

Unreal Engine 4 RPG

Cal Poly Computer Engineering

Senior Project

Developed by Jeffrey Nunez and Jacob Russ

Advised by Dr. Andrew Danowitz

2

Table of Contents

Table of Contents 2

Abstract 4

Game Design 4

Planning 4

Gantt Chart 4

Weekly Brainstorming Sessions 5

Essential Game Mechanics 6

Deciding on a Theme 6

Prototyping 7

Locating Assets 7

Game Perspective 7

Camera Transition 8

Interaction Highlighting 9

Development 10

Overworld Mechanics 10

Overworld Controls 10

Character Heat Bar 11

Shopkeeper 12

Quest System 13

Dialogue System 14

Character Progression 14

Game Save / Load System 15

Map Switching System 16

Battle Initiation 17

Overworld Sound Effects 18

Item Acquisition Animation 18

Battle Mechanics 19

Radial Menu 19

Attack Options 19

Attacking and Blocking Timing Event 20

Heat Bar Battle Queue 21

Battle Controls 22

3

Attack Animations 22

Enemy Spawning 23

Enemy Targeting 24

Battle Sound Effects 24

Victory Screen 24

Preliminary Level Design 25

Initial Environment Test Level 25

Three Layer Texture for Landscapes 26

Environmental Asset Design Choices 27

Lighting 27

Final Level Design 28

Opening Tutorial Area 28

Quest Giver Aesthetic 28

Foliage Density and Placement 30

Backdrop Design and Reasoning 30

Treasure Chests 31

Static Mesh Based Gravel Road 32

Open Battle Area and Level Boundaries 33

Conclusion 35

References 36

4

Abstract

Classic RPG videogames have become few and far between in the Western market over the years as

modern RPG systems have gained popularity. The purpose of this project is to present a vertical slice

of a hybrid RPG game that takes the gameplay mechanics and styles of classic RPG videogames and

infuses them with a modern presentation. Through the use of the powerful Unreal Engine 4 graphics

engine, this project is able to combine impressive graphical fidelity with modernized systems to fuel

a videogame that is undeniably a classic RPG at heart. This is not a full game, but a “vertical slice”,

which is a term used in the videogame industry to refer to a condensed segment of gameplay that

contains the major features and mechanics of the game. A vertical slice is used to demonstrate what

the finished product would look and feel like if the developers receive the time and money from the

publishers to turn it into a full product. This project showcases a turn-based battle system that takes

place in the world, a save/load system, a quest system, various character and popup animations, a

character inventory system, modernized character controls, and a carefully designed playable level.

Game Design

Planning

Gantt Chart

The Gantt chart shown in Figure 1 created an outline with specified dates for each section of the

planning and prototyping process that was carried out during the Winter 2017 Quarter. While there

were some minor adjustments and date flipping made, the initial version of the chart remained the

outline for a successful quarter of planning and prototyping which is a crucial portion of the game

development process.

5

Figure 1: Gantt chart used for the planning and prototyping phase of the project

Weekly Brainstorming Sessions

In order to carry out the goals that were set in the Gantt chart seen in Figure 1, there were three

weekly brainstorming sessions where ideas were generated and documented. These brainstorming

sessions were typically 2 hours long and were dedicated to the relevant topic for that day that was

specified within the Gantt chart. The main goal of these sessions was to ensure that there was a

complete agreement and understanding of all the initial groundwork and designing of the project. It

was crucial to make all decisions about the game together so that all opinions and potential

objections were discussed in person and hammered out. Through these brainstorming sessions, the

game design really started to come together. What initially started out as a generic sounding RPG

6

was able to blossom into the modernized take on a classic RPG that the project is today. Everything

seen in the finished project, from the battle system down to polygon-based art style for the

environments, was decided upon during these sessions which paved the way for the development

phase of the Spring 2017 Quarter.

Essential Game Mechanics

Perhaps the most important portion of the planning process was deciding upon the game mechanics

that were to be implemented. Classic RPG games feature turn-based combat sequences that take

place in a pre-rendered battle scene, in a setting separate from the world the player explores outside

of combat. To modernize the turn-based battle concept and give a unique spin on the genre, we

decided that all of the battles within the project would take place in the game world at the same

location where the player encounters the enemy. This helps make the project stand out from other

games while also providing a more immersive experience.

The other game mechanic we decided upon was to have a fast-paced combat system that is an

evolution of the common combat system found in classic RPG videogames. Classic RPG games

typically implement a turn-based combat system where the player has an indefinite amount of time

to queue up their moves. Taking that concept, the combat system that this project uses removes the

indefinite time given to contemplate moves. Instead, the enemies continue to attack should the

player take too long to queue up their moves. This approach not only contributes to a unique combat

system, but also increases difficulty and engagement, as players have to quickly calculate the cost

and benefit of every choice they make.

Deciding on a Theme

Classic RPG videogames tend to take place in fantasy-driven worlds where magic or superhero

abilities are commonplace. In order to continue the pursuit of setting this project apart from the

others, it was important to create a theme that would stand apart from the rest. The obvious way to

do so was to distance the project from any sort of magical theme or world. We decided that a world

inhabited exclusively by robots was an uncommon setting for an RPG. To further emphasize the

robotic nature of the world, the decision was made to have all of the static meshes used for the

7

environment be as simplistic and metallic-looking as possible. We found low-polygon meshes and

used semi-reflective materials on these meshes to achieve the artificial look we wanted.

Prototyping

Locating Assets

We decided to purchase all of the character and environment assets from the Unreal Engine

Marketplace. This ensured that everything that was purchased was easily integrated into the project

and guaranteed to function properly. For the characters, two content packs were purchased from a

single artist that allowed a cohesive look.[1, 2] For the environment, another two content packs were

purchased from different authors that had a very similar artistic style that was in sync with our

theme.[3, 4]

Instead of limiting ourselves to one source for audio assets, we integrated open-source audio files

from multiple locations.[5, 6, 7] In some cases, the audio that worked best was in the middle of a

particular audio sample. For those assets, we used the program Audacity to cut and trim the audio

files in order to isolate the sounds that were desired. Once the audio files were finalized, we once

again used Audacity to convert them to a format compatible with Unreal Engine 4. Adjustments to

the pitch and volume of audio assets were all made within Unreal Engine 4. Links to all assets that

were used can be found in the references section of this report.

Game Perspective

Before diving into full development mode, we decided to begin working on a software prototype

within Unreal Engine 4’s third person example map to develop some of the basic foundational

mechanics of our game. Our first priority was to find the desired perspective for the overworld

gameplay to take place in. In order to not stray from the feel of a classic RPG, we decided to go with a

camera angle that is reminiscent of both isometric perspective, which was used to create the illusion

of three-dimensional environments in games like Diablo and Baldur’s Gate, and a traditional

top-down perspective, like in the older Final Fantasy and Pokemon games. The camera position we

settled on is tilted about 20° from a straight top-down view. This allows the player to get a good

8

sense of the depth and placement of objects in the game world, while still feeling like they’re playing

a top-down RPG. Within the example map shown in Figure 2, we were able to place the main

character and several other characters to get a feel for what the player would be able to see when

playing.

Figure 2: Software Prototype within the Unreal Engine 4 Third Person example map

Camera Transition

As discussed in the Essential Game Mechanics section of this report, it was important for us to have

the combat of this project take place in the game world instead of a pre-rendered battle scene. To

achieve that while also maintaining the style of gameplay we sought, it was imperative to develop a

camera transition system for battles. The ideal execution of this would be having the camera rotating

from above the player’s character to a side view of the battle with the player on the left of the screen.

Initially this sounded like a simple task of rotating and translating the camera down to the side view

upon initiation of a battle, and then rotating and translating the camera back to its original location

once the battle had completed. Unfortunately, this was not possible due to some difficulties

encountered within Unreal Engine 4. Instead, we needed to make use of a much different technique

9

that was suggested on an official Unreal Engine 4 forum by an Epic Games staff member [8]. Using

the suggestions found on that forum for camera manipulation, we were able to successfully

implement the camera transition so that battles could take place seamlessly in world seam.

Interaction Highlighting

Most RPG videogames that feature interacting with objects and other characters have some form of

visual feedback that allows the player to know exactly who or what they will interact with when they

press the interact button. For this project, it made sense to have visual feedback as well, since it

makes the experience far less confusing for the player. As shown in Figure 3, the feedback that this

project uses is a highlighting scheme for the nearest object that the player can interact with. In

Figure 3, the player is standing near a grouping of placeholder objects that can be interacted with.

The red hemispheres around each object represent the maximum distance from which the player

can potentially interact with that object. The visual feedback system will locate the nearest valid

object to the player and give that object a clearly visible outline. Through this feedback, all confusion

is removed about which object will be interacted with in the case that multiple objects are in range

simultaneously.

The logic for determining which interactable object to highlight was inspired by a YouTube tutorial

series [13]. We built onto it by incorporating a method using different-colored highlights for

different types of interactions: white around items and savepoints, bright red around enemies,

purple around shopkeepers. This highlighting functionality was implemented with the help of a

separate YouTube tutorial [14].

Figure 3: Player interaction system highlighting the nearest interactable object

10

Development

Overworld Mechanics

Overworld Controls

Throughout the development cycle, an Xbox One controller was used as the preferred controller. The

detailed button map seen in Figure 4 makes use of an Xbox One controller, but an Xbox 360

controller works fine as well, since the button layout is nearly identical. We opted to keep the

controls similar to other classic RPG games. Player movement is handled through the use of the left

thumbstick. The face buttons and triggers are used for various actions. The D-Pad buttons are used

as hotkeys for important items and menus for the player.

Figure 4: Button mapping for player controls within the overworld

11

Character Heat Bar

In order to give the player more control of their character in a modernized fashion, we decided to

implement a heat bar system that allows the player to sprint up to a certain point. If the player

sprints for too long, they must wait until their heat bar cools down a before they are able to sprint

again. The top left of Figure 5 shows a heat bar that is cooling down after a player sprinted for the

maximum duration.

Figure 5: Character Heat Bar starting to cool down after player sprinting

The heat bar’s condition also carries over into the battle system. Attacks performed by the player fill

their heat bar, which cools over time. Attacks can’t be performed unless the meter is below a certain

threshold, so the hotter the bar is, the longer the player will have to wait before attacking. This adds

a twist to the sprint mechanic as it makes the player make a conscious choice about sprinting. They

might benefit from quickly navigating the map, but they could be left in a tight position if they

stumble upon an enemy and initiate a battle with a full heat bar. In a full game, this could be useful to

improve pacing: the player could backtrack through familiar territory quickly, but would need to be

more cautious when they enter new areas where enemies might be lurking.

12

Shopkeeper

The shopkeeper character is designed to showcase the inventory system that is in place. The player

is able to interact with the shopkeeper which will spark the opening of the shop and the player’s

inventory (if it was not already open). While interacting with the shopkeeper, the player’s inventory

is locked open so that they can better make their decisions while shopping. Either ending the

interaction or walking away from the shopkeeper will close the shop and the player’s inventory.

Figure 6 shows the shopkeeper during an interaction. As can be seen, there is text above the

shopkeeper to indicate to the player who he is. The purple highlighting is also used to show that the

player can interact with the shopkeeper. The red sphere around the shopkeeper in Figure 6 shows

the interactable range for the shopkeeper. If the player leaves that sphere, the interaction will end.

As for the shop itself, the placement of crates and tents hiding various goods was used in order to

visually indicate to the player from a distance that this character potentially has something useful for

the player which will cause the player to gravitate towards the shopkeeper.

Figure 6: Shopkeeper and inventory system during an ongoing interaction with the shop

13

Quest System

In an RPG, quests represent short- or long-term in-game goals that the player can choose to pursue.

Quests are often used as a primary method of motivating the player to explore the game world, with

the promise of interesting stories or beneficial items as rewards.

In some classic RPG videogames, “quests” are initiated and completed “behind the scenes”. For

example, in games like Pokemon Red Version or Final Fantasy IX, the player is responsible for reading

in-game dialogue and text to determine specific goals, like bringing a certain type of Pokemon to a

particular character to trade, or speaking to a specific character after finding a lost letter addressed

to them. Specifically, these “quests” are not consolidated in a convenient in-game interface to notify

and remind the player of available tasks.

In contrast, most modern RPGs, and many modern videogames in general, feature a “Journal” or

“Quest Log” interface which details each and every active and completed quest: which character

assigned it to you, what you need to do, and whom to speak with after you do it, and sometimes even

what specific reward you will be granted. It is interesting to compare the many classic games in The

Legend of Zelda series to its most recent entry, Breath of the Wild. Older games in the series relied on

the player to keep track of all their active tasks and adventures, but Breath of the Wild has a detailed

in-game Journal very similar to modern RPGs like The Witcher III and The Elder Scrolls V: Skyrim.

In keeping with the convenient and player-friendly quest systems of modern RPGs, we decided to

implement a quest log system into the project. Current quests are displayed in a box in the top-right

corner of the screen. In our game, a quest is initiated when the player reaches a particular branch of

a non-player character (NPC)’s dialogue tree. All quests share a common structure:

● Name (text string)

● Type (Find [speak to a certain NPC], Hunt [defeat a certain enemy or enemies], Collect

[obtain a certain item or items])

● Description (Text summary of the quest; this appears in the Quest Log)

● Stage (what part of the quest you’re on; numerical index from 0),

14

● Count (how many items to collect or enemies to defeat),

● Target NPC ID (who to speak to in order to complete the current Stage)

This structure was decided so that all quests could be easily constructed from the same base format,

even if not all quests will use all the fields of the data structure.

In the current implementation, once a quest is initiated, a quest advances through its Stages by

quest-specific triggers.

Dialogue System

A true RPG videogame has extensive dialogue between the player’s character and various NPCs

throughout the game’s world. With our project aiming to modernize the classic RPG, having a

dialogue system was an absolute must.

The first step towards creating a dialogue system was to create NPCs that the player’s character

could interact with. This was accomplished by creating a base NPC blueprint for any kind of

character that would be involved with dialogue. With the base NPC blueprint created, switch cases

were implemented so that the dialogue system could determine exactly who the NPC was, what state

they were in, and what their dialogue output should be. With that logic in place, a widget blueprint

was created in order to create the display of the dialogue onto the game screen. Connecting the

dialogue widget blueprint to the dialogue state system within the base NPC blueprint allowed the

correct dialogue to always be updated and correctly added to the player’s screen. These systems

working together allow our project to output the dynamic kind of dialogue that one would expect

from an RPG videogame.

Character Progression

For this project, the character progression is carried through the earning of experience points (XP),

funds, and the completion of quests. When a player successfully defeats enemies in battle, they are

awarded with XP and funds. The funds they earned are designed to be used with the Shopkeeper so

that they can buy items to help them throughout their journey. The XP that is gained from battles or

from completing quests is tracked in the player level progression system. Once the player earns

15

enough XP, their level state is updated and they are rewarded with the perk of dealing more damage

to enemies in battle. Each successive level will continue to boost the player’s abilities so that they

find combat and quests rewarding enough to seek out and complete.

Game Save / Load System

Nearly all modern games have some sort of system in place for a player to save the progress of their

game and load it later so that they may continue playing from the spot they left off. While this feature

seems so obvious and simple, it requires a lot of careful attention to detail behind the scenes to

ensure that nothing is altered. For this project, a saving and loading system was developed to show

how such a mechanic would function within a modernized take on a classic RPG.

When a player interacts with a save point object, all the relevant variables for the player, quest giver,

enemies, items, shopkeeper, and NPC dialogue systems are archived through arrays. Once everything

that is relevant to the player’s current game state is archived, the save system will begin to write all

the data to a file within the game folder. Once the data is successfully written, the archive is flushed

and the game resumes. Thanks to the capabilities of modern hardware and Unreal Engine 4, these

actions take place fast enough to be imperceptible by the player.

Once the player returns to the game and wishes to load their save file, the system developed for this

project will locate the game save file, read in the data, store everything in the correct variables of

their respective blueprints, and update the level blueprint to load the correct game level. Once this is

completed, the player will be able to continue playing their game from exactly where they last saved.

In our game, we allow the player to have three separate save files. The save selection screen is

shown in Figure 7. We modeled this after the classic “file select menu” in games like The Legend of

Zelda. When the player selects “Play” from the main menu, they are presented with the three save

files to choose from. Each option will show the player’s level, time played, and location where they

saved. Just like in the Zelda series, once a player picks a slot to load from, that becomes the slot that

any saves made during that session will overwrite.

16

Figure 7. File Select Menu

Map Switching System

For a game to switch between one map to another, there must first exist a map switching system to

carry out the transition. In this project, the “maps” that are switched between are that of the main

menu and the game world level. While testing this system, there were several map switching events

placed among the demo levels to ensure that map switching could occur between game levels and

not just between the main menu and a game level. How our map switching system functions is

similar to our game saving system, described in the previous section, but instead of saving all

relevant variables to a SaveGame object, we save those variables to the GameInstance object, which

persists between maps. When the new map loads, a fresh instance of the player’s character is made,

but then it restores all its old data that was saved to the GameInstance. This preserves all of the

player’s current statuses and information so that the player can now progress through the new map

without losing the progress they made in the previous map. However, that progress is not

permanently saved until the player finds and interacts with a save point.

17

Battle Initiation

Enemy robots in this project operate under a sphere of detection. If a player is roaming the

overworld and their character happens to intersect an enemies sphere, a battle will be initiated.

Figure 8 shows various enemies and their detection spheres in the editor view. When in game, the

red spheres shown in Figure 8 are not visible. Once a player initiates a battle, the current state of

their heat bar will determine their position in the battle queue. Simultaneously, the level blueprint

will fade out the ambient sound that is played in the overworld and fade in the battle music. As the

camera transitions into battle view, temporary data structures are instantiated for the current

combat session, such as the combat queue manager and the array of valid enemy targets. The

enemies and player change states in their animation state machines, and various UI elements are set

to become hidden, such as the quest log, or visible, like the electricity (health) bars above each

character. While in battle, the game switches from running on overworld mechanics to running on

battle mechanics, so player inputs are processed differently.

Figure 8: Various enemies and their battle detection spheres shown in the editor view

18

Overworld Sound Effects

While we are not audio engineers, we found it necessary to apply some sound effects to our game in

order to give the player expected and useful audio feedback. The first effects implemented were

sounds when the player is walking or running. We stepped through the running and walking

animations and attached new events anytime a character’s foot was flat. With the events in place, we

were able to open the blueprints for the animations and play an audio clip whenever one of these

events were triggered. While the same footstep sound file is used for both running and walking, the

pitch was altered between the two to adjust for the perceived difference in impact force between the

actions. This allowed for similar albeit familiar sound effects depending on the current animation.

The remaining sound effects were far simpler to carry out as they all depended on an interaction of

some kind. When the player toggles their flashpoint, a call to play a clicking sound effect is made.

Within the player’s blueprint when an item is acquired and added to their inventory, a soft sound is

played that simulates the sound of placing an object in a basket. Lastly, when the player uses a health

potion, a bottle opening sound is played.

Item Acquisition Animation

Visual feedback for interaction events within videogames is something that videogame players have

come to depend upon. If there is an item purchased from a shop, acquired from a treasure chest, or

located in an obscure hidden spot in the world, the player needs to be notified that something has

happened. We created an item acquisition popup animation that plays whenever the player acquires

an item of any kind. The animation was built entirely within Unreal Engine 4 using widget blueprint

animations and designs. When the player interacts with an item that can be added to their inventory,

the player character blueprint will call upon the item acquisition popup animation to be played.

First, the popup is created off in the left corner of the screen and grows until it is centered with large

font which is shown in Figure 9. The animation holds that position for a few seconds before

shrinking and fading into the middle right of the screen which is where the player’s inventory pops

up when toggled which reinforces the fact that a new item was acquired.

19

Figure 9: Item Acquisition popup message

Battle Mechanics

Radial Menu

Combat menu navigation needs to be quick and easy to pick up. We decided to implement a radial

menu for our combat system like the ones used in other RPG games such as Mass Effect and South

Park: The Stick of Truth. A radial menu provides the player with simplistic yet functional navigation

and helps speed up combat choices while also making sure to not completely hide the battle that is

occurring onscreen. Using the ideas from the aforementioned games, we devised a radial menu

system that was built from the ground up in Unreal Engine 4. Making use of the powerful widget

blueprint tools within Unreal Engine 4, we were able to design the aesthetics of the radial menu and

integrate the system itself within the logic for the player’s combat systems.

Attack Options

Within this combat system, there are two attack choices that are available to the player - a light

attack and a heavy attack which is showcased in Figure 10. The light attack (green attack box) does a

20

small amount of damage but adds an equally small amount of heat to the player. This attack is ideal

for enemies with low amounts of health. The attack will finish off an enemy without negatively

impacting the player’s heat. The heavy attack (red attack box) deals large amounts of damage to an

enemy and causes the player to generate lots of heat. If the player needs to deal a substantial amount

of damage to an enemy and can risk being placed at the end of the battle queue, then the heavy

attack is the better option. Through these two options, the combat system has an element of choice

while not being bogged down with unnecessarily complex options.

Figure 10: Battle gameplay showing the player choosing their attack

Attacking and Blocking Timing Event

A common practice in modern videogames is to make use of Quick Time Events (QTEs) in order to

engage the player in some important action occurring onscreen. To continue the trend of

modernizing the classic RPG genre, we decided to implement QTEs within the combat system to give

the player more control over the outcome of the battle. The combat itself is built upon melee combat

between the characters, so a QTE system for blocking and attacking was developed to take place

during combat interactions. Building off of the extensive combat blueprints for the combat logic

21

itself, the blocking QTEs add a damage reduction if the player successfully presses the “X” button

when the blue line is within the green portion of the QTE bar which is shown in Figure 11. The blue

line advances from the left to right of the QTE bar and expires once it reaches the end. If the player

misses the block, they receive more damage. A similar QTE is applied to the attacking logic. If the

player is successful with the QTE, then they are rewarded with a higher damage output to the enemy.

Figure 11: QTE Bar with the desired timing executed

Heat Bar Battle Queue

One of our mandatory goals was to inject some real time elements into the traditional turn based

combat that is a staple of classic RPG videogames. To do this, a queue system was built within the

combat system logic that keeps track of each character’s location within the queue. When a character

executes an attack or ability, they acquire a certain amount of heat. Once their heat level builds up

past the operable threshold, they are unable to attack or use abilities until they cool down back into

the operable threshold. Figure 12 shows a combat heat bar with two characters engaging in combat.

The blue circle on the lower left side of the heat bar represents the player’s character while the red

circle with a “1” above the heat bar represents the enemy. In this image, both characters are cooled

below the operable threshold (which is visualized by the white line on the left side of the bar). The

enemy character isn’t as cooled as the player’s character, however, so the queue system would

register the player’s move first should they queue their moves at the same time. In this particular

state, either character is free to queue up their move, though.

22

Figure 12: Heat bar battle queue showing two characters within the operable threshold

Battle Controls

Controls within the battle system are simple and intuitive. The left thumbstick is used for menu

navigation while the face buttons and right bumper are used for actions pertaining to the combat

system. Figure 13 shows the full button mapping.

Figure 13: Button mapping for player controls within the overworld

Attack Animations

In an effort to make the combat more entertaining to watch and play, animations specific to combat

were put in place. The built in walking and running animations that are supplied by Unreal Engine 4

offer simplified processes to apply the animations to the skeletal mesh of a given character. Applying

23

these results in animations that can be controlled and played for any character so long as the skeletal

mesh is compatible. These animations add a great amount of visual variety to the gameplay. When it

came to our combat system, the animations within Unreal Engine 4 simply did not align with the

look that we were going for. Instead of using fluid animations that would look out of place during

combat, we decided to acquire some free animations from the Unity Game Engine Store and use

them within our project.[11, 12]

While both engines can support 3D characters, the way that the animations integrate with the

skeletal meshes can be quite different. This led to some painstakingly slow animation tweaking and

editing for the Unity Store animations. The default animations would cause players to move around

the screen unnaturally and gave off the appearance of being horribly broken which was due to an

incompatibility with Unreal Engine 4. To remedy this, we had to go through the animations frame by

frame and fix the portions that resulted in undesirable behavior. Once this was completed, we were

able to have and implement the punch, kick, and idle stance animations that are seen in the battle

system of the project.

Enemy Spawning

Some enemies placed in the world are spawned with friends next to them that are initially hidden. If

a player encounters one of these enemies in the overworld, they will only see one character until the

combat sequence is initiated. This is a game mechanic that is heavily used in classic RPGs to

eliminate the ability to fully assess a combat situation within in the overworld. By having the

additional enemies hidden, the player is more likely to engage in combat since they are tricked into

believing that the odds are in their favor.

Developing this system within Unreal Engine 4 was possible through the use of several enemy

character types. By creating multiple versions of each enemy type, we were able to apply a unique

material to the enemies that were added on once the combat sequence was initiated. When the

player initiates the battle sequence, an animation is played for any additional enemies that were

originally hidden. The animation that we developed takes the material that hides the additional

enemies and creates a blended sequence between being hidden and having the standard material

24

set. Once the animation is completed, the additional enemies will appear just like standard enemies

to the player and the combat sequence can begin.

Enemy Targeting

While in battle, the player is given the option to queue a move against whomever they wish. If there

is an enemy that only has a small amount of health left but could deal massive damage, the player

would want to prioritize that enemy before moving on to others. For our project, the player is given

the ability to use the right bumper of the controller to cycle through the enemies that they are facing

so that they can queue up a move against the proper choice. While cycling through the enemies, the

actively selected enemy is given a red highlight through the use of the interaction system that is used

for the shopkeeper, quest giver, treasure chests, etc. This red highlight allows the player to quickly

register which enemy is selected so that no precious battle decision time is lost.

Battle Sound Effects

For a battle to fully engross the player, there must be audio to back up the visuals. When looking into

battle sound effects, it seemed imperative for the sounds to match the intensity of what was being

seen onscreen. Through the use of the GDC 2017 sound pack[5] and the program Audacity, we were

able to locate quality sound effects that fit the robot combat action. Several metal impact sound

effects were located and trimmed to fit melee combat. For every given combat impact, a random float

is generated to adjust the pitch of the impact sound effect. From there, the sound’s audio is updated

to play from the exact location of the melee attack animation. Together, these add variance to the

melee actions so that each punch and kick sounds unique. When an enemy robot is defeated in

combat, they explode into many different pieces. A combination of a minor explosion sound effect

and a sound effect of metal debris hitting the ground were used to accompany this animation.

Through all these sound effects, the battles are able to come to life.

Victory Screen

When a player is able to successfully overcome enemies during a battle, they are greeted with a

victory screen that displays what they earned, such as the one shown in Figure 14. The border of the

victory screen is made up of small gears[9] to accompany the robotic theme of the game. The screen

25

flies up and fades in from the bottom of the screen and briefly displays the funds and xp earned from

the battle. The screen then empties the funds and xp earned into the total funds and LVL progress

respectively through a fluid tallying animation on the numbers. Once the math is complete, the

screen fades and shrinks into the player’s character. The screen and corresponding animations were

built from scratch within a widget blueprint using Unreal Engine 4.

Figure 14: Victory screen adding up the rewards given to the player

Preliminary Level Design

Initial Environment Test Level

Before moving onto tackling making the large open level that is used in the playable version of the

project, built an environment test level to familiarize ourselves with level building within Unreal

Engine 4. The prototype level, shown in Figure 15, used an extensive amount of foliage to test what

the performance would be with a much larger map. The foliage density within the prototype level is

unnecessarily high but this did prove to be a great stress test for our hardware. From this prototype,

26

we were able to gain knowledge of how Unreal Engine 4 handles landscapes, foliage, and asset

placement in a game level. From there, it was a quick transition to begin work on the large level that

is present in the playable version of the project.

Figure 15: Environment Test level opened in the editor on the right along with the foliage tool

opened on the left

Three Layer Texture for Landscapes

Most modern games make use of multiple ground textures throughout their game worlds. Whether

the textures indicate a path or simply add some visual variety, we decided that it would be nice for

this project to also make use of multiple ground textures. The textures we ended up using are that of

grass, dirt, and rock. All three of these textures were modified from the default textures within

Unreal Engine 4 to give a more detailed and metallic look. The textures can be seen within the

environment test level that is shown in Figure 15.

27

To have multiple textures applied to a single landscape within Unreal Engine 4, a new texture must

be created with multiple unique layers. This texture must then be set as the default texture for the

current landscape. Once that is set, the data for each layer must be built within a given game level in

order to be used. Thankfully for us, there was a rather helpful tutorial that guided us through these

steps.[10]

Environmental Asset Design Choices

As discussed in the Locating Assets section, it was our intent to use low polygon static meshes as

assets. By using low polygon static meshes, the rocks, trees, grass, etc. begin to look robotic and

match the robots that inhabit the world. On the other side, being able to add living environments

made the project much more pleasing aesthetically and made it truly feel like a quality game world.

Lighting

Through the use of a skylight and a directional light to mimic the sun’s natural lighting, we were able

to achieve a realistic looking lighting system. As can be seen in the environment test level shown in

Figure 15, the world is brightly lit with shadows popping up in natural locations. Thanks to the use

of the skylight, there is appropriate ambient lighting within the shadows. Without the skylight, the

shadows would be completely black and would engulf anything that they covered. Although the

lighting seems fairly simple, it still gave us a lot of trouble.

Unreal Engine 4 handles lighting exceptionally and makes tweaking it for the best results completely

inviting. This comes with a major downside, however. The static meshes that we chose to use for our

environments all cast very realistic shadows due to the power of Unreal Engine 4 and the quality of

the static meshes. When it came time to render the scene for our final build, we had hundreds of

thousands of static meshes placed throughout the level. This caused an incredibly slow render time.

The render time for the final level clocked in at just under five hours. With a render time like that, we

decided to only render the lighting before we planned on demoing the project to others. Rendering

only has to occur once so long as no changes are made to the static meshes within the environment

that would affect lighting or shadows. This ended up being a valuable lesson for us as we now know

to pay extra attention to the total number of static meshes that are being affected by light within a

level when using Unreal Engine 4.

28

Final Level Design

Opening Tutorial Area

The level present in the final build of the project spawns the player onto a linear path that the player

must follow. As seen in Figure 16, this path was designed with the purpose of forcing the player to

get used to the overworld controls before they head out and roam the level. The linear nature of this

area allowed for the placement of several NPCs that would spark interest from the player. From a

talking NPC placed in a fork of the road to initial enemies blocking paths so that the player must

enter combat, the character placement was designed so that each player flows through the level in

an organic manner and is never stuck trying to figure out where anyone is located. Once the player

has left the opening tutorial area, they have already encountered the majority of the essential game

mechanics, allowing them to roam the open world with an understanding of how the game functions.

Figure 16: Opening tutorial area that takes the player along a linear path

Quest Giver Aesthetic

The quest giver is an essential character within an RPG game. Knowing this, it made sense to make

the quest giver impossible to miss. To do this, we decided to give the guest giver a rather bright color

and surrounded the character with flowers. Figure 17 shows an up close view of the design for one

of the locations for the quest giver. When the player initially walks by this location, they can’t help

29

but notice the stark visual contrast of the quest giver from everything else on the map. This

motivates the player to check the quest giver character out which in turn sparks the first quest.

Figure 17: Quest Giver standing amongst flowers and unique lighting in the tutorial area

With the knowledge of how the initial quest giver looks, the player will know that whenever they see

a grouping of flowers or unique lighting, they are about to stumble upon another quest giver. Using

this concept, the quest giver grove was created in the open world section as a new location for

players to discover and acquire more quests. Figure 18 gives an aerial look at the quest giver grove

and the contrasted visuals that it contains. Instead of bright lighting and grass, the player is

confronted with a blue and purple glow amongst fields of blue flowers. This area is completely in the

shade through the use of a cloud placed above that allowed to create a mood that is separate from

any other location on the map. With the cloud in place, several point lights and lanterns were

scattered about to ensure that the player could see the flowers in the grove and find their way to the

quest givers within.

30

Figure 18: Quest Giver Grove entrance and overview

Foliage Density and Placement

Foliage can be found throughout the entire project level. While the render time for foliage is quite

expensive, we decided that it was imperative to have a world that felt alive and inviting. Whether it

be the brown grass of the tutorial area or the blue flowers of the quest giver grove, it was very

important for us to have a level that had far more than simple landscape textures. What began as a

simple goal of adding some grass and trees for color ended up with a fleshed out level containing

more than 200,000 instances of foliage alone. We took the time to ensure that everything in the

world made sense and looked correct in terms of foliage. The bridge in the tutorial area has sprouts

of cattails growing around and underneath it and the shadowy and dark locations in the level contain

groupings of mushrooms. By adding some attention to detail, a simple level was able to come alive

and feel believable.

Backdrop Design and Reasoning

The backdrop of this game might not seem to be important or even necessary since the player sees

the world from an isometric type viewpoint while in the overworld. The reasoning that the backdrop

exists and has some detail, however, is that the player will not always be in this viewpoint. Since

31

battles are seen from the side and can occur at any location depending on how the player

approaches an enemy, it is completely unknown to what extent of the world the player might see. To

account for this, we decided to place stone walls and far off mountain ranges that fill in the backdrop

from any angle so that the player is never staring off into empty space. Figure 19 shows a

particularly cloudy mountain range that is placed far in the background. When testing, it was found

that all of the backdrops can indeed be seen through the various enemy placements within the open

area of the level. Thankfully, due to the lighting systems available in Unreal Engine 4, we were able

to render the mountains at a lower quality in an effort to increase system optimization. Since the

mountain ranges are so far away, the player is completely unable to distinguish a difference in the

lighting quality.

Figure 19: Level backdrop that can be seen by the player while in combat

Treasure Chests

Seeing that some areas of the map are quite dark and that the player has a flashlight available to

them, it made sense to add rewards within the world for players that fully explore the map. This was

accomplished through the placement of three separate treasure chests that all hold an item for the

player to pick up. Offering rewards for finding hidden items in an RPG game is fairly common and we

felt that using a combination of the level design and flashlight game mechanic would make this

32

typical task feel more interactive and enjoyable. The image seen in Figure 20 shows a discovered

treasure chest that is placed among the outskirts of the tutorial area. It is not immediately apparent

that the player can reach this area, so adding a reward for those that do was appropriate.

Figure 20: Hidden treasure chest illuminated by player

Static Mesh Based Gravel Road

Ground textures in videogames are excellent for adding some visual variety without costing too

much in terms of game performance. Unfortunately, they end up getting to be repetitive over large

maps as the player can grow familiar with the seam patterns as the textures repeat. We decided to

change this up was by creating a new path material through the use of rock static meshes. By taking

various rock static meshes and shrinking them down to pebble sizes, we were able to place these

pebbles as foliage and paint paths like the one shown in Figure 21. While this technique opened up a

large range of possibilities to create new looking paths on the ground, it did so at the cost of

optimization. One short path contained over 100,000 individual static meshes which made the

render time unbearable. To counter this, the lighting settings for the pebble static meshes were

tweaked so that the pebbles were largely ignored when rendering the lighting for the level. By

simply glossing over the pebbles similarly to how lighting is calculated for ground textures, the

33

render times were back to normal and the pebble path became just as usable as the other three

textures that the landscape was comprised of.

Figure 21: Path created through the use of thousands of pebble static meshes

Open Battle Area and Level Boundaries

One of the most genre defining aspects of an RPG game is the the fact that the player is free to

explore everything at their own pace. In an RPG game, if a player wants to rush through the game to

finish it, they are free to do so. On the same note, players can choose to explore every detail of the

world and are often times rewarded for it through various means such as the treasure chests in our

level. In order to capture this essence of what makes the RPG genre unique, we decided to design an

open battle area that is accessible to the player as soon as they leave the tutorial area. The aerial

view of the open battle area shown in Figure 22 captures how this project sets out to tackle the RPG

nature of the project. The player can freely move on the path that goes around the battle area and be

completely undisturbed. Likewise, a player can leave the path that offers safety and jump right into

several battles with the enemies that litter the soft hills of the battle area. Seeing that the battles take

34

place right where they are initiated, the player is given the freedom to begin any battle within the

open area from whatever angle they please. This allows the player to see differing backdrops should

they choose to enter battles from varying angles.

Figure 22: Open battle area that player gains access to once they finish the tutorial area

If a player should choose to remain among the outskirt of the battle area, they will likely find

themselves amongst the trees and rocks that make up the level boundaries. The initial design of this

level simply used the mountains to restrict the player from leaving the level. It was discovered

during playtesting, however, that in some spots the player was able to phase through the mountains

due to limited collision detection built into the static meshes. This was a glaring issue that needed to

be addressed so the remedy that was devised was to border the inside of the entire level with trees

and large rocks that had much better collision detection. Through the use of these rocks and trees,

the player is greeted with a pleasant sight that looks to be placed for aesthetic purposes. Instead of

adding invisible walls that plague many open world games, it seemed fitting to use this solution that

fixed a major bug with a design that would raise no attention or complaints.

35

Conclusion

With this project, we have created a solid foundation for a classic-style role-playing videogame with

modern touches. It features all the major components, including a combat system, dialogue and

quest system, item collection, level progression, animations, sound effects, music, production-quality

lighting, in-depth level design, and a modernized control scheme. The Blueprint scripting language

used to develop this game makes it very simple to expand upon any of the features currently

implemented. If given a larger development team and a full development this cycle, the vertical slice

displayed with this project would be able to evolve into a fully realized product. The game mechanics

and art direction that have been fleshed out with this project offers an excellent path towards a

quality game. The classic RPG videogame might have been forgotten and left in the past, but this

project shows that the genre could make a return with the current tools available to game

developers.

36

References

[1] Adrian M. "Crash Test Robot Dummy." Unreal Engine Marketplace. Epic Games, 13 July 2015.

Web. <https://www.unrealengine.com/marketplace/crash-test-robot-dummy>.

[2] Adrian M. "Enforcer Rig." Unreal Engine Marketplace. Epic Games, 05 Apr. 2016. Web.

<https://www.unrealengine.com/marketplace/crash-test-robot-dummy>.

[3] Whitman and Olbert. "Olbert's Low Poly Forest." Unreal Engine Marketplace. Epic Games, 30 Aug.

2016. Web. <https://www.unrealengine.com/marketplace/olbert-s-low-poly-forest>.

[4] Synty Studios. "POLYGON Adventure Pack." Unreal Engine Marketplace. Epic Games, 07 Feb.

2017. Web. <https://www.unrealengine.com/marketplace/polygon-adventure-pack>.

[5] Various. “Game Audio GDC Bundle.” Sonniss. Sonniss, 2017. Wev.

<http://www.sonniss.com/gameaudiogdc2017/>.

[6] Oneirophile. “Insects in the Field.” Freesound.org. Freesound, 01 Aug. 2012. Web.

<https://www.freesound.org/people/Oneirophile/sounds/162166/>.

[7] Matthew Pablo. “Wasteland Showdown [Battle Music].” OpenGameArt.org. OpenGameArt, 03

Nov. 2012. Web. <https://opengameart.org/content/wasteland-showdown-battle-music>.

[8] Wes Bunn. "Switching between multiple cameras within the Character." UE4 Answer Hub. Epic

Games, 17 May 2014. Web.

<https://answers.unrealengine.com/questions/45130/switching-between-multiple-characters-

within-the-c.html>.

[9] n4. “Gears and Wrench.” OpenGameArt.org. OpenGameArt, 22 Jan. 2012. Web.

<https://opengameart.org/content/gears-and-wrench>.

[10] Thomas Haskell. “Texturing a Landscape in UE4 (Unreal Engine 4).” YouTube.com. YouTube, 26

Mar. 2014. Web. <https://www.youtube.com/watch?v=tsXVP0fykBM&t=332s>.

[11] Yushan Yang. “The Woman Warrior.” Unity 3D Asset Store. Unity, 24 Apr. 2015. Web.

<https://www.assetstore.unity3d.com/en/#!/content/33230>.

[12] Quad-Arrow. “HQ Fighting Animation FREE.” Unity 3D Asset Store. Unity, 3 Apr. 2015. Web.

<https://www.assetstore.unity3d.com/en/#!/content/33478>.

[13] Titanic Games. “Unreal Engine 4 - Interaction System Series.” YouTube.com. YouTube, 25 Sept.

2016. Web. <https://www.youtube.com/watch?v=5a_GpjWxEog>.

https://www.unrealengine.com/marketplace/crash-test-robot-dummy
https://answers.unrealengine.com/questions/45130/switching-between-multiple-characters-within-the-c.html
https://www.unrealengine.com/marketplace/crash-test-robot-dummy
https://www.assetstore.unity3d.com/en/#!/content/33478
https://opengameart.org/content/gears-and-wrench
https://www.youtube.com/watch?v=tsXVP0fykBM&t=332s
https://www.unrealengine.com/marketplace/olbert-s-low-poly-forest
https://www.assetstore.unity3d.com/en/#!/content/33230
http://www.sonniss.com/gameaudiogdc2017/
https://www.unrealengine.com/marketplace/polygon-adventure-pack
https://opengameart.org/content/wasteland-showdown-battle-music
https://www.freesound.org/people/Oneirophile/sounds/162166/
https://www.youtube.com/watch?v=5a_GpjWxEog
https://answers.unrealengine.com/questions/45130/switching-between-multiple-characters-within-the-c.html

37

[14] Rodrigo Villani. “UE4 Tutorial 101 - Occlusion Outlines.” YouTube.com. YouTube, 24 Feb. 2017.

Web. <https://www.youtube.com/watch?v=rL7VUeZzRyQ>.

https://www.youtube.com/watch?v=rL7VUeZzRyQ

