
Design and Proof of Concept of Parking Garage

Capacity Network using Distributed Ultrasonic

Devices Interfaced with MQTT Protocol

Erik Olsen

Justin Distaso

Project Advisor

Tina Smilkstein

Computer Engineering 463/464 Senior Project

California Polytechnic State University, San Luis Obispo

June 12th, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/84280155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This paper overviews the Smart Structure project. We found a desire from the City of San Luis

Obispo for a way to tell the availability of parking spaces in local parking garages. In addition to

meeting this need the project aims to provide functionality and adaptability based on future

“smart” devices and making the device fit into an Internet of Things (IoT) system. Currently

drivers must manually navigate the parking garage to determine which floor has a parking spot.

With our proposed solution drivers would be able to tell at a glance which floors had the most

spots, as well as the relative fullness of each floor. Initial testing included a magnetic sensor,

but it showed a lack of promise. The final solution is accomplished using a network of ultrasonic

sensors. These sensors communicate to a database that is able to be accessed via a GUI. It is

hoped that this project will provide the information needed for a real-world implementation of

the network. This implementation could be done cheaply and with future device expansion

built in.

Table of Contents

● 4 Introduction

● 6 Technical Background

● 13 Design

● 16 Testing

● 18 Conclusion

1. Introduction:

When deciding on a senior project we wanted to choose something that would be

useful to somebody after the project was completed. Our advisor already had a passion for IoT

capable devices so we looked in that direction. Since IoT works well with public infrastructure

and community services (such as a smart city) we decided to meet with our city, San Luis

Obispo, to discuss possible smart city implementations. Through our advisor we set a meeting

Greg Herman, Assistant to the City Manager. At this meeting we established one way the city

could be improved through an IoT implementation was in the field of parking, specifically the

local parking garages.

When using a public parking structure certain floors have more spots than others. In fact

some floors will not have any spots at all during busy times when the structure is at or near full

capacity. Currently the only way to know is to drive your car in circles, searching for a spot.

Depending on the layout of the structure you will need to decide if you will keep going round or

try another floor. This wastes time and gas and is frustrating to those trying to park their cars.

Our project aims to solve this problem by providing a way to view how many spots are

open on each floor. Using ultrasonic distance sensors interfaced with a network of raspberry pi

computers we are able to track cars as they enter and exit each floor. By keeping track of how

many vehicles are on each floor and knowing the total number of spots we are able to show the

number of available spots on each floor. This might sound familiar, indeed some parking

structures already have the number of spots on each floor displayed. Where our solution

improves on existing systems is how the data is made available. By passing the data to a

database using a lightweight protocol (MQTT), it is possible to view the number of open spots

view an application or visually, depending on the structures implementation. In addition our

solution was designed with future Internet of Things (IoT) development in mind, and is able to

share its data with compatible devices to form a building block of a smart city IoT network.

Because this is a real world implementation we had to work under several technical

constraints that would be less relevant in a purely theoretical design. As with any real world

implementation, but especially for a non-necessary expenditure by the city, our project needed

to be as low cost as possible. Specifically, on a per unit cost, since this project is a distributed

system with many nodes, even a small decrease in the per unit price can have a significant

impact on the total cost since the price scales per unit. Another part of the cost is in power

usage, so we chose very low power devices and protocols. Ease of deployment was another

factor we considered, if everything comes more or less put together it will save time and money

when the units are deployed. Finally while our project is useful by itself, we made sure to

design the architecture of the system with future expansion into the IoT field in mind. Our

devices publish messages to a network and can receive from and push data to future yet to be

added devices as the city expands upon its Smart City development.

2. Technical background

TCP/IP

TCP/IP is the basic communication protocol of the internet. Just about every computer

comes loaded with the programs needed to access the internet. This collection of programs is

often referred to as the communications “stack”. TCP/IP has two parts. The first layer is

Transmission Control Protocol (TCP). TCP assembles the messages your device sends into

smaller packets of data that are transmitted over the internet and received by the TCP layer of

the receiving device. The lower layer, Internet Protocol (IP) handles the address part of each

packet so that it gets to the right destination. Each computer on the way through the network

checks this address to see where to forward to packet to get it to your specified destination.

TCP/IP uses a client/server model of communication, meaning a user (the client) makes a

request to the server, and the server provides the service (such as sending the web page data).

Most common protocols such as Web browsing (HTTP/HTTPS) and email (SMTP) utilize TCP/IP

to get to the internet.

MQTT and the publish-subscribe model

MQTT or Message Queue Telemetry Transport, is a standardized publish-subscribe

“lightweight” protocol used for messaging on top of the TCP/IP stack. In the context of

software, publish-subscribe is a messaging pattern where the senders of messages, called

publishers, do not specify their messages to be sent to specific receivers, called subscribers.

Instead they publish these messages into certain categories without knowledge of any

subscribers. In a similar manner, the subscribers choose what categories of messages they are

interested in, without specific knowledge of publishers themselves. This protocol is very useful

for IoT communications / services, because new devices can both send and receive useful data

to the network with minimal configuration, since the messages are origin and destination

agnostic. The MQTT protocol was designed with connections in more remote locations where a

“small code footprint” is desired, when bandwidth is limited.

Since we designed the architecture of this project with future IoT compatibility in mind

we decided on a publish-subscribe message pattern. Since ours is the first IoT project in the city

there is not anything for our system to interact with yet. However when another system is

implemented our system will be able to subscribe to relevant categorized data, and the other

new systems will be able to read our systems publications. We chose the MQTT protocol

specifically because the communications needed between sensors in a parking garage are very

simple. By using a lighter messaging protocol it is possible to use smaller, minimally power

consuming devices to communicate. In addition the dense materials and closed off shape of

most parking structures can pose a problem when it comes to network connectivity. This makes

limiting bandwidth usage more desirable to avoid delayed or even lost transmissions.

Internet of Things (IoT)

IoT is a broad concept without a standardized definition. It refers to the connection of

vehicles, buildings, appliances, sensors, and other physical devices using web connectivity

which will enable these devices to communicate with each other. With the recent rise of global

web connectivity and the continuing fall of the price of devices the vision of a connected

network of physical devices is becoming more and more possible. Still in the early stages, IoT

has been theorized to be used to create things like smart homes (where appliances and utilities

communicate to provide enhanced functionality) or even smart cities (where public

infrastructure works together with other community services and users for a better quality of

life). General connectivity is usually done from one machine directly to one machine, however

IoT will offer enhanced connectivity that will allow “swarms” of devices to properly

communicate. The devices on the IoT network collect useful data using existing sensor

technologies and then autonomously flow the data between other devices.

The expansion into the IoT paradigm is expected to

generate large amounts of data from many locations, and as such the need to store and process

data effectively is one of the main concerns.

Ultrasonic Sensor

An ultrasonic sensor is a device that measures the distance to an object using sound

waves. It measures distance by sending out a sound wave and listening for that same sound

wave to come back. Using the time it took for the

sound wave to come back it is easy to determine the distance of the object the sound wave

reflected from using the following formula: distance = (time taken * speed of sound) / 2. The speed

of sound is known to travel 344 m/s (1129 ft./s), you can take the time for the sound to return

and find the round-trip distance. Round-trip distance is double the distance to the object, as it

includes distance to and from the object.

SQL Database

A database is a collection of data. Databases are often implemented as a relational model,

which structures the data logically. Traditionally rows represent tuples which are an ordered

list. This tuple holds all the data relating to one object. Columns hold the values for different

attributes or characteristics. For example if an attribute was temperature then every value in a

column would represent a temperature value. The entire table would hold related data, and

certain attributes from one table are used to relate tuples between different tables. This

structure is enables many logical and mathematical operations to be ran to process the data,

making it ideal for computers. Structured Query

Language (SQL) is a specific computer language used to manage data in a database. SQL is used

to insert, retrieve, update, and delete data from the database. SQL was one of the first

commercial languages for relational databases, and remains one of the most widely used

languages today.

Raspberry Pi Zero

The processing power for our project comes from a line of small single-board

computers, Raspberry Pi. This series of single-board computers are popular for their low price

point and high utility. Originally developed for teaching basic computer science in schools and

developing countries, it took off in popularity outside its original audience. Robotics and

computer technology enthusiasts have led the Pi to over 5 million sales worldwide.

The specific model used in this case is the Raspberry Pi Zero W. The Zero is half the size

of the main model with built in WIFI and Bluetooth, available at the time of this report for $20.

This model was chosen for several reasons. One motivation in our project was keeping the price

point low to increase ease of implementation. The Pi Zero W is also power efficient using on

average under 200mA while WIFI is turned on. Having built in WIFI means this device has

everything it needs out of the box to be able to connect to an IoT network.

Triple Axis Magnetometer

A magnetometer is a device that measures magnetism (i.e. changes in the direction,

strength of a magnetic field at a particular location. A compass is an example of a very simple

magnetometer, one that measures the direction of the magnetic field. The Triple Axis prefix

means that the magnetometer can measure strength in all three directions (XYZ).

Magnetometers work on the principle of Faraday’s law, which states that an induced

electromagnetic field in a closed coil is proportional to the rate of change of magnetic flux

through a circuit. Put more simply, when a magnetic field changes it produces a current in a coil

of wire. This current is then measured to determine the magnetic field.

The Magnetometer used in our project is the Freescale MAG3110. This sensor is a

low-power digital 3-axis magnetometer. It interfaces using standard I2C serial interface which

works easily with the Raspberry PI and most other embedded device platforms.

Chapter 3: Design

Top level down

The Smart Structure project was designed very modular in nature. This was very helpful when

we had to switch sensors in the project. Switching meant acquiring a new device for the

embedded Device and writing a new GPIO Module, but the rest of the architecture was able to

be reused. This is a good example of how are system is able to be used as a framework with

future IoT devices. The modules represented by clouds are where systems that do not yet exist

would fit into our system.

● Sensor - This is the device used to count cars, in our case it is the ultrasonic sensor.

● GPIO Module - Written in C, this is the part of the code that interfaces with the device

and interprets the data. This code uses the pins on the Raspberry Pi to communicate

with the ultrasonic sensor.

● MQTT Module - Written in C, this is the part of the code that is used to interface with

the MQTT Broker. It functions as a go between C and Python code, and formats the data

collected by the GPIO module for the Broker.

● MQTT Broker - Written in Python, this module is able to publish (send) and subscribe

(receive) relevant data. The broker is not bound to specific sources or destinations, but

instead operates on categories of data. This means it does not differentiate between

our MQTT module and a future implementation. It gets its data from the MQTT module

currently.

● Database Updater - Written in Python, this module converts the data received from the

MQTT Broker module into a format able to be accepted by the SQL database, and then

makes the SQL calls to update the database.

● MySQL Database - This is the actual database that holds the data for the system. It gets

its information from the SQL Broker and sends that data to the data gathering module.

● Data Gathering Module - Written in Python, this is the backend for the client facing part

of the system. It requests data from the server using SQL calls and formats it for the GUI.

● GUI - Graphic User Interface, written in Python, this is a simple interface for displaying

information to users in graphical form. Because it pulls from a modularized python

backend somebody could write a different app, or an app for a different system, that

would be able to access the same data.

● Future IoT Subscriber - This is where a yet to be implemented device that wanted to use

our data would sit. One example would be an app onboard your car that tells you which

parking garage to go to. By subscribing to our data the new IoT device would be able to

tell which garages had more or less space and navigate accordingly.

● Future IoT Publisher - This is where a yet to be implemented device that possessed

relevant data for our project would fit in. Since its data would be categorized as

desirable by our broker would take in this data and make appropriate changes. One

example would be a device onboard your car that communicates directly with parking

garages. It could send a message directly to the system to improve the accuracy of only

using an ultrasonic sensor.

Error Correction

Our testing showed us two things; that our system is generally accurate, and that errors

are inevitable. Because no system is free from error we have theorized several ways to recover

after an undetected error occurs. These methods may be used in conjunction, or individually,

depending on the specific constraints of the situation.

One way of keeping system accuracy is non-specifying the data. Users care about how

the number of spots will affect their experience more than the actual number of spots. Without

knowing how many there are total the number of spots becomes less helpful. Instead of

displaying the actual number in the database it could be non-specified as a rough percent. (Ex.

Multiples of 10%). Another way of non-specificity would be arbitrary fullness labels (i.e. Full,

Almost Full, Semi-Full, Mostly Empty). These labels would mean that as long as the data was in

general bounds the information would remain useful to the user. This method of non-specificity

might not be able to be used, for example in instances where a more exact number is desired.

A second method of error correction is considering the logical bounds of the data. For

example a 100 spot per floor garage will never have over 100 available spots per floor. Similarly

it is very unlikely that the same garage would have 115 cars on a floor. (It is however possible to

have a few extra cars relative to spots if people enter when it is at capacity) By putting bounds

on the database errors we can prevent the extent of the error offset. While this only prevents

errors when errors are already present it does keep them from snowballing out of control.

Testing

Testing the Magnetic Sensor

Our initial design did not use an ultrasonic sensor at all. Instead it used a Triple-Axis

Magnetometer. The reason for this is we wanted to avoid as many false reading as possible,

especially false positives. Since it is possible for a person, bike, or other non-space using object

to move by a distance sensor and trigger a response we went with the Magnetometer. Initial

tests looked promising, the sensor had a quick update speed and was able to accurately detect

things such as the magnet inside our computer. After implementing the majority of the system

we took the unit to the downtown parking garage on Marsh Street to do a live test. We stood

on the side of one of the ramps of the garage and aimed the sensor, observing a live stream of

the magnetic data fed to our computer. When the sensor was stationary we received fairly

consistent data. However the sensor was very susceptible to movement, if the sensor moved

position the magnetic data showed a large change. We theorized this would not cause a

problem in the actual implementation since the location of the sensor would be static. It’s likely

these changes were caused by the large amount of metal materials used in the construction of

the garage itself. In addition all of the electrical wiring goes through the walls of the structure.

Just as changes in magnetic field induce a current, a current will also cause changes in the local

magnetic field.

As the cars drove by we kept observing the stream of readings from the magnetometer.

As time went by we realized the cars had very little effect on the magnetic field detected by the

sensor. So little that the effect the cars had was comparable to the amount of static noise in the

ambient environment. We realized that a magnetometer would not be able to accurately

detect a car driving by, so we would have to use another kind of sensor to detect a passing

vehicle.

Testing the Ultrasonic Sensor

Our next session of testing came after we completed work on the ultrasonic sensor

implementation. Luckily we designed our system in a modular way so the back end used by the

magnetometer could still be used with the ultrasonic sensor. Initial testing of the ultrasonic

sensor showed that it would definitely be capable of detecting a car passing. The sensor does

not discriminate based on the type of object however, so we would need to put in an error

correction algorithm to stop the sensor from marking a person walking by as a car. Because this

process involves changing the code many times to precisely calibrate we conducted this testing

on-site so we could observe our code changes right away. During this testing phase we

encountered several obstacles.

Error Detection

The first was due to the non-real time nature of the Operating System (OS) on the

Raspberry Pi. While we wanted our sensor to be available and scanning constantly the OS

would randomly switch resources away from our program. These switches are extremely short

on the human awareness time scale, but could cause the sensor to return a non-expected

value. To fix this issue we coded in some buffer room, if a very low amount of unexpected

results are returned we know that is the OS and we can discard those values without impacting

the accuracy of the sensor.

Another thing that required calibration was how to determine when one car passed and

another left. Since there might be a situation where a car would stop in front of the sensor (if

the line of cars was moving slowly). To account for this we implemented a flag variable, the flag

gets set when an object is detected, and a car is not counted until there are consecutive

readings affirming that the car has left. Because of the fast scan rate of our sensor cars driving

close by do not pose much of a problem. This is because the time between cars is very large

from a programmatic timescale. Even a fraction of a second if enough time for many readings

to be taken.

The final calibration made was to stop false positives, where a person or other object

passed in front of the sensor. We only wanted to count cars, not a person walking by. To

account for this likely possibility we trigger the flag for a car after a higher number of reads is

detected, this way when a person walks by briefly, there will not be enough reads to count as a

car.

Conclusion:
By situating an ultrasonic sensor at every ramp in the parking structure we are able to tell when

a car leaves or exits each floor. Each sensor sends its data via a lightweight MQTT protocol to a

central database, which aggregates all of the data. Using the database we can then say how

many cars are on each floor. This data can be accessed via our Python GUI or through a custom

python implementation, or directly from our MQTT broker. The system is reasonably accurate,

with built in error detection (for example when a person instead of a car) walks in front of the

sensor, as well as a variety of error correction models that can be applied, including bounded

database, manual calibration. Over a long period of time our system is able to improve its

accuracy through skew analysis. This means theoretically the system gets more accurate the

longer it runs.

The requirements for an implementation of our system is a WiFi network for the sensors

to connect to, so that they can communicate. A WiFi or other network is vital to any IoT

implementation. In regards to future development of this project there are several ways to

progress. One promising method that unfortunately we did not have time to test is program a

false reading drift. (For our system to work with errors the number of false positives and

negatives need to be roughly the same, that way they will balance each other out. This is fairly

unlikely to happen naturally. Over a long period of time there will be more false positives than

negatives, or vice versa, depending on the conditions. This ratio can be measured in terms of

the number of readings or over a period of time. For example every day on average every 1000

readings there is one more car in the database than there should be. In the program after 1000

readings a false negative would purposely be introduced. This would offset the skew factor and

keep the database consistent. To calculate the skew two manual surveys of the lot would be

required. In this survey somebody would need to manually count the number of cars on each

floor. The first survey is necessary for our project to be implemented, it is the starting value of

the database. The second survey would be taken after a long period of time. The difference

from reality and the database could then be used in conjunction with the following formula

used to calculate the skew.

Skew Factor = (Number of Cars In Database - Number of Cars actually in Lot) / Period Of

Time.

If the Skew Factor is positive then there are too many false positives, and Skew Factor

number of cars need to be subtracted from the database every period of time. The opposite

holds true if the skew factor is calculated to be negative. Ideally this database accounting would

be spread out over the period of time. So if the Skew is +12/yr then one car would be

subtracted each month. Although this skew would not be able to be accounted for until a

longer period of time had passed, once an accurate skew factor was calculated as long as

conditions did not change the error rate of the system would be almost completely eliminated!

The skew method touches on something that is important to the system, manual

surveying for calibration. The system is able to be manually changed (by sending crafted MQTT

messages or changing the database directly). So if a discrepancy is noticed between the lot and

database it can be fixed manually.

From a hardware standpoint a second sensor would lead to vastly increased accuracy.

Taking measurements on two axis would reduce false readings. Another way multiple sensor

could be used is an offset of two parallel sensors. These pair of sensors could be calibrated to

the length of a car, so that only an object with the appropriate length would trigger the system.

From a software standpoint the Error Correction methods outlined above could be

implemented to reduce the impact of inevitable errors.

The Smart Structure design and proof of concept were successfully completed.

Unfortunately the City of San Luis Obispo is not interested in pursuing implementation due to

time and budget constraints. The system works with an acceptable accuracy to be used in a

real-world implementation. Each unit costs approximately $30 for processor and sensor.

Appendix:

 A. ABET

 B. Links to source code

Embedded code: https://github.com/ecolsen7/smart-structure-embedded

Server-side code:

https://github.com/ecolsen7/smart-structure-embedded

https://pastebin.com/AJM4iBXA

Display-side code:

https://pastebin.com/FKLzhXHT

C . MQTT:

● "MQTT 3.1.1 specification". OASIS. December 10, 2015. Retrieved April 25, 2017.

● Erl, Thomas (2005). Service Oriented Architecture: Concepts, Technology, and Design. Indiana: Pearson

Education. p. 171. ISBN 0-13-185858-0.

● https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

D. TCP/IP

http://searchnetworking.techtarget.com/definition/TCP-IP

http://www.billslater.com/tcpip.pdf

E. IoT

"An Introduction to the Internet of Things (IoT)" (PDF). Cisco.com. San Francisco, California: Lopez Research.

November 2013. Retrieved 23 October 2016.

Ultrasonic Sensor

http://education.rec.ri.cmu.edu/content/electronics/boe/ultrasonic_sensor/1.html

F. Raspberry Pi Zero W

http://raspi.tv/2017/how-much-power-does-pi-zero-w-use

https://www.raspberrypi.org/blog/raspberry-pi-zero-w-joins-family/

G. Magnetometer

https://www.engineersgarage.com/articles/magnetometer

http://education.rec.ri.cmu.edu/content/electronics/boe/ultrasonic_sensor/1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/OASIS_(organization)
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://pastebin.com/FKLzhXHT
http://raspi.tv/2017/how-much-power-does-pi-zero-w-use
https://pastebin.com/AJM4iBXA
https://www.engineersgarage.com/articles/magnetometer
https://en.wikipedia.org/wiki/Special:BookSources/0-13-185858-0
http://www.cisco.com/web/solutions/trends/iot/introduction_to_IoT_november.pdf
http://searchnetworking.techtarget.com/definition/TCP-IP
http://www.billslater.com/tcpip.pdf

