Greenbin

By

Jessica Chao

Senior Project

Computer Engineering Department
California Polytechnic State University
San Luis Obispo

June 2017

bronigeq pA p1dig|Cowwou2@CY|bOIA

AISM WELIqYrS’ CIfSMIoN guq 2119l bgbsi2 g1 TOG S K pLon@ps o Aon pA 4w‘T\;‘COBE

https://core.ac.uk/display/84280151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table Of Contents

Section

Abstract
Acknowledgements

1.

SAINARE Rl

7.

Introduction

Customer Needs, Requirements, and Specifications
Functional Decomposition

Project Planning

Project Design

Project Testing

Conclusion and Future Work

References

Appendix

Cawp

Senior Project Analysis
Hardware Decomposition
Software Flowchart

Source Code

Guil java
CheckoutWindow.java
DatabaseFunctions.java
HistoryWindow.java
Parse.java
ReturnWindow.java
SearchWindow.java
SystemFunctions.java
mySQL Database Create Table Statements

S ER e Al o

Page

10
13
19
20
26
29

30

32
35
36
37
37
41
46
51
63
68
71
79
82

List of Tables and Figures

Tables

2.1 Greenbin Requirements and Specifications

2.2 Greenbin Deliverables

3.1 Greenbin Level 0 Functionality

6.1 Testing Specifications and Acceptance Criteria
6.2 Verification Test Results

Figures

3.1 Level 0 Functional Decomposition

3.2 Level 1 Functional Decomposition

3.3 Level 2 Functional Decomposition

3.4 Software Flowchart

3.5 Hardware Decomposition

3.6 Database Relational Diagram

4.1 Plan for Project Implementation Winter 2017
4.2 Plan for Project Implementation Spring 2017
5.1 Greenbin System

5.2 Raspberry Pi2, HAT board, and Li-ion Battery
5.3 ThingMagic M6E Board Underneath Divider
5.4 Host Computer IP Window

5.5 Greenbin User Interface

5.6 Container Checkout Form

5.7 Container Checkout Search

5.8 Query Search REsults

11
12
13
27
28

13
14
15
16
17
18
19
19
20
21
22
23
23
24
24
25

Abstract

Greenbin is an iteration of a larger project to implement a zero-waste container tracking system
for use in Cal Poly’s dining facilities. The system utilizes a database system as well as passive
RFID technologies to track the checking-in and checking-out of plastic reusable food containers.
These plastic food containers can be checked out by campus dining patrons, and returned
autonomously to collection bins that contain these scanners, allowing the containers to be
recollected, re-accounted for, and reused.

Acknowledgements

This project could not have happened without the support of my advisors and contributors. I
would like to extend my thanks towards those who have helped me along the way. First, I would
like to thank Dr. Tali Freed for allowing me an opportunity to work with RFID technology and
applying it to my major. You have guided me in right direction for this project and provided so
many resources for me to use. I would also like to thank Dr. Bridget Benson for being my senior
project advisor, and keeping me on task. I would also like to thank my old senior capstone team,
Zachary Ho and Steven Johnson, for working with me on this project in the beginning. I could
not have done it without all of you.

Chapter I: Introduction

Currently, Cal Poly’s on-campus dining facilities provide disposable paper and styrofoam
products for food-servage and take-home food containers. These containers are not reusable, and
make up a percentage of Cal Poly’s consumer waste stream which ends up in landfill. This
project is a part of Cal Poly’s 2013 CSU policy to become a zero waste campus.

A majority of the Cal Poly Dining system uses unsustainable disposable containers. Cal Poly’s
current container system consists of single-use containers. These containers are often made out
of styrofoam or paper, with around 2,000 of these containers being used and throw away every
single day. These containers represent a large contribution to the consumer waste stream, the
majority of which ends up in landfill. The idea of implementing a reusable container system
started with the announcement of the Cal Poly Zero Waste Program. In early 2015, Campus
Facilities, University Housing, ASI, Campus Dining, the Green Campus Program, and the Zero
Waste Club formed the Zero Waste Collaborative. This collaborative was formed to try and
divert 80% of the landfill waste by 2020. Part of the solution is to implement the RFID reusable
container system. Cal Poly needs a more sustainable food container system for its dining
facilities if the university hopes to reach their goal of near-zero landfill waste by 2020.

The goal of this project was to create a mySQL database which utilizes RFID technology to
keep inventory of the plastic containers for a reusable container system. In addition, the project
goal consisted of networking the system to this database to update the inventory in real-time
when containers are returned. The target users for this project are Cal Poly students who eat at
on-campus dining facilities. This design of the system utilizes a Raspberry Pi with a ThingMagic
M6E embedded reader board that reads in the tagged containers. As a result of six months of
development, the system has the functions to check in and check out container. The system can
send and query information to and from the database wirelessly via a cellular network. Multiple
tags can be read at the same time.

Background Information

Radio Frequency Identification

RFID Tags

Radio-Frequency Identification (RFID) is the use of radio waves to read and capture
information stored on a tag attached to an object. A tag can be read from up to several
feet away and does not need to be within direct line-of-sight of the reader to be tracked.
[16] Each tag consists of a GTIN and a Serial Number.

RFID Systems

RFID systems consist of a tag or label and a reader. RFID tags or labels are embedded
with a transmitter and a receiver. The RFID component on the tags have two parts: a
microchip that stores and processes information, and an antenna to receive and transmit a
signal. [16]

Proprietary Software

The implemented system consists of proprietary reader software made by a developer by
the name of Kyle Dodson. This system allows the reader to output to a .ie3 file that
consists of the read tag data. This software was used to create the system’s tag reading
software via the press of a button.

Literature Review - Existing Implementations

University of Vermont Ecoware

System using cow tags to check out containers. Containers must be hand returned to the
restaurant, as the system does not include a collection bin system. To participate in the
program, students purchase their first container for 7.50. When students return a dirty
container, they are given a cow tag to exchange for a new clean container. [1]

Eco2go System

This system was developed by the University of Texas. Students buy tokens that are
exchanged for containers. Tokens are returned upon container return, so students always
have either a container or token in their possession. Students initially join by signing up
with $5 at an “Ec02Go” station. For initiative, participators also get 5% discounts on their
meals every time they use an Eco2Go container. [2]

Food Zoo Containers

University of Montana system where a container can be exchanged for a clean one.The
Food Zoo system has an initial fee of $5, which gives you a use of a container. Once
used, dirty containers can be dropped off next to cash registers. Upon drop off, students
may ask for a clean container. As long as there the student has possession of a clean
container, they are allowed a clean container for free each time. One container must
always be checked out to stay in the program. [3]

0zzi Container System
Private purchased system. This system uses a barcode to scan in containers. Students
receive a token upon return of a container. Ozzi dispenses tokens every time a container

is returned, and students exchange the token at the food service line for a clean container.

[4]

Boston University To-Go Reusable Containers and Mugs

Allows a $0.25 discount of the meal or drink every time you use a reusable container or
mug. In addition, using the containers allows access to the “Green Line”, which is a
express lane to pay for your meal, in comparison to waiting in line. The containers are
purchased anywhere on campus for $4. Containers are washed upon return and can be
exchanged for a new one by a cashier. [§]

University of Houston To-go Program

An initial deposit of $5 is paid for each customer’s first reuseable container. After use,
they can drop them off at any dining facility in exchange for a new container or key tag.
The key tag can be traded in to get a new container. [9]

HUDS Reusable Container Program

Students get a token by showing their ID. From there, they can reuseable containers to
pack their food. The containers are checked out at the cashier in exchange for a token

while you pay for your food. After use, containers are returned for another token. [10]

Chews to Reuse
Students pay for their initial reuseable container with $5 or 5 meal points. After use, they
can return their rinsed containers in exchange for a replacement. [11]

RecycleMania

RecycleMania is a friendly competition and benchmarking tool for college and university
recycling programs to promote waste reduction activities to their campus communities.
Over an 8-week period each spring, colleges across the United States and Canada report
the amount of recycling and trash collected each week and are in turn ranked in various
categories based on who recycles the most on a per capita basis, as well as which schools
have the best recycling rate as a percentage of total waste and which schools generate the
least amount of combined trash and recycling. With each week’s updated ranking,
participating schools follow their performance against other colleges and use the results
to rally their campus to reduce and recycle more. [12]

Literature Review - Relevant Studies
Modeling the Location of the Return Bins for a Reusable Container Program at Cal
Poly

Cal Poly student project which studied the optimal location selection for the container
collection bins after the reusable container system design is finalized. [5]

Zero Waste Campus Dining

Cal Poly students comparatively tested two methods of tagging reusable containers for
tracking: a barcode system and RFID tags. The RFID tags were found to be far superior
in readability consistency, and were tested before and after the container washing
process. A ten-year cost analysis calculated savings of approximately $50,000 if a
reusable container system were adopted to replace the current disposable container
system. [6]

Reason-to-Reuse A Sustainable To-go Food Storage Container System for Restaurants
Study shows that if there is 100% participation among restaurants within San Luis
Obispo to use reusable containers, over 100,000 disposable food containers would be
eliminated from entering the environment annually. [7]

Economic and Environmental Assessment of Reusable Plastic Containers

Studies suggest that using reusable plastic containers for food packaging has a positive
environmental impact but can increase the cost of packaging. The adoption of a RPC
system would result in a global cost increase of about 69,300€ a year in a given sample
for farmers adopting this system for their produce, translating to a cost increase of
0.058€/kg for the delivered goods. However, this is an initial cost or for replacement
costs only. [13]

Beyond Disposables: Eco-Clamshell Reusable To-go Program

Eckard College in Saint Petersburg, Florida created a reusable container called the
“Eco-Clamshell”, which had heat resistance of up to 180 degrees Fahrenheit, stackability,
durability, a hinged lid to minimize loss of parts, and BPA free plastic. The frequency of
the use of these “eco-clamshells” were averaging about 2-5 days a week. Students were
willing to use these containers mainly to help the environment. In addition, a fifth of the
respondents replying for reasons of usage was because of the design of the container. The
greenhouse gases emitted for disposing 360 medium foam containers via landfill was
about 4.61 kgs of greenhouse gases versus one Eco-clamshell only releasing 0.32 kg. [14]

Optimal Pricing and Production Decisions in Utilizing Reusable Containers

There are different costs that need to be taken accounted for when implementing reusable
container systems. The difference between the unit cost of production for reusable
containers and the unit cost of reusing returned containers are different from each other.
In this study, it is shown that the return of containers are correlated with the demand of

them. If demand is low, returns will be low. In addition, if there are more returns, there
will be less spending on new containers. [15]

Chapter II: Customer Needs, Requirements, and Specifications

Customer Needs Assessment

Greenbin’s customer base primarily focuses on Cal Poly SLO’s population. This population
includes students, faculty, and guests who eat at on-campus dining facilities. Cal Poly’s Chief of
Sustainability Eric Veium and Cal Poly’s Zero Waste Recycling club wanted a system that
reduces the campus waste. A product that tracks reusable containers, RFID inventory, and
student accounts was introduced by Dr. Tali Freed.

Requirements, and Specifications

Greenbin’s requirements and specifications were given by Dr. Tali Freed, who works closely
with Eric Veium on helping lower campus output of waste. Greenbin’s goal is to reduce the
contribution of paper/plastic food containers to Cal Poly’s landfill waste. This is to be achieved
by building a database system that keeps inventory for RFID tagged containers, connect
container collection bins to the database system via cellular network, and having an inventory
system that should record identifying user information for checked out containers. Additionally,
the product should have a live database system that can be easily adjusted to administrative
needs. The database would be a mySQL-database that can keep track of ~7,000 reusable
containers. Having software to interface the RFID information with the database system was
necessary as well. The accumulated charge of checked out containers should be shown per each
account in the database as well. A list of marketing requirements and engineering specifications
are shown below in Table 2.1.

Table 2.1 Greenbin Requirements and Specifications

Spec. Parameter Requirement or Tolerance | Risk Compliance

10

Number

Description

Target with units

1 # of Containers | 7,000 containers Min AT,I
2 RFID Reader | 902MHz-928MHz | Min T, 1
Speed

3 Availability Campus-wide Min T,1
coverage (1,321
acres)

4 Robustness Data backed up Min T
every 5 minutes

5 Environmental | 0% - 5% expected Max Al
landfill waste

6 Maintenance Quarterly (10 week) | Min Al

7 Usability User friendly GUI Min AT, 1

8 Connectivity Cellular Wired T

Marketing Requirements
1. User Friendly

2. Durable

3. Secure

4. Environmentally Friendly

5. Fast

Risk Symbols: Low (L), Medium (M), High (H)

Compliance Symbols: Analysis (A), Test (T), Similarity to Existing Designs (S), Inspection (I)

Specified Project deliverables appear in Table 2.2.

Table 2.2 Greenbin Project Deliverables

Delivery Date

Deliverable Description

2/14/2017

CPE461 Senior Project Presentation

11

3/22/2017 Alpha Prototype Demo
5/8/2017 Beta Prototype Demo
5/8/2017 Draft of Final Report
6/2/2017 Senior Project Expo
6/13/2017 Final Project Demo
6/13/2017 Final Project Report

Chapter II1: Functional Decomposition

12

Level 0 Decomposition

Level 0 Functional Decomposition

Checkaaat AFID Tag Mum ——+

Heturn KFID Tag Mum

Student I num

RFID Container Tracking

IWIyaldL entry
Systom o '

lirme Stamp

Figure 3.1 Level Zero Functional Decomposition

Level zero shows a black box of the system. On checkout the RFID container tracking system

will receive a checkout RFID tag number, student ID number and timestamp. It will use the

specified wireless network to then send a mySQL entry to the database. Table 3.1 explains the

inputs and outputs within the diagram.

Table 3.1 Car Safe Level 0 Functionality

Module

Signal Description

Inputs

Checkout RFID Tag Number - The tag number on the reusable container that
is to be checked out.

Return RFID Tag Number - The tag number on the reusable container that is
to be checked back in

Student ID Number - The Student ID number to be associated with the tagged
container to be checked out

Time Stamp - the date and time at which the container was checked out.
Wireless network - The Cellular connection via mobile hotspot to the MySQL
database

Outputs

MySQL entry - the database entry to be sent to the database

Functionality

The Beta RFID Container Tracking System consists of cellularly networked
Raspberry Pi 2’s connected to embedded Mercury 6e ThingMagic passive
RFID readers. The Pi’s interpret data obtained from the readers (e.g. RFID
tag info read from tagged food containers) and sends it to a remote MySQL
database which holds records of checked out containers, as well as a history
of returned containers. The Beta’s key features are its checkout and return

13

functions which interact with the MySQL database. Upon checkout, the
student user’s information, a time/date-stamp, and the RFID tag number are
inserted into the database’s checkout table. Upon return, the associated row in
the checkout table with be removed and copied over to the history table. The
behavior model that best fits this system is a data flow diagram. The flow of
the system is checkout, update database, return, update database.

Level 1 Decomposition

Level 1 Functional Decomposition

My=0L database

Host Computer

Check ing Return

Check out System Colkclion Rin

Figure 3.2 Level 1 Functional Decomposition
The level one system shows the main components of the system. It includes a host computer that
will be running the collection container database 24/7. There is a check out system that will be
used on campus dining facilities. Finally, there will be a return system through the a collection
bin. The collection bin design will be designed by a Mechanical engineering student in the
future.

14

Figure 3.3 Level 2 Functional Decomposition
Level two shows the entire system. Like in level one the host computer will be running the
collection container database 24/7. The checkout system consists of a raspberry pi 2 and an
embedded reader that identifies the RFID tag of the container checked out. The raspberry pi will
then be able to send that information to the database on the host computer. The check in/return
system will consist of a collection bin that will be designed by Kyle, a Cal Poly Mechanical
Engineer. Inside the collection bin then group is responsible for the checkout process through
the host computer database. It will use a raspberry pi 2 and embedded reader to identify the
collection container returned and send the data to the database for removal. The process will be
very similar to the checkout but a delete statement instead of an insert.

Level 3 Functional Decomposition

Software Flowchart

The flow of the software is shown in the flowchart below. The system initially reads in tags. The
software then processes the output tag text file and the system stores it in a list. The system then
waits for user input. The user can either check out a container, check in a container, or look up
information on the database.

15

Start

—

Read in tags

l

Output Tag
Text File

. Store Tags Read in
Launch Greenbin Linked List

Wait For User Input

Get User Create Insert Send To mySQL
Is Checkout Button

Pressad? Input —> Statement Database
Is Return Get User Create Delete

Button Pressed? Input > Statement Send To mySQL

Database
s Query Button Create Select Send to mySQL

Pressed? GetUsar Inpat Statement Database

Figure 3.4 Software Flowchart
System Decomposition

The system decomposition is shown in Figure 3.5. The system takes in container RFID tags via
a ThingMagic M6e reader. The M6E reader is connected to a Samsys Antennae that picks up
tags. The raspberry pi is connected to a reader and a wifi dongle, that connects to a MySQL
Database. Similar components are used in the checkout module, but the checkout module takes
in student information as well.

16

CONTAINER
wi RFID TA

L

G-

RN RMCADCR

MYSOL DATABASE

A
RFID tag info

I T i

t_

€
checkout info

COLLECTION BIN (RETURHN)

][

MOMLE HOTSFODT |

'
L

USER INTERFACE
OH MORITOR

HFI0 READER FFN AHTEsS

]
s <

RASPELRRY Pl 2 Wi T DOHG L

| POLYID

T

- CONTAINER
['w/ RFIDTAG

CHECKOUT

GREENBIN SYSTEM BLOCK DIAGRAM |

Figure 3.5 Hardware decomposition

Database Relational Diagram

The database structure of Greenbin is a key component in keeping track of checkins and

checkouts. The database “greenbin” contains four tables: container, student, checkout, and

history. The table “container” has a primary key of serialnumber and gtin. The table “student”

has a primary key of polyid. The table “checkout” has foreign references to student and

container’s poly id, gtin and serial number. The table history directly references from checkout.

The database relational diagram is shown in Figure 3.6.

17

polyid firstname Lastname balanceowed

T cosis000 Zach Ho $0

gtin serlalnumber 008180049 Jessica Chao $5

0086021705 27 008180050 Steven Johnson $5

0086021705 889520128

0086021705 889520129 polyid gtin serialnumber checkout_date checkout_time
008180049 0086021705 883520128 2016-03-14 12:03:44

0086021705 889520130
ODE1800S0 DOBE021705 889520129 2016-03-14 12:04:11

polyid gtin
1 008180048 0086021705 8

3 0081800 -03- 12:04:11

Figure 3.6 Database Relational Diagram

Chapter 1V: Project Planning

The project plan for the Greenbin project shows organization and accountability of this project.
The Gantt charts that outlines the work distribution for this project is shown in the following
Gantt Charts below.

18

1073 10/8 10/13 10/18 10/23 10/28 1

2 1 /12 1z 11122 11127 1272 1217 12/12

Meet With Client and Identify Needs [N
Research on RFID
Identify Personas
Research on Databases

Research on Networks

Identify Use Cases

Obtain/Study Initial Implementation

Identify Needed Parts
Implement Alpha Prototype
Test Alpha Prototype
Edit/Adjust Alpha Prototype

Create Documentation

Develop Presentation
Milestone 2: Requirements _
Engineering Requirements]
Concept Generation]
Milestone 3: Design Report e ~“—“—7
s ——|

Functional Decomposition

Concept Evaluation | E——

Figure 4.1 Plan for Project Implementation Winter 2017

4/12 417 4/22 4/27 512 57 5/12 57 5122 5127 6/1 6/6 6/11

Error Handling I —
Requirements and Specifications
Data Backup
Final Project Report
Project Expo Preparation
Functional Decomposition
Testing
Output Queries

Varied IP Address

Beta Demo

Final Report Draft

Figure 4.2 Plan for Project Implementation Spring 2017

Chapter V: Project Design

Greenbin uses hardware and software. With a Raspberry Pi 2 running the system, the program
sends information about scanned RFID tags to a database. This information is transmitted via a

cellular network to a database server. The tag information is gathered via a ThingMagic passive

19

RFID tag reader with a samsys antennae. An underlying proprietary software outputs the read
tags to a textfile and software processes that data. An LED button is attached via a connector on
a hat board, which notifies the user when the tags have finished reading. They whole system is
powered by a Li-ion Battery. The monitor shows the user interface and a keyboard and mouse
can be used to take in user input.

Figure 5.1 Greenbin System

Hardware Design
Internal Components

20

Figure 5.2 Raspberry Pi 2, HAT board, and Li-ion battery
Raspberry Pi 2

The Raspberry Pi is the component that holds and drives the whole system. It holds the software
for the user interface and tag reading. Connected to it is a mouse, Anewish Wi-fi adaptor, and a
HAT board. The Raspberry Pi 2 was chosen as the computer that the system so that components
such as a keyboard, mouse and wifi capability can be interfaced to it. Due to its affordability, this
computer was chosen so that the software could be replicated and reproduced into many systems
to use on campus.

Power

Greenbin uses DC battery supplied by a Li-ion rechargeable battery pack. It powers the hat board
as well as the raspberry pi and LEDs. A recharging battery is not optimal, but a direct supply can
be used to power it. The advantage of using a recharging battery allows for portability.

HAT Board

The HAT board takes in the LED board connector and the ThingMagic M6E reader development
board. It interfaces the reader to the whole system, which allows text files filled with read tag
numbers to be stored into the Raspberry Pi 2.

ThingMagic M6E Development Reader Board

The ThingMagic M6E development kit was chosen as the reader so that the Mercury API can be
used, since it provides a programmatic interface for development with all ThingMagic fixed and
embedded reader products.

21

Figure 5.3 ThingMagic M6E Board Underneath Divider
Software Design

Greenbin’s software design is divided into three functions: check in, checkout, and information
search. The programming of the system was done in Eclipse IDE, which helped in previews of
the graphical user interface in the JAVA swing library. The code to communicate to the mySQL
database was written using the oracle java.sql.* library. The database was designed using
Oracle’s mySQL.

On power up, a window pops up where the user can input the IP of the host computer that is
holding the database server. Once the IP has been set, the system can communicate to the
database server, as long as the server is running, and a network connection has been established.
The window screen is shown in Figure 5.4.

| NON ENTER IP ADDRESS
HOST COMPUTER IP
IP Address .|

Figure 5.4 Host Computer [P Window

22

After the IP address of the host computer has been set, the software can now add, delete,
checkout, return, or search for containers. The Add and Delete functions take in the tags read
from the file and add or delete them from the database server. The Checkout and Return

functions update the container and history tables of the database respectively. The interface for
the user is shown below in Figure 5.5.

GREENBIN

Select Function

Add Container

Delete Container

Checkout Container

Return Container

Information Search

Figure 5.5 Greenbin User Interface

The container checkout form is shown below in Figure 5.6. This form takes in the customer’s
first name, last name, and poly ID, and constructs a mySQL insert statement that is sent to the

container table. An entry is added upon success and a popup window notifies you. On failure, an
error window pops up.

23

00 ® Checkout Window
CONTAINER CHECKOUT FORM

First Name

Last Name

PolyID #

Figure 5.6 Container Checkout Form

Finally, the container checkout search form is shown below in Figure 5.7. It takes in user input
that allows for containers to be searched up in the container table. Searching by student,

container, date, and time frame are options the user can use to search. Upon submitting the form,

a mySQL select statement is created and if anything is found, a pop up window of the search

results is shown in Figure 5.8.
K) search Window

CONTAINER CHECKOUT SEARCH

Search Student

PolyID # |
Search Container

RFID Tag Gtin#

RFID Tag Serial# |
Search By Date
Date(YYYY-MM-DD) I
Timeframe
Starf(YYYY-MM-DD) I
End(YYYY-MM-DD) I

Search for Student Search for Container

Figure 5.7 Container Checkout Search Form

24

potyid gun wer
OOBS07154 00BB225623724

® checkout teme return d.

68052 o A return
5984 20170507

_dat. tene
18:21:02 20170507

Figure 5.8 Query Search Results

The program flowchart is in appendix C. The complete code for the program is found in
appendix D.

Chapter VI: Testing

25

Testing

The testing of Greenbin involves on ensuring data integrity, network reliability, and user
friendliness. To isolate any problems of data transmission, direct comparisons between the user
interface’s output and the mySQL output of select statements were made. When data integrity is
breached, code was debugged to keep the data accurate and reflective of the database.

The transition of the system from a regular laptop to a Raspberry Pi was challenging initially.
The initial software given was proprietary and there was not much access to the code. The
Raspberry Pi initially ran with an alien reader. After switching to a different reader, the reader
presented some problems with getting tags into a text file. It was found that the reader only read
after 37 seconds of delay. This was found by incrementing the wait time until it was found that
37 seconds was needed to fully process a read command.

After the completion of the Greenbin design and build process, more tests were run to ensure
data integrity, network reliability, and user friendliness.

Table 6.1 Testing Specifications and Acceptance Criteria

Test Description Acceptance Criteria

Item Specification

26

Read tags through
embedded reader

Run software procedure to read
RFID tags, save tag info on

Reader does not read unless with 37 second
delay. Test was done in 1 second increments

1 Raspberry Pi locally between 30 seconds and 45 seconds.
Delete Information on [View MySQL Tables on Host |Correctly deletes information from server.
5 MySQL Seryer through Computer as information is Logs history if it is a deletion from checkout
Raspberry Pi modified through the Raspberry |{qp]e.
Pi
Insert Information on | View MySQL Tables on Host | Correctly inserts information from system to
3 MySQL Server through |Computer as information is read |server and can query from server side
Raspberry Pi through the Raspberry Pi
Check database if Query checkout table for Outputs correct queried information onto
4 returned container is returned container's tag (should |system just as the query statement on the
registered return nothing) and make sure |qepver.
history table is updated
Query containers by Query checkout table and verify |Outputs correct queried information onto
5 student id in checkout correct student id associated system just as the query statement on the
table with given rfid tag number server.
Query checkout and Check output table after query |Outputs correct queried information onto
6 checkout history system just as the query statement on the
information (sql tables) server.
by date
Establish secure Ping database host computer Couldn't connect to Cal Poly Wifi, but had
7 connection with cellular success with a phone hotspot
hotspot brick
Establish error handling [Enter incorrect inputs Handles errors of incorrect input by
8 for incorrect inputs outputting a warning
Establish freedom of Enter IP Address from remote [P address input from raspberry pi can be
9 changing host location, away from host accessed from various computers other than
computers. original host computer
Keep data integrity Make sure that when a force File full of statements correctly outputs every
10 between database and |quit happens, the most recent time data is inputted.
system for backups activity has been backed up to a
file
The system is user Make sure that the system is User knows how to use the system with
11 friendly. easy to use by a non technical minimal directions.

user

27

Table 6.2 Verification Test Results

Item
No.

SAMPLES
TESTED

TIMING

TEST RESULTS

Qty |Type

Start date

Finish date

Qty

Pass

Result

Qty
Fail

NOTES

75 Hardware

3/2/17

3/9/2017

Success |40

35

Reader does not read unless
with 37 second delay. Test
was done in 1 second
increments between 30
seconds and 45 seconds.

50+ [Software

2/23/17

3/9/2017

Success 50+

Correctly deletes information
from server. Logs history if it
is a deletion from checkout
table.

50+ [Software

2/23/17

3/9/2017

Success 50+

Correctly inserts information
from system to server and can
query from server side

50+ [Software

2/27/201
7

3/9/2017

Success 50+

Outputs correct queried
information onto system just
as the query statement on the
server.

15 Software

2/27/201
7

3/9/2017

Success 15

Outputs correct queried
information onto system just
as the query statement on the
server.

15 Software

2/27/201
7

3/9/2017

Success 15

Outputs correct queried
information onto system just
as the query statement on the
server.

10 Hardware

2/23/201
7

2/23/2017

Success |-
*SEE
NOTES

Couldn't connect to Cal Poly
Wifi, but had success with a
phone hotspot.
Approximately 5 hours of
running time connected and
executed

10 Software

4/23/17

5/5/17

Success |20

Handles errors of incorrect
input output

10 Network

4/25/17

5/5/17

Success 10

IP address input from
raspberry pi can be accessed
from various computers other
than original host computer

10

10 Data
Integrity

4/28/17

5/28/17

Success 10

All files correctly output the
data that needs to be there
when a crash happens.

28

11 5 User 5/1/17 6/6/17 Success |5 0 All users seem to have no
Friendly problem with the UI. there
was no confusion.

Chapter VII: Conclusion and Future Work
As of now, Greenbin works well as a first iteration that has the basic system functionality of

what is meant to be eventually implemented into Campus Dining. Greenbin allows the tracking
of RFID tagged reusable containers as well as actively backs up data in case of network failures
and information searching. However, improvements must be made to consider it as usable by Cal
Poly’s dining system. While the device is fully functional, it is necessary to polish the system as
well as test with the actual PolyCard database instead of mock data.

To achieve device practicality, the device must work with a collection bin that allows for no
stray containers to be scanned. A smart collection bin that locks the return function when
network failures happen is necessary to work well with this system. Additionally, a faster
reading software must be implemented in order to ensure that long lines during meal times are
not delayed longer than needed from RFID tags needing to be read.

29

References

[1] University of Vermont’s Eco-Ware Reuseable Takeout Container Program, fesmag.com,
2012. [Online]. [Accessed: 30-Oct-2016].

[2] Eco2Go, utexas.edu, 2016. [Online]. [Accessed: 30-Oct-2016].

[3] Food Zoo Reusable To-Go Container Program, umt.edu, 2016. [Online]. [Accessed:
30-Oct-2016].

[4] OZZI, agreenozzi.com, 2016. [Online]. [Accessed: 30-Oct-2016]
[5] Terry and Williams. Green Bin Final Presentation. [Powerpoint slides].

[6] Caudillo, Dahel, Ghazalian. “Zero Waste Campus Dining”. Digitalcommons.calpoly.edu.
Cal Poly San Luis Obispo, June 2016. [Accessed 30 Oct. 2016].

[7] LaBuda, Ryan Christopher. "REASON-TO-REUSE: A SUSTAINABLE TO-GO FOOD
STORAGE CONTAINER SYSTEM FOR RESTAURANTS." Digitalcommons.calpoly.edu.
Cal Poly San Luis Obispo, 4 June 2013. [Accessed: 30 Oct. 2016].

[8] Carillo, Maria. “Improved Reusable To-go Program Helps Reduce University’s Carbon
Footprint”. Uh.edu. University of Houston, August 2014. [Accessed 1 Dec 2016]. Available:
http://www.uh.edu/af-auxiliary-services/news/articles/2014/august/08202014-improved-reusable

-to-go.php

[9] Reusable To- go program, uh.edu, 2016. [Online]. Available:

http://www.uh.edu/af-auxiliary-services/news/articles/2014/august/08202014-improved-reusable
-to-go.php

[10] Reusable Container Program, green.harvard.edu, 2016. [Online]. Available:
https://green.harvard.edu/topics/waste/reuse

[11] Chews to Reuse, caldining.berkeley.edu, 2016. [Online]. Available:
http://caldining.berkeley.edu/sustainability/chews-reuse

[12] RecyleMania, recyclemaniacs.org, 2016. [Online] Available:
http://recyclemaniacs.org/about

[13] Accorsi, Cascini, Cholette, Manzini, Mora. “Economic and Environmental Assessment of
Reusable Plastic Containers: A food catering supply chain case study”. Science Direct. June

30

http://www.uh.edu/af-auxiliary-services/news/articles/2014/august/08202014-improved-reusable-to-go.php
http://www.uh.edu/af-auxiliary-services/news/articles/2014/august/08202014-improved-reusable-to-go.php
http://www.uh.edu/af-auxiliary-services/news/articles/2014/august/08202014-improved-reusable-to-go.php
https://green.harvard.edu/topics/waste/reuse
http://recyclemaniacs.org/about
http://caldining.berkeley.edu/sustainability/chews-reuse
http://www.uh.edu/af-auxiliary-services/news/articles/2014/august/08202014-improved-reusable-to-go.php

2014. [Online]. Available:
http://www.sciencedirect.com.ezproxy.lib.calpoly.edu/science/article/pii/S0925527313005732

[14] Copeland, Ormsby. “ Beyond Disposables: Eco-Clamshell Reusable To-Go Program”.
Eckerd College. December, 2009. [Online]. Available:

https://erefdn.org/beyond-disposables-eco-clamshell-reusable-to-go-program/

[15] Dang, Shuo. “Optimal pricing and production decisions in utilizing reusable containers.”
Science Direct. August, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925527311003288

[16]"What Is RFID?" EPC-RFID. N.p., n.d. Web. 19 Mar. 2017. [Online]. Available:
http://www.epc-rfid.info/rfid

31

http://www.sciencedirect.com.ezproxy.lib.calpoly.edu/science/article/pii/S0925527313005732
https://erefdn.org/beyond-disposables-eco-clamshell-reusable-to-go-program/
http://www.sciencedirect.com/science/article/pii/S0925527311003288
http://www.epc-rfid.info/rfid

Appendix A: Senior Project Analysis

1. Summary of Functional Requirements
Greenbin is an iteration of a larger project to implement a zero-waste container tracking system

for use in Cal Poly’s dining facilities. The system utilizes a database system as well as passive
RFID technologies to track the checking-in and checking-out of plastic reusable food containers.
These plastic food containers can be checked out by campus dining patrons, and returned
autonomously to collection bins that contain these scanners, allowing the containers to be
recollected, re-accounted for, and reused.

2. Primary Constraints
The constraints for the Greenbin’s development includes economic and design constraints. It is

necessary for large amounts of funding to go into this project in order to fully implement it into
Cal Poly. Having a faster reader is expensive as well as working with multiple systems. The
project is intended to have approximately ten systems running at the same time, but the expense
was too high for a first iteration. In terms of development, it was hard to work with proprietary
software from past students that worked on this project. The source code of the software was
secure and unaccessable. The duration of the senior project course as well as materials for
replicating the system was a constriant.

3. Economic

This project is funded by Dr. Tali Freed of the PolyGAIT lab at Cal Poly San Luis Obispo. Tthe
original estimated cost is approximately $53,000. This estimate includes ten collection bins, ten
standard passive readers with raspberry pi2s, one host computer, and approximately seven
thousand RFID tagged containers. Additionally, wages for engineers that drive the system is
approximated to be $15,600 yearly and $500 for maintenance.

The projected project savings is $200,000 dollars for a CSU campus within a ten year period of
this system being adopted[5]. The adoption of this system onto Cal Poly’s campus as compared
to the current industry return bin system is not as cost efficient.

The economic difficulties of adopting this system includes the large upfront costs, information
security, and the uncertainty of having 100% participation from all vendors and students.

Additionally, students must pay a $5 deposit to initially gain a container to use.

For this current iteration, the list of components costs $789. The bill of materials is listed below,
which has been purchased by Dr. Tali Freed.

32

Raspberry Pi 2 - $35.00

Micro SD Card 32gb - $25.00

Mouse - $15.00

Keyboard - $15.00

ThingMagic M6E Development Kit - $699.00

Total: $789

Additional equipment include a host computer, and a monitor to output the user interface.

The estimated development time at the start of this project was 100 hours over the course of two
quarters. The actual development time was approximately 80 hours.

4. Environmental

The environmental impact of using this system would hopefully lead to near zero consumer
waste going to landfill. By adopting the collection bin system with one hundred percent
participation by all students and dining facilities on campus, it would eliminate 1,000 disposable
containers going to landfill daily.

5. Manufacturability

There are no issues or challenges associating with manufacturing this product, as all components
of the system are on the market and can be replaced with different models. As long as the SD
card can be replicated, there are no issues.

6. Sustainability

There is the issue of security concerns in maintaining the completed device. As the system
should access the PolyCard database, it is important to ensure that a secure system is
implemented. In the case of a blackout or network failure, devices must lock so that users will
not return containers and update the system as data integrity is threatened. The project impacts
the sustainable use of resources positively due to its use of reusable containers instead of
disposable containers. Disposable containers would go to landfill, and have a bigger carbon
footprint than the reusable containers in a ten year span[5].

Upgrades that would improve the design of the project would include the implementation of a
smart bin that locks the opening of returning containers, as well as using a more portable version
of the system that scans in containers. Challenges of upgrading the design may include
development time of creating the smart bin as well as cost constraints of finding a more portable
way to scan tags.

33

7. Ethical

The Greenbin project aims to follow ethical engineering practices by adhering through IEEE
standards throughout the development and design of this system. Additionally, Greenbin aims to
ethically enforce the use of the system through secure means. There is risk of security breaches
in the current iteration, so the system is currently unusable with storing card information and
student information. The developers worked to improve the current dining system by developing
a way to have a positive impact on the environment.

8. Health and Safety

There are concerns of safety when revolving around the food containers used in this system. It is
important to ensure that RFID tags are embedded safely into the container, without risk of going
into food. The tags must remain embedded so that washing them is safe as well as eating out of
containers.

10. Social and Political

Global warming is a huge concern worldwide. In order to combat this major concern, decreasing
the carbon footprint is one solution. This system aims to decrease the carbon footprint of the
university by first working to improve the school’s dining system waste management. Greenbin
helps decrease the landfill waste coming from the dining system as well as decrease the carbon
footprint of the university.

11. Development

Throughout the development of this project, I learned how to utilize RFID technology, and how
the concept of radio frequency works. I also acquired the knowledge of how to manage and
create database servers and send information to them via JAVA. Additionally, I learned a lot
about how send information via cellular data networks to remote servers. This project helped
expand my knowledge in software design and communication between different systems.

34

Appendix B: Hardware Decomposition

CONTAINER

w/ RFID TA

)

RN RMCADCR

MYSOL DATABASE

RFID tag info

I AT

MOMLE HOTSFOT
']
T

USER INTERFACE
checkout info OH MONITOR

RFID READER K AHTERN

POLYID

LRI]}

EALPEE Y P

=

* *| womwe worssor

Wi-FI DOMGLE

CONTAINER

$ | <]

RASPRLRRY P 2 Wl T O L

COLLECTION BIN {RETURM)

CHECKOUT
GREENBIN SYSTEM BLOCK DIAGRAM

Figure B.1 Hardware decomposition

w/ RFIDTAG

35

Appendix C: Software Flowchart

Y

Start

o

Read in tags

[

Output Tag
Text File

Launch Greenbin Store Tags Read in

Linked List
Wait For User Input
o U W iy -
ButtEnHF?::srged? G?tmlljusler — CrSBlaatteeailr?tle Senél To mySQL
atabase
R s T

Figure C.1 System Software Flowchart

Appendix D: Software Code

Graphical User Interface (Guil.java)

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
//import java.sql.*;

/***

* This class handles the creation of the GUI.
*
*/

public class Guil {

// Constants

public static final Color GREEN COLOR = new Color (116, 193, 130);

public static final Font BANNER FONT = new Font ("Futura", Font.BOLD,
60) ;

public static final Font PLAIN FONT = new Font ("Futura", Font.PLAIN,
20) ;

private JFrame mainFrame;

private JLabel titlelabel;
private JLabel selectLabel;

private JPanel bannerPanel;
private JPanel selectPanel;

private JButton checkoutBtn;
private JButton returnBtn;
//private JButton sysInfoBtn;
private JButton addContainerBtn;
private JButton delContainerBtn;
private JButton searchBtn;
private JButton historyBtn;

public static void main (String[] args) {
IPWindow ipwindow = new IPWindow () ;
Guil window = new Guil () ;
window.run () ;
ipwindow.run () ;

private void run() {
initFrame () ;
initButtons () ;

37

buildFrame () ;
mainFrame.setVisible (true);

private void initFrame () {
// Init main frame
mainFrame = new JFrame ("Greenbin");

mainFrame.setSize (800, 800);

mainFrame.setLayout (new FlowLayout ());
.getContentPane () .setBackground (GREEN COLOR) ;
mainFrame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

mainFrame

// Init GREENBIN title label
titleLabel = new JLabel ("GREENBIN") ;
titleLabel.setFont(BANNERfFONT);
titleLabel.setForeground (GREEN COLOR) ;

// Init "select function" label

selectLabel = new JLabel ("Select Function");
selectLabel.setFont (PLAIN FONT);
selectlLabel.setForeground (Color .WHITE) ;

private void initButtons () {

Dimension

// Create

checkoutBtn =
checkoutBtn.
checkoutBtn.
checkoutBtn.
checkoutBtn.

// Create
returnBtn

returnBtn.

returnBtn

returnBtn.

// Create

addContainerBtn =
addContainerBtn.
addContainerBtn.
addContainerBtn.
addContainerBtn.

btnDimension = new Dimension (400, 100);
checkout button

new JButton ("Checkout Container");
setFont (PLAIN FONT) ;

setPreferredSize (btnDimension) ;
setActionCommand ("Checkout") ;

addActionlListener (new ButtonClickListener());

return button
= new JButton ("Return Container");
setFont (PLAIN FONT) ;

.setPreferredSize (btnDimension) ;
returnBtn.

setActionCommand ("Return") ;
addActionListener (new ButtonClickListener());

add container button

new JButton ("Add Container");

setFont (PLAIN FONT) ;

setPreferredSize (btnDimension) ;
setActionCommand ("AddContainer") ;
addActionListener (new ButtonClickListener());

// Create delete container button

delContainerBtn =

new JButton ("Delete Container");

delContain
delContain
delContain
delContain

// Create
searchBtn
searchBtn.
searchBtn.
searchBtn.
searchBtn.

// Create
historyBtn

historyBtn.
historyBtn.
historyBtn.
historyBtn.

erBtn.
erBtn.
erBtn.
erBtn.

SetFont(PLAIN_FONT);
setPreferredSize (btnDimension) ;
setActionCommand ("DelContainer") ;

Information Search (query) button

= new JButton("Information Search");

setFont (PLAIN FONT) ;

setPreferredSize (btnDimension) ;
setActionCommand ("Search") ;
addActionListener (new ButtonClickListener());

History Button

= new JButton ("History");

setFont (PLAIN FONT) ;

setPreferredSize (btnDimension) ;
setActionCommand ("History") ;
addActionListener (new ButtonClickListener());

public void buildFrame () {

// Panel dimensions

Dimension
Dimension

// Build b
bannerPane
bannerPane
bannerPane
bannerPane

// Build s
selectPane
selectPane
selectPane
selectPane

90) ;
50);

new Dimension (800,
new Dimension (800,

bannerDimension =
selectDimension =

anner panel

1 = new JPanel ();
1.setBackground (Color .WHITE) ;
l.setPreferredSize (bannerDimension) ;
l.add(titleLabel) ;

elect function panel

1 = new JPanel () ;
1.setBackground (GREEN COLOR) ;
l.setPreferredSize (selectDimension) ;
l.add (selectLabel) ;

// Add panels to frame

mainFrame.
mainFrame.

add (bannerPanel) ;
add (selectPanel) ;

// Add buttons to frame

mainFrame.
mainFrame.
mainFrame.
mainFrame.
mainFrame.
mainFrame.

add (addContainerBtn) ;
add (delContainerBtn) ;
add (checkoutBtn) ;

add (returnBtn) ;

add (searchBtn) ;

add (historyBtn) ;

addActionListener (new ButtonClickListener());

39

/**

* This private class handles the actions taken when buttons are

clicked.

*

*/

private class ButtonClickListener implements ActionListener {
public void actionPerformed (ActionEvent e)
String command = e.getActionCommand () ;

switch (command) {

SystemFunctions () ;

SystemFunctions () ;

CheckoutWindow () ;

HistoryWindow () ;

case

case

case

case

case

case

"AddContainer":
SystemFunctions sysFunc =

sysFunc.addContainer () ;
break;

"DelContainer":
SystemFunctions sysFunc?2

sysFunc?2.deleteContainer (
break;

"Checkout":

CheckoutWindow checkoutWi

checkoutWin.run () ;
break;

"Return":

ReturnWindow returnWin =
returnWin.run () ;

break;

"Search":

SearchWindow searchWin =
searchWin.run () ;

break;

"History":

HistoryWindow historyWin

historyWin.run() ;

default:

break;

{

new

= new

) ;

n = new

new ReturnWindow () ;

new SearchWindow () ;

= new

40

Checkout Window (CheckoutWindow.java)

import
import
import
import
import
import

import
import
import
import
import

import

/***

javax.
javax.
javax.
javax.
javax.

javax.

java.
java.
Jjava.
java.
java.

java.

swing.JFrame;
swing.JLabel;
swing.JOptionPane;
swing.JPanel;
swing.JButton;
swing.JTextField;

awt.Dimension;

awt.Color;
awt.FlowLayout;
awt.event.ActionListener;
awt.event.ActionEvent;

sgl.Connection;

* This class handles the checking out of a container.

*

*/

public class CheckoutWindow {

private JFrame checkoutFrame;

private JLabel checkoutLabel;

private JPanel checkoutPanel;

private String fields[] = {"First Name", "Last Name", "PolyID #"};
private JButton submitBtn;

private JButton cancelBtn;

private JTextField textFields|[] = new JTextField[fields.length];

public void run() {

initFrame () ;

initButtons () ;

buildFrame () ;
checkoutFrame.setVisible (true) ;

private void initFrame () {

checkoutFrame = new JFrame ("Checkout Window") ;
checkoutFrame.setSize (500, 250);
checkoutFrame.setLayout (new FlowLayout());

checkoutFrame.getContentPane () .setBackground (Guil.GREEN COLOR) ;

checkoutFrame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

// Init container checkout form banner

checkoutLabel = new JLabel ("CONTAINER CHECKOUT FORM") ;
checkoutLabel.setFont (Guil.PLAIN FONT) ;
checkoutLabel.setForeground (Guil.GREEN COLOR) ;

41

private void initButtons () {

// Dimensions

Dimension

// Create
submitBtn

submitBtn.
submitBtn.
submitBtn.
submitBtn.

// Create
cancelBtn

cancelBtn.

cancelBtn

btnDimension = new Dimension (150, 25);
submit button

= new JButton ("Submit") ;
SetFont(Guil.PLAIN_FONT);
setPreferredSize (btnDimension) ;
setActionCommand ("Submit") ;

addActionListener (new ButtonClickListener());

cancel button
= new JButton ("Cancel");
setFont (Guil.PLAIN FONT);

.setPreferredSize (btnDimension) ;
cancelBtn.
cancelBtn.

setActionCommand ("Cancel") ;
addActionListener (new ButtonClickListener());

public void buildFrame () {

// Panel dimensions

Dimension bannerDimension = new Dimension (500, 50);
Dimension panelDimensions = new Dimension (500, 25);
Dimension labelDimension = new Dimension (200, 25);
Dimension tfDimension = new Dimension (200, 25);

// Build container checkout banner panel

checkoutPanel =
checkoutPanel.
checkoutPanel.
checkoutPanel.
checkoutFrame.

// Build form
(int 1 =
JLabel label =

for

new JPanel () ;
setBackground (Color .WHITE) ;
setPreferredSize (bannerDimension) ;
add (checkoutLabel) ;

add (checkoutPanel) ;

field panels and add them to the frame
0; 1 < fields.length; i++) {
new JLabel (fields([1i]):;

label.setFont (Guil.PLAIN FONT) ;
label.setForeground (Color .WHITE) ;
label.setPreferredSize (labelDimension) ;

JTextField tf =

new JTextField();

tf.setPreferredSize (tfDimension) ;

textFields[1i] =

JPanel panel =

tf;

new JPanel (new

FlowLayout (FlowLayout.CENTER, 10, 0));
panel.setBackground (Guil .GREEN COLCR) ;
panel.setPreferredSize (panelDimensions) ;

42

panel.add (label);
panel.add (tf);

checkoutFrame.add (panel) ;

// Add extra panel for spacing

JPanel panel = new JPanel();
panel.setBackground (Guil .GREEN COLCR) ;
panel.setPreferredSize (panelDimensions) ;
checkoutFrame.add (panel) ;

// Add buttons to frame
checkoutFrame.add (cancelBtn) ;
checkoutFrame.add (submitBtn) ;

/**
* This method handles the actions taken when the submit button is
pressed.
*/
private void submit () {
DatabaseFunctions dbf = new DatabaseFunctions();
Parse tagGetter = new Parse();
String firstname, lastname, polyid, gtin, serialnum, date,
time;
Connection con = null;
int parselIndex 0;

// Establish connection to database

try {
con = dbf.getConnection();

} catch (Exception e) {
System.out.println(e);
return;

// Parse M6e output file to get RFID tag info
tagGetter.parseReaderOutput () ;

// Grab student and tag info

firstname = textFields[0].getText () ;

lastname = textFields[1l].getText();

polyid = textFields[2].getText ()

gtin = tagGetter.getGtin (parselndex) ;

serialnum = tagGetter.getSerialNum (parselndex) ;
date = tagGetter.getDate (parselndex) ;

time = tagGetter.getTime (parselndex) ;

43

// Add student and checkout entry only if container has a
recognized gtin and serial number

if (dbf.checkExists(con, "container", "gtin", gtin) &&
dbf.checkExists (con, "container", "serialnumber", serialnum)) {
// Check if container is already checked out
if (!dbf.checkExists (con, "checkout", "serialnumber",
serialnum)) {

// Check if student exists in student table, if so
increment existing balance
if (dbf.checkExists(con, "student", "polyid",
polyid)) {
String update =
dbf.updateStatement ("student", "balanceowed",
"balanceowed+5.00", "polyid",
polyid);
dbf.executeStatement (con, update);
1
// Otherwise make a new student entry
else {
dbf.setNumVals (4) ;
String student insert =
dbf.insertStatement ("student", "firstname",
"lastname", "polyid",
"balanceowed", firstname, lastname, polyid, "5.00");
dbf.executeStatement (con, student insert);

// Add entry to checkout table
dbf.setNumVals (5);
String checkout insert =
dbf.insertStatement ("checkout", "polyid", "gtin",
"serialnumber", "checkout date",
"checkout time", polyid, gtin,
serialnum, date, time);
dbf.executeStatement (con, checkout insert);
JOptionPane.showMessageDialog (null, "Successful
checkout:\npolyid: "+polyid+"\ngtin: " +gtin+
"\nserialnumber: "+serialnum+"\ndate:
"t+date+"\ntime: "+time, "SUCCESS", JOptionPane.INFORMATION MESSAGE) ;

}
else {
String errorl = "ERROR: Container with given gtin &
serial number is already checked out.";
JOptionPane.showMessageDialog(null, errorl, "ERROR",
JOptionPane.ERROR MESSAGE) ;

else {

44

String error2 = "ERROR: Gtin and Serial Number not found
in system.";
JOptionPane.showMessageDialog(null, error2, "ERROR",
JOptionPane.ERROR MESSAGE) ;

checkoutFrame.dispose () ;

/**
* This private class handles the actions taken when buttons are
clicked.
*/
private class ButtonClickListener implements ActionListener {
public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand () ;

switch (command) {

case "Submit":
submit () ;
break;

case "Cancel":
checkoutFrame.dispose () ;
break;

default:
break;

45

Database Functions (DatabaseFunctions.java)
import java.sqgl.Connection;

import java.sqgl.DriverManager;

import java.sqgl.PreparedStatement;
import java.sgl.ResultSet;

import javax.swing.JOptionPane;
import java.io.*;
/***
* This class provides methods to generate and execute different types of
SQL statements.
*
*/
public class DatabaseFunctions {

// Connection constants

private final static String dbDriver = "com.mysqgl.jdbc.Driver";

// Name of the database driver package
private final static String schemaUrlPartl
private final static String schemaURLPart2

":3306/greenbin?autoReconnect=truesuseSSL=false";
// Jjdbc:mysqgl://[ip address of database host]:[port num]/[Database name]

"jdbc:mysqgl://";

private final static String dbUsername = "raspberry";
// MySQL user name
private final static String dbPassword = "Capstone350!";
// MySQL user password
private int numVals = 0; // Number of values in insert statement
/**

* Sets the number of values to append for insert statements.
*

*/
public void setNumVals (int num) {
this.numVals = num;
t
/**
* Establishes connection to mysgl database schema.
*/
public Connection getConnection () throws Exception {

Connection conj;
Class.forName (dbDriver) ;
try |
con =
DriverManager.getConnection (schemaUrlPartl+IPWindow.IPADDRESS+schemaURLPar
t2, dbUsername, dbPassword);
} catch (Exception e) {
String errorl = "Error connecting to database.";

JOptionPane.showMessageDialog(null, errorl, "ERROR",
JOptionPane.ERROR MESSAGE) ;

46

System.out.println(e);
return null;

return con;

/**
* This method executes an SQL DQL (Data Query Language) statement.
*/
public ResultSet executeQuery(Connection con, String s) {
PreparedStatement statement;
ResultSet result;

System.out.println(s);

try {

statement = con.prepareStatement(s);
result = statement.executeQuery();

} catch (Exception e) {
System.out.println (e);
result = null;

return result;

/**

* This method executes an SQL DML (Data Manipulation Language)
statement.

*/

public void executeStatement (Connection con, String s) {

PreparedStatement statement;
try {
PrintWriter output= new PrintWriter (new
FileOutputStream ("Backup.txt", true));
String temp = s;
temp += ");";
output.println (temp) ;
output.close() ;
} catch (FileNotFoundException ex) {

System.out.println ("Cannot write to backup\n");

System.out.println(s);

try {

47

statement = con.prepareStatement (s);
statement.executeUpdate () ;

} catch (Exception e) {
System.out.println (e);

/**

* This method constructs an SQL insert statement for the specified
table and attributes

* Usage: method parameters should be in order [tablename],
[attibutes], ..., [values], ...

*

* NOTE: Make sure to call setNumVals () and specify the number of
values beofre calling insertStatement ()

*/
public String insertStatement (String...strings) {
StringBuilder insertBuilder = new StringBuilder();
int 1i;
insertBuilder.append ("INSERT INTO " + strings[0] + "(");
for (i = 1; 1 < numVals+1l; i++) {
insertBuilder.append(strings[i]) ;
if (i < numVals) { insertBuilder.append(", "); }
}
insertBuilder.append (") VALUES (");
for (i = l+numVals; 1 < (numVals*2)+1; i++) {
insertBuilder.append("'" + strings[i] + "'");
if (i < numVals*2) {insertBuilder.append(", "); }
}
insertBuilder.append(™)");
return insertBuilder.toString() ;
}
/**

* This method constructs an SQL update statement for the specified
attribute within the given table
*/
public String updateStatement (String table, String set, String wval,
String where, String wherevVal) {
StringBuilder updateBuilder = new StringBuilder();

updateBuilder.append ("UPDATE " + table);
updateBuilder.append (" SET " + set + "=" + val + "");
updateBuilder.append (" WHERE " + where + "='" + whereVal +

ll'")

48

return updateBuilder.toString() ;

/**
* This method checks if there exists an entry (tuple) in the
specified table with an attribute
* equal to the given value.
*/
public boolean checkExists (Connection con, String table, String
attribute, String value) {
PreparedStatement select;
Boolean found;

try {
select = con.prepareStatement ("SELECT * FROM " + table +
" WHERE " + attribute + "='" + value + "'");
ResultSet result = select.executeQuery();
found = result.next(); // next() returns false if the

ResultSet is empty
} catch (Exception e) {
System.out.println (e);
found = null;

return found;

/**
* This method constructs an SQL select statement from the specified
table
*/
public String selectStatement (String table, String attribute, String
value) {
StringBuilder selectBuilder = new StringBuilder();

selectBuilder.append ("SELECT * FROM " + table);
selectBuilder.append (" WHERE " + attribute);
selectBuilder.append ("="'" + value + "'");

return selectBuilder.toString() ;
}
/**
* This method constructs an SQL select statement using two
attributes
*/
public String twoAttributeSelect (String table, String attributel,
String attribute?2, String valuel, String value2) {
StringBuilder selectBuilder = new StringBuilder();

selectBuilder.append ("SELECT * FROM " + table);

49

selectBuilder.append (" WHERE " + attributel);
selectBuilder.append("="'" + valuel + "'");

selectBuilder.append("and "+ attribute2 +"="'""+value2+"'");
return selectBuilder.toString() ;

/**
* This method constructs an SQL delete statement from the specified
table
*/
public String deleteStatement (String table, String attribute, String
value) {
StringBuilder selectBuilder = new StringBuilder();

selectBuilder.append ("DELETE FROM " + table);
selectBuilder.append (" WHERE " + attribute);
selectBuilder.append("="'" + value + "'");
return selectBuilder.toString() ;

50

History Window (HistoryWindow.java)

import
import

javax.swing.JFrame;
javax.swing.JTextArea;

JLabel;
JPanel;
JButton;
JTextField;

import
import
import
import

Jjavax.
Jjavax.
Jjavax.
Jjavax.

swing.
swing.
swing.
swing.
java.
java.
java.
java.
java.

Dimension;

awt.Color;
awt.FlowLayout;
awt.event.ActionListener;
awt.event.ActionEvent;

import awt.
import
import
import
import

Connection;
ResultSet;
java.sqgl.ResultSetMetaData;
java.sqgl.SQLException;
javax.swing.WindowConstants;

import
import
import
import
import

java.
java.

sqgl.
sqgl.

/***

* This class handles querying the database by various

student name, etc)
*

*/

public class HistoryWindow {

searchFrame;
searchLabel;

private JPanel searchPanel;

private String fields[] = {"PolyID #",
Serial#", "Date(YYYY-MM-DD)",

"Start (YYYY-MM-DD) ",
JButton searchByPolyIDBtn;
JButton searchByRFIDBtn;
JButton cancelBtn;

JButton searchByDateBtn;
JButton searchByTimeFrameBtn;
JButton searchAllBtn;

JFrame
JLabel

private
private

private
private
private
private
private
private
JTextField textFields[] =

private new

public void run() {
initFrame () ;
initButtons () ;
buildFrame () ;
searchFrame.setVisible (true) ;

private void initFrame() {

attributes (date,

"RFID Tag Gtin#","RFID Tag

"End (YYYY-MM-DD) "};

JTextField[fields.length];

51

searchFrame = new JFrame ("History Window") ;
searchFrame.setSize (700, 600);

searchFrame.setLayout (new FlowLayout());
searchFrame.getContentPane () . setBackground (Guil.GREEN COLOR) ;
searchFrame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

// Init container search form banner
searchlLabel = new JLabel ("HISTORY SEARCH");
searchLabel.setFont (Guil.PLAIN FONT) ;
searchLabel.setForeground (Guil.GREEN COLOR) ;

private void initButtons () {
// Dimensions
Dimension btnDimension = new Dimension (300, 25);

// Create cancel button

cancelBtn = new JButton ("Cancel");

cancelBtn.setFont (Guil.PLAIN FONT) ;
cancelBtn.setPreferredSize (btnDimension) ;
cancelBtn.setActionCommand ("Cancel") ;
cancelBtn.addActionlListener (new ButtonClickListener());

// Create search by polyID button

searchByPolyIDBtn = new JButton ("Search for Student");
searchByPolyIDBtn.setFont (Guil.PLAIN FONT) ;
searchByPolyIDBtn.setPreferredSize (btnDimension) ;
searchByPolyIDBtn.setActionCommand ("searchByPolyID") ;
searchByPolyIDBtn.addActionListener (new ButtonClickListener());

// Create search by RFID tag button

searchByRFIDBtn = new JButton ("Search for Container");
searchByRFIDBtn.setFont (Guil.PLAIN FONT) ;
searchByRFIDBtn.setPreferredSize (btnDimension) ;
searchByRFIDBtn.setActionCommand ("searchByRFID") ;
searchByRFIDBtn.addActionListener (new ButtonClickListener()):;

// Create search by date button

searchByDateBtn = new JButton ("Search by Date");
searchByDateBtn.setFont (Guil.PLAIN FONT) ;
searchByDateBtn.setPreferredSize (btnDimension) ;
searchByDateBtn.setActionCommand ("searchByDate") ;
searchByDateBtn.addActionListener (new ButtonClickListener()):;

// Create search by timeframe button

searchByTimeFrameBtn = new JButton("Search by Timeframe");
searchByTimeFrameBtn.setFont (Guil.PLAIN FONT) ;
searchByTimeFrameBtn.setPreferredSize (btnDimension) ;
searchByTimeFrameBtn.setActionCommand ("searchByTimeFrame") ;
searchByTimeFrameBtn.addActionListener (new ButtonClickListener()):;

//Create search all button
searchByTimeFrameBtn = new JButton("Search by Timeframe");
searchByTimeFrameBtn.setFont (Guil.PLAIN FONT) ;

52

searchByTimeFrameBtn.setPreferredSize (btnDimension) ;
searchByTimeFrameBtn.setActionCommand ("searchByTimeFrame") ;
searchByTimeFrameBtn.addActionListener (new ButtonClickListener()):;

private void print (ResultSet rs) {
try {
ResultSetMetaData rsmd = rs.getMetaData();
int cNum = rsmd.getColumnCount () ;

String tuple ="";
for (int j = 1; j <= cNum; J++) {
tuple += rsmd.getColumnName (j) + " v,

}
tuple += "\n";
while (rs.next()) {

for (int 1 = 1; 1 <= cNum; i++) {
if (1 > 1) {
tuple +=" ",

}
tuple += rs.getString(i);
}
tuple+= "\n";
}
JTextArea result = new JTextArea (tuple);
System.out.println (tuple);

JFrame newFrame = new JFrame ("Results");
newFrame.setSize (800, 600);

newFrame.setLayout (new FlowLayout());
newFrame.getContentPane () .setBackground (Guil.GREEN COLCR) ;

newFrame.setDefaultCloseOperation (WindowConstants.DISPOSE ON CLOSE) ;

newFrame.add (result) ;
newFrame.setVisible (true) ;

}
catch (SQLException se) {
System.out.println(se);

public void buildFrame () {
// Panel dimensions
Dimension bannerDimension = new Dimension (500, 50);
Dimension panelDimensions = new Dimension (500, 25);
Dimension labelDimension = new Dimension (200, 25);
Dimension tfDimension = new Dimension (200, 25);

// Build container search banner panel
searchPanel = new JPanel () ;
searchPanel.setBackground (Color .WHITE) ;
searchPanel.setPreferredSize (bannerDimension) ;
searchPanel.add (searchlLabel) ;

searchFrame.add (searchPanel) ;

// Build form field panels and add them to the frame
for (int 1 = 0; i < fields.length; i++) {
if (i == 0) {
JLabel section = new JLabel (" Search Student");
section.setFont (Guil.PLAIN FONT) ;
section.setForeground (Color .WHITE) ;
section.setPreferredSize(new Dimension (200, 30));
JPanel sectionpanel = new JPanel (new
FlowLayout (FlowLayout .LEFT, 10, 0));

sectionpanel.setBackground (Guil.GREEN COLCR) ;

sectionpanel.add(section);
searchFrame.add (sectionpanel) ;

}

JLabel label = new JLabel (fields[i]);
label.setFont (Guil.PLAIN FONT) ;
label.setForeground (Color .WHITE) ;
label.setPreferredSize (labelDimension) ;

JTextField tf = new JTextField();
tf.setPreferredSize (tfDimension) ;
textFields[1] = tf;

JPanel panel = new JPanel (new FlowLayout (FlowLayout.CENTER,

panel.setBackground (Guil.GREEN COLCR) ;
panel.setPreferredSize (panelDimensions) ;
panel.add (label) ;

panel.add(tf);

if (i == 1) |
JLabel section = new JLabel (" Search Container");
section.setFont (Guil.PLAIN FONT) ;
section.setForeground (Color .WHITE) ;
section.setPreferredSize(new Dimension (200, 30));
JPanel sectionpanel = new JPanel (new

FlowLayout (FlowLayout.LEFT, 10, 0));

sectionpanel.setBackground (Guil.GREEN COLCR) ;

sectionpanel.add(section);
searchFrame.add (sectionpanel) ;

}

else 1if (1 == 3) {

JLabel section = new JLabel (" Search By Date");
section.setFont (Guil.PLAIN FONT) ;
section.setForeground (Color .WHITE) ;
section.setPreferredSize(new Dimension (200, 30));
JPanel sectionpanel = new JPanel (new

FlowLayout (FlowLayout.LEFT, 10, 0));
sectionpanel.setBackground (Guil.GREEN COLCR) ;

sectionpanel.add(section);
searchFrame.add (sectionpanel) ;

}

else 1f (1 == 4) {
JLabel section = new JLabel (" Timeframe") ;
section.setFont (Guil.PLAIN FONT) ;
section.setForeground (Color .WHITE) ;
section.setPreferredSize (labelDimension) ;
JPanel sectionpanel = new JPanel (new

FlowLayout (FlowLayout .LEFT, 10, 0));

sectionpanel.setBackground (Guil.GREEN COLCR) ;

sectionpanel.add(section);
searchFrame.add (sectionpanel) ;

}

searchFrame.add (panel) ;

// Add extra panel for spacing

JPanel panel = new JPanel();
panel.setBackground (Guil.GREEN COLCR) ;
panel.setPreferredSize (panelDimensions) ;
searchFrame.add (panel) ;

// Add buttons to frame
searchFrame.add (searchByPolyIDBtn) ;
searchFrame.add (searchByRFIDBtnN) ;
searchFrame.add (searchByDateBtn) ;
searchFrame.add (searchByTimeFrameBtn) ;
searchFrame.add (cancelBtn) ;

/**
* This method handles the actions taken when the search by poly ID
button is pressed.
*/
private void byID() {
DatabaseFunctions dbf = new DatabaseFunctions{();
String polyid, select id;
Connection con = null;

// Establish connection to database

try {
con = dbf.getConnection();
} catch (Exception e) {
System.out.println(e);
System.out.printf ("FAIL");
return;

// Grab student and tag info
polyid = textFields[0].getText () ;
select id = dbf.selectStatement("history", "polyid", polyid);

ResultSet rs = dbf.executeQuery(con, select id);
print (rs);

searchFrame.dispose();

private void byTag() {
DatabaseFunctions dbf = new DatabaseFunctions{();
String gtin, select tag, serialnumber;
Connection con = null;

// Establish connection to database

try {
con = dbf.getConnection();

} catch (Exception e) {
System.out.println(e);
return;

// Grab student and tag info
gtin = textFields[l].getText();
serialnumber = textFields[2].getText();

select tag = dbf.twoAttributeSelect ("history", "gtin", "serialnumber",

gtin, serialnumber);

ResultSet rs = dbf.executeQuery(con, select tag);
print (rs);

searchFrame.dispose();

private void byDate () {
DatabaseFunctions dbf = new DatabaseFunctions{();
String date, select date;
Connection con = null;

// Establish connection to database
try {
con = dbf.getConnection();

56

} catch (Exception e) {
System.out.println(e);
return;

// Grab student and tag info
date = textFields[3].getText();
select date = dbf.selectStatement("history", "checkout date", date);

ResultSet rs = dbf.executeQuery(con, select date);

print (rs);

searchFrame.dispose();

private void byTimeFrame () {
DatabaseFunctions dbf = new DatabaseFunctions{();
String start, end, select timeframe;
Connection con = null;

// Establish connection to database

try {
con = dbf.getConnection();

} catch (Exception e) {
System.out.println(e);
return;

// Grab student and tag info
start = textFields[4].getText ()
end = textFields[5].getText () ;

select timeframe = "SELECT * from history where checkout date >="'" +
start +
"' and checkout date <='"+end+"'";

ResultSet rs = dbf.executeQuery(con, select timeframe);
print (rs);

searchFrame.dispose();
}
private void byAll () {
DatabaseFunctions dbf = new DatabaseFunctions{();
String start, end, select;
Connection con = null;

// Establish connection to database
try {
con = dbf.getConnection();
} catch (Exception e) {
System.out.println(e);

return;

// Grab student and tag info
select = "SELECT * from history";

ResultSet rs = dbf.executeQuery(con, select);
print (rs);

searchFrame.dispose();

/**
* This private class handles the actions taken when buttons are
*/
private class ButtonClickListener implements ActionListener {
public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand() ;

switch (command) {

case "searchByPolyID":
byID();
break;

case "searchByRFID":
byTag () ;
break;

case "searchByDate":
byDate () ;
break;

case "searchByTimeFrame":
byTimeFrame () ;

break;
case "searchAll":

byAll () ;

break;

case "Cancel":
searchFrame.dispose();
break;

default:
break;

clicked.

58

IP Window (IPWindow.java)

import
import
import
import
import

import
import
import
import
import

import

/***

javax.
javax.
javax.
javax.
javax.

java.
java.
java.
Jjava.
java.

java.

swing.JFrame;
swing.JLabel;
swing.JPanel;
swing.JButton;
swing.JTextField;

awt.Dimension;

awt.Color;
awt.FlowLayout;
awt.event.ActionListener;
awt.event.ActionEvent;

sgl.Connection;

* This class handles querying the database by various attributes (date,
student name, etc)

*

*/

public class IPWindow({
public static String IPADDRESS;

private JFrame ipFrame;

private JLabel ipLabel;

private JPanel ipPanel;

private String fields[] = {"IP Address"};

private JButton ipBtn;

private JTextField textFields|[] = new JTextField[fields.length];

public void run () {
initFrame () ;
initButtons () ;
buildFrame () ;
ipFrame.setVisible (true) ;

public static String getIPAddress () {
return IPADDRESS;

private void initFrame () {

ipFrame = new JFrame ("ENTER IP ADDRESS");
ipFrame.setSize (500, 200);

ipFrame.setlLayout (new FlowLayout());
ipFrame.getContentPane () .setBackground (Guil .GREEN COLCR) ;
ipFrame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

59

// Init container search form banner
ipLabel = new JLabel ("HOST COMPUTER IP");
ipLabel.setFont (Guil.PLAIN FONT) ;
ipLabel.setForeground (Guil.GREEN COLOR) ;

private void initButtons () {
// Dimensions
Dimension btnDimension = new Dimension (300, 25);

// Create cancel button

ipBtn = new JButton ("Enter");

ipBtn.setFont (Guil. PLAIN_FONT) ;
ipBtn.setPreferredSize (btnDimension) ;
ipBtn.setActionCommand ("Enter") ;
ipBtn.addActionListener (new ButtonClickListener ()):;

public void buildFrame () {
// Panel dimensions

Dimension bannerDimension = new Dimension (500, 50);
Dimension panelDimensions = new Dimension (500, 25);
Dimension labelDimension = new Dimension (200, 25);
Dimension tfDimension = new Dimension (200, 25);

// Build container search banner panel
ipPanel = new JPanel();
ipPanel.setBackground (Color .WHITE) ;
ipPanel.setPreferredSize (bannerDimension) ;
ipPanel.add (ipLabel) ;

// Build form field panels and add them to the frame
for (int 1 = 0; i1 < fields.length; i++) {
if(i == 0) {
ipLabel.setFont (Guil.PLAIN FONT) ;
ipLabel.setForeground (Color .WHITE) ;
ipLabel.setPreferredSize (new Dimension (200, 30));
JPanel sectionpanel = new JPanel (new
FlowLayout (FlowLayout.LEFT, 10, 0));

sectionpanel.setBackground (Guil.GREEN COLOR) ;

sectionpanel.add (ipLabel) ;
ipFrame.add (ipLabel) ;

}

JLabel label = new JLabel (fields[i]);
label.setFont (Guil.PLAIN FONT) ;
label.setForeground (Color .WHITE) ;

60

label.setPreferredSize (labelDimension) ;
JTextField tf = new JTextField():;

tf.setPreferredSize (tfDimension) ;
textFields[i] = tf;

JPanel panel = new JPanel (new

FlowLayout (FlowLayout.CENTER, 10, 0));

Container");

panel.setBackground (Guil .GREEN COLCR) ;
panel.setPreferredSize (panelDimensions) ;
panel.add (label) ;

panel.add(tf) ;
1f(1 == 1) {
JLabel section = new JLabel (" Search

section.setFont (Guil.PLAIN FONT) ;
section.setForeground (Color.WHITE) ;
section.setPreferredSize(new Dimension (200, 30));
JPanel sectionpanel = new JPanel (new

FlowLayout (FlowLayout.LEFT, 10, 0));

sectionpanel.setBackground (Guil.GREEN COLOR) ;

sectionpanel.add(section);
ipFrame.add (sectionpanel) ;

}
else if(i == 3) {

JLabel section = new JLabel (" Search By Date");

section.setFont (Guil.PLAIN FONT) ;
section.setForeground(Color.WHITE) ;

section.setPreferredSize(new Dimension (200, 30));

JPanel sectionpanel = new JPanel (new

FlowLayout (FlowLayout.LEFT, 10, 0));

sectionpanel.setBackground (Guil.GREEN COLOR) ;

sectionpanel.add (section);
ipFrame.add (sectionpanel) ;

1

else if (i == 4) {
JLabel section = new JLabel (" Timeframe") ;
section.setFont (Guil.PLAIN FONT) ;
section.setForeground (Color.WHITE) ;
section.setPreferredSize (labelDimension) ;
JPanel sectionpanel = new JPanel (new

FlowLayout (FlowLayout.LEFT, 10, 0));

sectionpanel.setBackground (Guil.GREEN COLOR) ;

’

61

sectionpanel.add (section);
ipFrame.add (sectionpanel) ;

}
ipFrame.add (panel) ;

// Add extra panel for spacing

JPanel panel = new JPanel();
panel.setBackground (Guil.GREEN COLCR) ;
panel.setPreferredSize (panelDimensions) ;
ipFrame.add (panel) ;

// Add buttons to frame
ipFrame.add (ipBtn) ;

private void getIP() {
// Grab student and tag info
IPADDRESS = textFields[0].getText ()

ipFrame.dispose () ;

/**
* This private class handles the actions taken when buttons are
clicked.
*/
private class ButtonClickListener implements ActionListener {
public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand () ;

switch (command) {
case "Enter":
getIP();
break;
default:
break;

Parse(Parse.java)

import java.util.ArrayList;
import java.util.Scanner;
import java.util.TimeZone;

import javax.swing.JOptionPane;

import java.text.*;
import java.io.*;

/***

* This class parses the output file given from the Mé6e reader to obtain

tag info, as well as time and date of read.
*

*/
public class Parse {
private final String readerOutputFilename = "testBox.txt";

private ArrayList<String> GtinList;

private ArrayList<String> SerialNumberList;

private ArrayList<String> LocationlList;

private ArrayList<String> Datelist;

private ArrayList<String> Timelist;

private ArrayList<String> Antennalist;

public String getGtin(int index) {
return GtinList.get (index) ;

public String getSerialNum(int index) {
return SerialNumberList.get (index) ;

public String getDate (int index) {
return Datelist.get (index) ;

public String getTime (int index) {
return TimeList.get (index) ;

public int getCount () {
File f = new File(readerOutputFilename) ;
Scanner s;
int count = 0;

try |
s = new Scanner (f);

s.nextLine () ;

while (s.hasNextLine()) {

s.nextLine () ;
count++;
}
} catch (FileNotFoundException fnfe) {
System.out.printf ("Hi No such file\n");

return count;

public int getSize () {
return GtinList.size();

public void parseReaderOutput () {
File f = new File(readerOutputFilename) ;

GtinList = new ArrayList<String>();
SerialNumberList = new ArrayList<String>();
LocationList = new ArrayList<String>();
DatelList = new ArrayList<String>();
Antennalist = new ArrayList<String>();
TimeList = new ArrayList<String>();

Scanner s;

int counter = getCount();
try {
s = new Scanner (f);
String line = s.nextLine();
while (counter-- != 0) {
s.nextLine () ;
line = s.nextLine();
System.out.printf ("%$S\n", line);
Scanner lineScan = new Scanner (line);
lineScan.useDelimiter (", ") ;
int count = 0;
int items = 4;
while (items-- != 0) {
String input = lineScan.next();
if (count == 0) {

input = input.replaceAll ("\\s+", "");
GtinList.add (input) ;
}
else if (count ==1) {
input = input.replaceAll ("\\s+", "");
SerialNumberList.add (input) ;
}

else if (count == 2) {

LocationList.add (input) ;

}

else if (count ==3) {
String delims = "[TZ,1";
String inputTime = convertTime (input) ;
String[] tokens = inputTime.split (delims);

for (int k = 0; k < tokens.length; k++) {
if (k == 0) {

DatelList.add(tokens[k]);
}

else {
TimeList.add (tokens[k]);

else {
Antennalist.add (input) ;
}
count++;
}
lineScan.close () ;
count = 0;
}
} catch (FileNotFoundException fnfe) {

JOptionPane.showMessageDialog(null, "Nothing was read.",
"ERROR", JOptionPane.ERROR_MESSAGE);

System.out.printf ("No such file\n");

public String convertTime (String utc) {
DateFormat utcFormat = new
SimpleDateFormat ("yyyy-MM-dd'T'HH:mm:ss'Z2'") ;
//utcFormat.setTimeZone (TimeZone.getTimeZone ("UTC")) ;

try {
java.util.Date date = utcFormat.parse (utc);

DateFormat pstFormat = new
SimpleDateFormat ("yyyy-MM-dd'T'HH:mm:ss") ;

//pstFormat.setTimeZone (TimeZone.getTimeZone ("PST")) ;

return pstFormat.format (date);
} catch (ParseException pe) {
System.out.printf ("PARSEFAIL\n") ;

65

mwi
’

return

Return Window(ReturnWindow.java)

66

import java.sqgl.Connection;
import java.sgl.ResultSet;

import javax.swing.JOptionPane;

/***

* This class handles the returning of a container.
*

*/
public class ReturnWindow {
public void run() {
returnContainer () ;

private void returnContainer () {
DatabaseFunctions dsg = new DatabaseFunctions() ;
Parse tagGetter = new Parse();
String polyid, gtin, serialnum, checkout date, checkout time,
return date, return time;
String checkout select, history insert, student update,
checkout delete;

Connection con = null;
ResultSet result;
int parselIndex = 0;

// Establish connection to database

try {
con = dsg.getConnection();

} catch (Exception e) {
System.out.println(e);
return;

// Read gtin (RFID tag number), date of return, and time of
return

tagGetter.parseReaderOutput () ;

gtin = tagGetter.getGtin (parselndex) ;

serialnum = tagGetter.getSerialNum (parselndex) ;

return date = tagGetter.getDate (parselndex);

return time tagGetter.getTime (parselndex) ;

// Copy checkout entry and remove from checkout table if gtin
is in checkout table
if (dsg.checkExists(con, "checkout", "serialnumber",
serialnum)) {
checkout select = dsg.selectStatement ("checkout",
"serialnumber", serialnum);
result = dsg.executeQuery(con, checkout select);

try {

67

if (result.next ()) {
polyid = result.getString("polyid");
checkout date
result.getString ("checkout date");
checkout time =
result.getString ("checkout time");

// Put checkout copy in history table with
return time and date
dsg.setNumVals (7) ;
history insert =
dsg.insertStatement ("history", "polyid", "gtin", "serialnumber",
"checkout date", "checkout time"
"return date", "return time", polyid,
gtin, serialnum, checkout date,
checkout time, return date, return time);
dsg.executeStatement (con, history insert);

// Update student balance
student update =
dsg.updateStatement ("student", "balanceowed",
"balanceowed-5.00", "polyid",
polyid);
dsg.executeStatement (con, student update);

// Remove checkout entry
checkout delete =

dsg.deleteStatement ("checkout", "serialnumber", serialnum);
dsg.executeStatement (con, checkout delete);

’

String successl = "Successful return:\n"+
"polyid: "+polyid+
"\nreturn date:"+return date+"\nreturn time: "+return time+"\ngtin: "+gtin
+ "\nserialnumber: "+serialnum;

JOptionPane.showMessageDialog (null, successl,
"SUCCESS", JOptionPane.INFORMATION MESSAGE) ;

}
} catch (Exception e) {
String errorl = "ERROR: Failed to get entry from
checkout.";

JOptionPane.showMessageDialog(null, errorl, "ERROR",

JOptionPane.ERROR MESSAGE) ;
System.out.println(e);

else {

68

String error2 = "ERROR: RFID tag number not found in
checkout.";
JOptionPane.showMessageDialog(null, error2, "ERROR",
JOptionPane.ERROR MESSAGE) ;

System.out.println ("ERROR: RFID tag number not found in
checkout.");

}

69

Search Window (SearchWindow.java)
import javax.swing.JFrame;
import javax.swing.JTextArea;

import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JButton;
import javax.swing.JTextField;

import java.awt.Dimension;

import java.awt.Color;

import java.awt.FlowLayout;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.sgl.Connection;

import java.sgl.ResultSet;

import java.sgl.ResultSetMetaData;
import java.sgl.SQLException;
import javax.swing.WindowConstants;

/***

* This class handles querying the database by various attributes (date,

student name, etc)
*

*/

public class SearchWindow {

private JFrame searchFrame;

private JLabel searchlabel;

private JPanel searchPanel;

private String fields[] = {"PolyID #", "RFID Tag Gtin#","RFID Tag
Serial#", "Date (YYYY-MM-DD)",

"Start (YYYY-MM-DD) ", "End(YYYY-MM-DD)"};

private JButton searchByPolyIDBtn;

private JButton searchByRFIDBtn;

private JButton cancelBtn;

private JButton searchByDateBtn;

private JButton searchByTimeFrameBtn;

private JTextField textFields[] = new JTextField[fields.length];

public void run() {
initFrame () ;
initButtons () ;
buildFrame () ;
searchFrame.setVisible (true) ;

private void initFrame() {
searchFrame = new JFrame ("Search Window") ;
searchFrame.setSize (700, 600);
searchFrame.setLayout (new FlowLayout());

70

searchFrame.getContentPane () . setBackground (Guil.GREEN COLOR) ;
searchFrame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

// Init container search form banner

searchlLabel = new JLabel ("CONTAINER CHECKOUT SEARCH") ;
searchLabel.setFont (Guil.PLAIN FONT) ;
searchLabel.setForeground (Guil.GREEN COLOR) ;

private void initButtons () {
// Dimensions
Dimension btnDimension = new Dimension (300, 25);

// Create cancel button

cancelBtn = new JButton ("Cancel");

cancelBtn.setFont (Guil.PLAIN FONT) ;
cancelBtn.setPreferredSize (btnDimension) ;
cancelBtn.setActionCommand ("Cancel") ;
cancelBtn.addActionlListener (new ButtonClickListener());

// Create search by polyID button

searchByPolyIDBtn = new JButton ("Search for Student");
searchByPolyIDBtn.setFont (Guil.PLAIN FONT) ;
searchByPolyIDBtn.setPreferredSize (btnDimension) ;
searchByPolyIDBtn.setActionCommand ("searchByPolyID") ;
searchByPolyIDBtn.addActionListener (new ButtonClickListener());

// Create search by RFID tag button

searchByRFIDBtn = new JButton ("Search for Container");
searchByRFIDBtn.setFont (Guil.PLAIN FONT) ;
searchByRFIDBtn.setPreferredSize (btnDimension) ;
searchByRFIDBtn.setActionCommand ("searchByRFID") ;
searchByRFIDBtn.addActionListener (new ButtonClickListener()):;

// Create search by date button

searchByDateBtn = new JButton ("Search by Date");
searchByDateBtn.setFont (Guil.PLAIN FONT) ;
searchByDateBtn.setPreferredSize (btnDimension) ;
searchByDateBtn.setActionCommand ("searchByDate") ;
searchByDateBtn.addActionListener (new ButtonClickListener()):;

// Create search by timeframe button

searchByTimeFrameBtn = new JButton("Search by Timeframe");
searchByTimeFrameBtn.setFont (Guil.PLAIN FONT) ;
searchByTimeFrameBtn.setPreferredSize (btnDimension) ;
searchByTimeFrameBtn.setActionCommand ("searchByTimeFrame") ;
searchByTimeFrameBtn.addActionListener (new ButtonClickListener()):;

public void buildFrame () {
// Panel dimensions
Dimension bannerDimension = new Dimension (500, 50);
Dimension panelDimensions = new Dimension (500, 25);
Dimension labelDimension = new Dimension (200, 25);

71

Dimension tfDimension = new Dimension (200, 25);

// Build container search banner panel
searchPanel = new JPanel () ;
searchPanel.setBackground (Color .WHITE) ;
searchPanel.setPreferredSize (bannerDimension) ;
searchPanel.add (searchlLabel) ;

searchFrame.add (searchPanel) ;

// Build form field panels and add them to the frame
for (int 1 = 0; i < fields.length; i++) {
if (i == 0) {

JLabel section = new JLabel (" Search Student");
section.setFont (Guil.PLAIN FONT) ;
section.setForeground (Color .WHITE) ;
section.setPreferredSize(new Dimension (200, 30));
JPanel sectionpanel = new JPanel (new

FlowLayout (FlowLayout .LEFT, 10, 0));

sectionpanel.setBackground (Guil.GREEN COLCR) ;

sectionpanel.add(section);
searchFrame.add (sectionpanel) ;

}

JLabel label = new JLabel (fields[i]);
label.setFont (Guil.PLAIN FONT) ;
label.setForeground (Color .WHITE) ;
label.setPreferredSize (labelDimension) ;

JTextField tf = new JTextField();
tf.setPreferredSize (tfDimension) ;
textFields[1] = tf;

JPanel panel = new JPanel (new FlowLayout (FlowLayout.CENTER,

panel.setBackground (Guil.GREEN COLCR) ;
panel.setPreferredSize (panelDimensions) ;
panel.add (label) ;

panel.add(tf);

if (i == 1) |
JLabel section = new JLabel (" Search Container");
section.setFont (Guil.PLAIN FONT) ;
section.setForeground (Color .WHITE) ;
section.setPreferredSize(new Dimension (200, 30));
JPanel sectionpanel = new JPanel (new

FlowLayout (FlowLayout.LEFT, 10, 0));

sectionpanel.setBackground (Guil.GREEN COLCR) ;

sectionpanel.add(section);
searchFrame.add (sectionpanel) ;

72

else 1if (1 == 3) {

JLabel section = new JLabel (" Search By Date");
section.setFont (Guil.PLAIN FONT) ;
section.setForeground (Color .WHITE) ;
section.setPreferredSize(new Dimension (200, 30));
JPanel sectionpanel = new JPanel (new

FlowLayout (FlowLayout.LEFT, 10, 0));
sectionpanel.setBackground (Guil.GREEN COLCR) ;

sectionpanel.add(section);
searchFrame.add (sectionpanel) ;

}

else 1f (1 == 4) {
JLabel section = new JLabel (" Timeframe") ;
section.setFont (Guil.PLAIN FONT) ;
section.setForeground (Color .WHITE) ;
section.setPreferredSize (labelDimension) ;
JPanel sectionpanel = new JPanel (new

FlowLayout (FlowLayout .LEFT, 10, 0));

sectionpanel.setBackground (Guil.GREEN COLCR) ;

sectionpanel.add(section);
searchFrame.add (sectionpanel) ;

}

searchFrame.add (panel) ;

// Add extra panel for spacing

JPanel panel = new JPanel();
panel.setBackground (Guil.GREEN COLCR) ;
panel.setPreferredSize (panelDimensions) ;
searchFrame.add (panel) ;

// Add buttons to frame
searchFrame.add (searchByPolyIDBtn) ;
searchFrame.add (searchByRFIDBtnN) ;
searchFrame.add (searchByDateBtn) ;
searchFrame.add (searchByTimeFrameBtn) ;
searchFrame.add (cancelBtn) ;

private void print (ResultSet rs) {
try {
ResultSetMetaData rsmd = rs.getMetaData();
int cNum = rsmd.getColumnCount () ;

String tuple ="";
for (int j = 1; j <= cNum; J++) {
tuple += rsmd.getColumnName (j) + " v,

}
tuple += "\n";
while (rs.next()) {

for (int 1 = 1; 1 <= cNum; i++) {
if (1 > 1) {
tuple +=" ",

}
tuple += rs.getString(i);
}
tuple+= "\n";
}
JTextArea result = new JTextArea (tuple);
System.out.println (tuple);

JFrame newFrame = new JFrame ("Results");
newFrame.setSize (800, 600);

newFrame.setLayout (new FlowLayout());
newFrame.getContentPane () .setBackground (Guil.GREEN COLCR) ;

newFrame.setDefaultCloseOperation (WindowConstants.DISPOSE ON CLOSE) ;

newFrame.add (result) ;
newFrame.setVisible (true) ;

}
catch (SQLException se) {
System.out.println(se);

}
/**
* This method handles the actions taken when the search by poly ID
button is pressed.
*/
private void byID() {
DatabaseFunctions dbf = new DatabaseFunctions{();
String polyid, select id;
Connection con = null;

// Establish connection to database

try {
con = dbf.getConnection();

} catch (Exception e) {
System.out.println(e);
System.out.printf ("FAIL");
return;

// Grab student and tag info
polyid = textFields[0].getText () ;

74

select id = dbf.selectStatement("checkout", "polyid",
ResultSet rs = dbf.executeQuery(con, select id);
print (rs);

searchFrame.dispose();

private void byTag() {
DatabaseFunctions dbf = new DatabaseFunctions{();
String gtin, select tag, serialnumber;
Connection con = null;

// Establish connection to database

try {
con = dbf.getConnection();

} catch (Exception e) {
System.out.println(e);
return;

// Grab student and tag info
gtin = textFields[l].getText();
serialnumber = textFields[2].getText();

select tag = dbf.twoAttributeSelect ("checkout", "gtin",
gtin, serialnumber);

ResultSet rs = dbf.executeQuery(con, select tag);
print (rs);

searchFrame.dispose();

private void byDate () {
DatabaseFunctions dbf = new DatabaseFunctions{();
String date, select date;
Connection con = null;

// Establish connection to database

try {
con = dbf.getConnection();

} catch (Exception e) {
System.out.println(e);
return;

// Grab student and tag info
date = textFields[3].getText();

polyid);

"serialnumber",

select date = dbf.selectStatement ("checkout", "checkout date", date);

ResultSet rs = dbf.executeQuery(con, select date);

75

print (rs);

searchFrame.dispose();

private void byTimeFrame () {
DatabaseFunctions dbf = new DatabaseFunctions{();
String start, end, select timeframe;
Connection con = null;

// Establish connection to database

try {
con = dbf.getConnection();

} catch (Exception e) {
System.out.println(e);
return;

// Grab student and tag info
start = textFields[4].getText () ;
end = textFields[5].getText () ;

select timeframe = "SELECT * from checkout where checkout date >='" +
start +
"' and checkout date <='"+end+"'";

ResultSet rs = dbf.executeQuery(con, select timeframe);

print (rs);

searchFrame.dispose();
}
/**
* This private class handles the actions taken when buttons are clicked.
*/

private class ButtonClickListener implements ActionListener {
public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand() ;

switch (command) {

case "searchByPolyID":
byID();
break;

case "searchByRFID":
byTag () ;
break;

case "searchByDate":
byDate () ;
break;

case "searchByTimeFrame":
byTimeFrame () ;
break;

case "Cancel":

76

searchFrame.dispose();
break;

default:
break;

System Functions(SystemFunctions.java)

77

import java.sqgl.Connection;

//import java.sqgl.PreparedStatement;
//import java.sqgl.ResultSet;

import javax.swing.*;

/***

* This class holds methods that perform system functions such as
adding/removing containers from the system,

* querying the database for specific information, etc.
*

*/

public class SystemFunctions {

/**
* This method takes the first container from the parsed reader
ouput and adds
* its gtin (RFID tag number) to the container table.
*/
public void addContainer () {
DatabaseFunctions dbf = new DatabaseFunctions|();
Connection con;
Parse tagGetter = new Parse();
String gtin, serialnum, container insert;

// Parse reader output file to get gtin (RFID tag number)
tagGetter.parseReaderOutput () ;

try {
con = dbf.getConnection();
// for (int 1 = 0; 1 < tagGetter.getSize(); i++) {

gtin = tagGetter.getGtin (0);
serialnum = tagGetter.getSerialNum(0) ;

// If the container's serialnumber doesn't already
exist in container table, add it
if (!dbf.checkExists (con, "container",
"serialnumber", serialnum)) {
dbf.setNumVals (2);
container insert =
dbf.insertStatement ("container", "gtin", "serialnumber", gtin, serialnum);
dbf.executeStatement (con, container insert);
JOptionPane.showMessageDialog (null, "Successfully
added container:\n gtin: " +gtin+
"\nserialnumber: "+serialnum,
"SUCCESS", JOptionPane.INFORMATIONiMESSAGE);

}

else {

78

String error = "ERROR: Container's gtin is
already in system.";
JOptionPane.showMessageDialog (null, error,
"ERROR", JOptionPane.ERROR_MESSAGE);

// }

} catch (Exception e) {
System.out.println ("ERROR: addContainer () from
SystemFunctions.java : failed to connect to db");

}

/**
* This method takes the first container from the parsed reader
output and removes
* the entry from checkout (if it exists) that has the same gtin.
*/
public void deleteContainer () {
DatabaseFunctions dbf = new DatabaseFunctions();
Connection con;
Parse tagGetter = new Parse();
String gtin, serialnum, container delete;

// Parse reader output file to get gtin (RFID tag number)
tagGetter.parseReaderOutput () ;

gtin = tagGetter.getGtin (0);

serialnum = tagGetter.getSerialNum(0);

try {
con = dbf.getConnection();

// If the container's gtin and serial number doesn't
already exist in container table, add it
if (dbf.checkExists(con, "container", "gtin", gtin)
&& dbf.checkExists(con, "container",
"serialnumber", serialnum)) {
container delete = dbf.deleteStatement ("container",
"serialnumber", serialnum);
if (!dbf.checkExists (con, "checkout",
"serialnumber", serialnum)) {

dbf.executeStatement (con, container delete);
JOptionPane.showMessageDialog (null,
"Successfully deleted container:\ngtin: " +gtin+
"\nserialnumber: "+serialnum, "SUCCESS",
JOptionPane.INFORMATION_MESSAGE);
t

79

else {
JOptionPane.showMessageDialog (null,
"Container is currently checked out.",
"ERROR", JOptionPane.ERROR) ;

}
else {
String errorl = "ERROR: Container is not in
system.";

JOptionPane.showMessageDialog(null, errorl, "ERROR",

JOptionPane.ERROR MESSAGE) ;

}
} catch (Exception e) {
String error2 = "ERROR: Container's gtin is not in
system!!";
JOptionPane.showMessageDialog(null, error2, "ERROR",
JOptionPane.ERROR MESSAGE) ;
}

mySQL Create Table Statements

80

CREATE TABLE container (
gtin VARCHAR(13),
serialnumber VARCHAR(9),
PRIMARY KEY (gtin, serialnumber));

CREATE TABLE student (
polyid VARCHAR(9),
firstname VARCHAR (45),
lastname VARCHAR (45),
balanceowed DECIMAL (10,2),
PRIMARY KEY (polyid)):;

CREATE TABLE checkout (
polyid VARCHAR(9),
gtin VARCHAR (13),
serialnumber VARCHAR(9),
checkout date DATE,
checkout time TIME,
PRIMARY KEY (polyid, gtin, serialnumber),
FOREIGN KEY (polyid) REFERENCES student (polyid),
FOREIGN KEY (gtin, serialnumber) REFERENCES container (gtin,
serialnumber)) ;

CREATE TABLE history(
id INTEGER AUTO_ INCREMENT,
polyid VARCHAR(9),
gtin VARCHAR (13),
serialnumber VARCHAR(9),
checkout date DATE,
checkout time TIME,
return date DATE,
return time TIME,
PRIMARY KEY (id));

81

