
NORMALIZER: AUGMENTING CODE CLONE DETECTORS USING SOURCE

CODE NORMALIZATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Kevin Ly

March 2017

c© 2017

Kevin Ly

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Normalizer: Augmenting Code Clone De-

tectors using Source Code Normalization

AUTHOR: Kevin Ly

DATE SUBMITTED: March 2017

COMMITTEE CHAIR: Aaron Keen, Ph.D.

Professor of Computer Science and

Software Engineering

COMMITTEE MEMBER: Hugh Smith, Ph.D.

Associate Professor of Computer

Science and Software Engineering

COMMITTEE MEMBER: John Seng, Ph.D.

Professor of Computer Science and

Software Engineering

iii

ABSTRACT

Normalizer: Augmenting Code Clone Detectors using Source Code Normalization

Kevin Ly

Code clones are duplicate fragments of code that perform the same task. As software

code bases increase in size, the number of code clones also tends to increase. These

code clones, possibly created through copy-and-paste methods or unintentional du-

plication of effort, increase maintenance cost over the lifespan of the software. Code

clone detection tools exist to identify clones where a human search would prove un-

feasible, however the quality of the clones found may vary. I demonstrate that the

performance of such tools can be improved by normalizing the source code before us-

age. I developed Normalizer, a tool to transform C source code to normalized source

code where the code is written as consistently as possible. By maintaining the code’s

function while enforcing a strict format, the variability of the programmer’s style will

be taken out. Thus, code clones may be easier to detect by tools regardless of how it

was written.

Reordering statements, removing useless code, and renaming identifiers are used

to achieve normalized code. Normalizer was used to show that more clones can be

found in Introduction to Computer Networks assignments by normalizing the source

code versus the original source code using a small variety of code clone detection

tools.

iv

ACKNOWLEDGMENTS

Thanks to:

• Professor Keen for his unending support and anxiety mitigation

• My family for their patience and patience and patience

• My committee for being good friends during university

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF LISTINGS . xii

CHAPTER

1 Introduction . 1

2 Background . 4

2.1 Code Clones . 4

2.1.1 Types of Code Clones . 5

2.2 Code Clone Detection Tools . 5

2.2.1 Textual and Token-Based Clone Tools 6

2.2.2 Tree-Based Clone Tools . 6

2.2.3 Program Dependence Graph Clone Tools 8

2.3 Code Normalizing . 9

3 Related Works . 11

3.1 Code Clone Detection Tools . 11

3.1.1 Simian . 11

3.1.2 JPlag . 13

3.1.3 CloneDR . 13

3.1.4 Moss . 14

3.1.5 Summary . 16

3.2 Code Normalization for Fighting Self-Mutating Malware 17

3.3 NICAD . 18

4 Implementation . 19

4.1 Requirements . 19

4.2 Input . 19

4.2.1 Preprocessing . 20

4.2.2 ANTLR . 20

4.2.3 Trackability . 21

vi

4.3 PDG . 21

4.3.1 Constructing the PDG . 22

4.3.2 Pointer Analysis . 24

4.3.3 Structs and Unions . 26

4.3.4 Side-effecting Functions . 31

4.3.5 Nested Statements . 32

4.3.6 Transitive Reduction . 35

4.4 Normalization . 36

4.4.1 Statement Reordering . 36

4.4.2 Useless Code Removal . 39

4.4.3 Identifier Renaming . 41

4.4.4 For-Loop Transformation . 43

4.4.5 Function Splitting . 44

5 Results . 45

5.1 Student A . 47

5.1.1 Simian . 47

5.1.2 JPlag . 53

5.1.3 CloneDR . 57

5.1.4 Moss . 63

5.2 Student B . 66

5.2.1 Simian . 66

5.2.2 JPlag . 69

5.2.3 CloneDR . 73

5.2.4 Moss . 79

5.3 Student C . 83

5.3.1 Simian . 83

5.3.2 JPlag . 86

5.3.3 CloneDR . 91

5.3.4 Moss . 95

5.4 Aggregates . 99

5.5 Same Identifiers . 112

6 Future Work . 118

vii

6.1 Pointer Analysis . 118

6.2 Different Identifier Normalization Namespaces 118

6.3 Depth-First Statement Reordering . 119

6.4 Traceback . 122

6.5 Code Clone Detection . 122

7 Conclusion . 124

BIBLIOGRAPHY . 125

APPENDICES

A Box Plots . 128

viii

LIST OF TABLES

Table Page

3.1 Tool Comparison . 17

ix

LIST OF FIGURES

Figure Page

2.1 AST for Listing 2.1 . 7

2.2 Sample PDG for Listing 2.2 . 9

3.1 Clones found in JPlag . 13

3.2 Clones found in CloneDR . 15

3.3 Clones found in Moss . 16

4.1 PDG for Listing 4.2 . 22

4.2 PDG for Listing 4.3 . 23

4.3 PDG of Listing 4.4 . 24

4.4 PDG for Listing 4.5 . 25

4.5 PDG for Listing 4.6 . 26

4.6 PDG for Listing 4.7 . 28

4.7 PDG for Listing 4.8 . 31

4.8 PDG for Listing 4.9 . 32

4.9 PDG for Listing 4.10 . 34

4.10 Before transitive reduction . 35

4.11 After transitive reduction . 36

4.12 PDG for Listing 4.11 . 37

4.13 Critical state start . 40

4.14 Critical property propagated . 41

5.1 Summary performance of Simian on Student A 53

5.2 Summary performance of JPlag on Student A 57

5.3 Summary performance of CloneDR on Student A 62

5.4 Summary performance of Moss on Student A 66

5.5 Summary performance of Simian on Student B 68

5.6 Summary performance of JPlag on Student B 73

5.7 Summary performance of CloneDR on Student B 77

x

5.8 Summary performance of Moss on Student B 83

5.9 Summary performance of Simian on Student C 86

5.10 Summary performance of Simian on Student C 91

5.11 Summary performance of CloneDR on Student C 95

5.12 Summary performance of Moss on Student C 99

5.13 Aggregate results of Simian . 100

5.14 Aggregate results of JPlag . 101

5.15 Aggregate results of CloneDR . 101

5.16 Aggregate results of Moss . 102

5.17 Histogram of original to noRename PDG 103

5.18 Aggregate results of Simian excluding outliers 104

5.19 Aggregate results of JPlag excluding outliers 104

5.20 Aggregate results of CloneDR excluding outliers 105

5.21 Aggregate results of Moss excluding outliers 106

5.22 Histogram of original to normalized using Simian 107

5.23 Histogram of original to noRename using Simian 108

5.24 Histogram of original to normalized using JPlag 109

5.25 Histogram of original to split using JPlag 110

5.26 Histogram of original to noRename using CloneDR 111

5.27 Histogram of noRename PDG split to split using Moss 112

5.28 Aggregate results of Simian with same identifier names 113

5.29 Histogram of original to noPDG using Simian same identifier . . . 114

5.30 Histogram of noPDG to normalized using Simian same identifier . . 115

5.31 Aggregate results of CloneDR with same identifier names 116

5.32 Histogram of original to noPDG using CloneDR same identifier . . 117

6.1 PDG for Listing 6.1 . 120

A.1 Box Plot of Simian’s Results . 128

A.2 Box Plot of JPlag’s Results . 129

A.3 Box Plot of CloneDR’s Results . 129

A.4 Box Plot of Moss’s Results . 130

xi

LIST OF LISTINGS

Listing Page

1.1 Capitalize vowels in a while loop . 1

1.2 Capitalize vowels in a for loop . 1

2.1 A small if statement . 7

2.2 strlen code sample for PDG . 8

3.1 Sample Report from Simian . 12

4.1 Comments added as a breadcrumb to original code 21

4.2 Data dependency example . 22

4.3 Variable a has the potential of being set to 0 23

4.4 Control dependency example . 23

4.5 Variable p is dereferenced and read 24

4.6 Variable p is dereferenced and written to 26

4.7 Variable p is dereferenced and written to 27

4.8 Variable p is dereferenced and written to 30

4.9 Variable square produces a side-effect to what was passed in 32

4.10 if statements can read, write, and potentially write into variables . . 33

4.11 Both a = 8 and b = 144 / 4 are independent of each other 37

4.12 A function with some useless code . 40

4.13 Before identifier renaming . 42

4.14 After identifier renaming . 42

4.15 Before identifier renaming with variable shadowing 42

xii

4.16 After identifier renaming with variable shadowing 43

5.1 Single clone in original . 48

5.2 Single clone in original . 48

5.3 Clones within the same function in noRename 49

5.4 Clones within the same function in noRename 49

5.5 Clone in noRename . 50

5.6 Clone in noRename . 50

5.7 Listing 5.5 as written in original . 51

5.8 Listing 5.6 as written in original . 51

5.9 Listing 5.3 clone lost by identifier renaming 52

5.10 Listing 5.4 clone lost by identifier renaming 52

5.11 New normalized clone found . 54

5.12 New normalized clone found . 54

5.13 Undiscovered clone in original . 54

5.14 Undiscovered clone in original . 54

5.15 A clone found in split . 56

5.16 A clone found in split . 56

5.17 Preprocessor directives counted as clones 58

5.18 Clone from the original code . 59

5.19 Clone from the original code . 59

5.20 Listing 5.18 in normalized . 60

5.21 Listing 5.19 in normalized . 60

xiii

5.22 Listing 5.18 in noRename . 61

5.23 Listing 5.19 in noRename . 61

5.24 Clone in noRename PDG . 63

5.25 Clone in noRename PDG . 63

5.26 Original code of Listing 5.24 . 63

5.27 Original code of Listing 5.25 . 63

5.28 Clone in noRename PDG split . 64

5.29 Clone in noRename PDG split . 64

5.30 Listing 5.28 as normalized in split . 65

5.31 Listing 5.29 as normalized in split . 65

5.32 Clone from original duplicated four times 67

5.33 Larger clone with Listing 5.32 . 67

5.34 Lost clone in normalized by identifier renaming 68

5.35 Lost clone in normalized by identifier renaming 68

5.36 Clone found in original . 69

5.37 Clone found in original . 69

5.38 Larger clone in normalized . 70

5.39 Larger clone in normalized . 70

5.40 Modified assignment from Listing 5.38 71

5.41 Same code from Listing 5.39 . 71

5.42 Perfect match by JPlag . 72

5.43 Perfect match by JPlag . 72

xiv

5.44 InterpreteFlag4 in original . 74

5.45 InterpreteFlag7 in original . 74

5.46 InterpreteFlag5 in original . 74

5.47 InterpreteFlag12 in original . 74

5.48 InterpreteFlag4 in normalized . 75

5.49 InterpreteFlag7 in normalized . 75

5.50 InterpreteFlag5 in normalized . 76

5.51 InterpreteFlag12 in normalized . 76

5.52 Discovered clone in noRename split 78

5.53 Discovered clone in noRename split 78

5.54 Clone in noRename PDG split but not in noRename split 79

5.55 Clone in noRename PDG split but not in noRename split 79

5.56 Lost clone from Listing 5.54 . 80

5.57 Lost clone from Listing 5.55 . 80

5.58 Original sized clone in noRename PDG split 81

5.59 Original sized clone in noRename PDG split 81

5.60 Smaller clone in noRename split from Listing 5.58 82

5.61 Smaller clone in noRename split from Listing 5.59 82

5.62 Discovered clone in noRename . 84

5.63 Discovered clone in noRename . 84

5.64 Listing 5.62 in original . 84

5.65 Listing 5.63 in original . 84

xv

5.66 Improved clone by identifier renaming 85

5.67 Improved clone by identifier renaming 85

5.68 Dubious clone in original . 87

5.69 Dubious clone in original . 87

5.70 Listing 5.68 in noRename . 88

5.71 Listing 5.68 in noRename . 88

5.72 Manual rearranging of Listing 5.70 89

5.73 Manual rearranging of Listing 5.71 89

5.74 Clone found by splitting in noRename split 90

5.75 Clone found by splitting in noRename split 90

5.76 Same clone as Simian in noRename 91

5.77 Same clone as Simian in noRename 91

5.78 Another clone in noRename . 92

5.79 Another clone in noRename . 92

5.80 Clone only found in original . 93

5.81 Clone only found in original . 93

5.82 Listing 5.80 clone lost in noRename 94

5.83 Listing 5.81 clone lost in noRename 94

5.84 Clone found by statement reordering in noRename split 96

5.85 Clone found by statement reordering in noRename split 96

5.86 2 clones found in noRename . 97

5.87 2 clones found in noRename . 97

xvi

5.88 Listing 5.86 in noRename PDG split 98

5.89 Listing 5.87 in noRename PDG split 98

6.1 Program with two logical code sections 120

6.2 Depth-first topological sort . 121

6.3 Jumbled program still has the same PDG as Figure 6.1 121

xvii

Chapter 1

INTRODUCTION

Code clones are duplicated code fragments that perform the same or a similar task.

For example, a piece of code that capitalizes all vowels may be written as in Listing 1.1

or Listing 1.2.

Listing 1.1: Capitalize vowels in a while loop

1 void capitalizeVowels(char *str) {

2 char letter = *str;

3 while (letter != ’\0’) {

4 if (letter == ’a’ || letter == ’e’ || letter == ’i’ || letter == ’o’ ||

letter == ’u’) {

5 *str = toupper(letter);

6 }

7 str ++;

8 letter = *str;

9 }

10 }

Listing 1.2: Capitalize vowels in a for loop

1 void capitalizeVowels(char *str) {

2 for (int i = 0; i < strlen(str); i++) {

3 char letter = str[i];

4 if (letter == ’a’ || letter == ’e’ || letter == ’i’ || letter == ’o’ ||

letter == ’u’) {

5 str[i] = toupper(letter);

6 }

7 }

8 }

The main difference in these clones is the choice between the while loop and for loop,

but the loop bodies are very similar to each other and both functions accomplish

the same task. In this case, these two code fragments should be identified as clones

so a human can inspect them and determine the best course of action, whether to

1

eliminate one of the clones or to leave it as is.

Clones are beneficial to detect because having duplicates increases maintenance

efforts. When a change is made to one instance of the clone, it should also be eval-

uated and performed to all the other instances. If the change is not propagated to

all the clones, then bug fixes will also not be propagated, creating inconsistencies. In

addition, having clones increases the size of the code base, which opens more opportu-

nities for bugs and also increases the size of the executable. If clones can be abstracted

into one function, then the duplicates can be eliminated, resulting in a smaller code

base and fewer bugs [9]. If clones cannot be removed, then simply identifying and

documenting them will help.

Normalizer is a source code mutator that can aid in finding code clones. The

way code is written, which is dependent on programming style, can play a role in the

detection of code clones. Two code fragments may be written in completely different

styles, but still be considered a clone if they perform the same task. To eliminate

such differences, Normalizer forces the source code to look as similar as possible while

preserving the semantics. The transformed source code is to be fed into code clone

detection tools with the intent of catching larger and more numerous code clones.

Given the plethora of existing code clone detectors, this tool is not meant to com-

pete in finding clones, but to augment the detectors’ performance. The performance

of any code clone detector can be improved by normalizing the source file, filtering

out uninteresting code sections leaving only minimal differences between clones [15].

How the code is written can make a difference in the effectiveness of the code clone

detectors. Due to personal coding styles, a programmer’s choice of statement order

and identifier names can be inconsistent. These small changes can fool some detec-

tors, but if the input can be massaged so that regardless of how the original source

code was written, the output would have a standardized style, thus more consistent

2

findings can be achieved.

Normalizer operates on the C language and uses a variety of techniques to nor-

malize the source code. Useless code removal and statement reordering make up the

bulk of the tool. Identifier renaming, converting for-loops into while-loops, and split-

ting source code into multiple files are additional techniques used to achieve a higher

clone detection rate, all of which are discussed in greater detail in Chapter 4.

Some code clones detectors are used to evaluate the effectiveness of Normalizer.

Using the code clone detection tools Simian, JPlag, CloneDR, and Moss, Normalizer

increases the clone detection rate but occasionally performs worse than without nor-

malization. By reordering and removing code, larger code clones are exposed with

fewer interrupted inserted lines. However, reordering code also moves sections of

code clones apart and renaming identifiers can result in fewer and smaller clones.

Background information surrounding the tools can be found in Chapter 3.

This paper discusses the design, implementation, and performance of Normalizer.

In addition, a comparison of the code clone detection tools is presented detailing

their strengths and weaknesses while using Normalizer. The goal of this thesis is to

demonstrate that the simple task of formatting the input can change the detector’s

results and possibly improve it by making the code appear as similar as possible.

3

Chapter 2

BACKGROUND

Code clones are duplicated code fragments that perform the same or similar task.

They tend to have lexical similarity between them, but may be slightly altered to fit

their own application. These clones can be abstracted into a separate function or at

least be identified as a code clone. This chapter explains why identifying code clones

is important and the measures already taken to expose them.

2.1 Code Clones

Code clones can be created in several ways, commonly by copy-and-pasting code

sections, by duplication of effort, or by intentional choice in performance critical

systems [13]. Copy-and-pasting code sections from one file to another can occur

when a programmer does not have the means to call the function from their own

code. The easy solution is to copy the code over into their own file and use it. The

copied code may also be slightly altered to fit the programmer’s application, creating

a near-identical clone. Duplication of effort can take different forms, but does not

have to involve any irresponsible intent. Sometimes, two independent developers may

coincidentally write a commonly useful function without knowing one already existed.

Code can also be duplicated in performance critical systems to avoid the overhead of

function calls [1]. The mere identification of code clones is enough for the programmer

to inspect and decide whether to abstract the clones into a function or leave them be.

4

2.1.1 Types of Code Clones

There are varying levels of code clones, from literal copy-and-pastes to alterations

that achieve the same result but are implemented differently. Roy, who authored a

paper comparing code clone techniques, defined four types of clones [2]:

1. Type-1: These are the easiest clones to catch, which involve varying whitespace

and comments as these do not affect the program at all.

2. Type-2: These clones are Type-1 clones but also have changed identifier names,

literal values, and types.

3. Type-3: These are everything Type-2 includes but also has inserted or removed

statements. The code’s functionality may be slightly different, but it is still

considered a clone.

4. Type-4: Lastly, Type-4 clones have the same semantics as each other, but have

different implementation details to achieve that [16] [18].

Code clone detection tools have differing levels of effectiveness on code clone types

depending on the methods used to find clones. Type-4 clones are not always possible

to detect; when possible, doing so requires complex techniques and large amounts of

computer resources.

2.2 Code Clone Detection Tools

Tools already exist to detect code clones. They analyze the source files and commonly

report line numbers, file names, and the sizes and similarity score of the code clones.

The standard reporting medium is through HTML, although textual output is also

used. These tools are marketed towards industry codebases in order to analyze the

5

unwieldy, large codebases that would take prohibitively long for humans to analyze

manually.

2.2.1 Textual and Token-Based Clone Tools

Each tool uses varying levels of complexity to identify clones. The most basic tools

compare source files on a character-by-character basis [16]. This approach is easily

defeated by spurious whitespace and comments. A step-up is a token-by-token basis.

The tool is able to discern between keyword and identifier, allowing for some flexibility

in identifier names. If the texts have a close enough match, then a clone is detected.

Such a tool that uses token-based clone detection is Simian. Given a programming

language, Simian can compare source code. It can be run with options to ignore

certain tokens such as identifiers, variable names, or literals. Compared with all the

tools used in this paper’s validation, this is considered the most basic [6]. A more

detailed overview of Simian is provided in Section 3.1.1.

Another tool, called JPlag, compares token strings to assess whether a clone exists

or not. Once parsed, tokens from one clone are matched with tokens from the other

clone as greedily as possible. A feature of JPlag is that the tokens may appear in any

order, which lepts to detect clones that reorder statements [12]. Section 3.1.2 covers

JPlag in more detail.

2.2.2 Tree-Based Clone Tools

More complex tools can parse the source code and obtain a better understanding

of the code when provided a programming language grammar. The tool constructs

a representation of the program called an abstract syntax tree (AST), whose nodes

represent different coding constructs such as statements and functions [16]. The tool

then compares the subtrees from the AST with other subtrees and if two subtrees

6

match, then a clone has been identified. Finding the largest matching subtree is a

resource intensive task but generally gives better results than a token-based tool.

Compared with a token-based tool, this technique uses information on the syntactic

structure of the code to help base its judgement. An example of an AST for an if

statement in Listing 2.1 is shown in Figure 2.1.

Listing 2.1: A small if statement

1 if (strlen(str) < size) {

2 return size;

3 }

if-statement

conditional

relation

invocation

function

strlen

arguments

str

size<

block

return

size

Figure 2.1: AST for Listing 2.1

A code clone detector called CloneDR uses this approach. Trees are compared

with one another by comparing their hashed values. If the hashed values collide or

are similar within a threshold, then the trees can be considered a clone [1]. More

information on CloneDR is given in Section 3.1.3.

7

2.2.3 Program Dependence Graph Clone Tools

Once an internal representation of the program is created as an AST, the program can

be further transformed into a program dependence graph (PDG) [16]. A PDG is a

representation of the program where statements are nodes and dependencies between

statements are represented as edges. If one statement depends on the result of another

statement, then a directed edge is drawn between those nodes. Regardless of how

the two similar code sequences are ordered, the program dependence graph remains

the same. Tools can compare the graphs and identify isomorphic subgraphs which

would suggest a possible code clone [1]. A sample of a PDG derived from Listing 2.2

is shown in Figure 2.2.

Listing 2.2: strlen code sample for PDG

1 int strlen(const char* str) {

2 int len;

3 len = 0;

4 while (*str != ’\0’) {

5 str ++;

6 len ++;

7 }

8 return len;

9 }

8

len = 0

*str != ’\0’

str++ len++

return len

Figure 2.2: Sample PDG for Listing 2.2

This type of analysis is more robust than a tree-based clone tool against state-

ment reordering and code insertion, however, it is more compute intensive. PDGs

are used in Normalizer as a way to reorder statements and to remove useless code.

Constructing PDGs and their use in Normalizer is explained in Section 4.3.

Among all the different algorithms to detect clones, some may perform better than

others depending on various factors. Those factors include but are not limited to:

programming language used, size of source code, and the nature of the code clones

[4]. Normalizer aims to be a general booster to all code clone detectors, and each

tool may witness varying degrees of effectiveness from source code normalization.

2.3 Code Normalizing

Normalizer is not given the responsibility of detecting clones, but instead its goal is

to mutate the source code into a format that is more likely to expose code clones.

Achieving normalized code will involve using similar techniques to the advanced tools,

but instead of exposing clones, Normalizer will output source code with renamed

9

identifiers and reordered statements with the intent that any code clone detector will

find more clones than without normalization.

10

Chapter 3

RELATED WORKS

Detecting code clones is a challenge and many works have been produced to explore

this problem. This chapter discusses some of the works focusing on code clone detec-

tors and techniques involving code normalization.

3.1 Code Clone Detection Tools

Code clone detection tools produce a report detailing any caught clones that the

tool has found. These tools use techniques to find clones that are related to how

Normalizer normalizes source code. The main distinction between the two is that

Normalizer outputs source code while a code clone detector outputs a clone report.

Despite the difference, these two ideas are meant to benefit the cause of catching code

clones. Some of the tools are explained below.

3.1.1 Simian

Simian is a code clone detector that operates on tokens. Simian splits the text into

tokens and can selectively ignore or consider certain types of tokens. It can operate on

many languages such as Java, C, Ruby, JavaScript, or just plain text. By specifying

a programming language, Simian is better able to tokenize the input instead of using

a whitespace delimiter. Some options are available to certain languages, such as the

ability to ignore identifier names, literal values, and modifiers such as static. Since

Simian is a token-based clone detector, it will not be able to understand program

structure, but it serves as a simple and fast detector [6].

Simian outputs clones via the terminal. A sample output is given in Listing 3.1.

11

Listing 3.1: Sample Report from Simian

1 Similarity Analyser 2.4.0 - http:// www. harukizaemon .com/simian

2 Copyright (c) 2003 -2015 Simon Harris. All rights reserved.

3 Simian is not free unless used solely for non -commercial or evaluation purposes.

4 {failOnDuplication=true , ignoreCharacterCase=true , ignoreCurlyBraces=true ,

ignoreIdentifierCase=true , ignoreModifiers=true , ignoreStringCase=true ,

reportDuplicateText=true , threshold =6}

5 Found 6 duplicate lines in the following files:

6 Between lines 115 and 121 in /home/ooee/Thesis/cclient.c

7 Between lines 103 and 109 in /home/ooee/Thesis2/cclient.c

8 packet = makePacketMssg(CLIENT_MESSAGE , destLen , dest , srcLen , myHandle , toSend);

9 if(sendPacket(packet , socket) < 0) {

10 perror("Packet Message");

11 exit (1);

12 }

13 free(packet);

14 ===

15 Found 8 duplicate lines in the following files:

16 Between lines 92 and 102 in /home/ooee/Thesis2/cclient.c

17 Between lines 53 and 63 in /home/ooee/Thesis2/cclient.c

18 int mssgNum = (strlen(mssg) + 1) / maxMssgLen; int consumed = 0;

19 /* add mssgNum because that ’s how many nulls we’ll end up with

20 which we need to account for in the packet */

21 int theRest = ((strlen(mssg) + 1) % maxMssgLen) + mssgNum;

22

23 toSend = malloc(maxMssgLen);

24 while(mssgNum > 0) {

25 memcpy(toSend , mssg + consumed , maxMssgLen - 1);

26 toSend[maxMssgLen - 1] = 0;

27 consumed += maxMssgLen - 1;

28 ===

29 Found 28 duplicate lines in 6 blocks in 1 files

30 Processed a total of 543 significant (926 raw) lines in 5 files

31 Processing time: 0.054 sec

The metric Simian uses to quantify code clone sizes is line numbers. The default

minimum threshold for Simian code clones is six lines of duplicated code. Other

defaults are to ignore capitalization cases and not to ignore identifier names.

12

3.1.2 JPlag

JPlag is another code clone detection tool that also uses tokens. JPlag converts the

text into token strings, whose intent is to characterize the essentials of a program. By

capturing only the important tokens, those tokens would be likely to be preserved if

the code was cloned and modified. Some examples of important tokens are IF, ASSIGN,

and FUN, for function [11]. Identifiers and common operators such as the arithmetic

operators or relational operators are not included as tokens because they are not

considered as important or essential to the program. The token strings produced

from each clone candidate can be compared against each other disregarding order. If

the two token strings match closely enough, then a clone is encountered [12]. The

numeric metric used to measure clone size is by tokens matched.

JPlag outputs results as an HTML page. A sample JPlag output is given in Figure

3.1.

Figure 3.1: Clones found in JPlag

3.1.3 CloneDR

CloneDR is a clone detection tool that converts a program into an AST then compares

the subtrees with each other. It uses a hashing function that hashes trees and its

13

children into a value. The authors decided upon using a poor hashing function so

that similar subtrees would hash into similar values. The hashed values are then

binned so they can be compared with others in the same bin which lends to its

computational performance. If the hashes are similar enough, then a clone has been

detected [1].

Figure 3.2 is a screenshot of CloneDR’s reporting.

3.1.4 Moss

Moss is a plagiarism detector web service where instructors submit student code and

reports of copied code are returned. Moss uses fingerprinting to obtain a unique

signature of a section of code. To obtain a fingerprint, Moss partitions the code into

sections by using a sliding window, then each section is hashed into a value. The

algorithm then picks every n hashes as a component of the code’s signature, where n

is a constant. A database of fingerprints is generated and compared with one another,

and if any two fingerprints match closely enough, then a clone has been detected [17].

The numeric metric used to measure clone size is by lines matched.

Moss produces a report in HTML given by a unique URL that lasts ten days. A

list of clones is presented with each clone listed side-by-side. A sample Moss output

is given in Figure 3.3.

14

Figure 3.2: Clones found in CloneDR

15

Figure 3.3: Clones found in Moss

3.1.5 Summary

This work does not compare these clone detectors against each other, but rather

uses each as the detection engine for the evaluation of the normalization techniques

described in Section 4. As a summary of all the tools used in this thesis, Table 3.1

compares the clone matching technique and the reporting metric of each tool.

16

Table 3.1: Tool Comparison

Tool Name Matching Technique Size Metric

Simian Textual tokens Lines

JPlag Important tokens such as keywords Tokens

CloneDR AST and subtree matching Lines

Moss Fingerprinting from tokens Lines

3.2 Code Normalization for Fighting Self-Mutating Malware

Finding similarities by normalizing code is not limited to the software engineering

field, but also can be used against malware. Self-mutating malware is a problem

since their executable signature is always changing in order to avoid anti-virus detec-

tion. By perturbing the binary within the malware just slightly without modifying

the functionality, the byte-per-byte comparison between it and an established signa-

ture will not yield a match. The techniques that malware uses to self-mutate include

instruction substitution, instruction reordering, dead-code insertion, variable substi-

tutions, and control flow alterations. By normalizing the machine code, it can undo

the process of the self-mutation, leaving only the core functionality of the malware

behind. The core functionality would be the same across different mutations of the

malware, which can be compared with an existing anti-virus signature and be detected

as malware [3].

The mutations that the malware takes are similar to the clones that programmers

may write. Programmers may tweak the source code of a clone to better fit their own

application or write a function slightly differently from one that already exists out of

forgetfulness. These clones may have reordered statements, extra variables, and even

extra code. Just as normalizing source code may expose similarities to other clones,

normalizing malware binary may expose similarities to the malware signature.

17

3.3 NICAD

Accurate Detection of Near-miss Intentional Code (NICAD) is a tool that uses pretty-

printing and pattern matching to detect code clones. It parses the file to eliminate any

noise caused by spacing or comments and formats the source code into a specific way,

such as placement of braces. This would allow clone detection by line comparison

easier. Pattern matching targets a statement of a certain selected type. Then it

compares against others of the same statement type, matching whether it contains

a similar body or expression type. An if statement for example, could match for

any conditional, but will match the entirety of the body. If any other if statement

exhibits the same body, then those two code sections are good candidates for a clone.

The algorithm chosen to detect clones is by longest common substring, where each

token is considered to be an element in the string [15].

Similar to Normalizer, NICAD uses pretty-printing to format the code in a con-

sistent way. Both Normalizer and NICAD removes comments and applies uniform

spacing to the entire code, removing noise which would distract from the source code.

By cleaning up the source code, both NICAD and Normalizer aim to detect more code

clones. An added benefit over NICAD is that Normalizer also reorderes statements

and removes useless code.

18

Chapter 4

IMPLEMENTATION

This section goes over the design of Normalizer and the techniques used to achieve

the source code normalization. First, the requirements of Normalizer are stated.

4.1 Requirements

In order for Normalizer to best produce results, it must output C code that:

1. is able to be parsed by the code clone detection tool

2. should perform as similar to the original code as much as possible but be as

written as consistently as much as possible. Some alterations are:

(a) Statement reordering

(b) Identifier renaming

(c) For-loop conversions

(d) Useless code removal

3. can be tracked back to original code

To accomplish this set of tasks, the following steps are taken to process and output

normalized code.

4.2 Input

The input is a C source code file which Normalizer will load into memory. Some steps

are taken to prepare the source code.

19

4.2.1 Preprocessing

Before reading the source file, a typical C source file contains preprocessor directives

and comments. Comments are removed and preprocessor directives are resolved by

the GCC compiler using the -E argument. The result is all #include directives are

included directly into the file, all #define directives expanded and substituted, and

all comments are replaced with white space. The GCC preprocessor leaves #include

markers identifying the sections of included code in its place. These markers which

start with a # can safely be removed and thus leaves source code readily acceptable

by a parser.

4.2.2 ANTLR

ANTLR is a parser generator that can generate code to parse a language and con-

struct an abstract syntax tree (AST) [10]. Using the ANTLR provided C grammar,

a parser is generated in the Java language that can accept C source code. The pre-

processed code can be lexed and parsed by the generated parser to create the internal

representation of the program as an AST. During the transformation from token

stream to AST, some unimportant information is lost. Modifiers such as const, static,

and volatile are not recorded in the AST. The reason being that those keywords are

relatively less interesting than other tokens.

The parser however does not have a symbol table, making recording typedef names

and function names infeasible during the parsing process. One outcome of this inabil-

ity is the ambiguity of variable declarations and function invocations. Variables in

C can be declared by type(identifier). The code int(a) is a legal variable declaration

for the int called a. The code for run(a) is ambiguous because it could be a function

invocation for the function run or a variable declaration for the typedef name of run.

Since it is uncommon to use the parenthetical style to declare variables, that feature

20

is removed from the grammar and run(a) can only be interpreted as a function invoca-

tion. Other grammar modifications were made to accept complicated code included

by C standard library header files.

4.2.3 Trackability

In order to report results to the user, outputted source code must have a crumb trail

so that through any transformation performed on the code, it can be traced back to

the original source. Each statement from the AST contains a string of tokens from the

original source. The tokens are concatenated into a string and preserved throughout

the program run. A sample output of Normalizer showing the original code is shown

in 4.1.

Listing 4.1: Comments added as a breadcrumb to original code

1 int square(int *a) { /* int square(int *number) */

2 if (a == ((void*) 0)) { /* if (number == NULL) { */

3 return 0; /* return 0 */

4 } else { /* } else { */

5 return * a * * a; /* return * number * * number */

6 }

7 }

4.3 PDG

After the program has been loaded as an AST, a further transformation of the internal

representation into a program dependence graph (PDG) can be performed. A PDG is

a way of representing a program where each vertex in the graph represents a statement

in the program. Directed edges are placed to represent dependencies. If two vertexes

are connected, then one statement is dependent on the result of the other. The PDG

is used for two features, statement reordering and useless code removal.

21

4.3.1 Constructing the PDG

From the AST, a PDG is constructed. Each statement is represented as a node.

Statements can form relationships with other nodes, either control dependent or data

dependent.

Data Dependencies - A statement is data dependent if it depends on the data of

a variable from another statement. Take Listing 4.2 for example.

Listing 4.2: Data dependency example

1 int a, b;

2 a = 5 + 2;

3 b = a * 2;

The statement at b = a * 2 is dependent on a = 5 + 2 because the variable a is modi-

fied on line 2 and is being read on line 3. Therefore, the PDG for Listing 4.2 is shown

in Figure 4.1. Data dependencies are marked as a solid arrow in the PDG.

a = 5 + 2 b = a * 2

Figure 4.1: PDG for Listing 4.2

There are two variations on how statements can modify a variable.

1. Guaranteed Modified

A guaranteed modification is a statement that with 100% certainty will assign

a value into a variable by the end of the statement. For example, a = 5 + 2, the

variable a will be modified. Guaranteed modifications occur when assignments

are not in any conditional or are under both branches of a conditional.

2. Potentially Modified

22

A potential modification is a statement that is not guaranteed to assign a value

into a variable. This is best observed in an if-statement as in Listing 4.3.

Listing 4.3: Variable a has the potential of being set to 0

1 int a, b, c;

2 a = 6;

3 if (c < 5) {

4 a = 0;

5 }

6 b = a;

Because a can either take the value at line 2 or line 4, the read on line 6

depends on both statements a = 6 and a = 0. Since a = 0 is inside a conditional,

the if statement can potentially modify a. Potential modifications compound

on previous modifications until a guaranteed modification is encountered. The

constructed PDG for Listing 4.3 is shown in Figure 4.2. Notice the two in-edges

going into b = a.

a = 6

c <5

a = 0

b = a

Figure 4.2: PDG for Listing 4.3

Control Dependencies - Control dependencies are classified when two statements

cannot reverse their order. Of the two dependency types, control dependencies are a

weaker form of relationship than data dependencies. Listing 4.4 has an example.

Listing 4.4: Control dependency example

1 int a, b;

23

2 a = 5;

3 a = 7;

4 b = a;

Here, b = a is dependent on the data from a = 7. Also implicitly, a = 5 must happen

before a = 7. If a = 5 came immediately after a = 7, then b will be assigned a different

value. Therefore there must be a control dependency between both assignments.

The constructed PDG is shown in Figure 4.3. Control dependencies are marked

as a dashed arrow. Control dependencies are placed when two statements contain

assignments to the same variable, also called a “write after write.”

a = 5 a = 7 b = a

Figure 4.3: PDG of Listing 4.4

Using both variable dependencies and control dependencies, a PDG can be gen-

erated to represent the program.

4.3.2 Pointer Analysis

To obtain a more accurate PDG, simple pointer analysis is performed in order to

better detect changed variables. If a pointer is dereferenced and modified, then any

variables declared before it could potentially be modified by that statement. In

addition, if a pointer type has been dereferenced and read, the dereferencing depends

on any variable prior to that statement.

Take Listing 4.5 and its PDG in Figure 4.4 as an example of a read from a pointer.

Listing 4.5: Variable p is dereferenced and read

1 int func() {

2 int a, b, *p;

3 a = 1;

24

4 b = 2;

5 p = &a;

6 b = *p;

7 return b;

8 }

a = 1

b = 2

p = &a

b = *p return b

Figure 4.4: PDG for Listing 4.5

The statement of b = *p tells that p was dereferenced and its referenced value was

assigned into b. Since the assignment of p = &a also depends on a, then the chain of

dependencies is preserved.

Listing 4.6 and Figure 4.5 showcase a scenario where a value is written into a

dereferenced pointer.

25

Listing 4.6: Variable p is dereferenced and written to

1 int func2() {

2 int a, c, *p;

3 a = 1;

4 b = 2;

5 p = &a;

6 *p = 5;

7 return b;

8 }

a = 1

b = 2

p = &a

*p = 5 return b

Figure 4.5: PDG for Listing 4.6

The dereference of *p = 5 could potentially modify any of the variables, so all nodes

have a control dependency on *p = 5. Also by dereferencing p, the value of p was read,

so a variable dependency was drawn from p = &a to *p = 5.

4.3.3 Structs and Unions

Structs and unions provide another opportunity for dependencies to occur in the

PDG.

Structs - In the C language, the members of a struct each occupy their own space

26

in memory. The members of a struct can be treated as their own variables, where

an assignment into one of the members does not affect their siblings. However, an

assignment into a member will affect its children and the parent. An example is

shown in Listing 4.7.

Listing 4.7: Variable p is dereferenced and written to

1 typedef struct {

2 int ssn;

3 int age;

4 } Person;

5

6 typedef struct {

7 int salary;

8 Person person;

9 } Employee;

10

11 typedef struct {

12 int averageScore;

13 int yearsPlayed;

14 } BowlingStats;

15

16 typedef struct {

17 Employee employee;

18 BowlingStats bowlingStats;

19 } CompanyBowler;

20

21 int main() {

22 CompanyBowler bowlerA = {{80000 , {123456789 , 23}}, {180, 2}};

23 // A CompanyBowler who makes $80000 annually , has an ssn of 123456789 , is 23

years old , and has an average score of 180 over 2 years of playing

24

25 Employee newEmployee = {90000 , {222222222 , 26}};

26 // An Employee who makes $90000 annually , has an ssn of 222222222 and is 26 years

old

27

28 bowlerA.employee = newEmployee;

29 printf("%d", bowlerA.employee.salary);

30 printf("%d", bowlerA.employee.person.ssn);

31 printf("%d", bowlerA.employee.person.age);

27

32 printf("%d", bowlerA.bowlingStats.averageScore);

33 printf("%d", bowlerA.bowlingStats.yearsPlayed);

34 return 0;

35 }

The assignment into employee causes all members under employee to be modified. In

addition, the parent struct CompanyBowler is also modified since one of its members has

been modified. The siblings of employee however are not modified, so bowlingStats is left

untouched. The resulting PDG is shown in Figure 4.6.

companyBowler

companyBowler.employee

= newEmployee

newEmployee

printf(age)

printf(salary)

printf(ssn)

printf(averageScore)

printf(yearsPlayed)

Figure 4.6: PDG for Listing 4.7

28

Unions - Unions are similar to structs except each member occupies the same

memory space. If one member is modified, then all of its siblings could also be

potentially modified. If a member of a union is modified, then their parent and

children are also modified, the same way as structs. An example is given in Listing 4.8.

29

Listing 4.8: Variable p is dereferenced and written to

1 typedef struct {

2 int WPM;

3 int floor;

4 } Programmer;

5

6 typedef struct {

7 int injuries;

8 int weight;

9 } Chef;

10

11 typedef union {

12 Programmer programmer;

13 Chef chef;

14 } Occupation;

15

16 typedef struct {

17 int salary;

18 Occupation occupation;

19 } Employee;

20

21 int main() {

22 Employee employee;

23 employee.salary = 80000;

24 employee.occupation.programmer.WPM = 100;

25 employee.occupation.programmer.floor = 2;

26

27 employee.occupation.chef.injuries = 11;

28

29 printf("%d", employee.occupation.programmer.WPM);

30 printf("%d", employee.occupation.chef.injuries);

31 printf("%d", employee.salary);

32 return 0;

33 }

Although the assignment into the field injuries is inside a struct, The member chef

is inside the union Occupation and has a sibling of programmer. So by modifying injuries

which modifies chef, the members of programmer can also be potentially modified, namely

WPM and floor. Therefore printing WPM depends on the original assignment into WPM and

30

the potential modification into injuries. The PDG is shown in Figure 4.7.

employee (lines 2-4)

injuries = 11 printf(injuries)

printf(WPM)

printf(salary)

Figure 4.7: PDG for Listing 4.8

4.3.4 Side-effecting Functions

Some functions produce side-effects, for example C’s printf outputs content to stdout.

User-defined functions may also modify global variables or modify any input parame-

ters passed into it. Due to this, analysis is performed on a per-function basis to give a

profile on the capabilities of each function. If a function does modify global variables

or modifies any input parameters, then Normalizer will treat each call to that func-

tion as one that also modifies those variables. If the function body is not provided,

such as those in the C standard library, then it takes the conservative approach and

assumes that it produces side-effects, potentially affecting any pointers passed in.

An example of a side-effecting function is shown in Listing 4.9 and its correspond-

31

ing PDG in Figure 4.8.

Listing 4.9: Variable square produces a side-effect to what was passed in

1 void square(int *a) {

2 *a = *a * *a;

3 }

4

5 int main() {

6 int a;

7 a = 7;

8 square (&a);

9 return a;

10 }

a = 7

square(&a) return a

Figure 4.8: PDG for Listing 4.9

Since Normalizer identifies that square is guaranteed to modify whatever was passed

in, there is a data dependency from square(&a) to return a and not one from a = 7 to return

a.

4.3.5 Nested Statements

C constructs such as for loops and while loops contain nested statements. PDGs are

constructed for each opening brace { and closing brace }, which is called a code block.

The code block collectively can be aggregated so that at a whole, the code block

has variables it depends on, can potentially modify, and will modify. An example of

32

nested statements is shown in Listing 4.10.

Listing 4.10: if statements can read, write, and potentially write into
variables

1 on = 1;

2 num = 6;

3 name = get();

4 pts = 0;

5 if (on) {

6 pts = num;

7 name [0] += pts;

8 } else {

9 name = "Jo";

10 }

11 printf("%d", on);

12 printf("%d", pts);

13 printf("%d", num);

14 printf(name);

Let us call the statements not inside any braces as the “first-level statements” and

call each statement inside any brace as the “second-level statements” and so forth for

every nested statement. The if which encapsulates the second-level statements is a

first-level statement. The PDG for Listing 4.10 is shown in Figure 4.9.

33

on = 1

num = 6

name = get()

pts = 0

on

pts = num

name[0] += pts

name = “Jo”

print(on)

print(num)

print(name)

print(pts)

Figure 4.9: PDG for Listing 4.10

PDG nodes only have relationships with other PDG nodes on the same level. So

on = 1, num = 6, name = get(), and pts = 0 all have relationships with the if statement, but

not any statement in second-level statements, even if those statements directly have

those dependencies. Second-level statements can have relationships with each other

localized within their own code block. Statements with nested statements take on

the aggregate of their nested statements’ dependencies. Therefore for the entirety of

the if statement, it reads from the variables on, num, potentially modifies pts, and will

modify name.

34

4.3.6 Transitive Reduction

After the PDG is constructed, there may be more edges than required. A transi-

tive reduction of the PDG is performed to reduce the number of edges in the graph,

while still retaining the same reachability. In addition, if a node has both a data

dependence and control dependence to another node, the control dependence is re-

moved because data dependence is a stronger relationship than control dependence

and already implies order. Every graph has a unique transitive reduced graph [5]. By

reducing the amount of edges, the computations become less numerous when sorting

the PDG in the future. In addition, since the transitive reduction is unique, it pro-

vides an opportunity to compare the graphs between different functions. Figure 4.10

and Figure 4.11 show the result of a transitive reduction on a graph.

a = 5 a = 7 + a * b

b = 1

c = a + b

Figure 4.10: Before transitive reduction

35

a = 5 a = 7 + a * b

b = 1

c = a + b

Figure 4.11: After transitive reduction

At this point, the PDG for the source has been created and is ready to be sorted

under normalization.

4.4 Normalization

Source code normalization involves mutating the source code to appear as similar as

possible while preserving the logic of the program. Clones that look alike to other

clones are more likely to be detected as a clone. In this section, the techniques used

by Normalizer are discussed.

4.4.1 Statement Reordering

Programs are written in a linear fashion, but the statements are not necessarily re-

stricted to run in the order in which they are coded. Independent statements can be

moved around if they do not depend on each other and the surrounding code does not

depend on the reorder. By transforming the program into a PDG, the programmer’s

choice of ordering is taken out of consideration. The PDG can then be serialized back

into source code using a topological sort. By applying the same topological sorting

algorithm to each function, the order of code may appear as similar to each other and

36

additional code clones can be detected.

A topological sort places nodes which have no in-edges first. Stated differently, it

will prioritize statements which do not have any dependencies not yet placed. How-

ever, multiple nodes may have zero in-edges, creating ties. A good sorting algorithm

for Normalizer is one that minimizes ties so that the code will appear in as consistent

an order as possible. Consider Listing 4.11 and its PDG in Figure 4.12.

Listing 4.11: Both a = 8 and b = 144 / 4 are independent of each other

1 int a, b, c;

2 a = 8;

3 b = 144 / 4;

4 c = a + b;

a = 8

b = 144 / 4

c = a + b

Figure 4.12: PDG for Listing 4.11

Both a = 8 and b = 144 / 4 are candidates for next in the topological sort since

picking either of them to go first will not alter the value of c. This tie should be broken

to force a strict ordering. Normalizer breaks ties by determining which statement

is more “simple.” This heuristic decision observes that a = 8 is a simpler statement

than b = 144 / 4, because no arithmetic operations take place in a = 8. So a = 8 is picked

before b = 144 / 4. Regardless of how the original code ordered those two statements,

it will always output a = 8 then b = 144 / 4. By enforcing a strict sorting using set rules,

the source code ordering is consistent.

37

The example above gives an order on two EXPRESSION STATEMENTs. To sort two

different statement types, an order was predetermined based on their statement types.

The ordering is listed below.

1. TYPEDEF DECLARATION

2. ENUM DEFINITION

3. STRUCT DEFINITION

4. VARIABLE DECLARATION

5. DECLARATION

6. EXPRESSION STATEMENT

7. SELECTION STATEMENT IF

8. SELECTION STATEMENT SWITCH

9. ITERATION STATEMENT FOR

10. ITERATION STATEMENT DECLARE FOR

11. ITERATION STATEMENT WHILE

12. ITERATION STATEMENT DO WHILE

13. LABELED IDENTIFIER STATEMENT

14. LABELED CASE STATEMENT

15. LABELED DEFAULT STATEMENT

16. COMPOUND STATEMENT

17. JUMP BREAK STATEMENT

38

18. JUMP CONTINUE STATEMENT

19. JUMP RETURN STATEMENT

If the PDG has two candidates, an if statement and an expression statement p = 0,

the sorting algorithm will favor p = 0 since EXPRESSION STATEMENT is closer to the top

than SELECTION STATEMENT IF.

If two statements are the same type, such as two EXPRESSION STATEMENTs, a =

55 / b and len = strlen("hello"), a score is computed for each statement. The score is

determined by the composition of the statement. Each expression statement at its

heart is an assignment expression. Then the right hand value is a multiplicative

expression 55 / b and an invocation expression strlen("hello") respectively. To break

this tie, the distance from those expression types to an expression as determined

by the C grammar is used. The multiplicative expression is closer to an expression

than the invocation expression, so a = 55 / b happens first.

There are some ties that cannot be broken, an example is a = 0 and b = 0. Both

are an assignment with the constant value of 0. It would not make sense to break

the tie by comparing the identifier names because identifier names are also up to

the programmer. This pair of statements is marked as equal, and the sort picks one

arbitrarily.

4.4.2 Useless Code Removal

Useless code removal is an optimization to remove code that has no effect on the

program. Useless code is unintentionally left in the program typically by forgetting

to remove debugging code or by including unnecessary statements. In the context of

code clones, useless code is inserted code, which can be removed to potentially reveal

a larger contiguous code clone instead of fragments of duplicated code.

39

Identifying useless code is possible by constructing the PDG. Useless code may

form a tree which is not critical in the forest. Certain nodes in the PDG are marked as

critical, such as return statements and function calls and global variable assignments.

Then every node that the critical statements has a data dependency on is also marked

as critical. The critical property propagates throughout the PDG until there are no

more nodes to propagate to. All nodes not marked as critical are considered useless

code and safe to remove from the program.

Take for an example Listing 4.12 and its PDG in Figure 4.13.

Listing 4.12: A function with some useless code

1 int square(int x) {

2 int n, a, b;

3 a = 0;

4 n = 2;

5 a = x * x;

6 b = a * x;

7 return a;

8 }

a = 0

n = 2

b = a * x

a = x * x return a

Figure 4.13: Critical state start

The statement with the return is marked as critical, so all nodes that the return

40

depends upon are also marked as critical. Then all nodes that a = x * x depends

on are also marked as critical and so forth. Note that a = 0 is not marked critical

because critical propagation only propagates across data dependencies and not control

dependencies. The final result of useless code removal is shown in Figure 4.14. The

unmarked nodes identified as n = 2, a = 0, and b = a * x have no effect on the program,

and can be safely removed.

a = 0

n = 2

b = a * x

a = x * x return a

Figure 4.14: Critical property propagated

4.4.3 Identifier Renaming

Identifiers are the names a programmer chooses for their variables, struct types, and

functions. Since they are simply labels, the choice of identifiers will not matter

in the overall program meaning. Normalizer will rename the identifiers that the

programmers have chosen into standardized names. Once an AST is obtained, either

by sorting the PDG or by using the original AST, Normalizer assigns the identifier

names on a first-used, first-assigned basis. The first identifier is assigned the variable

a to z then aa to zz and so forth. Typically, function parameters are first assigned then

local variables.

41

An example of identifier renaming is shown in Listing 4.13 and the result in

Listing 4.14.

Listing 4.13: Before identifier renaming

1 int power(int num , int power) {

2 int i = 0;

3 int product = 1;

4 while (i < power) {

5 product = product * num;

6 i++;

7 }

8 return product;

9 }

Listing 4.14: After identifier renaming

1 int power(int a, int b) {

2 int c = 0;

3 int d = 1;

4 while (c < b) {

5 d = d * a;

6 c++;

7 }

8 return d;

9 }

Variable shadowing is also considered in identifier renaming. Variable shadowing

is a declaration of a variable inside an inner scope whose name already exists in the

outer scope. It is not a common occurrence in source code, but it is part of the C

language. Take into consideration Listing 4.15.

Listing 4.15: Before identifier renaming with variable shadowing

1 int func(int num) {

2 int i = 1;

3 while (num < 100) {

4 int i = num \% 10;

5 num += i;

6 }

7 return i + num;

42

8 }

Variable i is declared inside the while loop, but i is already declared in the outer

scope. This is legal C, and i within the while loop occupies a different memory loca-

tion than the i declared as a function local variable. Normalizer recognizes variable

shadowing and the resulting identifier renaming in shown in Listing 4.16.

Listing 4.16: After identifier renaming with variable shadowing

1 int func(int a) {

2 int b = 1;

3 while (a < 100) {

4 int c = a \% 10;

5 a += c;

6 }

7 return b + a;

8 }

4.4.4 For-Loop Transformation

For-loops can be transformed into a while loop with relative ease. Given a for-loop

of:

1 for (initial; condition; iteration) {

2 body

3 }

An equivalent while-loop is:

1 initial

2 while (condition) {

3 body

4 iteration

5 }

By restricting the number of ways loops can be written, it is more likely that code

will appear the same, therefore increasing the chances of detecting code clones.

43

4.4.5 Function Splitting

Sometimes, the granularity of clone detection is too large. Tools like Moss will only

look for clones between files, rather than looking for clones within a file. Simply by

fragmenting each function into its own file, Moss can be enabled to look for clones

between functions that originally belonged in the same file.

44

Chapter 5

RESULTS

This chapter evaluates the effectiveness of Normalizer and compares the quantity

and quality of clones caught using and not using Normalizer. If the combination of

Normalizer and the code clone detectors produces more clones than the detector by

itself, then code normalization can be considered a beneficial component in detecting

code clones.

As input, we used student code submitted in the Introduction to Computer Net-

works class. The assignment chosen is a chat program, where students write a chat

server and a chat client. Both the server and client perform similar tasks, such as

setting up a socket and creating or reading packets. These similar functions can best

be placed in a common C source file, but can also be placed as clones in both the

server and client source files separately. This assignment has a likely chance that code

clones will exist, proving to be a good sample for the validation. It is not a goal of

students to create code clones, but by the pressures of deadlines, students are prone

to write clones. Although the test sample is comprised of students, code clones can

be written by anyone.

In this chapter, we select three students and provide an in-depth look at each of

them using the various code clone detection tools. Their results are compared for each

tool with and without Normalizer. We consider the following versions of normalized

code that Normalizer can output:

1. original: This is the original source code but with a slight modification. Since

the other source code versions are void of comments and empty lines and each

statement occupies exactly one line, original must be as well. In order to

45

give each version a fair assessment, original must also be formatted to look

like the rest. To remove comments, the GCC preprocessor is invoked with the

-fpreprocess, -dD, and -E flags. Removing empty lines and preprocessor direc-

tives is achieved by using the Unix program sed and deleting empty lines or lines

that begin with #. The Unix program indent is used to enforce that each state-

ment occupies one line, no matter how many characters the line has. indent

is invoked with the following flags: -linux, --braces-on-func-def-line, and

-l9999 which forces braces on the same line as if, while, and for statements and

function definitions and does not enforce line wrapping until 9999 characters.

2. noRename PDG: This version disables all normalization features, but the

source code is still fed through Normalizer. Some normalization takes place

including C preprocessing, whitespace formatting, and removing modifiers such

as const, static, volatile.

3. normalized: This is the full normalization which includes statement reorder-

ing, identifier renaming, and useless code removal. This version enables all

normalization features.

4. noRename: This is the full normalization except for identifier renaming. Some

tools perform better without renaming identifiers.

5. noPDG: This version does not build a PDG. Therefore statement reordering

and useless code removal are not performed, but identifier renaming is still

performed.

6. split: This is like the normalized version, but every function is separated into

its own file. Some tools perform better when the input is composed of individual

files each containing a single function.

46

7. noRename split: This is like split, except the normalization omits identifier

renaming.

5.1 Student A

The first student is anonymized as Student A.

5.1.1 Simian

Simian performed best using the noRename version, as it detected the greatest clone

mass between any of the versions. In one case, by normalizing the code, a clone was

split into two separate clones, whose combined mass is larger than the original clone.

The original clone is shown in Listing 5.1 and Listing 5.2.

47

Listing 5.1: Single clone in original

1 while (mssgNum > 0) {

2 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

3 toSend[maxMssgLen - 1] = 0;

4 consumed += maxMssgLen - 1;

5 packet = makePacketMssg(

CLIENT_MESSAGE , destLen , dest ,

srcLen , myHandle , toSend);

6 if (sendPacket(packet , socket) < 0)

{

7 perror("Packet Message");

8 exit (1);

9 }

10 free(packet);

11 mssgNum --;

12 }

13 free(toSend);

14 toSend = malloc(theRest);

15 memcpy(toSend , mssg + consumed , theRest

);

16 memcpy(toSend , mssg + consumed , theRest

);

17 packet = makePacketMssg(CLIENT_MESSAGE ,

destLen , dest , srcLen , myHandle ,

toSend);

18 if (sendPacket(packet , socket) < 0) {

19 perror("Packet Message");

20 exit (1);

21 }

22 free(packet);

23 free(toSend);

Listing 5.2: Single clone in original

1 while (mssgNum > 0) {

2 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

3 toSend[maxMssgLen - 1] = 0;

4 consumed += maxMssgLen - 1;

5 packet = makePacketBroadcast(

CLIENT_BROADCAST , hLen , myHandle ,

toSend);

6 if (sendPacket(packet , socket) < 0)

{

7 perror("Packet Broadcast");

8 exit (1);

9 }

10 free(packet);

11 mssgNum --;

12 }

13 free(toSend);

14 toSend = malloc(theRest);

15 memcpy(toSend , mssg + consumed , theRest

);

16 packet = makePacketBroadcast(

CLIENT_BROADCAST , hLen , myHandle ,

toSend);

17 if (sendPacket(packet , socket) < 0) {

18 perror("Packet Broadcast");

19 exit (1);

20 }

21 free(packet);

22 free(toSend);

By normalizing the code, the clone has fragmented into two pieces, but each

fragment itself is a clone. This phenomena is shown in Listing 5.3 and Listing 5.4.

The clones are within the same function and two clones are highlighted in yellow and

orange.

48

Listing 5.3: Clones within the same
function in noRename

1 while (mssgNum > 0) {

2 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

3 mssgNum --;

4 toSend[maxMssgLen - 1] = 0;

5 consumed += maxMssgLen - 1;

6 packet = makePacketMssg (5, destLen ,

dest , srcLen , myHandle , toSend);

7 if (sendPacket(packet , socket) < 0)

{

8 perror("Packet Message");

9 exit (1);

10 }

11 free(packet);

12 }

13 free(toSend);

14 toSend = malloc(theRest);

15 memcpy(toSend , mssg + consumed , theRest

);

16 packet = makePacketMssg (5, destLen ,

dest , srcLen , myHandle , toSend);

17 if (sendPacket(packet , socket) < 0) {

18 perror("Packet Message");

19 exit (1);

20 }

21 free(packet);

22 free(toSend);

Listing 5.4: Clones within the same
function in noRename

1 while (mssgNum > 0) {

2 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

3 mssgNum --;

4 toSend[maxMssgLen - 1] = 0;

5 consumed += maxMssgLen - 1;

6 packet = makePacketBroadcast (4, hLen

, myHandle , toSend);

7 if (sendPacket(packet , socket) < 0)

{

8 perror("Packet Broadcast");

9 exit (1);

10 }

11 free(packet);

12 }

13 free(toSend);

14 toSend = malloc(theRest);

15 memcpy(toSend , mssg + consumed , theRest

);

16 packet = makePacketBroadcast (4, hLen ,

myHandle , toSend);

17 if (sendPacket(packet , socket) < 0) {

18 perror("Packet Broadcast");

19 exit (1);

20 }

21 free(packet);

22 free(toSend);

The only difference between the two versions is the movement of mssgNum-- upwards

from line 11 to line 3. This potentially made the original code clone too small to count

as a clone. As a result, a different code clone has been identified. However, when

taking both functions into consideration, the entire function should be considered a

clone to each other. Simian has failed to detect the clone to that extent, but it has

49

detected a higher clone mass.

Another clone that Simian in noRename is a one line difference from original.

The clone from noRename is shown in Listing 5.5 and Listing 5.6.

Listing 5.5: Clone in noRename

1 int mssgNum = (strlen(mssg) + 1) /

maxMssgLen;

2 int theRest = ((strlen(mssg) + 1) %

maxMssgLen) + mssgNum;

3 toSend = malloc(maxMssgLen);

4 while (mssgNum > 0) {

5 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

6 mssgNum --;

7 toSend[maxMssgLen - 1] = 0;

8 consumed += maxMssgLen - 1;

9 packet = makePacketMssg (5, destLen ,

dest , srcLen , myHandle , toSend);

10 if (sendPacket(packet , socket) < 0)

{

11 perror("Packet Message");

12 exit (1);

13 }

14 free(packet);

Listing 5.6: Clone in noRename

1 int mssgNum = (strlen(mssg) + 1) /

maxMssgLen;

2 int theRest = ((strlen(mssg) + 1) %

maxMssgLen) + mssgNum;

3 toSend = malloc(maxMssgLen);

4 while (mssgNum > 0) {

5 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

6 mssgNum --;

7 toSend[maxMssgLen - 1] = 0;

8 consumed += maxMssgLen - 1;

9 packet = makePacketBroadcast (4, hLen

, myHandle , toSend);

10 if (sendPacket(packet , socket) < 0)

{

11 perror("Packet Broadcast");

12 exit (1);

13 }

14 free(packet);

The original version is shown in Listing 5.7 and Listing 5.8.

50

Listing 5.7: Listing 5.5 as written
in original

1 int mssgNum = (strlen(mssg) + 1) /

maxMssgLen;

2 int consumed = 0;

3 int theRest = ((strlen(mssg) + 1) %

maxMssgLen) + mssgNum;

4 toSend = malloc(maxMssgLen);

5 while (mssgNum > 0) {

6 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

7 toSend[maxMssgLen - 1] = 0;

8 consumed += maxMssgLen - 1;

9 packet = makePacketMssg(

CLIENT_MESSAGE , destLen , dest ,

srcLen , myHandle , toSend);

10 if (sendPacket(packet , socket) < 0)

{

11 perror("Packet Message");

12 exit (1);

13 }

14 free(packet);

15 mssgNum --;

Listing 5.8: Listing 5.6 as written
in original

1 int mssgNum = (strlen(mssg) + 1) /

maxMssgLen;

2 int consumed = 0;

3 int theRest = ((strlen(mssg) + 1) %

maxMssgLen) + mssgNum;

4 toSend = malloc(maxMssgLen);

5 while (mssgNum > 0) {

6 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

7 toSend[maxMssgLen - 1] = 0;

8 consumed += maxMssgLen - 1;

9 packet = makePacketBroadcast(

CLIENT_BROADCAST , hLen , myHandle ,

toSend);

10 if (sendPacket(packet , socket) < 0)

{

11 perror("Packet Broadcast");

12 exit (1);

13 }

14 free(packet);

15 mssgNum --;

The clone size is the same in noRename and original, but by statement reordering,

int consumed = 0 is moved away from the clone and mssgNum-- is moved into the clone. By

gaining and losing one line, the clone sizes remain the same, but shows that a clone

size of nine is possible.

When performing full normalization including identifier renaming, Simian per-

formed worse than noRename. The same clone found in Listing 5.3 and Listing 5.4

from noRename is not identified in normalized, which is shown in Listing 5.9 and

Listing 5.10.

51

Listing 5.9: Listing 5.3 clone lost
by identifier renaming

1 int j = (strlen(a) + 1) / i;

2 int k = ((strlen(a) + 1) % i) + j;

3 d = malloc(i);

4 while (j > 0) {

5 memcpy(d, a + f, i - 1);

6 j--;

7 d[i - 1] = 0;

8 f += i - 1;

Listing 5.10: Listing 5.4 clone lost
by identifier renaming

1 int h = (strlen(a) + 1) / g;

2 int i = ((strlen(a) + 1) % g) + h;

3 c = malloc(g);

4 while (h > 0) {

5 memcpy(c, a + e, g - 1);

6 h--;

7 c[g - 1] = 0;

8 e += g - 1;

The different identifier names have caused Simian to fail catastrophically. Between

the two listings from normalized, the identifier names diverged. The extra variable

causes all subsequent variable declarations to take a different name, causing a shift

in identifier names. Despite perfectly preserving the structure of the clones, the clone

is undetected. Clones that exist within the same function, such as from Listing 5.3

and Listing 5.4 are unaffected by identifier renaming since the clones use the same

renamed identifiers.

The overall performance of Simian on Student A is shown in Figure 5.1. The total

number of clone lines found is written on top of the solid bar and the total number

of clones found is scribed in white on top of the shorter bar.

52

Figure 5.1: Summary performance of Simian on Student A

The performance of noPDG is zero because this mode will change identifier names

but will not reorder the statements. As already seen, changing identifier names causes

Simian to fail. Using noRename performs better than original. For the remainder of

this chapter, when comparing Simian runs, noRename will be considered instead of

normalized as the best candidate for normalized code.

5.1.2 JPlag

Through normalizing the code, JPlag was able to catch an entirely new clone. The

new clone is shown in Listing 5.11 and Listing 5.12.

53

Listing 5.11: New normalized
clone found

1 if (global_c > 0) {

2 c = global_d[global_c - 1] + 1;

3 }

4 for (b = 0; b < global_c; b++) {

5 FD_SET(global_d[b], &a);

6 }

7 if (mySelect(c, (fd_set *) & a, ((void

*)0), ((void *)0), ((void *)0)) ==

-1) {

8 perror("Error selecting FD to read

from");

9 exit (1);

10 }

11 if (FD_ISSET(global_b , &a)) {

12 return global_b;

13 } else {

Listing 5.12: New normalized clone
found

1 if (global_a) {

2 FD_SET(fileno(stdin), &a);

3 }

4 if (mySelect(b, (fd_set *) & a, ((void

*)0), ((void *)0), ((void *)0)) ==

-1) {

5 perror("Error selecting FD to read

from");

6 }

7 if (FD_ISSET(global_c , &a)) {

8 return global_c;

9 }

To investigate how this new clone was discovered, the original code which the

normalized code is derived from is shown in Listing 5.13 and Listing 5.14.

Listing 5.13: Undiscovered clone in
original

1 for(i = 0; i < clientNum; i++) {

2 FD_SET(clientFDs[i],&fdvar);

3 }

4 if (clientNum > 0) {

5 maxFD = clientFDs[clientNum -1] + 1;

6 }

7 if(select(maxFD ,(fd_set *) &fdvar , NULL

, NULL , NULL) == -1) {

8 perror("Error selecting FD to read

from");

9 exit (1);

10 }

11 if(FD_ISSET(serverFD , &fdvar)) {

12 return serverFD;

13 } else {

Listing 5.14: Undiscovered clone in
original

1 if(isConnected) {

2 FD_SET(fileno(stdin),&fdvar);

3 }

4 if(select(maxFD ,(fd_set *) &fdvar , NULL ,

NULL , NULL) == -1) {

5 perror("Error selecting FD to read

from");

6 exit (1);

7 }

8 if(FD_ISSET(socketFD , &fdvar)) {

9 return socketFD;

10 }

54

The difference is the movement of if (clientNum > 0) in Listing 5.13 from line 4 to

line 1. In the original, it was inserted in the middle of the detected clone. Normalizer

is able to determine that the if statement is free to move anywhere before the select

call. Since if statements are given a higher priority in statement reordering than a for

loop, so it was moved upwards. By moving it up, the clone appears as one contiguous

unit and thus was detected.

A limitation of JPlag is its inability to find clones within the same file. So by

splitting each function into its own file and inputting those files into JPlag, a sig-

nificant improvement in clone detection has been shown. The result is that a large

clone was exposed which originally belonged in the same file. The clone is shown in

Listing 5.15 and Listing 5.16.

55

Listing 5.15: A clone found in split

1 int f = 0;

2 int g = strlen(global_b);

3 int h = strlen(b);

4 int i = 1000 - (g + 1) - (h + 1) -

sizeof(header);

5 int j = (strlen(a) + 1) / i;

6 int k = ((strlen(a) + 1) % i) + j;

7 d = malloc(i);

8 while (j > 0) {

9 memcpy(d, a + f, i - 1);

10 j--;

11 d[i - 1] = 0;

12 f += i - 1;

13 e = makePacketMssg (5, h, b, g,

global_b , d);

14 if (sendPacket(e, c) < 0) {

15 perror("Packet Message");

16 exit (1);

17 }

18 free(e);

19 }

20 free(d);

21 d = malloc(k);

22 memcpy(d, a + f, k);

23 e = makePacketMssg (5, h, b, g, global_b

, d);

24 if (sendPacket(e, c) < 0) {

25 perror("Packet Message");

26 exit (1);

27 }

28 free(e);

29 free(d);

Listing 5.16: A clone found in split

1 int e = 0;

2 int f = strlen(global_b);

3 int g = 1000 - f - sizeof(header) - 1;

4 int h = (strlen(a) + 1) / g;

5 int i = ((strlen(a) + 1) % g) + h;

6 c = malloc(g);

7 while (h > 0) {

8 memcpy(c, a + e, g - 1);

9 h--;

10 c[g - 1] = 0;

11 e += g - 1;

12 d = makePacketBroadcast (4, f,

global_b , c);

13 if (sendPacket(d, b) < 0) {

14 perror("Packet Broadcast");

15 exit (1);

16 }

17 free(d);

18 }

19 free(c);

20 c = malloc(i);

21 memcpy(c, a + e, i);

22 d = makePacketBroadcast (4, f, global_b ,

c);

23 if (sendPacket(d, b) < 0) {

24 perror("Packet Broadcast");

25 exit (1);

26 }

27 free(d);

28 free(c);

The clone discovered is a larger clone of what Simian discovered. Even when the

identifiers have been renamed, JPlag was able to detect the clone, something that

Simian is not able to do.

By finding other clones within the same source file including the recently discussed

56

clone in Listing 5.15 and Listing 5.16, JPlag caught a total mass of at least two times

more than the original source code. A summary is shown in Figure 5.2.

Figure 5.2: Summary performance of JPlag on Student A

5.1.3 CloneDR

CloneDR is also used to find code clones. However, preprocessor directives left in the

input are considered code. The reason the original version is stripped of preprocessor

directives is because CloneDR would report a series of #includes as a clone. Listing 5.17

is a real CloneDR reported clone on unmodified original source code.

57

Listing 5.17: Preprocessor directives counted as clones

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/types.h>

4 #include <sys/stat.h>

5 #include <sys/uio.h>

6 #include <sys/time.h>

7 #include <unistd.h>

8 #include <fcntl.h>

9 #include <string.h>

10 #include <strings.h>

11 #include <sys/socket.h>

12 #include <netinet/in.h>

13 #include <netdb.h>

Since #includes do not contain any coding logic, it would be unfit for it to be

considered as a code clone.

Aside from nonsensical clones, CloneDR performs poorly with identifier renaming.

It was able to detect the same clone as JPlag in original, which is shown in Listing 5.18

and Listing 5.19.

58

Listing 5.18: Clone from the orig-
inal code

1 int hLen = strlen(myHandle);

2 int maxMssgLen = MAXBUF - hLen - sizeof

(header) - 1;

3 int mssgNum = (strlen(mssg) + 1) /

maxMssgLen;

4 int consumed = 0;

5 int theRest = ((strlen(mssg) + 1) %

maxMssgLen) + mssgNum;

6 toSend = malloc(maxMssgLen);

7 while(mssgNum > 0) {

8 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

9 toSend[maxMssgLen - 1] = 0;

10 consumed += maxMssgLen - 1;

11 packet = makePacketBroadcast(

CLIENT_BROADCAST , hLen , myHandle

, toSend);

12 if(sendPacket(packet , socket) < 0)

{

13 perror("Packet Broadcast");

14 exit (1);

15 }

16 free(packet);

17 mssgNum --;

18 }

19 free(toSend);

20 toSend = malloc(theRest);

21 memcpy(toSend , mssg + consumed , theRest

);

22 packet = makePacketBroadcast(

CLIENT_BROADCAST , hLen , myHandle ,

toSend);

23 if (sendPacket(packet , socket) < 0) {

24 perror("Packet Broadcast");

25 exit (1);

26 }

27 free(packet);

28 free(toSend);

Listing 5.19: Clone from the orig-
inal code

1 int srcLen = strlen(myHandle);

2 int destLen = strlen(dest);

3 int maxMssgLen = MAXBUF - (srcLen + 1)

- (destLen + 1) - sizeof(header);

4 int mssgNum = (strlen(mssg) + 1) /

maxMssgLen;

5 int consumed = 0;

6 int theRest = ((strlen(mssg) + 1) %

maxMssgLen) + mssgNum;

7 toSend = malloc(maxMssgLen);

8 while(mssgNum > 0) {

9 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

10 toSend[maxMssgLen - 1] = 0;

11 consumed += maxMssgLen - 1;

12 packet = makePacketMssg(

CLIENT_MESSAGE , destLen , dest ,

srcLen , myHandle , toSend);

13 if(sendPacket(packet , socket) < 0)

{

14 perror("Packet Message");

15 exit (1);

16 }

17 free(packet);

18 mssgNum --;

19 }

20 free(toSend);

21 toSend = malloc(theRest);

22 memcpy(toSend , mssg + consumed , theRest

);

23 packet = makePacketMssg(CLIENT_MESSAGE ,

destLen , dest , srcLen , myHandle ,

toSend);

24 if (sendPacket(packet , socket) < 0) {

25 perror("Packet Message");

26 exit (1);

27 }

28 free(packet);

29 free(toSend);

59

However, when including identifier renaming in normalized, CloneDR was unable

to report the clone from original in the mutated code. A portion of the normalized

code is shown in Listing 5.20 and Listing 5.21.

Listing 5.20: Listing 5.18 in nor-
malized

1 int e = 0;

2 int f = strlen(global_b);

3 int g = 1000 - f - sizeof(header) - 1;

4 int h = (strlen(a) + 1) / g;

5 int i = ((strlen(a) + 1) % g) + h;

6 c = malloc(g);

7 while (h > 0) {

8 memcpy(c, a + e, g - 1);

9 h--;

10 c[g - 1] = 0;

11 e += g - 1;

12 d = makePacketBroadcast (4, f,

global_b , c);

13 if (sendPacket(d, b) < 0) {

14 perror("Packet Broadcast");

15 exit (1);

16 }

17 free(d);

18 }

19 free(c);

20 c = malloc(i);

21 memcpy(c, a + e, i);

Listing 5.21: Listing 5.19 in nor-
malized

1 int f = 0;

2 int g = strlen(global_b);

3 int h = strlen(b);

4 int i = 1000 - (g + 1) - (h + 1) -

sizeof(header);

5 int j = (strlen(a) + 1) / i;

6 int k = ((strlen(a) + 1) % i) + j;

7 d = malloc(i);

8 while (j > 0) {

9 memcpy(d, a + f, i - 1);

10 j--;

11 d[i - 1] = 0;

12 f += i - 1;

13 e = makePacketMssg (5, h, b, g,

global_b , d);

14 if (sendPacket(e, c) < 0) {

15 perror("Packet Message");

16 exit (1);

17 }

18 free(e);

19 }

20 free(d);

21 d = malloc(k);

22 memcpy(d, a + f, k);

The normalized code clone exhibits very similar structure, but the identifier names

have been shifted by one. Upon suspicion that CloneDR may use identifier names,

a further test is performed using noRename, which is shown in Listing 5.22 and

Listing 5.23.

60

Listing 5.22: Listing 5.18 in noRe-
name

1 int consumed = 0;

2 int hLen = strlen(myHandle);

3 int maxMssgLen = 1000 - hLen - sizeof(

header) - 1;

4 int mssgNum = (strlen(mssg) + 1) /

maxMssgLen;

5 int theRest = ((strlen(mssg) + 1) %

maxMssgLen) + mssgNum;

6 toSend = malloc(maxMssgLen);

7 while (mssgNum > 0) {

8 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

9 mssgNum --;

10 toSend[maxMssgLen - 1] = 0;

11 consumed += maxMssgLen - 1;

12 packet = makePacketBroadcast (4, hLen

, myHandle , toSend);

13 if (sendPacket(packet , socket) < 0)

{

14 perror("Packet Broadcast");

15 exit (1);

16 }

17 free(packet);

18 }

19 free(toSend);

20 toSend = malloc(theRest);

21 memcpy(toSend , mssg + consumed , theRest

);

22 packet = makePacketBroadcast (4, hLen ,

myHandle , toSend);

23 if (sendPacket(packet , socket) < 0) {

24 perror("Packet Broadcast");

25 exit (1);

26 }

27 free(packet);

28 free(toSend);

Listing 5.23: Listing 5.19 in noRe-
name

1 int consumed = 0;

2 int srcLen = strlen(myHandle);

3 int destLen = strlen(dest);

4 int maxMssgLen = 1000 - (srcLen + 1) -

(destLen + 1) - sizeof(header);

5 int mssgNum = (strlen(mssg) + 1) /

maxMssgLen;

6 int theRest = ((strlen(mssg) + 1) %

maxMssgLen) + mssgNum;

7 toSend = malloc(maxMssgLen);

8 while (mssgNum > 0) {

9 memcpy(toSend , mssg + consumed ,

maxMssgLen - 1);

10 mssgNum --;

11 toSend[maxMssgLen - 1] = 0;

12 consumed += maxMssgLen - 1;

13 packet = makePacketMssg (5, destLen ,

dest , srcLen , myHandle , toSend);

14 if (sendPacket(packet , socket) < 0)

{

15 perror("Packet Message");

16 exit (1);

17 }

18 free(packet);

19 }

20 free(toSend);

21 toSend = malloc(theRest);

22 memcpy(toSend , mssg + consumed , theRest

);

23 packet = makePacketMssg (5, destLen ,

dest , srcLen , myHandle , toSend);

24 if (sendPacket(packet , socket) < 0) {

25 perror("Packet Message");

26 exit (1);

27 }

28 free(packet);

29 free(toSend);

61

The clone has been rediscovered, but it is smaller due to the movement of int

consumed = 0 away from the main clone towards the top as its own fragment. Since the

clone has been rediscovered, CloneDR does rely on identifier names. Therefore, for all

subsequent analysis for CloneDR, noRename will be considered instead of normalized

since noRename will give better results than normalized. The overall performance of

CloneDR on Student A is shown in Figure 5.3.

Figure 5.3: Summary performance of CloneDR on Student A

There are some versions that perform better than original. noRename PDG found

a total of six more cloned lines, which are shown in Listing 5.24 and Listing 5.25.

62

Listing 5.24: Clone in noRe-
name PDG

1 if (mySelect(maxFD , (fd_set *) & fdvar ,

((void *)0), ((void *)0), ((void *)

0)) == -1) {

2 perror("Error selecting FD to read

from");

3 exit (1);

4 }

Listing 5.25: Clone in noRe-
name PDG

1 if (mySelect(maxFD , (fd_set *) & fdvar ,

((void *)0), ((void *)0), ((void *)

0)) == -1) {

2 perror("Error selecting FD to read

from");

3 exit (1);

4 }

noRename PDG is a version that does not perform any normalization, but the

clone mass has increased. A possible reason behind this is preprocessing. The original

code is presented in Listing 5.26 and Listing 5.27.

Listing 5.26: Original code of List-
ing 5.24

1 if (select(maxFD , (fd_set *) & fdvar ,

NULL , NULL , NULL) == -1) {

2 perror("Error selecting FD to read

from");

3 exit (1);

4 }

Listing 5.27: Original code of List-
ing 5.25

1 if (select(maxFD , (fd_set *) & fdvar ,

NULL , NULL , NULL) == -1) {

2 perror("Error selecting FD to read

from");

3 exit (1);

4 }

Through normalization, NULLs have been expanded into ((void *)0), which creates a

bigger overall AST. It could be the case that the larger trees are just enough to be a

clone over the size threshold, therefore marking this as a clone.

Version noRename performed the best numerically. By reordering, despite a one

line decrease of the clone in Listing 5.22 and Listing 5.23, another clone was found

which raised the total clone mass.

Normalization had a small beneficial impact on CloneDR for this student.

5.1.4 Moss

As a plagiarism detection tool, Moss is a conservative clone detector. In order to use

Moss however, the source code must be broken into individual files because Moss can

63

only find clones between files but not within files. The version noRename PDG split

will serve as the control version for Moss as it does not perform any normalization

on the code besides the GCC preprocessing. For Student A, Moss demonstrated

poorer performance using normalized code than using original code. A clone that

was detected in noRename PDG split but not in split is shown in Listing 5.28 and

Listing 5.29.

Listing 5.28: Clone in noRe-
name PDG split

1 uint8_t *packet = malloc (1000);

2 uint8_t *toFree = packet;

3 int numBytes = 0;

4 if ((numBytes = myRecv(socketFD , packet

, 1000, 0)) < 0) {

5 perror("recv call");

6 exit(-1);

7 }

8 if (numBytes == 0) {

9 printf("Server terminated\n");

10 close(socketFD);

11 exit (1);

12 }

Listing 5.29: Clone in noRe-
name PDG split

1 uint8_t *packet = malloc (1000);

2 int numBytes = 0;

3 if ((numBytes = myRecv(fd , packet ,

1000, 0)) < 0) {

4 perror("recv call");

5 exit(-1);

6 }

7 if (numBytes == 0) {

8 removeClient(fd);

9 }

The normalized code is displayed in Listing 5.30 and Listing 5.31.

64

Listing 5.30: Listing 5.28 as nor-
malized in split

1 uint8_t *a = malloc (1000);

2 int b = 0;

3 uint8_t *c = a;

4 if ((b = myRecv(global_c , a, 1000, 0))

< 0) {

5 perror("recv call");

6 exit(-1);

7 }

8 if (b == 0) {

9 printf("Server terminated\n");

10 close(global_c);

11 exit (1);

12 }

Listing 5.31: Listing 5.29 as nor-
malized in split

1 uint8_t *b = malloc (1000);

2 int c = 0;

3 if ((c = myRecv(a, b, 1000, 0)) < 0) {

4 perror("recv call");

5 exit(-1);

6 }

7 if (c == 0) {

8 removeClient(a);

9 }

Evidently, int b = 0 was moved away from the clone in the normalized code in

Listing 5.30, where b is the renamed variable for numBytes. Now, uint8_t *c = a is inserted

into the middle of the clone but no matching statement is present in Listing 5.29.

Since the code clone has been fragmented, the clone size was too small to trigger the

threshold, causing the non-detection.

An improvement that could be used is to sort statements to place variable as-

signments just before they are used. In Listing 5.28, variable c is assigned a value in

between the assignment to b and the if statement. However, c will not be used for

several more lines. If sorting would pick statements that are in immediate need by

another statement, then this problem could be avoided.

A summary of Moss is shown in Figure 5.4. split and noRename split performed

the same as Moss does not take the names of identifiers into account. Moss is ex-

pected not to consider identifier names because renaming identifiers is an easy way to

plagiarize code. Under Student A, normalization had a negative impact on detection.

65

Figure 5.4: Summary performance of Moss on Student A

5.2 Student B

This section examines the submission of a second student, Student B, in depth. This

submission features code clones that appear in more than two areas.

5.2.1 Simian

Normalization does not increase clone detection using Simian. As with Student A,

identifier renaming has a negative effect on Simian, therefore the versions that include

identifier renaming, i.e. normalized, noPDG, and split have reduced clone findings.

The rest, noRename PDG, noRename, and noRename split all report the same find-

ings.

For this student, Simian reports there is a common clone as it appears a total of

four times. The clone taken from original is shown in Listing 5.32.

66

Listing 5.32: Clone from original duplicated four times

1 handle_len = *data_buf;

2 data_buf += sizeof(handle_len);

3 for (i = 0; i < handle_len; i++) {

4 handle[i] = *data_buf;

5 data_buf ++;

6 }

7 handle[i] = ’\0’;

This clone is identically duplicated in three other locations. Two of the clone

instances are featured in their own clone as a part of a larger clone. The featured

larger clone, which is identical to each other is shown in Listing 5.33.

Listing 5.33: Larger clone with Listing 5.32

1 handle_len = *data_buf;

2 data_buf += sizeof(handle_len);

3 for (i = 0; i < handle_len; i++) {

4 handle[i] = *data_buf;

5 data_buf ++;

6 }

7 handle[i] = ’\0’;

8 printf("\n%s: %s\n", handle , data_buf);

This is the same clone as Listing 5.32 with the addition of a printf statement at

the bottom. In fact, each of the first four original clones of Listing 5.32 has a printf

statement, but only two have the same format string in Listing 5.33. Since there

are four instances of the small clone present, it is a strong hint that it should be

abstracted out. Good candidates to replace the clone are memcpy and strcpy.

Simian’s performance on Student B is shown in Figure 5.5.

67

Figure 5.5: Summary performance of Simian on Student B

Clone detection degraded if normalization included identifier renaming. There

are cases where some clones were were preserved even when the identifiers were re-

named. Some functions were small enough that they did not have differing number

of variables. However, it is more likely that a clone would get lost through identifier

renaming. Such a clone is given in Listing 5.34 and Listing 5.35.

Listing 5.34: Lost clone in normal-
ized by identifier renaming

1 if ((b = recv(a, c, 1259, 0)) <= 0) {

2 if (b < 0) {

3 perror("recv call");

4 exit(-1);

5 }

6 if (close(a) < 0) {

7 perror("close call");

8 exit(-1);

Listing 5.35: Lost clone in normal-
ized by identifier renaming

1 if ((f = recv(a, c, 1259, 0)) <= 0) {

2 if (f < 0) {

3 perror("recv call");

4 exit(-1);

5 }

6 if (close(a) < 0) {

7 perror("close call");

8 exit(-1);

There is a variable shift which causes the difference in the name of the variable

68

in the if statement’s conditional. That was enough for Simian to not identify each of

these two code sections as a clone, even when evidently they have the same structure.

5.2.2 JPlag

JPlag sees significant improvement from normalization. The majority of the increased

clone matches comes from splitting the program into separate functions, but also still

benefits from statement reordering and useless code removal. An example of useless

code removal is shown in Listing 5.36 and Listing 5.37. First, the original version is

shown.

Listing 5.36: Clone found in origi-
nal

1 uint16_t pack_len , pack_len_net;

2 uint8_t flag = 0;

3 char *temp = data_buf;

4 memcpy (& pack_len_net , temp , sizeof(

pack_len_net));

5 pack_len = ntohs(pack_len_net);

6 temp += sizeof(pack_len);

7 flag = *temp;

8 if (flag == 4) {

9 Broadcast(data_buf , *cli_sk_head ,

pack_len , fd_src);

10 } else if (flag == 5) {

11 DirectMessage(data_buf , *cli_sk_head

, pack_len);

12 } else if (flag == 10) {

13 SendList(data_buf , *cli_sk_count ,

fd_src , *cli_sk_head);

14 } else if (flag == 8) {

15 EndConnection(data_buf , fd_src ,

cli_sk_head , cli_sk_count);

16 }

Listing 5.37: Clone found in origi-
nal

1 uint16_t pack_len , pack_len_net;

2 uint8_t flag;

3 char *temp = data_buf;

4 int isExit = 0;

5 pack_len_net = *temp;

6 pack_len = ntohs(pack_len_net);

7 temp += sizeof(pack_len);

8 flag = *temp;

9 temp += sizeof(flag);

10 if (flag == FLAG4) {

11 InterpreteFlag4(temp);

12 } else if (flag == FLAG5) {

13 InterpreteFlag5(temp);

14 } else if (flag == FLAG7) {

15 InterpreteFlag7(temp);

16 } else if (flag == FLAG11) {

17 InterpreteFlag11(temp , handle_numb);

18 } else if (flag == FLAG12) {

The normalized version of the code is shown in Listing 5.38 and Listing 5.39.

69

Listing 5.38: Larger clone in nor-
malized

1 uint16_t e, f;

2 uint8_t g = 0;

3 char *h = a;

4 memcpy (&f, h, sizeof(f));

5 e = ntohs(f);

6 h += sizeof(e);

7 g = *h;

8 if (g == 4) {

9 Broadcast(a, *b, e, c);

10 } else if (g == 5) {

11 DirectMessage(a, *b, e);

12 } else if (g == 10) {

13 SendList(a, *d, c, *b);

14 } else if (g == 8) {

15 EndConnection(a, c, b, d);

16 }

Listing 5.39: Larger clone in nor-
malized

1 uint8_t d;

2 uint16_t e, f;

3 int g = 0;

4 char *h = a;

5 f = *h;

6 e = ntohs(f);

7 h += sizeof(e);

8 d = *h;

9 if (d == 4) {

10 InterpreteFlag4(h);

11 } else if (d == 5) {

12 InterpreteFlag5(h);

13 } else if (d == 7) {

14 InterpreteFlag7(h);

15 } else if (d == 11) {

16 InterpreteFlag11(h, c);

17 } else if (d == 12) {

Compared against original, the code clone in normalized has increased in size by

three lines. In Listing 5.37, the assignment temp += sizeof(flag) is not needed because

temp is a local variable not used in the remainder of the function. By removing that

line, each clone has the same three statements preceding it: the assignments into

pack_len, temp, and flag. These three lines augment the already existing clone, creating

a larger clone.

A better analysis could be performed if memcpy(&f, h, sizeof(f)) was rewritten as *f

= *((uint16_t*)h). If that statement was rewritten, a total of two more lines would be

matched into the clone, shown in Listing 5.40 and Listing 5.41.

70

Listing 5.40: Modified assignment
from Listing 5.38

1 uint16_t e, f;

2 uint8_t g = 0;

3 char *h = a;

4 *f = *((uint16_t *) h);

5 e = ntohs(f);

6 h += sizeof(e);

7 g = *h;

8 if (g == 4) {

9 Broadcast(a, *b, e, c);

10 } else if (g == 5) {

11 DirectMessage(a, *b, e);

12 } else if (g == 10) {

13 SendList(a, *d, c, *b);

14 } else if (g == 8) {

15 EndConnection(a, c, b, d);

16 }

Listing 5.41: Same code from List-
ing 5.39

1 uint8_t d;

2 uint16_t e, f;

3 int g = 0;

4 char *h = a;

5 f = *h;

6 e = ntohs(f);

7 h += sizeof(e);

8 d = *h;

9 if (d == 4) {

10 InterpreteFlag4(h);

11 } else if (d == 5) {

12 InterpreteFlag5(h);

13 } else if (d == 7) {

14 InterpreteFlag7(h);

15 } else if (d == 11) {

16 InterpreteFlag11(h, c);

17 } else if (d == 12) {

If memcpy is replaced by an assignment, both clone instances can now match the

assignment into g and f, creating a larger clone. How the code was originally writ-

ten plays a factor in the effectiveness of normalization on detecting clones, and this

example shows that if the implementation is contrived enough, it could evade clone

detection. However, if programmers can write code using as consistently a style as

possible, code clone detection will be more accurate.

When the input is split into separate files for each function, JPlag saw a four

times clone mass increase. The clones found are similar to Simian’s analysis. JPlag

reported an exact match in Listing 5.42 and Listing 5.43.

71

Listing 5.42: Perfect match by
JPlag

1 void InterpreteFlag7(char *a) {

2 int b;

3 char c[255 + 1];

4 uint8_t d;

5 d = *a;

6 a += sizeof(d);

7 for (b = 0; b < d; b++) {

8 a++;

9 c[b] = *a;

10 }

11 c[b] = ’\0’;

12 printf("Client with handle %s does

not exist\n", c);

13 }

Listing 5.43: Perfect match by
JPlag

1 void InterpreteFlag4(char *a) {

2 int b;

3 char c[255 + 1];

4 uint8_t d;

5 d = *a;

6 a += sizeof(d);

7 for (b = 0; b < d; b++) {

8 a++;

9 c[b] = *a;

10 }

11 c[b] = ’\0’;

12 printf("\n%s: %s\n", c, a);

13 }

JPlag does not consider the arguments to printf as different, therefore marking

the entire function as a clone to each other. JPlag also identified the other two

clone instances in InterpreteFlag5 and InterpreteFlag12 just like Simian. The rest of the

differences between split and normalized is attributed to splitting the source file into

a file per function for JPlag. The summary of JPlag on Student B is shown in

Figure 5.6.

72

Figure 5.6: Summary performance of JPlag on Student B

5.2.3 CloneDR

CloneDR has mixed results from using normalized code. CloneDR reports a clone

with four instances of the clone across the source files in original. All four instances

of the clone found in original are shown in Listing 5.44, Listing 5.45, Listing 5.46,

and Listing 5.47.

73

Listing 5.44: InterpreteFlag4 in
original

1 void InterpreteFlag4(char *data_buf) {

2 uint8_t handle_len;

3 char handle[MAX_HANDLE + 1];

4 int i;

5 handle_len = *data_buf;

6 data_buf += sizeof(handle_len);

7 for (i = 0; i < handle_len; i++) {

8 handle[i] = *data_buf;

9 data_buf ++;

10 }

11 handle[i] = ’\0’;

12 printf("\n%s: %s\n", handle ,

data_buf);

13 }

Listing 5.45: InterpreteFlag7 in
original

1 void InterpreteFlag7(char *data_buf) {

2 uint8_t handle_len;

3 char handle[MAX_HANDLE + 1];

4 int i;

5 handle_len = *data_buf;

6 data_buf += sizeof(handle_len);

7 for (i = 0; i < handle_len; i++) {

8 handle[i] = *data_buf;

9 data_buf ++;

10 }

11 handle[i] = ’\0’;

12 printf("Client with handle %s does

not exist\n", handle);

13 }

Listing 5.46: InterpreteFlag5 in
original

1 void InterpreteFlag5(char *data_buf) {

2 uint8_t handle_len;

3 char handle[MAX_HANDLE + 1];

4 int i;

5 handle_len = *data_buf;

6 data_buf += sizeof(handle_len);

7 data_buf += handle_len;

8 handle_len = *data_buf;

9 data_buf += sizeof(handle_len);

10 for (i = 0; i < handle_len; i++) {

11 handle[i] = *data_buf;

12 data_buf ++;

13 }

14 handle[i] = ’\0’;

15 printf("\n%s: %s\n", handle ,

data_buf);

16 }

Listing 5.47: InterpreteFlag12 in
original

1 void InterpreteFlag12(uint32_t

handle_numb , char *data_buf) {

2 uint8_t handle_len;

3 char handle[MAX_HANDLE + 1];

4 int i, j;

5 for (j = 0; j < handle_numb; j++) {

6 handle_len = *data_buf;

7 data_buf += sizeof(handle_len);

8 for (i = 0; i < handle_len; i++)

{

9 handle[i] = *data_buf;

10 data_buf ++;

11 }

12 handle[i] = ’\0’;

13 printf("\t%s\n", handle);

14 }

15 }

74

Simian found the same clone in Listing 5.32 and JPlag also successfully detected

this clone as well. CloneDR found the same clones in noRename, however when per-

forming both statement reordering and identifier renaming in normalized, CloneDR

does not catch all four instances, instead catching only two instances of a larger clone.

The clone from normalized is shown in Listing 5.48 and Listing 5.49 and the missed

clones are shown in Listing 5.50 and Listing 5.51.

Listing 5.48: InterpreteFlag4 in
normalized

1 void InterpreteFlag4(char *a) {

2 int b;

3 char c[255 + 1];

4 uint8_t d;

5 d = *a;

6 a += sizeof(d);

7 for (b = 0; b < d; b++) {

8 a++;

9 c[b] = *a;

10 }

11 c[b] = ’\0’;

12 printf("\n%s: %s\n", c, a);

13 }

Listing 5.49: InterpreteFlag7 in
normalized

1 void InterpreteFlag7(char *a) {

2 int b;

3 char c[255 + 1];

4 uint8_t d;

5 d = *a;

6 a += sizeof(d);

7 for (b = 0; b < d; b++) {

8 a++;

9 c[b] = *a;

10 }

11 c[b] = ’\0’;

12 printf("Client with handle %s does

not exist\n", c);

13 }

75

Listing 5.50: InterpreteFlag5 in
normalized

1 void InterpreteFlag5(char *a) {

2 int b;

3 char c[255 + 1];

4 uint8_t d;

5 d = *a;

6 a += sizeof(d);

7 a += d;

8 d = *a;

9 a += sizeof(d);

10 for (b = 0; b < d; b++) {

11 a++;

12 c[b] = *a;

13 }

14 c[b] = ’\0’;

15 printf("\n%s: %s\n", c, a);

16 }

Listing 5.51: InterpreteFlag12 in
normalized

1 void InterpreteFlag12(uint32_t a, char

*b) {

2 int c, d;

3 char e[255 + 1];

4 uint8_t f;

5 for (d = 0; d < a; d++) {

6 f = *b;

7 b += sizeof(f);

8 for (c = 0; c < f; c++) {

9 b++;

10 e[c] = *b;

11 }

12 e[c] = ’\0’;

13 printf("\t%s\n", e);

14 }

15 }

Compared with noRename, using normalized yields a lower net clone mass. The

summary of normalization on CloneDR for Student B is shown in Figure 5.7.

76

Figure 5.7: Summary performance of CloneDR on Student B

There is an increase from original to noRename split. CloneDR reported exactly

one more clone in noRename split, which is shown in Listing 5.52 and Listing 5.53.

77

Listing 5.52: Discovered clone in
noRename split

1 void AddChatHeader(char *data_buf , int

message_len , int header_len , uint8_t

flag) {

2 uint16_t pack_len , pack_len_net;

3 char *temp = data_buf;

4 pack_len = message_len + header_len;

5 pack_len_net = htons(pack_len);

6 memcpy(temp , &pack_len_net , sizeof(

pack_len));

7 temp += sizeof(pack_len);

8 memcpy(temp , &flag , sizeof(flag));

9 }

Listing 5.53: Discovered clone in
noRename split

1 void EndConnection(char *data_buf , int

src_fd , node ** cli_sk_head , int *

cli_sk_count) {

2 uint16_t pack_len , pack_len_net;

3 uint8_t flag = 9;

4 char *temp = data_buf;

5 pack_len = sizeof(pack_len) + sizeof

(flag);

6 pack_len_net = htons(pack_len);

7 memcpy(temp , &pack_len_net , sizeof(

pack_len));

8 temp += sizeof(pack_len);

9 memcpy(temp , &flag , sizeof(flag));

10 if (send(src_fd , data_buf , pack_len ,

0) < 0) {

11 perror("send call");

12 exit(-1);

13 }

14 if (close(src_fd) < 0) {

15 perror("close call");

16 exit(-1);

17 }

18 removeNode(cli_sk_head , src_fd);

19 }

Comparing both versions noRename and noRename split, the functions in both

versions are identical, yet this clone is not identified in noRename. The reason for

this discrepency could be that when split, the clone occupies a higher percentage of

the source file, resulting in marking it as a clone. Overall, normalization has a neutral

effect on Student B with CloneDR.

78

5.2.4 Moss

Moss performed poorer using normalized code than non-normalized code. Some clones

shrank in size while other clones were not detected due to statement reordering. A

clone that was caught in the control noRename PDG split but not in the experimental

noRename split is shown in Listing 5.54 and Listing 5.55.

Listing 5.54: Clone in noRe-
name PDG split but not in noRe-
name split

1 uint8_t flag = 7;

2 uint8_t handle_len = strlen(handle);

3 pack_len = 3 + sizeof(handle_len) +

handle_len;

4 pack_len_net = htons(pack_len);

5 memcpy(temp , &pack_len_net , sizeof(

pack_len));

6 temp += sizeof(pack_len);

7 memcpy(temp , &flag , sizeof(flag));

8 temp += sizeof(flag);

9 memcpy(temp , &handle_len , sizeof(

handle_len));

10 memcpy(temp , &handle_len , sizeof(

handle_len));

11 temp += sizeof(handle_len);

12 memcpy(temp , handle , handle_len);

13 return pack_len;

Listing 5.55: Clone in noRe-
name PDG split but not in noRe-
name split

1 node *nodeCur = cli_sk_head;

2 pack_len = sizeof(pack_len) + sizeof(

flag) + sizeof(handle_numb);

3 flag = 11;

4 pack_len_net = htons(pack_len);

5 memcpy(temp , &pack_len_net , sizeof(

pack_len));

6 temp += sizeof(pack_len);

7 memcpy(temp , &flag , sizeof(flag));

8 temp += sizeof(flag);

9 memcpy(temp , &handle_numb , sizeof(

handle_numb));

When the source code is normalized by statement reordering, the clone is no longer

detected. The reordered code is shown in Listing 5.56 and Listing 5.57.

79

Listing 5.56: Lost clone from List-
ing 5.54

1 uint8_t flag = 7;

2 char *temp = data_buf;

3 uint8_t handle_len = strlen(handle);

4 pack_len = 3 + sizeof(handle_len) +

handle_len;

5 pack_len_net = htons(pack_len);

6 memcpy(temp , &pack_len_net , sizeof(

pack_len));

7 temp += sizeof(pack_len);

8 memcpy(temp , &flag , sizeof(flag));

9 temp += sizeof(flag);

10 memcpy(temp , &handle_len , sizeof(

handle_len));

11 temp += sizeof(handle_len);

12 memcpy(temp , handle , handle_len);

13 return pack_len;

Listing 5.57: Lost clone from List-
ing 5.55

1 node *nodeCur = cli_sk_head;

2 pack_len = sizeof(pack_len) + sizeof(

flag) + sizeof(handle_numb);

3 flag = 11;

4 pack_len_net = htons(pack_len);

5 memcpy(temp , &pack_len_net , sizeof(

pack_len));

6 temp += sizeof(pack_len);

7 memcpy(temp , &flag , sizeof(flag));

8 pack_len = 0;

9 temp += sizeof(flag);

10 memcpy(temp , &handle_numb , sizeof(

handle_numb));

The difference is the insertion of pack_len = 0 into line 8 of the clone in Listing 5.57.

Normalizer found freedom to move pack_len = 0 upwards and placed it indiscriminately

in the middle of a clone even though pack_len would not be accessed for a while. Since

the other instance does not have a corresponding variable assignment, the clone is

not detected. Through reordering, nine clones out of 21 marked by Moss had been

lost. Other clones in noRename split have diminished in size. To demonstrate, first

the original clone example is given in Listing 5.58 and Listing 5.59.

80

Listing 5.58: Original sized clone
in noRename PDG split

1 void InterpreteFlag12(uint32_t

handle_numb , char *data_buf) {

2 uint8_t handle_len;

3 char handle [255 + 1];

4 int i, j;

5 for (j = 0; j < handle_numb; j++) {

6 handle_len = *data_buf;

7 data_buf += sizeof(handle_len);

8 for (i = 0; i < handle_len; i++)

{

9 handle[i] = *data_buf;

10 data_buf ++;

11 }

12 handle[i] = ’\0’;

13 printf("\t%s\n", handle);

14 }

15 }

Listing 5.59: Original sized clone
in noRename PDG split

1 void DirectMessage(char *data_buf , node

* cli_sk_head , int pack_len) {

2 char *temp = data_buf;

3 char handle_dest [255];

4 char handle_src [255];

5 uint8_t handleDest_len ,

handleSrc_len;

6 int i, dest_fd , src_fd;

7 temp += 3;

8 handleDest_len = *temp;

9 temp += sizeof(handleDest_len);

10 for (i = 0; i < handleDest_len; i++)

{

11 handle_dest[i] = *temp;

12 temp ++;

13 }

14 handle_dest[i] = ’\0’;

15 handleSrc_len = *temp;

16 temp += sizeof(handleSrc_len);

For an unknown reason, Moss removes two lines from each clone when the source

code is reordered in noRename split. The smaller code clone is shown in Listing 5.60

and Listing 5.61.

81

Listing 5.60: Smaller clone in
noRename split from Listing 5.58

1 void InterpreteFlag12(uint32_t

handle_numb , char *data_buf) {

2 int i, j;

3 char handle [255 + 1];

4 uint8_t handle_len;

5 for (j = 0; j < handle_numb; j++) {

6 handle_len = *data_buf;

7 data_buf += sizeof(handle_len);

8 for (i = 0; i < handle_len; i++)

{

9 data_buf ++;

10 handle[i] = *data_buf;

11 }

12 handle[i] = ’\0’;

13 printf("\t%s\n", handle);

14 }

15 }

Listing 5.61: Smaller clone in
noRename split from Listing 5.59

1 void DirectMessage(char *data_buf , node

* cli_sk_head , int pack_len) {

2 int i, dest_fd , src_fd;

3 char handle_dest [255];

4 char handle_src [255];

5 uint8_t handleDest_len ,

handleSrc_len;

6 char *temp = data_buf;

7 temp += 3;

8 handleDest_len = *temp;

9 temp += sizeof(handleDest_len);

10 for (i = 0; i < handleDest_len; i++)

{

11 temp ++;

12 handle_dest[i] = *temp;

13 }

14 handle_dest[i] = ’\0’;

15 handleSrc_len = *temp;

16 temp += sizeof(handleSrc_len);

Line 6 and Line 13 from Listing 5.58 and Line 8 and Line 15 from Listing 5.59

are not included in the clone, but when the function is compared textually with

noRename PDG split, the logic is the same. The only difference is the reordering of

the variable declarations which is not part of the clone in the first place and the reorder

of the for loop body statements which is consistently reordered in both clones. This

issue occurs for six other clones where lines are missing from clones for no apparent

reason.

The summary of Moss on Student B is shown in Figure 5.8.

82

Figure 5.8: Summary performance of Moss on Student B

Overall, normalization causes Moss to detect fewer and smaller clones.

5.3 Student C

Student C’s code features some functions with variable declarations in the middle of

them. This proves to be a good sample for Normalizer to increase the clone detection

rate.

5.3.1 Simian

Simian did not detect any clones on Student C’s original code, but discovered a new

one in noRename, which is shown in Listing 5.62 and Listing 5.63.

83

Listing 5.62: Discovered clone in
noRename

1 char msg [1001];

2 char srcName [51];

3 uint16_t size;

4 printf("\n");

5 memcpy (&size , rcvBuff , sizeof(uint16_t)

);

6 size = ntohs(size);

7 int srcLen = *(rcvBuff + sizeof(struct

packetHeader));

8 int msgLen = sizeof(struct packetHeader

) + 1 + srcLen;

9 memcpy(srcName , rcvBuff + sizeof(struct

packetHeader) + 1, srcLen);

10 srcName[srcLen] = ’\0’;

Listing 5.63: Discovered clone in
noRename

1 char msg [1001];

2 char srcName [51];

3 uint16_t size;

4 printf("\n");

5 memcpy (&size , rcvBuff , sizeof(uint16_t)

);

6 size = ntohs(size);

7 int dstLen = *(rcvBuff + sizeof(struct

packetHeader));

8 char *srcHandle = rcvBuff + sizeof(

struct packetHeader) + 1 + dstLen +

1;

9 int srcLen = *(rcvBuff + sizeof(struct

packetHeader) + 1 + dstLen);

10 int msgLen = sizeof(struct packetHeader

) + 2 + dstLen + srcLen;

The original code before normalization is shown in Listing 5.64 and Listing 5.65.

Listing 5.64: Listing 5.62 in origi-
nal

1 printf("\n");

2 uint16_t size;

3 memcpy (&size , rcvBuff , sizeof(uint16_t)

);

4 size = ntohs(size);

5 int srcLen = *(rcvBuff + sizeof(struct

packetHeader));

6 int msgLen = sizeof(struct packetHeader

) + 1 + srcLen;

7 char msg [1001];

8 char srcName [51];

9 memcpy(srcName , rcvBuff + sizeof(struct

packetHeader) + 1, srcLen);

10 srcName[srcLen] = ’\0’;

Listing 5.65: Listing 5.63 in origi-
nal

1 printf("\n");

2 uint16_t size;

3 memcpy (&size , rcvBuff , sizeof(uint16_t)

);

4 size = ntohs(size);

5 int dstLen = *(rcvBuff + sizeof(struct

packetHeader));

6 int srcLen = *(rcvBuff + sizeof(struct

packetHeader) + 1 + dstLen);

7 char *srcHandle = rcvBuff + sizeof(

struct packetHeader) + 1 + dstLen +

1;

8 int msgLen = sizeof(struct packetHeader

) + 2 + dstLen + srcLen;

9 char srcName [51];

10 char msg [1001];

84

There are similar lines in original, but the fragments are not large enough to be

considered a clone. Variable declarations are put in the middle of code, but since

they can be declared anywhere before first use, they can be aggregated together to

possibly form part of a clone. By moving the declarations to the top of the function,

Simian is able to detect a clone. The clone however can still be improved. The clones

are identical for the first six lines; at line 7 the logic is the same but the variable

names are different. Line 7 should be considered a part of the clone. Using identifier

renaming in normalized creates a larger clone by including line 7. The improved clone

is shown in 5.66 and 5.67.

Listing 5.66: Improved clone by
identifier renaming

1 char b[1001];

2 char c[51];

3 uint16_t d;

4 printf("\n");

5 memcpy (&d, a, sizeof(uint16_t));

6 d = ntohs(d);

7 int e = *(a + sizeof(struct

packetHeader));

8 int f = sizeof(struct packetHeader) + 1

+ e;

9 memcpy(c, a + sizeof(struct

packetHeader) + 1, e);

10 c[e] = ’\0’;

Listing 5.67: Improved clone by
identifier renaming

1 char b[1001];

2 char c[51];

3 uint16_t d;

4 printf("\n");

5 memcpy (&d, a, sizeof(uint16_t));

6 d = ntohs(d);

7 int e = *(a + sizeof(struct

packetHeader));

8 char *f = a + sizeof(struct

packetHeader) + 1 + e + 1;

9 int g = *(a + sizeof(struct

packetHeader) + 1 + e);

10 int h = sizeof(struct packetHeader) + 2

+ e + g;

By assigning the identifier names as first-used first-assigned, srcLen and dstLen are

both renamed to e. The statements are now also identical to each other and therefore,

added to the clone, overcoming Simian’s weakness of unmatched identifier names.

This is a case where identifier renaming produces a better detection. The identifier

renaming process can be improved to more likely increase other clone sizes too.

This is the only clone found by Simian with Normalizer. The summary of Simian

85

on Student C is shown in Figure 5.9. Overall, normalization has a positive effect on

clone detection using Simian with Student C.

Figure 5.9: Summary performance of Simian on Student C

5.3.2 JPlag

JPlag reports more clones in original than noRename. However, a questionable clone

found in original is shown in Listing 5.68 and Listing 5.69.

86

Listing 5.68: Dubious clone in
original

1 list.curSize = 0;

2 list.first = calloc(1, sizeof(struct

handle));

3 if (!list.first) {

4 perror("Calloc Call Err");

5 exit (1);

6 }

7 list.maxSize = 10;

8 FD_ZERO (&fds);

9 FD_SET(servSock , &fds);

10 while (TRUE) {

11 curFds = fds;

12 if (select(FD_SETSIZE , &curFds , NULL

, NULL , NULL) < 0) {

13 perror("Select Call Err");

14 exit (1);

15 }

16 if (FD_ISSET(servSock , &curFds)) {

Listing 5.69: Dubious clone in
original

1 int stopSig = 1, numClients;

2 fd_set curFds , fds;

3 FD_ZERO (&fds);

4 FD_SET(socketNum , &fds);

5 FD_SET(STDIN_FILENO , &fds);

6 printf("$: ");

7 fflush(stdout);

8 while (stopSig) {

9 curFds = fds;

10 if (select(FD_SETSIZE , &curFds , NULL

, NULL , NULL) < 0) {

11 perror("Select Error");

12 exit (1);

13 }

14 if (FD_ISSET(socketNum , &curFds)) {

The quality of this clone is dubious, since only three statements from Listing 5.68

matches to five statements and two declarations from Listing 5.69. The while loop

is an acceptable portion of the clone. Upon normalization however, JPlag does not

find this as a clone in noRename. The code snippet from noRename is shown in

Listing 5.70 and Listing 5.71.

87

Listing 5.70: Listing 5.68 in noRe-
name

1 list.curSize = 0;

2 list.maxSize = 10;

3 list.first = calloc(1, sizeof(struct

handle));

4 if (!list.first) {

5 perror("Calloc Call Err");

6 exit (1);

7 }

8 FD_ZERO (&fds);

9 FD_SET(servSock , &fds);

10 while (1) {

11 curFds = fds;

12 if (mySelect (1024 , &curFds , ((void

*)0), ((void *)0), ((void *)0)) <

0) {

13 perror("Select Call Err");

14 exit (1);

15 }

16 if (FD_ISSET(servSock , &curFds)) {

Listing 5.71: Listing 5.68 in noRe-
name

1 fd_set curFds , fds;

2 int stopSig = 1, numClients;

3 FD_ZERO (&fds);

4 FD_SET(socketNum , &fds);

5 FD_SET(0, &fds);

6 printf("$: ");

7 fflush(stdout);

8 while (stopSig) {

9 curFds = fds;

10 if (mySelect (1024 , &curFds , ((void

*)0), ((void *)0), ((void *)0)) <

0) {

11 perror("Select Error");

12 exit (1);

13 }

14 if (FD_ISSET(socketNum , &curFds)) {

The difference is the movement of list.maxSize = 10 upwards in Listing 5.70. How-

ever, the while loop still should have been detected as a part of the clone. Normalizer

does not know the dependencies of FD_SET, FD_ZERO, and printf so it assumes they cannot

be reordered. To human programmers however, we recognize that lines 1 through 7

in Listing 5.68 can be rearranged in a way to preserve dependencies and help expose

a larger clone. A logically equivalent code is shown in Listing 5.72 and Listing 5.73.

88

Listing 5.72: Manual rearranging
of Listing 5.70

1 list.curSize = 0;

2 list.maxSize = 10;

3 list.first = calloc(1, sizeof(struct

handle));

4 if (!list.first) {

5 perror("Calloc Call Err");

6 exit (1);

7 }

8 FD_ZERO (&fds);

9 FD_SET(servSock , &fds);

10 while (1) {

11 curFds = fds;

12 if (mySelect (1024 , &curFds , ((void

*)0), ((void *)0), ((void *)0)) <

0) {

13 perror("Select Call Err");

14 exit (1);

15 }

16 if (FD_ISSET(servSock , &curFds)) {

Listing 5.73: Manual rearranging
of Listing 5.71

1 fd_set curFds , fds;

2 int stopSig = 1, numClients;

3 printf("$: ");

4 fflush(stdout);

5 FD_ZERO (&fds);

6 FD_SET(socketNum , &fds);

7 FD_SET(0, &fds);

8 while (stopSig) {

9 curFds = fds;

10 if (mySelect (1024 , &curFds , ((void

*)0), ((void *)0), ((void *)0)) <

0) {

11 perror("Select Error");

12 exit (1);

13 }

14 if (FD_ISSET(socketNum , &curFds)) {

The FD_ZERO and FD_SETs are grouped together and are positioned right before the

while loop. This manual arrangement would flag a human reader’s attention as a code

clone.

As shown by other students, JPlag greatly detects more clones when the input is

split per function. A clone caught in noRename split is shown in Listing 5.74 and

Listing 5.75.

89

Listing 5.74: Clone found by split-
ting in noRename split

1 if (mySend(socketNum , sendBuff ,

1024, 0) < 0) {

2 perror("Send Call");

3 exit (1);

4 }

5 }

6 }

7 size += length + sizeof(struct

packetHeader) + 2 + handleLen +

locHandLen;

8 header ->packLength = htons(size);

9 memcpy(sendBuff , header , sizeof(struct

packetHeader));

10 if (mySend(socketNum , sendBuff , 5 +

handleLen + locHandLen + length , 0)

< 0) {

11 perror("Send Call");

12 exit (1);

13 }

14 printf("$: ");

15 fflush(stdout);

Listing 5.75: Clone found by split-
ting in noRename split

1 if (mySend(sockNum , sendBuff ,

1024, 0) < 0) {

2 perror("Send Call");

3 exit (1);

4 }

5 }

6 }

7 size = length + sizeof(struct

packetHeader) + 1 + handleLen;

8 header ->packLength = htons(size);

9 memcpy(sendBuff , header , sizeof(struct

packetHeader));

10 if (mySend(sockNum , sendBuff , size , 0)

< 0) {

11 perror("Send Call");

12 exit (1);

13 }

14 printf("$: ");

15 fflush(stdout);

The clone is an almost exact clone, both of which originally existed in the same

file. The summary performance of JPlag on Student C is shown in Figure 5.10.

90

Figure 5.10: Summary performance of Simian on Student C

5.3.3 CloneDR

CloneDR detects more clones using normalized source code than the original source

code. A clone that CloneDR detected in noRename but not in original is shown in

Figure 5.76 and Figure 5.77.

Listing 5.76: Same clone as Simian
in noRename

1 char msg [1001];

2 char srcName [51];

3 uint16_t size;

4 printf("\n");

5 memcpy (&size , rcvBuff , sizeof(uint16_t)

);

6 size = ntohs(size);

7 int srcLen = *(rcvBuff + sizeof(struct

packetHeader));

Listing 5.77: Same clone as Simian
in noRename

1 char msg [1001];

2 char srcName [51];

3 uint16_t size;

4 printf("\n");

5 memcpy (&size , rcvBuff , sizeof(uint16_t)

);

6 size = ntohs(size);

7 int dstLen = *(rcvBuff + sizeof(struct

packetHeader));

This is the same clone as the first Simian clone in Listing 5.66 and Listing 5.67,

91

except with one more line at the bottom. Another clone that CloneDR detected in

noRename is shown in Listing 5.78 and Listing 5.79.

Listing 5.78: Another clone in
noRename

1 void printHandles(int sockNum , char *

handleName) {

2 char sendBuff [1000];

3 struct packetHeader temp;

4 temp.flag = 10;

5 temp.packLength = sizeof(struct

packetHeader);

6 memcpy(sendBuff , &temp , sizeof(

struct packetHeader));

7 if (mySend(sockNum , sendBuff , sizeof

(struct packetHeader), 0) < 0) {

8 perror("Send Error");

9 exit (1);

10 }

11 }

Listing 5.79: Another clone in
noRename

1 void execExitCmd(int socketNum , char *

handleName) {

2 char sendBuff [1000];

3 struct packetHeader temp;

4 temp.flag = 8;

5 temp.packLength = sizeof(struct

packetHeader);

6 memcpy(sendBuff , &temp , sizeof(

struct packetHeader));

7 if (mySend(socketNum , sendBuff ,

sizeof(struct packetHeader), 0) <

0) {

8 perror("Send Call");

9 exit (1);

10 }

11 printf("$: ");

12 fflush(stdout);

13 }

This clone is a good clone to parameterize and abstract out. printHandles can be

parameterized and be called execExitCmd. There is a lost clone, however, through nor-

malization. The clone only found in original is shown in Listing 5.80 and Listing 5.81.

92

Listing 5.80: Clone only found in
original

1 if ((1 + length + handleLen + sizeof(

struct packetHeader)) == BUFFER_SIZE

) {

2 header ->packLength = 1 + length +

handleLen + sizeof(struct

packetHeader);

3 header ->packLength = htons(header ->

packLength);

4 printf("Message is %d bytes , this is

too long.", size);

5 printf("Message truncated to 1000

bytes.");

6 memcpy(sendBuff , header , sizeof(

struct packetHeader));

7 sendBuff[BUFFER_SIZE] = ’\0’;

8 if (send(sockNum , sendBuff ,

BUFFER_SIZE , 0) < 0) {

9 perror("Send Call");

10 exit (1);

11 }

12 length = 0;

13 }

Listing 5.81: Clone only found in
original

1 if (curPackSize + sizeof(struct

packetHeader) + list ->first[i].len

>= BUFFER_SIZE) {

2 sending ->packLength = htons(

curPackSize);

3 memcpy(sendBuff , sending , sizeof(

struct packetHeader));

4 sendBuff[curPackSize] = ’\0’;

5 if (send(curClient , sendBuff ,

BUFFER_SIZE , 0) < 0) {

6 perror("Send Call");

7 exit (1);

8 }

9 curPackSize = 0;

10 }

When normalized by statement reordering in noRename, the clone is lost. noRe-

name’s code is shown in Listing 5.82 and Listing 5.83.

93

Listing 5.82: Listing 5.80 clone lost
in noRename

1 if ((1 + length + handleLen + sizeof(

struct packetHeader)) == 1024) {

2 length = 0;

3 header ->packLength = 1 + length +

handleLen + sizeof(struct

packetHeader);

4 header ->packLength = htons(header ->

packLength);

5 printf("Message is %d bytes , this is

too long.", size);

6 printf("Message truncated to 1000

bytes.");

7 memcpy(sendBuff , header , sizeof(

struct packetHeader));

8 sendBuff [1024] = ’\0’;

9 if (mySend(sockNum , sendBuff , 1024,

0) < 0) {

10 perror("Send Call");

11 exit (1);

12 }

13 }

Listing 5.83: Listing 5.81 clone lost
in noRename

1 if (curPackSize + sizeof(struct

packetHeader) + list ->first[i].len

>= 1024) {

2 sending ->packLength = htons(

curPackSize);

3 memcpy(sendBuff , sending , sizeof(

struct packetHeader));

4 sendBuff[curPackSize] = ’\0’;

5 curPackSize = 0;

6 if (mySend(curClient , sendBuff ,

1024, 0) < 0) {

7 perror("Send Call");

8 exit (1);

9 }

10 }

By reordering the statements, length = 0 and curPackSize = 0 are moved upwards. length

= 0 is moved away from the clone, fragmenting the clone. curPackSize = 0 does not have

a corresponding match anymore and is also inserted in the middle of the already

existing clone. By fragmenting the clones, they are not big enough to pass the size

threshold and are not detected as clones.

Overall however, CloneDR performs better with normalization. A summary of

normalization on CloneDR for Student C is shown in Figure 5.11.

94

Figure 5.11: Summary performance of CloneDR on Student C

5.3.4 Moss

Moss performed favorably with code normalization. A clone was detected by using

statement reordering in noRename split that was not found in the original. The clone

is shown in Listing 5.84 and Listing 5.85.

95

Listing 5.84: Clone found by
statement reordering in noRe-
name split

1 void execExitCmd(int socketNum , char *

handleName) {

2 char sendBuff [1000];

3 struct packetHeader temp;

4 temp.flag = 8;

5 temp.packLength = sizeof(struct

packetHeader);

6 memcpy(sendBuff , &temp , sizeof(

struct packetHeader));

7 if (mySend(socketNum , sendBuff ,

sizeof(struct packetHeader), 0) <

0) {

8 perror("Send Call");

9 exit (1);

10 }

11 printf("$: ");

12 fflush(stdout);

13 }

Listing 5.85: Clone found by
statement reordering in noRe-
name split

1 void printHandles(int sockNum , char *

handleName) {

2 char sendBuff [1000];

3 struct packetHeader temp;

4 temp.flag = 10;

5 temp.packLength = sizeof(struct

packetHeader);

6 memcpy(sendBuff , &temp , sizeof(

struct packetHeader));

7 if (mySend(sockNum , sendBuff , sizeof

(struct packetHeader), 0) < 0) {

8 perror("Send Error");

9 exit (1);

10 }

11 }

This is the same clone that CloneDR caught in Listing 5.78 and Listing 5.79.

Normalizing the source code provided some improvements over clones found with-

out normalized code. An interesting case that Moss detected is shown in Listing 5.86

and Listing 5.87. There are two clones, one clone is highlighted in yellow and the

other in orange.

96

Listing 5.86: 2 clones found in
noRename

1 void processBroadCast(char *rcvBuff) {

2 char msg [1001];

3 char srcName [51];

4 uint16_t size;

5 printf("\n");

6 memcpy (&size , rcvBuff , sizeof(

uint16_t));

7 size = ntohs(size);

8 int srcLen = *(rcvBuff + sizeof(

struct packetHeader));

9 int msgLen = sizeof(struct

packetHeader) + 1 + srcLen;

10 memcpy(srcName , rcvBuff + sizeof(

struct packetHeader) + 1, srcLen)

;

11 srcName[srcLen] = ’\0’;

12 memcpy(msg , rcvBuff + msgLen , size -

msgLen);

13 msg[size - msgLen] = ’\0’;

14 printf("%s:%s\n", srcName , msg);

15 }

Listing 5.87: 2 clones found in
noRename

1 void processMsg(char *rcvBuff) {

2 char msg [1001];

3 char srcName [51];

4 uint16_t size;

5 printf("\n");

6 memcpy (&size , rcvBuff , sizeof(

uint16_t));

7 size = ntohs(size);

8 int dstLen = *(rcvBuff + sizeof(

struct packetHeader));

9 char *srcHandle = rcvBuff + sizeof(

struct packetHeader) + 1 + dstLen

+ 1;

10 int srcLen = *(rcvBuff + sizeof(

struct packetHeader) + 1 + dstLen

);

11 int msgLen = sizeof(struct

packetHeader) + 2 + dstLen +

srcLen;

12 memcpy(srcName , srcHandle , srcLen);

13 srcName[srcLen] = ’\0’;

14 memcpy(msg , rcvBuff + msgLen , size -

msgLen);

15 msg[size - msgLen] = ’\0’;

16 printf("%s:%s\n", srcName , msg);

17 }

The non-normalized version featuring a smaller clone in noRename PDG split is

shown in Listing 5.88 and Listing 5.89.

97

Listing 5.88: Listing 5.86 in noRe-
name PDG split

1 void processBroadCast(char *rcvBuff) {

2 printf("\n");

3 uint16_t size;

4 memcpy (&size , rcvBuff , sizeof(

uint16_t));

5 size = ntohs(size);

6 int srcLen = *(rcvBuff + sizeof(

struct packetHeader));

7 int msgLen = sizeof(struct

packetHeader) + 1 + srcLen;

8 char msg [1001];

9 char srcName [51];

10 memcpy(srcName , rcvBuff + sizeof(

struct packetHeader) + 1, srcLen)

;

11 srcName[srcLen] = ’\0’;

12 memcpy(msg , rcvBuff + msgLen , size -

msgLen);

13 msg[size - msgLen] = ’\0’;

14 printf("%s:%s\n", srcName , msg);

15 }

Listing 5.89: Listing 5.87 in noRe-
name PDG split

1 void processMsg(char *rcvBuff) {

2 printf("\n");

3 uint16_t size;

4 memcpy (&size , rcvBuff , sizeof(

uint16_t));

5 size = ntohs(size);

6 int dstLen = *(rcvBuff + sizeof(

struct packetHeader));

7 int srcLen = *(rcvBuff + sizeof(

struct packetHeader) + 1 + dstLen

);

8 char *srcHandle = rcvBuff + sizeof(

struct packetHeader) + 1 + dstLen

+ 1;

9 int msgLen = sizeof(struct

packetHeader) + 2 + dstLen +

srcLen;

10 char srcName [51];

11 char msg [1001];

12 memcpy(srcName , srcHandle , srcLen);

13 srcName[srcLen] = ’\0’;

14 memcpy(msg , rcvBuff + msgLen , size -

msgLen);

15 msg[size - msgLen] = ’\0’;

16 printf("%s:%s\n", srcName , msg);

17 }

The difference is the variable declarations of msg and srcName in the middle of the code

in noRename PDG split for both clone instances. By shifting the variable declarations

upwards to the top, char msg[1001] and char srcName[51] are included in the clone. However

the declaration for msgLen in Listing 5.86 is no longer included in the clone and the

declaration for srcLen in Listing 5.87 is also not part of the clone anymore. Overall,

there is a net gain of one line from normalizing this clone. Normalization can fragment

98

and augment already existing clones.

A summary of normalization on Moss for Student C is given in Figure 5.12.

Figure 5.12: Summary performance of Moss on Student C

5.4 Aggregates

Normalizer is used on student submissions from three sections of the Introduction to

Computer Networks class. A number of submissions used C++ as their programming

language which Normalizer does not support so these are excluded. Some students

have code that cannot be parsed. The unparseable code is originally from a C standard

library struct definition which includes __attribute__ modifiers and GCC specific syntax.

A best effort attempt was made to handle these, but the effort was abandoned due to

the small number of affected submissions. The remaining pool of students totaled 49

who chose the C language and had code that was able to be parsed by Normalizer.

Across 49 students, the total number of clones and cloned lines and tokens per tool

99

Figure 5.13: Aggregate results of Simian

is shown in Figures 5.13, 5.14, 5.15, and 5.16. The number of clones is shown in the

narrow white bar and the total clone mass is shown as the tall and wide bar.

In Figure 5.13, Simian using noRename does nearly as well as original. Surpris-

ingly, noRename PDG does better than original when no normalization occurs. All

versions that renames identifiers do worse than original, as exemplified by Students

A, B and C.

Shown in Figure 5.14, JPlag finds many more clones with any split version. All

versions performed better than original, including noRename PDG, which is expected

to have little to no difference.

In Figure 5.15, CloneDR’s general performance matches with Simian’s relative

performance per normalization version. Same as Simian and JPlag, noRename PDG

has a higher clone mass than original.

Finally, Moss in general found fewer clones by normalizing the input shown in

100

Figure 5.14: Aggregate results of JPlag

Figure 5.15: Aggregate results of CloneDR

101

Figure 5.16: Aggregate results of Moss

Figure 5.16. Identifier renaming does not affect Moss’s clone detection algorithm,

but statement reordering will.

Curiously in Simian, JPlag, and CloneDR, noRename PDG shows a larger clone

mass than original when it is expected to have no difference since no normalization

occurred. To investigate, a histogram is generated where each data point is the

number of clone lines changed from original to noRename PDG per student. The

histogram is shown in Figure 5.17.

102

Figure 5.17: Histogram of original to noRename PDG

By running through noRename PDG, two students’ submissions saw an increase of

87 and 108 lines of clones. Upon inspecting these two submissions, the students have

effectively put code into their C header files, either by having function definitions

in their header files or by importing a C source file. By preprocessing the #include

directives for each file that imports the header file, the code is inserted into each file,

creating a code clone. These code clones do not make multiple versions of source code,

but it does increase the size of the executable. If these two special case submissions

are excluded, then across 47 students the aggregate results are shown in Figure 5.18,

5.19, 5.20, and 5.21.

In Figure 5.18, by removing the two outliers, noRename PDG has dropped to a

similar level as original. Simian’s highest scoring normalized version is noRename,

but still scored lower than original. The outlier correction is also shown for JPlag

shown in Figure 5.19.

103

Figure 5.18: Aggregate results of Simian excluding outliers

Figure 5.19: Aggregate results of JPlag excluding outliers

104

Figure 5.20: Aggregate results of CloneDR excluding outliers

In Figure 5.19, JPlag does approximately equally in all non-split versions now that

preprocessing does not introduce clones. Also, identifier renaming does not make any

impact at all for JPlag. JPlag truly shines in split versions of the source code.

In Figure 5.20, CloneDR’s highest normalized version is noRename, finding a

larger number of clones than original, but a total smaller clone mass.

Moss shows the same picture in Figure 5.21, as normalization has an overall

negative effect on Moss. The results shows on average a slight decrease in clone

masses caught for all normalization methods. Each submission has a different reaction

to source code normalization and the aggregates show that normalization on average

lowers clone sizes. An exception is JPlag, which shows a substantial increase in clones

detected by splitting the input files into functions.

Supplemental box plots are generated as another means to graph aggregate results.

These box plots are placed in Appendix A, which show the distribution of each

105

Figure 5.21: Aggregate results of Moss excluding outliers

student’s detected clone masses per tool and normalization version. These charts are

useful for seeing the magnitude of clones written by students.

A closer look into Normalizer ’s effect can be observed by only comparing between

original and another normalized version. In the ideal case, normalized will show

the greatest improvement over original. The comparison histogram for Simian from

original to normalized is shown in Figure 5.22.

106

Figure 5.22: Histogram of original to normalized using Simian

There are minor improvements for a few submissions but for many students, their

clones become hidden by normalizing. One student even showed dramatically less

detected clones when reordered and renamed. As already explored, noRename gen-

erally performs better than normalized for Simian. The comparison histogram from

original to noRename is shown in Figure 5.23.

107

Figure 5.23: Histogram of original to noRename using Simian

Most submissions do not observe any difference with the usage of Normalizer.

This could be because there are no hidden clones to be discovered. Compared against

normalized, by omitting identifier renaming, submissions have increased clone masses

and the outliers from Figure 5.22 have disappeared. This shows that identifier re-

naming has a negative effect on Simian. Statement reordering still can cause negative

effects and positive effects. As already demonstrated, reordering statements can some-

times break clones apart or move fragments together. JPlag tells the same story; the

comparison between original and normalized is shown in Figure 5.24.

108

Figure 5.24: Histogram of original to normalized using JPlag

JPlag does a good job disregarding order within clones and identifier names re-

sulting in a generally higher benefit from normalization. Figure 5.24 also does not

include splitting the input into a file per function. When comparing original to split,

the histogram is shown in Figure 5.25.

109

Figure 5.25: Histogram of original to split using JPlag

By splitting the input file, a majority of students saw a benefit from using Nor-

malizer. For the case of two students, large clones exist within the same file. CloneDR

shares the same picture as JPlag without splitting. The histogram of CloneDR com-

paring original and noRename is shown in Figure 5.26.

110

Figure 5.26: Histogram of original to noRename using CloneDR

Source code normalization provides more extreme results for CloneDR than JPlag,

giving higher gains and higher losses. However, it is important to see that gains are

still to be had which normalization provides.

Lastly, even though Moss on the average lowers clone masses, it still can show

detected clones. The comparison histogram between noRename PDG split and split

in Moss is shown in Figure 5.27.

111

Figure 5.27: Histogram of noRename PDG split to split using Moss

Opportunities to increase the rate of finding clones are discussed in Chapter 6.

5.5 Same Identifiers

A small experiment was conducted where all identifiers were renamed as the same

identifier id. This would no longer make the code semantically similar to the original,

but it would remove the effect identifier names have on code clone detection. By

naming all identifiers alike, the structure and logic of the code remains, which the

tools will use as their basis for clone detection. Since Simian and CloneDR uses

identifiers as part of their analysis, only their performance will be examined. JPlag

and Moss will see no measurable difference from naming the identifiers the same.

For this section, instead of renaming each variable, all variables will be renamed

to id. Therefore, in noPDG, the only normalization feature in effect is the renaming

112

of all variables to id. The aggregate of Simian’s performance is shown in Figure 5.28

Figure 5.28: Aggregate results of Simian with same identifier names

By renaming all identifiers to id, noPDG has risen considerably, finding the most

among all the versions. Just by renaming all the identifiers the same name and not

reordering the statements provided the best overall clone mass detected. A breakdown

of the distribution of clone mass changes from original to just identifier renaming in

noPDG is shown in Figure 5.29.

113

Figure 5.29: Histogram of original to noPDG using Simian same identifier

Some submissions still see a negative impact. This is due to preprocessing and

how it slightly perturbs the source. Some submissions saw improvements of over 50

lines, and only a few submissions saw decreases. By naming all identifiers the same

name, this is the upper bound of what identifier renaming can do. Version normalized

fared in between original and noPDG. However, by including statement reordering,

some new clones have been discovered and some clones got larger. The distribution

of the difference from noPDG to normalized is shown in Figure 5.30.

114

Figure 5.30: Histogram of noPDG to normalized using Simian same iden-
tifier

Statement reordering provided additional gains on top of same identifier renam-

ing, but also causes some submissions to report fewer clones. CloneDR also has a

positive effect from uniform identifier renaming, whose aggregate result is shown in

Figure 5.31.

115

Figure 5.31: Aggregate results of CloneDR with same identifier names

Version noPDG performs the best just as in Simian’s case, but normalized de-

tected less than original for CloneDR. Some submissions still suffer from uniform

identifier renaming although not as drastic as regular identifier renaming, which is

shown in the comparison from original to noPDG in Figure 5.32.

116

Figure 5.32: Histogram of original to noPDG using CloneDR same iden-
tifier

117

Chapter 6

FUTURE WORK

Normalizer serves as a proof-of-concept that a singular tool can bolster the effective-

ness of multiple different code clone detectors. Although results have been positive,

there are improvements that can be made to Normalizer.

6.1 Pointer Analysis

Pointer analysis in C has always been a challenge. Although out of the scope of this

thesis, a more in-depth pointer analysis would benefit the construction of the PDG.

Knowing which variables may be modified or read instead of a sweeping generalization

that memory has been written to or read from would allow a more surgically accurate

PDG and grant greater freedom to reorder statements.

A specific area of plausible improvement is determining which variables can be

modified. If the assignment is into an int* type, then it can be reasonable to assume

that only ints are potentially modified, and not any other type. In the C language, this

is not always held true, but if the code was written well enough in a non-convoluted

fashion, then there is reason to believe that the assumption can be held true. If the

goal of the code clone is to circumvent detection, such as academic cheating, then

this improvement may be detrimental.

6.2 Different Identifier Normalization Namespaces

Identifiers are renamed based on when they are declared in the function, with the

first identifier named as “a”, and subsequent identifiers named along each letter of

the alphabet. Therefore even if two functions perform a similar task and one function

118

has an extra variable to store a temporary value, then the naming of identifiers for

that function will be shifted by one. By the mismatched variable names, the clone

will not be detected by clone detectors that rely on identifier names.

A potential improvement could be to name identifiers based on their type and

usage instead of first-come-first-serve. If the variable is declared as an int, then the

name of the variable could be int_a. This way, each variable type occupies their own

namespace and extra variables do not encroach on another type’s namespace. Another

way to name variables is that variables that are used more often than others should

be named as a frequently used variable. Therefore, popularly used variables would

have the same name across functions.

6.3 Depth-First Statement Reordering

Once a PDG has been created, the graph has to be serialized back into an AST

to be printed as a C program. There are many ways to sort a topological graph,

but determining the best way to expose clones is hard. Students write code in logical

sections, where one idea occupies a contiguous block of code. Those contiguous blocks

of code can appear in other clones too.

A potential idea for a better topological sort is to prefer a depth-first topological

sort. In those logical section, one statement may be a direct prerequisite for the

statement immediately after. Even though other statements may be eligible by the

topological sort, the sort would favor statements that become available from the most

recently sorted element. An example is shown in Listing 6.1 and its PDG is shown in

Figure 6.1.

119

Listing 6.1: Program with two logical code sections

1 double func() {

2 double pi, rad , h, rCube , sph , sph3 , circle , cyl;

3 pi = 3.14;

4 rad = 7;

5 h = 3;

6

7 rCube = rad * rad * rad;

8 sph = pi * rCube;

9 sph3 = sph + sph + sph;

10

11 circle = pi * rad * rad;

12 cyl = h * circle;

13

14 return sph3 + cyl;

15 }

pi = 3.14

rad = 7

h = 3

rCube = rad * rad * rad sph = pi * rCube sph3 = sph + sph + sph

circle = pi * rad * rad cyl = h * circle

return sph3 + cyl

Figure 6.1: PDG for Listing 6.1

The code is split into 2 separate logical sections, one to compute the volume of

three spheres in lines 7-8 and one to compute the volume of a cylinder in lines 11-

120

12 in Listing 6.1. If a depth-first topological sort were to take place, then it could

arbitrarily pick to fulfill sph3 = sphere * 3 and all of its prerequisites first. So to fulfill the

prerequisites, the order would be pi = 3.14, rad = 7, rCube = rad * rad * rad, sph = pi * rCube

then sph3 = sph + sph + sph. Then to fulfill cyl = h * circle, the sort would pick circle = pi *

rad * rad, h = 3, then cyl = h * circle. Finally the return return sph3 + cy1 would be chosen,

concluding the sort. The resulting resorted program would look like Listing 6.2.

Listing 6.2: Depth-first topological sort

1 double func() {

2 double pi, rad , h, rCube , sph , sph3 , circle , cyl;

3 pi = 3.14;

4 rad = 7;

5 rCube = rad * rad * rad;

6 sph = pi * rCube;

7 sph3 = sph + sph + sph;

8 circle = pi * rad * rad;

9 h = 3;

10 cyl = h * circle;

11 return sph3 + cyl;

12 }

Notice how the logical units are still contiguous for computing the three spheres

and cylinder. Even if the input was jumbled, tangling the computation for the spheres

and the cylinder such as Listing 6.3, it would result in the same PDG and the same

sorted program.

Listing 6.3: Jumbled program still has the same PDG as Figure 6.1

1 double func() {

2 double pi, rad , h, rCube , sph , sph3 , circle , cyl;

3 pi = 3.14;

4 rad = 7;

5 h = 3;

6 rCube = rad * rad * rad;

7 circle = pi * rad * rad;

8 sph = pi * rCube;

9 cyl = h * circle;

121

10 sph3 = sph + sph + sph;

11 return sph3 + cyl;

12 }

A way to summarize this sorting algorithm is to pick nodes that are immediately

used by the next node.

6.4 Traceback

As a hint for the end user, the original code is written as a comment besides the

normalized code to allow for backtracking. Support can be increased by providing

line numbers corresponding to the original non-preprocessed code. This would require

parsing the original source code with the preprocessor directives unresolved. This does

not help in detecting more clones, but it makes it easier for humans to find where the

clones are in the original source.

6.5 Code Clone Detection

Normalizer has constructed the internal representation of the input source and has

the necessary information to detect clones by itself. Abandoning the existing tools and

creating a code clone detection algorithm is a potential avenue for improvement. Since

PDG construction is already done in Normalizer, PDG comparisons is another logical

step besides serializing the PDG and outputting source code. The results from PDG

comparison can be more accurate than AST or token based approaches. Program

order is not as significant a factor in PDG comparisons than AST comparisons. By

serializing the PDG into a program, the PDG is forced to take on one of many possible

linear representations of the program, which makes detection harder.

Comparing two graphs to check if one graph contains an isomorphic graph equal

to the other is an NP-complete problem [8]. Graph comparisons take a lot of time,

122

but with small PDGs, a brute force appraoch can be feasible in an acceptable amount

of time. Among many PDGs, some of which could potentially be large, a heuristic

approach can be adopted to find code clones. The transitive reduction of a PDG

discussed in Section 4.3.6 will help in PDG comparisons.

123

Chapter 7

CONCLUSION

Code clones can appear in any codebase, intentionally and unintentionally. Detecting

code clones can lead to increasing the maintainability of the code. Numerous tools

exist to report clones, but they do not augment the performance of another [18].

Normalizer is not a code clone detector, but instead is a source code formatter that

rewrites the source code so clones look as similar to each other as possible. The

formatted code is then used as input for code clone detectors.

Normalizer can help detect clones that would not have been detected without nor-

malizing the code. The benefit of using Normalizer is dependent on many variables,

such as coding style, the tool used to detect clones, and the heuristics Normalizer

uses to reorder statements or rename variables.

There are many instances where, by using Normalizer, new or larger clones can be

detected that the original source code did not expose. At the same time, Normalizer

can also make clones shrink or disappear. However, in the intent to catch as many

clones as possible, a viable option is to run the code clone detection tools both with

and without Normalizer and gather the clones from both executions.

It is shown that the input source can have a dramatic effect on code clone detec-

tion. Even if two programs perform the same logical task, depending on something

as trivial as the programmer’s coding style, those logical clones may not be detected.

Normalizer attempts to remove the programmer’s style out of the code by rewriting

the code in its own style while preserving the logic. By consistently rewriting the code,

more clones may be exposed. From this proof-of-concept, source code normalization

can be used to strengthen the effectiveness of code clone detection tools.

124

BIBLIOGRAPHY

[1] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection

using abstract syntax trees. In Proceedings of the International Conference on

Software Maintenance, ICSM ’98, pages 368–, Washington, DC, USA, 1998.

IEEE Computer Society.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and

evaluation of clone detection tools. IEEE Transactions on Software

Engineering, 33(9):577–591, Sept 2007.

[3] D. Bruschi, L. Martignoni, and M. Monga. Code normalization for

self-mutating malware. IEEE Security and Privacy, 5(2):46–54, Mar. 2007.

[4] R. Gauci. Smelling out code clones: Clone detection tool evaluation and

corresponding challenges. arXiv preprint arXiv:1503.00711, 2015.

[5] D. Gries, A. J. Martin, J. L. van de Snepscheut, and J. T. Udding. An

algorithm for transitive reduction of an acyclic graph. Science of Computer

Programming, 12(2):151 – 155, 1989.

[6] S. Harris. Simian - similarity analyser, Feb 2017.

[7] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate

tree-based detection of code clones. In Proceedings of the 29th International

Conference on Software Engineering, ICSE ’07, pages 96–105, Washington, DC,

USA, 2007. IEEE Computer Society.

[8] S. Kijima, Y. Otachi, T. Saitoh, and T. Uno. Subgraph isomorphism in graph

classes. Discrete Mathematics, 312(21):3164 – 3173, 2012.

125

[9] R. Komondoor and S. Horwitz. Eliminating duplication in source code via

procedure extraction. UW-Madison Dept. of Computer Sciences, Technical

Report, 1461, 2002.

[10] T. Parr. Antlr, Feb 2017.

[11] L. Prechelt. Jplag cpp tokens, mar 2017.

[12] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among a set

of programs with jplag. J. UCS, 8(11):1016, 2002.

[13] D. Rattan, R. Bhatia, and M. Singh. Software clone detection: A systematic

review. Information and Software Technology, 55(7):1165–1199, 2013.

[14] C. K. Roy. Detection and Analysis of Near-miss Software Clones. PhD thesis,

Kingston, Ont., Canada, Canada, 2009. AAINR65337.

[15] C. K. Roy and J. R. Cordy. Nicad: Accurate detection of near-miss intentional

clones using flexible pretty-printing and code normalization. In Proceedings of

the 2008 The 16th IEEE International Conference on Program Comprehension,

ICPC ’08, pages 172–181, Washington, DC, USA, 2008. IEEE Computer

Society.

[16] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code

clone detection techniques and tools: A qualitative approach. Sci. Comput.

Program., 74(7):470–495, May 2009.

[17] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local algorithms for

document fingerprinting. In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’03, pages 76–85,

New York, NY, USA, 2003. ACM.

126

[18] A. Sheneamer and J. Kalita. A survey of software clone detection techniques.

International Journal of Computer Applications, pages 0975–8887, 2016.

127

Appendix A

BOX PLOTS

These box plots are the distribution of clone masses detected by a code clone tool

per student. These plots give a sense of the range of code clones produced in a

typical class. Some students do not make any clones and a few students produce

relatively much higher counts of clones. In addition, these box plots also provide an

idea of how much a code clone detector can vary in its performance from student to

student. However, each point is also subject to the amount of clones that exist in

that submission.

Figure A.1: Box Plot of Simian’s Results

128

Figure A.2: Box Plot of JPlag’s Results

Figure A.3: Box Plot of CloneDR’s Results

129

Figure A.4: Box Plot of Moss’s Results

130

