passes and the next test is executed. If the model, instead, stops without passing through the

keyhole mode, then the test fails and the remaining tests are executed to determine the best,

passing orientations of the key model. This testing process is similar to blindly attempting to

insert a new key into a keyhole/lock.

3D Modelling Software Plugin

This implementation uses a previously designed OpenGL program that was created to learn

basic OpenGL and general computer graphics concepts. This program has been further modified

to introduce random, multi-component models, implement the Bullet Physics engine, and

produce new, procedurally-generated genetic models based on model data. While this series of

modifications has proved beneficial for learning low-level implementations, using higher-level

languages like MEL and Python via Blender and Autodesk Maya could produce similar, if not

better results at a faster development rate. Implementing this algorithm within an interface

where physics engines and modelling functions are already established and refined would

reduce low-level focus and introduce a greater avenue for learning and understanding Maya or

Blender plugins.

Physical Calculations

Originally, this project was designed in tandem with the implementation of the Bullet Physics

engine to calculate and evaluate the physical properties of the generation models. For example,

the colors depicted in the program were designed to indicate the density of the model in the

Bullet Physics engine (from 0 BulletMass/volume to 10 BulletMass/volume). These calculations

proved difficult to query from the Bullet Physics engine and, instead, were calculated using the

research paper written by C. Zhang and T. Chen for extracting physical properties from 2D/3D

meshes [2]. These methods proved useful for designing more realistic models, however the

evaluation function was simplified to enable the feature of basic genetic generation. Although

these methods are no longer necessary for the current implementation of the procedural

generation, future work could utilize these numerical calculations in order to determine more

physically realistic scenarios.

References / Bibliography
[1] BradyGames. The Art of Borderlands. DK Games, 2012.

[2] C. Zhang and T. Chen. Efficient Feature Extraction in 2D/3D Objects in Mesh Representation

[Online]. Available: http://chenlab.ece.cornell.edu/Publication/Cha/icip01_Cha.pdf

[3] K. Sims, “Evolving Virtual Creatures,” in Proc. SIGGRAPH 94, Orlando, FL, 1994, pp. 15-22.

http://chenlab.ece.cornell.edu/Publication/Cha/icip01_Cha.pdf

