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ABSTRACT 
 
 

Using Computer Vision Techniques to Build a Predictive Model of Fruit Shelf-Life 
 

 Nandan G. Thor  
 
 
              Computer vision is becoming a ubiquitous technology in many industries on 
account of its speed, accuracy, and long-term cost efficacy.  The ability of a computer 
vision system to quickly and efficiently make quality decisions has made computer vision 
a popular technology on inspection lines.  However, few companies in the agriculture 
industry use computer vision because of the non-uniformity of sellable produce.  The 
small number of agriculture companies that do utilize computer vision use it to extract 
features for size sorting or for a binary grading system: if the piece of fruit has a certain 
color, certain shape, and certain size, then it passes and is sold.  If any of the above 
criteria are not met, then the fruit is discarded.  This is a highly wasteful and relatively 
subjective process.   
        This thesis proposes a process to undergo to use computer vision techniques to 
extract features of fruit and build a model to predict shelf-life based on the extracted 
features.  Fundamentally, the existing agricultural processes that do use computer vision 
base their distribution decisions on current produce characteristics.  The process proposed 
in this thesis uses current characteristics to predict future characteristics, which leads to 
more informed distribution decisions.  By modeling future characteristics, the process 
proposed will allow fruit characterized as “unfit to sell” by existing standards to still be 
utilized (i.e. if the fruit is too ripe to ship across the country, it can still be sold locally) 
which decreases food waste and increases profit.  The process described also removes the 
subjectivity present in current fruit grading systems.  Further, better informed distribution 
decisions will save money in storage costs and excess inventory.   
          The proposed process consists of discrete steps to follow.  The first step is to choose 
a fruit of interest to model.  Then, the first of two experiments is performed.  Sugar 
content of a large sample of fruit are destructively measured (using a refractometer) to 
correlate sugar content to a color range.  This step is necessary to determine the end-point 
of data collection because stages of ripeness are fundamentally subjective.  The literature 
is consulted to determine “ripe” sugar content of the fruit and the first experiment is 
undertaken to correlate a color range that corresponds to the “ripe” sugar content.  This 
feature range serves as the end-point of the second experiment.  The second experiment is 
large-scale data collection of the fruit of interest, with features being recorded every day, 
until the fruit reaches end-of-life as determined by the first experiment.  Then, computer 
vision is used to perform feature extraction and features are recorded over each sample 
fruit’s lifetime.  The recorded data is then analyzed with regression and other techniques 
to build a model of the fruit’s shelf-life.  The model is finally validated.  This thesis uses 
bananas as a proof of concept of the proposed process. 
  
Keywords: agriculture, bananas, computer vision, feature extraction, food waste, 
LabVIEW, multiple regression, predictive modelling, produce grading  
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1. INTRODUCTION 

 

Computer vision is one of the fastest growing and one of the most researched 

disciplines in this day and age.  Computer vision is the hardware and software involved in 

capturing and analyzing an image with a computer.  It has found a home on inspection 

lines because of its speed, accuracy, reliability, and objectivity.  Computer vision excels 

on systems such as inspection lines at finding defects in well-defined objects.  When a 

computer vision system has an ideal representation of what a, say, electronic component 

looks like, it is very easy to detect deviations from the norm.  However, a field that is still 

in its infancy is applying computer vision to non-uniform objects.  The purpose of this 

thesis is to present a process that applies existing computer vision techniques to build a 

predictive model of the shelf-life of fruit. 

Increasingly, computer vision is being used in the agriculture industry.  

Agriculture is a good fit for computer vision because of the sheer volume of fruit that 

most factories process every day and the time, effort, and money that goes into quality 

control and distribution decisions.  Today, some factories use computer vision to detect 

for bruises and other defects that would detract customers.  This type of inspection falls 

under the broader category of fruit quality grading.  In most agricultural businesses, this 

grading is done by humans.  Essentially, the grading is a rating on a scale from one to 

five of the external quality of the fruit.  Fruits with ratings of three and above are sold 

while those with ratings of two and below are discarded.  This type of grading is a binary 

process that is beginning to be (somewhat reliably) performed by computers.  Another, 

much more advanced, application is to use computer vision to classify distinct categories 
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of fruit with similar characteristics and place all of one group of fruit into one room, dose 

the entire room with ethylene, and then sell the entirety of that group when it is ripe.  

However, this takes up time, space, and money to store and wait for the fruit.  It is also 

frequently wasteful and inaccurate. 

The purpose of this thesis is to present a process that uses computer vision to 

extract color features of a large group of the fruit and then builds a predictive model of 

the shelf-life for the fruit (specifically bananas for the purposes of this thesis).  While the 

thesis demonstrates the process on bananas, the process can theoretically be repeated for 

any climacteric fruit that changes colors distinctly as it ripens.  Essentially, a camera 

would scan each piece of fruit, extract features, and then plug the values into the created 

model to get an accurate prediction of the shelf-life of that particular piece of fruit.  This 

would allow fruit with a shorter shelf-life to be shipped across the state whereas fruit with 

a longer shelf-life would be shipped across the country.  This would save money and 

space.  It would also allow more fruit to be sold because fruit that may have been given 

an unacceptable rating would still be able to be sold (if the fruit is deemed to ripe to be 

shipped, it can still be sold locally).  Fundamentally, instead of making distribution 

decisions based on current features (as is done in the industry today), this thesis proposes 

a model which allows current features to be used to predict future features, which are 

used to inform distribution decisions.  Finally, the proposed technique would be 

advantageous because it allows for an objective, accurate, and concrete shelf-life 

prediction system as opposed to the current fruit grading procedure. This thesis develops 

an experimental process to undergo and the subsequent statistical analysis to build a 

predictive model of color features against shelf-life.  The thesis uses bananas as a proof 
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of concept of the process.  There are two experiments: the first one captures images of a 

few samples of fruit and then destructively measures sugar content.  The purpose of the 

second experiment is to correlate color representations with sugar content to determine 

the end point of shelf-life.  A sugar content of 23% indicates a ripe banana, which, for the 

purposes of this thesis will serve as the last day of data collection.  The color of many 

samples of bananas on the first day that their sugar content reaches or exceeds 23% is 

recorded and the color range is then set as the end color of the second experiment.  The 

second experiment involves capturing images of many samples of the fruit each day until 

it becomes spoiled.  The color features are extracted every day using computer vision.  

For statistical analysis, each fruit is plotted to measure color as a function of time.  Post-

processing then occurs with different representations of color being calculated (using 

existing computer vision algorithms).  Then, for each fruit, shelf-life is calculated at a 

given color value.  This is repeated for each selected color and each fruit.  Finally, shelf-

life as a function of color can be modeled (with the corresponding standard deviation at 

each color) to ultimately give a model of shelf-life based on color.

 

Figure 1: Outline of process. 
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2. LITERATURE REVIEW 

 

 2.1. Introduction: 

 

 The purpose of this literature review is to provide the readers with an 

understanding of how computer vision is applied in the agriculture industry today.  This 

will identify current industry standards as well as active areas of research.  Additionally, 

this literature review will serve to identify gaps in the current research. 

Computer vision is the hardware and software involved in image processing of an 

object by a computer.  Essentially, an object is analyzed by capturing an image of it and 

extracting features and characteristics for downstream processing (characterization, 

discrimination, model building, etc.).  Over the past thirty years, computer vision has 

increasingly found a home in the agriculture industry.  Common applications of computer 

vision systems in the agricultural industry involve automatic sorting, grading, and 

estimation of quality of fruits, vegetables, and meat.  Traditionally, sorting and grading of 

fruits has been done by a panel of experts.  However, in many ways, computer vision 

systems are better because they can be faster and more reliable than human graders.  One 

of the advantages of computer vision systems are that computers can detect light in the 

ultraviolet and infrared spectrum, which humans cannot do (Cubero et al., 2011).  Also, 

computers are generally much faster and more accurate (consistent) than humans.  There 

is no bias in computer vision systems, unlike humans.  That is, people are subjective and 

when they are only able to give a numerical value as a rating, there is not a detailed 

analysis of quality (Zhou et al., 2004).  Finally, while there is a large up-front investment 
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in computer vision systems, in the long-run computer vision in the agriculture industry 

becomes much cheaper and more efficient than using human graders.   

 

 2.2. Current Issues: 

 

 The main challenge of using computer vision in the agriculture industry is that 

each piece of produce is unique.  An apple from one orchard on one specific tree on one 

specific branch may look, feel, and taste completely different than a neighboring apple.  

Also, the produce naturally changes – it oxidizes, changes color, changes texture, changes 

quality etc. as the produce ripens.  There is also the added complexity of the surface 

geometry and texture which misleads computer vision with shadows and raised surfaces.  

Computer vision is best when it has been trained on a set of images and has to categorize 

the exact same object.  However, produce is imperfect and it is contentious as to what 

exactly the “perfect” fruit characteristics are. There is also a quantity versus quality 

argument: is it more important to get fruits analyzed correctly or quickly?  Ideally both, 

but the answer will vary from industry to industry.   

 The next serious challenge has to do with controlling and replicating lighting 

effects.  The intensity of light varies on different parts of produce, since fruit is not a 

uniform shape and since the surface of the fruit is often curved.  So, using a computer 

vision system for grading produce must have consistent lighting that recognizes and 

addresses the problem of even lighting of uneven surfaces.  Another hardware challenge 

is how to set up and integrate information from many cameras to obtain a complete 

representation of the fruit, while minimizing cost.  This area involves systems integration: 
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how to get every component (camera, object, image, computer, encoder, etc.) to 

communicate with the other components to get a comprehensive computer vision result.    

 The majority of recent computer vision research involves creating faster, better 

algorithms in color analysis and shape analysis of images.  There have been applications 

of genetic algorithms, neural networks, and other algorithms to computer vision use in 

the agriculture industry.  These have come with various results and reproducibility.  

Importantly, the economic factors must be considered as well.  One of the more pressing 

current issues in computer vision in the agriculture industry is trying to establish the best 

algorithms for computer vision of produce.  Ideally, an algorithm that is fast, cheap, and 

accurate is desired.  However, logistically, there usually has to be a trade-off of one of the 

aforementioned factors.  Often, the best algorithms will vary from industry to industry 

and even between different pieces of produce. 

 

 2.3. Image Analysis: 

 

  2.3.1. Introduction: 

  

  “Appearance is a very important sensory quality attribute of fruits and 

vegetables, which can influence not only their market value, consumer's preferences and 

choice but also their internal quality to some extent. External quality of fruits and 

vegetables is generally evaluated by considering their color, texture, size, shape, as well 

as the visual defects. External quality inspection of fruits and vegetables manually is a 

time-consuming and labor intensive work” (Zhang et al., 2014).  Indeed, when selecting 
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produce in a supermarket, appearance (color, shape, size) is the most important 

discriminating factor.  It has been proven that the color of fruit can end up affecting the 

perception of the taste of the fruit (Abdullah et al., 2001).  It is, then, very valuable to 

have a computer vision system that can analyze produce and make distribution decisions 

about the produce that will be appealing to customers.  Further, computer vision systems 

that can grade fruit accurately will be able to predict which produce will sell in certain 

supermarkets (based on the features extracted using computer vision).   

 The motivating work that demonstrated that computer vision is an acceptable 

substitute for human grading comes from Nunes (2015).  “Overall, there was a significant 

correlation between most of the [fresh fruits and vegetables] FFVs subjective quality 

attributes evaluated and the physicochemical analysis performed. Results from this study 

showed that subjective quality evaluations using rating scales can be a reliable and simple 

method to estimate changes in color, texture, water content, and ultimately changes in 

specific chemical components when FFVs are exposed to different environmental 

conditions. In the absence of a formal trained sensory panel this method can be easily 

used in research of industry settings (e.g., quality control at receiving)” (Nunes, 2015).  

Essentially, the work showed that computer vision extracted features do indeed mirror the 

observable physiological changes in fruit.  Put another way, computer vision is an 

unbiased and accurate indicator of the physiological changes of ripening fruit.  However, 

this is still an active and important area of research which is needed to validate the results 

from computer vision of produce.   
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  2.3.2. Equipment: 

  

 Computer vision needs three things: a source of light, an object to be analyzed, 

and a receptor to detect the light (Vidal et al., 2013).  Lighting is one of the most 

important aspects of computer vision.  Illumination must be uniform, constant, and 

repeatable.  “In the external quality assessment using computer vision, a good lighting 

system should provide uniform radiation throughout the scene, avoiding the presence of 

glare or shadows, and it must be spectrally uniform and stable over time” (Cubero et al., 

2011).  According to Zhang (2014), lighting needs to be controlled to reduce downstream 

filtering, to enhance distinction of the object of interest from the background, and to 

reduce reflection.  There are two different types of lighting: front lighting is used to do 

analysis on the actual surface of the fruit (e.g. color analysis or defect determination).  

Back lighting is used to distinguish the shape of the object or the size of the object.  Front 

lighting is for feature detection and back lighting is for general characteristics (Zhang et 

al., 2014).		The use of either front or back lighting depends on the project and often both 

are used at different parts of the research.  One unique way of controlling for uniform and 

replicable lighting conditions was done by Leemans (1998).  The idea was to use a 

cylindrical tube with the inside painted white to reflect light.  This allowed for even 

lighting to fill the entire tube instead of relying on point sources of light.  Also, this 

technique has the advantage of not having a shadow (Leemans et al., 1998). 

 Cameras are the image capturing devices for computer vision.  The most common 

cameras are charge-coupled device (CCD) cameras.  Often, there are multiple cameras in 

order to capture different angles of the same object.  “The most popular industrial 
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cameras are based on charge-coupled device (CCD), which consists of an array of sensors 

(pixels), each of which is a photocell and a capacitor” (Cubero et al., 2011).  There, 

again, has to be a tradeoff between quality and quantity as well as price.  There needs to 

be enough cameras to acquire a representative image of the object of interest.  However, 

having a large number of cameras will be expensive and it will be very computationally 

taxing to coalesce many different images into one comprehensive image to analyze.  

Image acquisition is not limited to only cameras, there are also scanners, X-Rays, MRI, 

etc. (Cubero et al., 2011).   

 All of the equipment blends into real time vision systems.  Generally, produce 

travels at a very high speed on inspection lines.  In order to get clear images, a strobe 

light is generally used to capture one frame at a time.  There should, also, be an encoder 

to adjust the speed of the conveyor belt.  Indeed, there must also be a computer to analyze 

the images.  Finally, there should be a primary and secondary output chamber to separate 

acceptable produce from unacceptable produce.  (Cubero et al., 2011).  An example 

system is shown in Figure 2. 

 

 

  Figure 2: Computer vision system example. (Cubero, et al., 2011). 
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  2.3.3. Color Analysis: 

  

 Color is the most important discriminating factor for consumers (Zhang et al., 

2014).  Therefore, most research has been devoted to creating computer vision systems 

that accurately represent colors.		“Colour coordinates provided by these [CCD] devices 

are often referred to as the CIE 1931 colour space, in which they are denoted by X, Y and 

Z. Colorimeters are limited to the measurement of small regions or in applications where 

the integration of the colour all over the sample is of interest, which means that they are 

not well suited to measuring objects with a heterogeneous colour” (Cubero et al., 2011).  

The two main techniques for color feature extraction are Red, Green, Blue (RGB) (Figure 

3) and Hue, Saturation, Intensity (HSI) (Figure 4).  RGB gives a simple ratio of red, 

green, and blue color.  RGB is generally used for discrimination, HSI is generally used 

for description.  RGB is often seen as inferior for a few reasons.  Firstly, each camera will 

provide a different RGB value for the same image.  This is because the calculated RGB 

value is device dependent.  This discrepancy can be overcome by transforming RGB 

values to standard RGB (sRGB) values – however this can take computational space and 

time.  The other issue is that RGB color is not intuitive: it is not representative of how the 

human eye sees the world.  For the above reasons, HSI is frequently preferred over RGB.  

It is important to note that, for the purposes of this thesis, the HSI values that are found 

throughout the thesis come from National Instruments LabVIEW (which was used for 

analysis) and its inherent 8-bit encoding of color.  LabVIEW’s 8-bit encoding produces 

scaled hue values between 0 and 255.  Results may vary based on the software used and 

the encoding type (16-bit may produce different results than 8-bit).  According to Vidal 
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(2013), RGB can be an issue because it is device dependent.  To overcome this, RGB 

colors get converted to XYZ coordinates in order to standardize the RGB values.  The 

XYZ coordinates are then converted to L*a*b* coordinates which are considered to be 

the most intuitive and the most accurate representation of reality as the human eye sees it 

(Figure 5).  While this does transform RGB coordinates, the issue with the transformation 

is that the transformation is very computationally intensive and time-consuming (Vidal et 

al., 2013 and Pedreschi et al., 2006).  Another way of using RGB color analysis was 

performed by Blasco (2003).  Each image was analyzed for color using the RGB 

technique and then a Bayesian discriminant model was used to perform the RGB color 

analysis (Blasco et al., 2003).  Shearer and Payne (1990) used RGB color analysis as a 

way to classify the quality of bell peppers.  The analysis was done in a very 

computationally heavy way by classifying each pixel by RGB color analysis and then by 

further quantifying each pixel into one of eight possible color categories.  This analysis 

was relatively accurate but too slow to be implemented on inspection lines (Shearer and 

Payne, 1990). 

 

Figure 3: RGB color representation. (Pata, 2016). 
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Figure 4: HSI color representation. (Jewett, 2013). 

 

 

Figure 5: CIE L*a*b* color representation. (De, 2015). 
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 Certain fruit can have different colors.  Firstly, there is the main color that covers 

most of the produce’s surface called the primary color.  Secondly, there can be other 

colors called the fruit’s secondary colors.  A numerical estimate of the primary or 

secondary colors can be found by averaging the colors on the surface of the fruit (Blasco 

et al., 2003).  If a fruit has a primary color – one color evenly distributed among the 

surface of the fruit, then averaging the primary color is an accurate way of determining 

quality.  However, if the color of the fruit is non-uniform, the secondary color may be a 

more accurate indicator of quality (Jha et al., 2010).  Clearly, color analysis will vary 

from between types of fruit.  

 One of the most important papers in the field of color analysis for computer vision 

in the agriculture industry came from Pace (2014).  The color of a certain region of 

lettuce was calculated by dividing that region’s color by either white or brown.  This 

analysis gave a ratio that allowed for comparison between different parts of the same 

object.  The analysis was done on four separate images, each capturing a certain part of 

the produce in question (lettuce).  The authors ultimately found that color was a 

significant indicator of quality – both green and brown and the respective ratio of each 

color (Pace et al., 2014).  This paper was important because it showed that color is an 

accurate indicator of produce’s quality and the paper introduced the use of a color ratio 

for more precise color analysis.  	

 In 2008, Alfatni’s experiment determined how ripe oil palm fruit was by 

calculating color intensity.  They used RGB color intensity.  The mean color intensity 

was simply the number of red pixels divided by the total number of pixels.  They found 

that there was a correlation between the mean intensity color and ripeness (Alfatni et al., 
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2008).  Another, similar, experiment was done by Abdullah on the same oil palm fruit.  In 

each image, RGB color analysis gives three separate values (R, G, and B) for each pixel 

in the image.  A big problem with RGB color analysis is that it does not accurately map 

colors the way that humans do.  That is, it is not an intuitive way of representing color.  

RGB should be converted to HSI for more understandable results.  “The basic idea of 

machine vision discrimination analysis is to transform the multivariate hue distributions 

to univariate y such that y’s derived from population for Gi for i = 1, 2, 3, . . . , g were 

separated as much as possible. The results can be interpreted in terms of the sample 

Mahalanobis’ distance” (Abdullah et al., 2001).  Mahalnobis’ distances are essentially a 

multi-dimensional measure of standard deviation.  It is a measure of how far away a point 

(P) is from a distribution (D) in all dimensions.  In the case of pomegranates, the RGB 

color system was the most intuitive, with the most accurate indicator being the R/G ratio.  

There can be misclassification between the red and brown objects (using RGB analysis).  

The processing speed was very impressive: about 15 milliseconds per fruit.  If speed is of 

high importance, the RGB model may be the correct approach (Blasco et al., 2009).		

Computer vision systems can be trained to be even more accurate in 

differentiating colors than colorimeters, according to Diaz (2000).  By being fully 

automated, computer vision systems can overcome the error that is inherent in human 

operation of colorimeters.  The vision systems are also much more accurate at classifying 

olive quality states than olive experts because the experts tend to classify olives in the 

worse category whenever there is doubt (Diaz et al. 2000).  In a similar example, when 

compared to the grading of a human panel, the computer vision approach was more 

accurate and much faster (Abdullah et al., 2001). 
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 2.3.4. Size/Shape Estimation: 

  

 Shape estimation poses a serious challenge for computer vision systems.  This is 

because of the non-uniformity of fruits.  Each fruit will have its own unique shape and it 

is difficult to characterize an “ideal” fruit shape.  In order to classify shape, generally, 

there needs to be a set of categories and criteria to distinguish which category the object 

falls in.  That is, characteristics needs to be measurable (roundness, etc.) (Costa et al., 

2011).  Produce should fall within a specified shape tolerance otherwise people will not 

want to buy it.  The producer should come up with an ideal shape and then allow for a 

certain variation tolerance, rejecting any fruit outside of that tolerance (Cubero et al., 

2011).  An excellent example of this was done by Leemans (1998).  In his approach, each 

pixel of the acquired image was compared to an idealized model image.  This was done 

using Mahalanobis distances.  The main problem was that this was computationally 

intensive but it did give a very accurate model of how different the acquired image was 

from the idealized image.  To speed up the process, the image was then segmented into 

subdivisions which were compared to the ideal image.  This process is very successful at 

detecting bruises and discolorations (Leemans et al., 1998). 

 Size estimation is one of the main factors to distinguish commercial categories of 

produce.  For produce producers, size is the most important characteristic (even more so 

than color).  “Size, which is the first parameter identified with quality, has been estimated 

using machine vision by measuring either area ... perimeter … or diameter …” (Blasco et 

al., 2003).  For size estimation, there are two general techniques.  The first technique is 

pixel oriented: which consists of classifying each pixel as either belonging to the object 



 16 

(foreground) or the background.  The next technique is region oriented which entails 

taking previous knowledge to perform the segmentation (e.g. color changes, boundaries, 

changes in texture) (Blasco et al., 2007).  This type of analysis was actually implemented 

earlier by Blasco: for size estimation, the image was treated as a binary product, with the 

foreground being the fruit and the rest being the background (Blasco et al., 2003).  Size 

was then estimated by the number of pixels in the foreground.  A unique segmentation 

technique was employed in an experiment by Blasco (2009).  Instead of trying to segment 

the image, they used segmentation to try to distinguish the object from the background.  

This was helped by using a blue background (because they were interested in red and 

white pomegranate arils) so the foreground (object) and background can be easily 

distinguished.  Size estimation can become more challenging with non-spherical produce 

(Cubero et al., 2011).  	

 Perhaps the most complete analysis of image processing comes from Zhang 

(2014).  “Image processing and analysis are performed in three levels.  The low level 

processing, which is the basic processing of image, involves image acquisition and image 

preprocessing; the intermediate level processing, which is the make-or-break step in 

image processing and analysis, involves image segmentation, feature extraction, 

representation, and description; the high level processing, which is the key step of image 

analysis, involves recognition, interpretation and classification. The commonly used 

image processing and analysis techniques in the external quality inspection of fruits and 

vegetables …” (Zhang et al., 2014).  The first step is to increase the contrast between the 

image and the background to allow for accurate processing.  Then, according to Zhang’s 

(2014) model, filters are applied to remove interferences and noise in the image and to 
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smooth out the image.  Image segmentation is the next important step.  Image 

segmentation allows the image to be broken up into areas of interest, with each area being 

analyzed independently and the result being a coalesced analysis of each subset.  This can 

be done automatically in computer vision by comparing a pixel to its neighbor to 

determine edges or changes in brightness (Zhang et al., 2014).  The end result of this 

preprocessing is to extract features.  Then, these features can be measured.  This allows a 

quantitative representation of qualitative features.  Feature extraction is, often, the most 

important part of computer vision because the extracted features become the 

discriminating factors downstream.  Both color and size analysis are based on the 

individual pixels in each subsection.  Pixel-based analysis is computationally intensive.  

2-D size can be estimated by edge detection.  Texture analysis is also very important and 

can be more accurate at predicting ripeness than color (Zhang et al., 2014).  Texture 

analysis is an adaptation of pattern recognition. First, the intensity of an area of pixels is 

measured and the values are stored in a matrix.  Then, statistical methods are used to 

extract a statistical estimate of texture for a certain area (Zhang et al., 2014).   

 

 2.4.  Comparing Computer Vision Results to Physiological Results 

 

Because computer vision systems are a relatively new technology, there is an 

ever-growing field of “checking” computer vision results by measuring corresponding 

physiological parameters.  The paper by Pace (2014) validated their computer vision 

system by checking computer vision results against physiological changes.  In order to 

quantify whether lettuce was spoiled or not, ammonia level was found to be the best 
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indicator of freshness.  Ammonia content was analyzed using a reagent (Pace et al., 

2014).  Color parameters were also measured by extracting chlorophyll. This determines 

how “green” the lettuce is.  That is, results from the computer vision system were 

checked by extracting chlorophyll and correlating chlorophyll concentration to the 

“green” feature of the computer vision system.  Another way of determining the color is 

by using a colorimeter (Pace et al., 2014).  Similarly, Aimonino (2015) correlated the 

ratio of browned area on frozen fruits to their physiological changes.  The physiological 

changes were measured using solutions with varying antioxidant concentrations to 

quantify the extent of browning.  The results showed a strong correlation between the 

computer vision ratio of browning and the measured antioxidant content (Aimonino et al., 

2015).   

Another example of validation of computer vision results comes from Zhou 

(2004).  “Regression analysis showed that the progression of lettuce browning 

corresponded well with days of storage, i.e. shelf life” (Zhou et al., 2004).  What this 

shows is that color is an accurate indicator of shelf life (for lettuce).  Color was 

represented by the mean color.  Another experiment in the same vein came from 

Manninen (2015) and her work with bean color differences.  Color analysis was 

performed by finding the mean color value, which was divided by the area to give 

different weights to different subsets.  The mean color value was checked by extracting 

chlorophyll from each sample to quantify the green color.  Results were proven to be 

effective because ANOVA showed no significant differences in color coordinates within 

the same type of bean but differences were significant between different types of beans.  

This technique was effective at finding minor color differences that human graders would 
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not be able to detect (Manninen et al., 2015).  This concept was even further 

demonstrated by Jha (2010) who worked with mangoes.  He found parameters for the 

qualities of mangoes: as the mango ripens, it weighs less, becomes shorter, and becomes 

softer.  These differences were shown both in computer vision measurement and in 

physiological measurement of the mangoes as they ripened (Jha et al., 2010).			

	 Another very important paper came from Zhang (2004), which showed 

definitively that computer vision is a correct substitute for human grading.  The degree of 

“spoiling” that lettuce showed was determined by calculating the percentage of brown 

area as a ratio.  At each sampling time, a panel of experts rated the lettuce on a scale of 1-

5, with a score of 3 being the threshold for “unacceptable” quality.  When using computer 

vision, they found that one piece of shredded lettuce may not be representative of the 

entire head of lettuce, so a petri dish was covered with different samples from the same 

head of lettuce.  Most importantly, they found that the most significant color changes 

happened within 4-6 days of storage, as mirrored by the most significant physiological 

changes (Zhang et al., 2004).  Velez-Rivera (2014) did a similar sort of analysis using 

mangoes.  Classification was done using RGB color analysis which was then converted to 

HSB (hue, saturation, brightness) color coordinates.  The color coordinates were then 

used to classify the mangoes into three phases of maturation (unripe, ripe, spoiled).  

Then, the results were compared to the ripening index classification using 

physiochemical properties (Velez-Rivera et al., 2014).  The correlation was shown to be 

significant.   
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 2.5. Economics of Food Waste 

  

 The loss and waste of food is not only a moral issue, but is is also an economic 

issue.   “39 percent of total food loss, excluding loss at the farm level, was generated at 

the manufacturing stage” (Gunders, 2012).  Certainly, an approach that targets in-factory 

distribution decisions will lower food waste at the manufacturing stage.  Further, 

according to Gunders, 20% of produce loss occurs at the production level, and a further 

19% in storage and distribution losses.  “Estimated at retail market prices, $15.1 billion 

of fresh and processed fruit were lost from the US food supply in 2008. Of this amount, 

roughly $5.8 billion occurred at the retail level and $9.3 billion occurred at the consumer 

level. The amount for each individual fruit was a function of its price per pound and, 

more importantly, the quantity lost. Fresh apples, strawberries, peaches and grapes each 

had over one billion dollars’ worth of losses at the retail and consumer levels—largely 

because these fruits are among the most commonly purchased and consumed” (Buzby 

2011).  So, the economic losses that come from spoiled fruit are monumental.  Reducing 

fruit waste through better classification and distribution approaches by computer vision 

can reduce food waste, saving producers billions and reducing the price of fruit for 

consumers, making fruit more accessible to every person.   

 A paper was released by Gunders (2012) that investigated the current state of food 

waste in America.  The paper identified the different sources of food waste and a brief 

description of each source.  By identifying each possible source of waste in the retail fruit 

market, different areas of waste can be targeted and custom solutions can be tailored for 

each area. 
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“Trimming. This includes removal of both edible portions (peels, skin, fat) and inedible portions 

(bones, pits, etc.).  Processing efficiency. While most operations are quite efficient, some steps 

may lose more food than necessary.  Improper handling. Various kinds of mishandling, such as 

deliveries needing refrigeration that sit too long on the loading dock, can damage products.  

Inconsistent refrigeration. Truck breakdowns and other mishaps can lead to spoilage due to lack of 

refrigeration.  Rejected shipments. By the time a shipment is rejected, its contents have a shorter 

shelf life and may be difficult to sell before spoiling. Food displays. Excessive products may be 

displayed in order to create the effect of abundance, which is believed to increase sales. There can 

also be overstocking, over-trimming, and improper stock rotation. Ready-made food. Increases in 

this perishable category lead to greater discards at end of day. Label dates. Products that pass their 

“sell by” dates are removed from shelves.  Pack size too large. Inflexible pack sizes lead to stores’ 

ordering more than they expect to sell. Discarded product. The passing of holidays, promotion 

expiration, a high failure rate for new food products, and damaged packaging all lead to discarded 

product.  Low staffing. With tight staffing, there is less labor to prepare food on-site and therefore 

less flexibility in repurposing minimally damaged products” (Gunders 2012).   

 

One of the most important conclusion from Gunders (2012) is that the majority of 

produce is wasted between picking the fruits and vegetables and putting them on display 

in the supermarket.  In this way, computer vision of produce can help reduce this waste 

by improving distribution decisions and having a less subjective fruit grading system.  

Further, “a packer of citrus, stone fruit, and grapes estimated that 20 to 50 percent of the 

produce he handles is unmarketable but perfectly edible” (Gunders, 2012).  So, having a 

system that allows for fruit that will be unmarketable but is still edible to be sold, can be 

very valuable in reducing food waste. 
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 Globally, one third of all food produced is thrown out.  Significantly, fruits and 

vegetables are thrown out at a higher rate than any other food type (about 50%) (Iverson 

2015).  This is because they are quick to spoil, sensitive to their environment, and are 

difficult to transport.  The total estimated value of global food waste is 1 trillion dollars 

per year.  “In developed countries, food is mostly wasted by consumers – in 

supermarkets, restaurants, and cafeterias, and in our homes.  Since people tend to pass by 

bruised apples, misshapen carrots, and other imperfect fruits and vegetables, they are in 

turn rejected by retailers and often discarded by farmers and suppliers” (Iverson 2015).  

Computer vision systems can be used to more accurately classify fruits and inform 

distribution decisions to save billions of dollars per year. 

 As demonstrated, food waste is both a moral and economic concern of 

significance.  While computer vision is beginning to be introduced into the agriculture 

industry, there are still large gaps that need to be addressed.  Ultimately, computer vision 

in the agriculture industry is still in its infancy, which affords many opportunities for 

research.  The following section identifies a process to help fill in some of the gaps 

explained in this literature review. 
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3. PROPOSED PROCESS 
 
 
 3.1. Relevance of this Work: 
  

 The process proposed in this thesis is necessary for the growth of the application 

of computer vision to the agriculture industry.  One area of research being done today 

uses computer vision to more accurately and efficiently grade produce.  Essentially, 

research in the field justifies and expands on the use of computer vision in the agriculture 

industry.  However, there is no work that explicitly uses computer vision to build a model 

of produce shelf-life.  While fast and accurate grading of produce by computer vision 

systems is certainly valuable, it does not address the vast amounts of food waste that the 

current system produces.  The other area of research in this field is using computer vision 

to predict quality features.  That is, using computer vision to correlate color features to 

ammonia content or percentage of color that is brown.  In all of these papers, the authors 

reflect on how computer vision can be used to correlate color to quality, and therefore, 

predict how the produce will fair in traditional grading systems but none go the extra step 

to model the quality features to shelf-life.  This introduces uncertainty and ambiguity.  

So, no work exists that explicitly uses computer vision to predict shelf-life. 

 Fundamentally, existing common applications of computer vision for grading and 

quality estimation fail in that they use current features (color, size, etc.) to inform 

distribution decisions – there is no explicit prediction of shelf-life.  This thesis proposes a 

process that uses current features to predict future features and correlate the future 

features to measures of ripeness and shelf-life.  As shown in the literature review, no 

work has been done to use computer vision to explicitly predict shelf-life.  The current 
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industry practices for fruit grading and supply chain distribution decisions vary wildly 

between companies and even within the same company between fruits.  However, the 

most common industry process is to grade incoming fruit (using a very narrow range of 

acceptable color, size, shape, etc.).  If the fruit does not fall in the strict feature range, it is 

discarded.  If the fruit does fall in the range, it is stored with other fruit of similar 

characteristics until it is almost ripe, then shipped to where it is demanded.  This current 

process generates high storage costs and usually leads to poor yield at the retail level 

(often, produce arrives too ripe or too unripe because of inaccurate quality predictions). 

 The process proposed in this thesis makes explicit the shelf-life calculations 

(through data calculations and regression), which ultimately leads to a more accurate 

model (as shown in the “Results and Discussion” section of this thesis).  The more 

accurate model will decrease food waste two-fold.  Firstly, if a piece of fruit is graded to 

be of sufficient quality to sell, this thesis model will be able to predict exact shelf-life 

more accurately than existing quality prediction techniques.  If shelf-life can be predicted 

more accurately, supply chain distribution decisions can become more accurate, which 

leads to less food waste, lower storage costs, and fewer lost profits.  Secondly, if a piece 

of fruit is graded to be of insufficient quality to sell (perhaps, it is already too ripe to ship 

to retail stores), the piece of fruit can still have its shelf-life predicted and possibly 

shipped locally where it can be sold before it becomes overripe (that is, widen the range 

of acceptable features for fruit grading).  It is unknown what quality correlation models 

will recommend (because shelf-life is not explicitly predicted in quality correlation 

prediction systems).  Fundamentally, because current quality correlation prediction 
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systems do not make explicit shelf-life predictions, they introduce uncertainty which 

generally leads to a worse model.  

 The goal of this thesis is to present a model that uses color to predict shelf-life. 

For bananas (which this thesis uses as a proof of concept), color changes over time, 

which will influence supply chain distribution decisions.  This can be seen in Figure 6, 

which plots the average percent of each respective color that a banana can be over time.  

Supply chain distribution decisions when the color is primarily green will be starkly 

different than distribution decisions when the color of the banana is primarily yellow.  

However, in computer vision systems, color is most often expressed in RGB (red, green, 

blue) coordinates.  This gives three coordinates for color (red, green, and blue).  In order 

to simplify and improve calculations, color should be consolidated into one dimension.  

Therefore, RGB color is transformed to the hue value of the Hue, Saturation, Intensity 

(HSI) color representation and RGB color is transformed into the a* value of the L*a*b* 

color representation.  By representing color in one dimension, building a model to predict 

shelf-life becomes both easier and more accurate.  Also, explicit shelf-life calculations 

allow meaning (in the form of supply chain distribution decisions) to be attached to color 

values.  For example, if a fruit has a certain color value, shelf-life can be used to 

determine where to ship the fruit, which allows for a concrete decision to be attached to 

color values. 

 



 26 

 

Figure 6: Average percent colors over life-time. 

 

 In order to build a model of shelf-life as a function of time, the RGB coordinates 

of a large sample of bananas are measured in an empirical observational study.  Then, the 

RGB coordinates are transformed to hue and a* coordinates.  An example of how the hue 

of a banana changes as it ripens is shown in Figure 7.  Supply chain distribution decisions 

will vary greatly based on the color of the fruit.  By building a model that explicitly 

predicts shelf-life, there is no ambiguity and decisions can be made based on the fruit’s 

predicted color, instead of guessing what the future color of the fruit will be.  By being 

able to predict exact shelf-life values, a degree of objectivity and accuracy is established 

that is unable to be found with traditional grading systems or current quality prediction 

systems. 
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 Hue: 40.8   Hue = 28.6   Hue = 23.2 

Figure 7: Hue change in a banana over its life-time. 
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 3.2. Overview of Proposed Process: 

  

 The objective of this thesis is to develop a process that acts as the framework to 

build a predictive model of fruit shelf-life based on features extracted by computer vision.  

To that end, the following section outlines each step to take in the process and justifies 

each step. 

 The process proposed in this thesis develops certain discrete steps to undertake to 

build a model that predicts shelf-life based on empirically measured color features.  The 

first step is to undertake an experiment that correlates color to sugar content (and, 

therefore, literature values of ripeness).  The process uses color features to estimate sugar 

content to estimate ripeness.  That is, sugar content is predicted by color, so color is the 

criterion for shelf-life. Using sugar content to estimate ripeness is different than using 

ethylene content to measure ripeness (most of the papers in the Literature Review use 

ethylene content measurements).  The reason that this approach was chosen is simple: 

cost without loss of quality.  A refractometer to measure sugar content can be purchased 

for less than $20, while a machine used to measure ethylene content costs tens of 

thousands of dollars.  By using the cost effective method of subjectively measuring sugar 

content, the process allows for research to be done that may not have been economically 

viable using ethylene content.  Research done by Tapre and Jain, 2012 and Soltani et al., 

2010, have correlated sugar content to ripeness, validating it as an effective technique.   

 In this thesis, twenty bananas are chosen as proof of concept of the process.  

Every day of experimentation, two bananas are chosen, their colors are measured by 

taking pictures of the banana and then using computer vision to find the colors, and 
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finally the refractometer is used to destructively measure sugar content.  The result of this 

experiment is a color range where the sugar content of the banana first becomes “ripe” 

(Figure 13).  Ultimately, this step is necessary because measures of “ripeness” are 

fundamentally subjective, so this first experiment determines a color range that serves as 

the end-point of the second experiment (large scale data collection that the model is 

actually built off of).  The second experiment uses thirty-six bananas and takes a picture 

of each banana on every day of the experiment.  Each day, after the picture is taken of 

each banana, computer vision is used to extract features and the color of every banana is 

recorded every day.  The first day that the experimental banana falls into the “ripe” color 

range (determined in experiment one) indicates the end of life for that specific banana.  

Because we are interested in distribution decisions, the first day of ripeness serves as the 

subjective end of life for the thesis.  The justification of this is that retail stores will not 

accept bananas after they are ripe because they will not be able to sell them.  After large 

scale data collection, RGB color coordinates (the default color representation) are 

transformed into HSI color coordinates and L*a*b* color coordinates.   

 While RGB (red, green, blue) coordinates are valuable and ubiquitous, they are 

very sensitive to lighting conditions and vary from camera to camera.  It is, therefore, 

necessary to convert the extracted RGB coordinates to HSI (Hue, Saturation, Intensity) 

coordinates.  This conversion deemphasizes the issue of lighting sensitivity because the 

image is deconstructed into color (hue) and intensity (brightness) instead of being 

deconstructed into red, green, and blue pixels.  This simplifies and standardizes color 

processing by separating the color dimension from the other dimensions of an image.  

Also, HSI is standardized to not vary between devices as RGB does.  That is, because of 
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differences in the amount and quality of RGB filters between imaging devices, RGB 

coordinates of the same image can vary between different devices.  However, HSI values 

will be the same across devices because RGB coordinates are translated to sRGB 

(standard red, green, blue) before being converted to HSI, which is calculated to not take 

RGB filter differences between devices into account.  Standard RGB accomplishes this 

by finding the largest coordinate of the red, green, and blue values and uses that as a non-

zero reference baseline, while the other two colors become zero.  As can be seen by the 

RGB and HSI visual representations (Figures 3 and 4), RGB is an additive representation 

whereas HSI is subtractive.  This allows for a richer and more accurate description of 

color.  The algorithms to transform RGB to HSI are presented in the “Analysis” section 

of this thesis. 

 The CIE L*a*b* coordinate system is an intuitive way of representing color.  In 

this model, color is deconstructed into three dimensions (similar to how color is broken 

down in the human eye).  In the human eye, one type of cone photoreceptor detects red 

and green wavelengths while another detects blue and yellow wavelengths of light.  Rods 

detect black and white wavelengths.  The CIE L*a*b* representation of color mirrors the 

human eye by deconstructing color into three dimensions: a* (red to green), b* (blue to 

yellow), and L* (black to white) but the representation range goes beyond the human 

vision spectrum (Figure 5).  Ultimately, this produces an intuitive way of representing 

color that is independent of lighting conditions (unlike RGB).  Also, similar to HSI, the 

conversion removes the device dependency of RGB by standardizing the conversion 

between devices because RGB is converted to sRGB (standardized RGB) before being 
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converted to L*a*b*.  The algorithms to transform RGB to L*a*b* are presented in the 

“Analysis” section of this thesis. 

 Another representation of color is to group the colors a banana can exhibit 

(yellow, green, and brown) into distinct hue bins.  The captured region of interest of the 

image of the banana can be represented as a certain percentage of each color.  This allows 

for the use of existing conventions of color (the hue color wheel) to inform image 

representation.  Essentially, every pixel in the analysis region of interest is transformed to 

its respective hue coordinate, and then the percent of pixels in the region of interest that 

fall into the “green”, “yellow”, and “brown” hue bins are calculated.  This allows for a 

representation of the color of each banana as a percentage of the three colors that the 

banana can exhibit.  This is done because it gives a more precise representation of color 

(percentage of pixels that fall into three hue bins) as opposed to an average hue value. 

 After the transformation of color coordinates, analysis occurs.  Because there are 

discrete values for “experimental day”, color coordinates must be standardized in order to 

build the model.  That is, a range of color coordinates are chosen, in this case hue values 

of {40, 38, 36, 34, 32, 30} and a* values of {-10, -8, -6, -4, -2, 0}, and exact shelf-life 

values are calculated.  However, it is unlikely that hue values exactly the same as the 

range of interest are observed for each banana.  So, interpolation is used to estimate shelf-

life of existing data and extrapolation is used to estimate shelf-life of data outside the 

range of empirically observed data.  It is very important to note that no assumptions of 

linearity are made in this process.  This is one of the reasons why, ultimately, this process 

produces a more accurate model of shelf-life. 
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  The first step of the interpolation and extrapolation technique (using data to 

calculate remaining shelf-life) is to plot every banana’s hue as a function of time.  This is 

done to get an idea of the overall shape of the line that is created by plotting the hue of a 

ripening banana.  Then, a hue range of interest is created.  In the case of this thesis, the 

hue range {40, 38, 36, 34, 32, 30} is chosen because (1) the data is most linear there and 

(2) early-life data is generally more important for distribution decisions.  However, 

because each banana’s hue was measured empirically on every discrete day, it is rare that 

an experimental banana exhibited a hue of exactly 40.  Therefore, interpolation must be 

done.  For the hue value of 40, the closest point with a hue value larger than 40 and the 

closest point with a hue value smaller than 40 are chosen and interpolated between.  The 

interpolation creates an equation, which can be evaluated to find the exact time 

measurement of the specific hue value of 40.  This allows discrete, exact time 

measurements to be taken from a standardized hue range.  Once the hue value of interest 

is found by interpolation, the number of days that specific banana lasted is found and the 

calculated time value is subtracted from the number of days lasted.  This standardizes 

each banana (because they all lasted a different amount of days) and produces exact 

shelf-life estimates for a discrete range of hues ({40, 38, 36, 34, 32, 30}).   

 If the data point of interest lies outside of the empirically observed range (i.e. if 

the banana started at a hue value of 39), then extrapolation occurs.  The second order 

polynomial with the smallest R-Squared value is created based on existing data.  Then, 

the hue point of interest can be extrapolated.  It is subtracted from the total number of 

days lasted to find the explicit shelf-life.  A second order polynomial is used because it 

produces the largest R-Squared value without overfitting.  All of the second-order 
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polynomials had R-Squared values of 0.99 and there were generally five data points to 

extrapolate from.  This interpolation and extrapolation process occurs for every banana 

and every point in the hue range of interest.  After all of the data points for every banana 

have been calculated, the shelf-life values for each hue point in the range of interest are 

averaged and then plotted.  The best-fit line is, finally, calculated to create a model of 

shelf-life based on color. 

 The same process (interpolation, extrapolation, and averaging) occurs with the a* 

of the L*a*b* representation.  Percent color is not used to build a model because it is the 

least significant (the process to determine significance follows this section).  The exact 

calculations, examples, and graphs are shown in the “Analysis” section of this thesis.   

 For the purposes of comparison between the interpolation and extrapolation 

technique and regression, regression is also used to build models of shelf-life using color 

representations.  To build the regression model, initially, best subsets regression is 

performed using each color feature (hue average, hue minimum, hue maximum, percent 

green, percent yellow, percent brown, a* average, a* minimum, and a* maximum) as the 

independent variables and shelf-life as the dependent variable.  This regression is done in 

the software Minitab.  However, because of the correlation among color features, the 

autocorrelation factor is well above the commonly accepted literature value of 10.  Even 

after removing the correlated variables, the VIF is too large (very close to 10).  So, linear 

regression is performed instead of multiple regression, using hue average in one linear 

regression and a* average in the other linear regression (with shelf-life as the response in 

each performed regression).  This makes sense considering the interpolation and 

extrapolation technique uses the same predictors. 
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 This process produced a coefficient P-Value and R-Squared value for each feature 

which is used to explain how much variation in shelf-life the feature accounts for.  The P-

Value found was used to inform which extracted features had the most significant effect 

on shelf-life determination.  This information is then used to determine which features are 

kept and modeled upon and which features are disregarded.  Essentially, this regression 

step shows the significance of each factor in a larger model and objectively determines 

which features will provide the most accurate model.  

 The mean absolute deviation (MAD), is calculated to evaluate each model’s 

prediction power.  Similar to the first validation step, each data point is entered into the 

model and the predicted shelf-life value is calculated.  Then, the difference between the 

predicted value and the actual value is calculated.  The absolute value of the difference is 

taken.  Finally, the mean of all of the calculated absolute deviations of each data point is 

found.  In theory, the better the predictive power of the model, the smaller the MAD.  To 

this end, both MAD and “percentage of data points correctly predicted by the model” will 

be used to objectively determine the best model.  This is because they are the most direct 

objective measure of accuracy for each model.   

 A final experiment is undertaken to validate each model.  This is done in order to 

objectively test each model and to determine the distribution of prediction errors.  This is 

the final step to determine which model is best and to speculate on error distribution.  The 

final validation model is also advantageous because it allows another testing of sugar 

content to validate the “ripe” hue range established in the first experiment. 

 While there are no actual numbers as to how much waste the agriculture industry 

exactly produces by not having explicit shelf-life models, the Literature Review shows 
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that about 40% of produce is wasted in the manufacturing stage of the produce 

distribution process.  The manufacturing stage is defined as between receiving the fruit at 

the factory and the produce leaving the factory.  This stage includes grading, sorting, and 

storage.  Therefore, the benchmark of current food waste is 40% at the level that this 

thesis investigates (and because shelf-life accuracy is not explicitly calculated), 60% 

accuracy will be the benchmark point for the models proposed in this thesis. 

 This section has outlined the proposed process and justified each step.  The next 

section will describe exactly the process to undergo for each of the two experiments 

introduced above. 
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4. EXPERIMENTAL PROCEDURES AND METHODOLOGIES  

  

 This section will introduce each of the two experiments introduced above.  The 

criteria for choosing fruit as well as the exact steps that must be taken are elaborated 

upon.  The required software and hardware as well as the procedure for each experiment 

are discussed. 

 There are two fundamental features that the fruit of interest must possess in order 

to work in the proposed model building process.  The first feature is that the fruit must be 

capable of ripening after it is picked.  The post-harvest ripening is a characteristic of 

climacteric fruit.  If the fruit does not ripen after harvesting, there would be no shelf-life 

model to build.  The second feature is that the fruit must exhibit noticeable changes in 

color (or some other feature such as size or shape) as it ripens.  That is, computer vision 

must be able to detect the color (or other feature) changes as the fruit ripens.  The fruit 

used in this thesis is bananas because they have very distinct unripe (green), ripe 

(yellow), and spoiled (brown) states.  Bananas are also climacteric, so they will ripen 

after they are harvested.  Bananas were also chosen as the fruit for this thesis because 

they are one of the most important agricultural commodities (in terms of units sold and 

widespread distribution).  Other fruits that the process presented in this thesis could work 

with are: apples, melons, tomatoes, avocado, blackberries, etc.  It is important to note that 

fruit grown in different conditions (soil composition, temperature, humidity, sun 

exposure, etc.) may exhibit different color features.  The results that this thesis presents 

are valid only for the specific bananas that were tested.  The following section outlines 

the experimental processes that were undertaken. 
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 4.1. Experiment 1: 

 

Experiment 1 Procedure: 

Objective:  

Determine the hue value that corresponds to a ripe banana (23% sugar content) (Tapre 

and Jain, 2012 and Soltani et al., 2010).  This hue value will be used as the end-point of 

the data collection for the second experiment.  

 

Materials: 

EARTH brand Cavendish Bananas (Musa acuminata, Costa Rica) (n = 20) 

Canon EOS 20-D camera (in raw and .jpeg mode) (Figure 10) 

Sony Computer Vision camera (XCD-X710CR #100230) (Figure 9) 

Camera mounting device 

Blank sheet of paper: this will be a blank sheet of paper with colored boxes printed on it 

for reference 

Software: National Instruments LabView Vision Builder 

Macro Ring Lite MR-14 EX lighting source 

Refractometer (Soyan ATC: 600316291330) 
 
Thermometer 
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Pre-Experiment Check List – Repeat Everyday: 

 

Lighting: Lighting should be as consistent among measurements as possible.  Use the 

same light source each time and try to block out any external light.  In the thesis 

experiment, all external light was blocked and the only source of illumination was the 

Macro Ring lighting source for the Canon camera.  The Sony computer vision camera 

used ambient lighting. 

Temperature: Temperature should be kept as uniform as possible to store the fruit for the 

extent of the experiment (about two weeks).  The fruit was stored in a room that had a 

constant temperature of 63 degrees Fahrenheit.  If this is not possible, take and record the 

temperature at measurement time. 

Background: The background of the image should be the same across samples and 

measurements – in this case, use a blank piece of paper with colored boxes printed on it. 

Camera: Ensure that the same cameras are used throughout the experiment. 

Camera Distance: It is vital that the camera is always the same distance away from the 

object of interest.  Take measurements and verify the distance before each measurement. 

Time of day of measurement: Try to keep the time of day the same as often as possible.  

During this thesis, measurements were taken at 11:00 AM. 

The experimental setup for this thesis is shown in Figure 8. 
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Figure 8: Experimental procedure set-up.  
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Figure 9: Sony computer vision camera set-up. 
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Figure 10: Canon Eos 40-D camera set-up. 
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Method: 

 

1. Starting with 20 bananas as mentioned above, label each banana so that it can be 

distinguished at a later time. 

2. Set up the experiment by putting the first banana on the blank sheet of paper.  

Place the piece of fruit directly under the camera. 

3. Configure the camera using the viewfinder so that the image acquired captures 

only the entire fruit. 

4. Measure and record the distance of the camera from the banana.  Ensure that this 

distance is consistent for every image acquisition. 

5. Set up a repository for the images on the computer that the camera is attached to.  

The computer should have National Instruments LabVIEW already installed on it. 

6. Capture the image. 

7. Save the image to the computer. 

8. If two cameras are used, repeat steps 1-7 with the other camera. 

 

9. Calibrate the refractometer by dropping a small amount of water onto the device. 

10. Cut out a small segment of the selected banana.  Bananas are selected numerically 

(1 through 20), with two bananas tested per day.  For example, on experimental 

day three, bananas # 5 and # 6 are tested. 

11. Extract the juice from the segment of banana. 

12. Drop the extracted juice onto the sacchorometer. 

13. Measure and record the sugar content of the juice in percent brix. 
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14. Remove the destructively measured banana from experimental procedure. 

15. Repeat procedure for each banana selected to be tested on the specific day. 

16. Repeat steps 1-15 for each day until all of the remaining tested bananas have all 

had their sugar content destructively measured. 

 

Computer Vision Feature Extraction: 

 

1. Load the images into LabVIEW Vision Builder by pressing “Simulate 

Acquisition” and navigate the file path to the folder with the acquired images. 

2. Choose a consistent 150 pixel by 150 pixel square region of interest to perform 

processing.  An example region of interest can be found in Figure 11. 

3. Use the “Measure Colors” feature to extract and record color features.  This 

should be done in RGB, as that is the inherent color representation in LabVIEW 

and transforming color representations happens subsequently. 

4. As a validation step, ensure that the background paper’s squares has the same 

color measurements among fruits, days, and devices.  Any samples with 

deviations in color measurements should be removed from the experiment. 

5. In LabVIEW, convert RGB to HSI, CIE L*a*b*, and “percent brown, yellow, and 

green” color coordinates using the appropriate formulas (found in the Analysis 

section of this thesis). 

6. Compute Hue average, Hue minimum, Hue, max, percent yellow, percent green, 

percent brown, a*, a* minimum, and a* maximum (the computation instructions 

can be found in the Analysis section of this thesis). 
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7. Repeat analysis for each acquired image. 

8. Analyze the refractometer data by comparing it to the colors extracted using 

computer vision.  Note the color of the sample bananas in which the brix content 

equals or exceeds 23%.  Use this color (range) to set as the endpoint of shelf-life.  

Shelf-life for each day is the end day point minus the experimental day. 

9. We now have the values for the dependent variable (shelf-life) for each sample 

banana (the experimental day subtracted from the day that the banana’s color falls 

into the range calculated in step 2).  Record the shelf-life values for every sample 

banana.  The end point for data collection was an average hue of 25 and an 

average a* value of 4 (Figure 13).  The data and results are shown in the “Results 

and Discussion” section of this thesis. 

 

Figure 11: Example region of interest. 
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 4.2. Experiment 2: 

 

Experiment 2 Procedure: 

Objective:  

Now that we have an end-point for data collection (experiment 1), large-scale data 

collection for extraction of features of sample images can be done to build a predictive 

model of shelf-life. 

 

Materials: 

EARTH brand Cavendish Bananas (Musa acuminata, Costa Rica) (n = 36) 

Canon EOS 20-D camera (in raw and .jpeg mode) 

Sony Computer Vision camera (XCD-X710CR #100230) 

Camera mounting device 

Blank sheet of paper: this will be a blank sheet of paper with colored boxes printed on it 

for reference 

Software: National Instruments LabView Vision Builder 

Macro Ring Lite MR-14 EX lighting source 

Thermometer 

 

Pre-Experiment Check List – Repeat Everyday: 

 

Lighting: Lighting should be as consistent among measurements as possible.  Use the 

same light source each time and try to block out any external light.  In the thesis 
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experiment, all external light was blocked and the only source of illumination was the 

Macro Ring lighting source for the Canon camera.  The Sony computer vision camera 

used ambient lighting. 

Temperature: Temperature should be kept as uniform as possible to store the fruit for the 

extent of the experiment (about two weeks).  If this is not possible, take the temperature 

at measurement time and block if necessary.  For this thesis, the fruit was stored in a 

room that had a constant temperature of 63 degrees Fahrenheit. 

Background: The background of the image should be the same across samples and 

measurements – in this case, use a blank piece of paper with colored boxes printed on it. 

Camera: Ensure that the same cameras are used throughout the experiment. 

Camera Distance: It is vital that the camera is always the same distance away from the 

object of interest.  Take measurements and verify the distance before each measurement. 

Time of day of measurement: Try to keep the time of day the same as often as possible.  

During this thesis, measurements were taken at 11:00 AM. 

 

Method: 

1. Label each banana so that it can be distinguished at a later time. 

2. Set up the experiment by putting the first banana on the blank sheet of paper.  

Place the piece of fruit directly under the camera. 

3.  Configure the camera using the viewfinder so that the image acquired only 

captures the entire fruit. 

4. Measure and record the distance of the camera from the banana.  Ensure that this 

distance is consistent for every image acquisition. 
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5. Set up a repository for the images on the computer that the camera is attached to.  

The computer should have National Instruments LabVIEW already installed on it. 

6. Capture the image. 

7. Save the image to the computer. 

8. If two cameras are used, repeat steps 1-7 with the other camera. 

9. Repeat steps 1-8 for each day until the hue reaches the end-point hue established 

in Experiment 1. 

 

Computer Vision Feature Extraction: 

 

1. Load the image into LabVIEW Vision Builder by pressing “Simulate 

Acquisition” and navigate the file path to the folder with the acquired images. 

2. Choose a consistent 150 pixel by 150 pixel square region of interest to perform 

processing. 

3. Use the “Measure Colors” feature to extract and record color features.  This 

should be done in RGB. 

4. As a validation step, ensure that the background paper’s squares has the same 

color measurements among fruits, days, and devices.  Any samples with 

deviations in color measurements should be removed from the experiment. 

5. Convert RGB to HSI, CIE L*a*b*, and “percent brown, yellow, and green” color 

coordinates using the appropriate formulas (found in the Analysis section of this 

thesis).  This should be done for every banana in the sample. 
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6. Compute Hue average, Hue minimum, Hue, max, percent yellow, percent green, 

percent brown, a*, a* minimum, and a* maximum (the computation instructions 

can be found in the Analysis section of this thesis).  This should be done for every 

banana in the sample. 

7. Repeat analysis for each acquired image. 

 

Figure 12 shows an example of how the data may look after analysis: 
 

 
 

Figure 12: Example data spreadsheet. 
 
 
 
Notes: 
 
 While it is possible to run each experiment separately, both experiments were run 

concurrently for the purposes of this thesis.  This was done to ensure that the conditions 

among both experiments were consistent.  However, in order to run both experiments at 

the same time, the fruit must be clearly and carefully labeled and it should be noted that 

the data collection experiment often runs longer than it must.  It is also important to note 
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that a dry run of data collection (practice using the refractometer and imaging devices) 

may be helpful and is encouraged. 

 There were two cameras used in both experiments.  The first, Canon EOS 20-D, is 

a CMOS (complementary metal-oxide semiconductor) sensor camera and the other 

camera, Sony XCD-X710CR, is a CCD (charged couple device) sensor camera.  The 

Canon camera carries a few advantages over the Sony camera.  Firstly, the Canon camera 

has more RGB filters which allows for a more precise representation of color.  Secondly, 

the Canon camera allows for manual overrides of certain features (ISO speed, color 

balance, storage mode etc.).  Thirdly, the Canon camera has a higher resolution which 

allows for better image quality.  The advantage of the Sony camera is that it has a shorter 

exposure time and better shutter mechanics, so images can be captured faster, with less 

distortion.  However, there is no “correct” camera for this process because each situation 

will be unique.  For example, if a company highly priorities speed of capture for high 

speed grading, a CCD camera (the Sony camera) may be the correct camera.  If a 

company emphasizes accuracy over speed, a CMOS camera (the Canon camera) may be 

recommended.  In the thesis, accuracy was prioritized over speed because there was no 

time pressure (and a consistent theme in this thesis is accuracy over speed), the Canon 

camera was the most suitable. 

 The only signal that is extracted from the images, using LabVIEW, is the RGB 

coordinates of every pixel in the image.  Because of the scope of this thesis, color was 

determined as the only feature to be extracted, as it has been shown to be the most 

accurate indicator of quality (see the Literature Review).  So, the only signal of interest 

was color.  Because the Canon camera captured images in “Raw” mode (without any 
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compression of the images), there was no post-processing done by the camera.  The 

unprocessed image was loaded into LabVIEW and the RGB color coordinates are 

extracted.  Then, the RGB color coordinates are transformed (as illustrated above) to HSI 

and L*a*b* coordinates.  So, the only signal collected for analysis in LabVIEW is the 

unprocessed RGB color coordinates. 

 This section of the thesis has developed the exact steps to be taken in order to 

perform the two experiments for data collection.  The next section will delve into direct 

results from the experiment, before any analysis occurs. 
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5. DIRECT EXPERIMENTAL RESULTS 

 

 5.1. Sugar Content: 

 

 The purpose of this section is to introduce results that come directly from the 

experiments (i.e. without analyzing the data).  First, sugar content as a function of color is 

correlated, and then replicability between devices is described. 

 

 

Figure 13: Sugar content over time. 
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 The sugar content of each tested banana was calculated and plotted as a function 

of color (average hue).  This allows a range of “ripe” colors to be calculated.  According 

to the literature (Tapre and Jain, 2012 and Soltani et al., 2010), a brix content of 23% 

indicates the point at which a banana is ripe.  Based on the collected data, a ripe banana 

has a hue value between 25 and 23 (Figure 13).  Please note that the hue value axis is 

reversed in order to represent a more natural way of showing sugar content over time.  

Thus, the first day that the hue value of the banana of interest falls into (or goes past) the 

hue range (25), the lifetime of that banana is ended and the banana is removed from the 

experiment.  This process allows for a subjective way to determine the end-point for each 

banana in the experiment.  There are many other factors that can be used to find an 

objective end-point such as: ethylene content, firmness, curvature, length, width, etc.  

Hue was used to predict sugar content and sugar content was used to measure ripeness.  

Sugar content was chosen as the measure of ripeness for this experiment because it is the 

cheapest and simplest to measure, there already is literature correlating sugar content to 

ripeness, and there is a well-defined process used to measure sugar content in fruits with 

a refractometer.  In order to determine whether the correlation between sugar content and 

hue is significant, the values of both hue and brix are loaded into Minitab. The Pearson 

correlation coefficient is -0.937 with a P-Value of less than 0.0001. Thus, the correlation 

is significant. 

 It would be possible to fit a model to the data shown in Figure 13, in order to use 

hue to predict % Brix.  However, because the scope of the thesis is to find a model that 

predicts shelf-life using color, fitting a model to this data would be unnecessary.  It is 

important to keep in mind that hue predicts sugar content which measures stages of 
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ripeness.  So, the relevant part of this data is the range of the hue where the sugar content 

first exceeds 23% because we are only interested in the last day that the fruit can be sold 

to retail stores (the first day of ripeness).  

 

 5.2. Replicability Between Devices 

 

 

Figure 14: Replicability of devices. 

 

 Every day, the bananas were photographed by the Canon camera and by the Sony 

computer vision camera.  Computer vision feature extraction (as above) is performed and 

the results can be compared between devices (Figure 14).  For every banana, hue features 
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not the same.  This can be due to many factors.  Firstly, the Canon camera was used in 

isolation of external light and used a very controlled light source, whereas the Sony 

camera used ambient fluorescent light.  Next, the distance of the camera from the banana 

was held constant among days and fruit but varied between the Canon device and the 

Sony device.  The variation in distance was present because the camera’s viewfinders had 

different ranges (if the same distance was used between devices, the Sony camera would 

only capture half of the banana).  The Sony camera had a much smaller viewfinder than 

the Canon camera.  It is also true that the RGB filters in each of the cameras were 

different.  That is, both cameras use different sensor arrays.  It seems that the Canon 

camera was more accurate (more RGB filters) in terms of color vision in comparison to 

the Sony camera, based on the difference in range of both cameras exhibited in Figure 14.  

The light source for the Canon camera was consistent and controllable, whereas the 

ambient light for the Sony camera varied day-to-day, which could also be the source of 

difference between images.  These differences were vast enough to not be reconcilable by 

RGB transformation to HSI or L*a*b*.  Most importantly, this analysis shows that the 

model is only valid for bananas in the very specific thesis conditions (they must have 

been captured with the Canon EOS 20D camera, illuminated by the Macro Ring, stored at 

63 degrees Fahrenheit, etc.).   

 The purpose of this section was to introduce two important results that came 

directly from the experiments.  The next section explores how to analyze data in order to 

ultimately build the final models. 
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6. ANALYSIS 

 

 After data has been collected from the experiments, the data must be analyzed in 

order to build the models.  First, RGB coordinates (from computer vision feature 

extraction) are transformed to L*a*b* and HSI color coordinates.  Then the method to 

actually build the models using interpolation and extrapolation is explained.  Finally, an 

overview of how to measure accuracy and how to perform regression for model 

comparison is developed. 

 

 6.1. Converting RGB coordinates to HSI coordinates: 

 

 As explained above, RGB color coordinates must be transformed to HSI color 

coordinates in order to build the models.  Each pixel in a given (and consistent between 

individual bananas) region of interest (Figure 11) was classified using RGB coordinates 

and then converted to HSI.  The consistent region of interest was 150 pixels by 150 

pixels.  A script was written to automate the conversion between RGB and HSI is shown 

in Figure 15. Please note that the calculations were performed in LabVIEW but the script 

in this figure is written in Python to show the mathematical logic behind the conversion. 
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Figure 15: The script to convert between RGB and HSI. 

 

 

 Average hue is calculated by first finding the RGB coordinates of every pixel in 

the 150 pixel by 150 pixel region of interest (which is the same region of interest between 

and among bananas).  This is done using LabVIEW’s “Region of Interest” command and 

finding summary statistics.  Then, each pixel in the region of interest is converted from 

RGB to HSI (using the script above).  Finally, the average hue value is calculated by 

dividing the sum of the hue values of the pixels in the region of interest by the total 

number of pixels (for this thesis, 22500 pixels) in the region of interest.  Hue maximum is 

the largest hue value in the region of interest and hue minimum is the smallest hue value 

in the region of interest.  All of the calculations are done in LabVIEW.   

The average hue values over the lifetime of a selected banana are shown in Figure 16. 
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Day 1: Hue = 40.8     Day 2: Hue = 37.8   Day 3: Hue = 35.1 

 

Day 4: Hue = 31.9          Day 5: Hue = 28.6      Day 6: Hue = 26.6 

 

Day 7: Hue = 25.6           Day 8: Hue = 25.4     Day 9: Hue = 23.7 

Figure 16: Example hue change over life-time of banana 20. 
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 6.2. Converting RGB Coordinates to L*a*b* coordinates: 

 

 For the reasons articulated above, RGB color coordinates must be converted to 

L*a*b* color coordinates.  The mathematical conversion of RGB to L*a*b* is done in 

LabVIEW using the command “rgbtocolor2”.  First, the RGB coordinates are converted 

to sRGB to remove the device dependency of RGB.  Then, the sRGB coordinates are 

transformed into CIE XYZ coordinates which is a representation of the color space with 

the same limits as the human eye.  Finally, the CIE XYZ coordinates can be transformed 

into the CIE L*a*b* representation, which extends the color ranges beyond human 

vision.  This is all done inherently in LabVIEW’s “rgbtocolor2” function. 

 To find the average a* value, each pixel in a given region of interest is 

represented by its RGB coordinates.  This is done using LabVIEW’s “Region of Interest” 

command and finding summary statistics in the same way demonstrated in the 

“Converting RGB coordinates to HSI coordinates”.  Then, the RGB coordinates of each 

pixel are converted to CIE L*a*b* coordinates (using the “rgbtocolor2” function, as 

above).  The average a* value is calculated by finding the sum of the a* values of every 

pixel in the region of interest and dividing by the total number of pixels.  The a* 

maximum value was found by taking the largest a* value in the region of interest and the 

a* minimum value was found by taking the smallest a* value in the region of interest.  

An example of the a* change over the lifetime of a banana is demonstrated in Figure 17, 

which shows the a* lifetime change of banana 20. 
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Day 1: a* = -8.4     Day 2: a* = -6.8   Day 3: a* = -5.2 

 

Day 4: a* = -2.7           Day 5: a* = -0.1           Day 6: a* = 1.6 

 

Day 7: a* = 2.5                     Day 8: a* = 2.6          Day 9: a* = 3.8 

Figure 17: Example a* change over life-time of banana 20. 
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 6.3. Converting RGB to Percent Yellow, Green, and Brown: 

  

 RGB coordinates are also converted to percentages of the three colors exhibited 

by a ripening banana: green, yellow, and brown.  This is done by calculating the RGB 

coordinates of each pixel in a given region of interest (that is consistent among and 

between individual bananas).  Each pixel is then converted from RGB coordinates to the 

HSI representation (as shown in the “Converting RGB to HSI section” of this thesis) 

(Figure 4).  Then, the total number of pixels is found using the LabVIEW “Region of 

Interest” command and calculating summary statistics.  A color wheel is then consulted 

(Figure 18) to find the literature hue values for green, yellow and brown.  The green color 

hue is between 60 and 32, the yellow color hue is between 32 and 23, and brown color 

hue is between 23 and 10.  Then, using LabVIEW, the number of pixels classified as 

green (the pixel’s hue values fall between 60 and 32) is calculated.  Finally, the number 

of green pixels is divided by the total number of pixels to get the percentage of green 

pixels.  This procedure (finding the number of pixels in a given range and then dividing 

by the total number of pixels) is then done for the pixels classified as yellow and the 

pixels classified as brown.   
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Figure 18: Hue color wheel (Work with Color, 2016). 
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 6.4. Data Calculation of Remaining Shelf-Life: 

 

 Every day of data collection, the hue value of every sample banana was found 

using computer vision (as described above in the experimental procedures).  At the end of 

data collection, the hue value over every banana’s lifetime is recorded.  Then, the hue 

values of every banana in the sample can be plotted as a function of days passed (time).  

An example of this is seen in Figure 19.  This plotting gives a visual representation of 

how the hue values of the bananas in the sample change over the respective banana’s 

lifetime.  The changing hue values over time for every sample banana can be seen in 

Figure 20. 

 

 

Figures 19: Raw hue value change over lifetime for banana 31. 
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Figure 20: Raw hue value for all samples of bananas as a function of time. 

 

 The same analysis as above is performed on the a* data (as opposed to the hue 

data).  The results of plotting the raw a* value over a sample banana’s lifetime is shown 

in Figure 21.  The results of plotting all of the a* value changes over every sample 

banana’s lifetime is shown in Figure 22. 
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Figure 21: Raw a* value change over life-time for banana 31. 

 

 

Figure 22: Raw a* value changes for all sample bananas as a function of time. 
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 Keeping in mind that this model is supposed to be deployed to make supply chain 

distribution decisions, and the increase in variation of ‘experimental days’ as the fruit 

nears the end of its lifetime, a subjective decision to only use the data with a hue value 

above 28 was made.  The most relevant and useful data (with respect to supply chain 

distribution decisions) is data early in the fruit’s life.  In general, prediction accuracy 

increases as the fruit gets closer to its shelf-life.  For example, it is easier (but, in this 

case, less useful) to determine a banana’s shelf-life one day before it spoils as opposed to 

fourteen days before it spoils.  So, the important data (for the purpose of this thesis) is the 

data early in the fruit’s lifetime.  Thus, any data with a hue value less than 28 was cut out 

of the analysis (except to record the last day which informed shelf-life of each individual 

banana).  The same sort of analysis was done on the a* data.  For the same reasons as 

enumerated above, data points with an a* value larger than 0 were discarded. 

 In order to build the model, hue has to be standardized among each banana in the 

sample because each banana starts at a unique hue and has a unique shelf-life.  That is, it 

is necessary to calculate every sample fruit’s shelf-life at a specific given hue.  However, 

it is common that the exact hue value of interest was not recorded (if the hue value of 

interest is 40, the fruit may have gone from a hue of 41.2 on day one to a hue of 39.9 on 

day two), so it is necessary to interpolate between existing data points.  For each hue 

value: {40, 38, 36, 34, 32, 30}, the line between the two points closest to the point of 

interest was interpolated.  That is, the closest point greater than the point of interest and 

the closest point less than the point of interest are selected and interpolated between.  For 

example, if the point of interest is 38 and the two closest data points are (1, 39) and (2, 
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37) (where the y-coordinate is the hue value, and the x-coordinate is the experimental day 

of measurement), the slope and intercept are calculated using the two existing points to 

produce the line ‘hue’ = -0.5 * ’days’ + 20.5.  This is shown in Figure 23. 

 

 

Figure 23: Example interpolation. 

 

 The hue value of interest (38) is then plugged into this equation to get an exact 

value for the ‘days’ x-coordinate corresponding to a 38 ‘hue’ y-coordinate. If the exact 

data point of interest exists in the dataset (i.e. if (1, 38) already exists without 

interpolating), the existing ‘days’ x-value is taken.   
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 Finally, the ‘days’ value is subtracted from the number of total days that the 

specific fruit lasted to compute the shelf-life value at each point of interest.  Because each 

banana has its own unique shelf-life that is used in the calculation, the last subtraction 

step also standardizes all of the data, which allows for comparison between bananas.  A 

visual representation of this shelf-life calculation is shown in Figure 24.  This process 

(interpolating between the two nearest points to calculate the ‘days’ value for the point of 

interest and then subtracting that value from the total days lasted) is repeated for each 

data point collected from each fruit. 

 

 

Figure 24: Example interpolation of hue values 40 and 30. 
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 Some of the data points that must be calculated lie outside of the observed range.  

For example, if the largest hue value collected was 38, the predicted shelf-life value for 

40 must be extrapolated (there are no two nearest points greater than and less than the 

point of interest).  This is done by finding the second-order polynomial that best fits the 

collected data and then extrapolating the point out of the data range.  For example, if the 

best-fit polynomial of a fruit in the hue range of 30 to 40 was given by the polynomial 

‘days’ = 0.001 * ’hue’2 – 0.5 * ’hue’ + 20 and the hue value of interest of 40 was out of 

range, 40 is entered into the polynomial to calculate the value for ‘days’.  This predicted 

‘days’ value is then subtracted from the total number of days that the fruit lasted.  The 

reason that a second-order polynomial is fit is because it provides the highest R-Squared 

value without over-fitting, based on the number of data points found for each banana. 

 A second-order polynomial was used when there were at least five data points in 

the hue range of interest (30 to 40).  However, in one instance, there was only three data 

points in the hue range of interest, so a linear model was used to describe the data.  This 

was done to prevent over-fitting and thereby losing prediction accuracy.  All of the best-

fit lines for extrapolation have R-squared values over 99.5%. 

 In order to ensure that extrapolation yields reasonable results, the slopes of all of 

the bananas that do have discrete hue values larger than 40 (that is, the bananas that did 

not need extrapolation) are calculated between the hue points of 36 and 40 (the range of 

extrapolation for some of the bananas).  The average and range of these slopes is found.  

This is done in order to ensure that none of the extrapolation points are unreasonably out 

of the range of the empirical data.  The average slope (for interpolated banana’s data 

points between hue values of 36 and 40) is 0.3207, with a maximum of 0.5936 and a 
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minimum of 0.1933.  None of the bananas extrapolation slopes fell outside of this range, 

so the extrapolations are reasonable.  That is, the slope of the extrapolation lines fell in 

the range of the existing interpolation slopes.   

 After all of the interpolation and extrapolation, every sample banana has a 

discrete shelf-life value at every point in the range {30, 32, 34, 36, 38, 40}.  The results 

of plotting the newly-calculated shelf-life values for every sample banana is shown in 

Figure 25. Please note that the X and Y axes are flipped as the data changes from 

empirically observed ‘days’ to calculated ‘shelf-life’. 

 

 

Figure 25: Data calculation hue shelf-life calculation for all bananas. 
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 The same type of analysis was done on the a* data.  The a* range of interest is    

{-10, -8, -6, -4, -2, 0}.  The nearest neighbors above and below the a* of interest were 

found and interpolated between to find the exact ‘days passed’ value.  This value is then 

subtracted from the total days the individual banana lasted to finally calculate the shelf-

life.  Similar to the hue analysis above, a third-order polynomial was fit to the data to 

extrapolate a* values outside of the empirically recorded data.  The R-squared value of 

every best-fit polynomial was over 99.5%.  The results of the calculation of remaining 

shelf-life using the data for a* is shown in Figure 26. 

  

 

Figure 26: Data calculation a* shelf-life calculation for all bananas. 
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averaged.  Then, the standard deviation of each data point of interest is calculated.  At 

this point, there is a corresponding average shelf-life value (and standard deviation) to 

every hue value in the range of interest (Table 1).   

 The hue values and average shelf-life days are plotted and then run through 

Minitab’s regression function to find the best line that describes the relationship between 

hue value and shelf-life.  The averages are plotted with the standard deviation error bars 

to ultimately produce the final model of shelf-life as a function of color.   

 The same analysis is then performed on the a* data.  Every data point in the a* 

range of interest {-10, -8, -6, -4, -2, 0} has an average shelf-life value and its 

corresponding standard deviation.  This is shown in Table 2.  Finally, the best fit line that 

describes the relationship between a* value and shelf-life is calculated.   
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 6.5. Testing for Significance: 

 

 The models created above can be validated against the existing data. Each data 

point can be treated, in isolation, as a validation point because there is an empirically 

found shelf-life value for each point. That is, by isolating each data point of each fruit, 

using the model to predict shelf-life, and then comparing the model’s predicted result to 

the empirically found shelf-life value, the data can be validated upon itself. First, each 

data point is entered into the model and the shelf-life for each individual data point is 

calculated. Then, the predicted shelf-life is subtracted from the actual shelf-life. The 

absolute value of the difference is calculated. Because the shelf-life value has a resolution 

of one day, if the absolute difference is less than one day, that data point is correctly 

predicted. If the absolute difference is larger than one day, that data point is incorrectly 

predicted. 

 Also, the mean absolute deviation (MAD), is calculated to evaluate each model’s 

prediction power. Similar to the first validation step, each data point is entered into the 

model and the predicted shelf-life value is calculated. Then, the difference between the 

predicted value and the actual value is calculated. The absolute value of the difference is 

calculated. Finally, the mean of all of the calculated absolute deviations of each data 

point is found. In theory, the better the predictive power of the model, the smaller the 

MAD. 

 In order to measure the accuracy of the interpolation and extrapolation technique, 

regression (using Minitab) must be performed to allow for comparison.  First, in order to 

build the best model, best subsets regression is performed using the software Minitab.  
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Initially, every color feature is used in the regression.  That is, hue average, hue 

minimum, hue maximum, percent green, percent yellow, percent brown, a* average, a* 

minimum, and a* maximum are used as the independent variables and shelf-life is used 

as the dependent variable.  However, the correlation factor (the Variance Inflation Factor 

(VIF)) was shown to be too high: over 200 when the literature values for the accepted 

maximum VIF is between 5 and 10.  Even after removing the highly correlated hue 

average and a* average features, the models still have VIFs that are too large (close to or 

above 10).  Thus, instead of using multiple regression, linear regression is performed 

twice.  In the first linear regression, hue average is used as the independent variable in the 

linear regression with shelf-life being the dependent variable.  Similarly, in the second 

linear regression, a* average is used as the independent variable and shelf-life is the 

dependent variable.  This also makes sense because regression is used as a comparison 

tool for the interpolation and extrapolation technique, which only use hue average and a*, 

respectively to predict shelf-life.   

 Note that no interaction terms are included in any of the regression models.  This 

is because adding interaction terms did not increase the adjusted R-Squared of any of the 

models.  Also, keeping in mind that regression is used as a point of comparison to the 

interpolation and extrapolation technique, because the interpolation and extrapolation 

technique does not take into account interaction effects, the regression technique does not 

consider interaction either. 
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7. MODEL RESULTS AND DISCUSSION 

 

        7.1. Final Models: 

 

       This section of the thesis presents the final calculated models of shelf-life, discusses 

regression models as a point of comparison, and introduces a validation experiment in 

order to test the models. 

 

 

Figure 27: Shelf-life model as a function of average hue. 
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product to show proof of concept of the process is a model that predicts shelf-life based 

on color features.  After data collection, processing, remaining shelf-life calculation, and 

modeling, a function of shelf-life based on hue is created.  It is described by the equation: 

‘Shelf-life’ = 0.3401 * ‘Hue’ - 5.04 (shown as the dotted red line in Figure 27).  The 

average shelf-life (and corresponding standard deviation) for every data point in the hue 

range of interest is shown in Table 1.  So, if in an agricultural factory setting, a banana 

comes off an inspection line with a hue value of 37, the predicted shelf-life is 0.3401 * 37 

- 5.04, which evaluates to 7.54 days of shelf-life.  If a banana much closer to ripeness is 

measured to have a hue of 30, the shelf life is 0.3401 * 30 - 5.04, which is 5.16 days.  

These different predictions of shelf-life can then be used to inform supply chain 

distribution decisions.  The predictions can also be used as an alternative to traditional, 

subjective fruit quality grading systems (the banana with the hue value of 30 can be 

shipped locally instead of being discarded for being “too ripe” in a traditional fruit quality 

grading system).   

 

Table 1: Average shelf-life values for Hue.  

Hue	

Average	
Shelf-Life	
(days)	

Standard	
Deviation	

40	 8.536	 1.347	
38	 7.890	 1.342	
36	 7.253	 1.350	
34	 6.491	 1.328	
32	 5.848	 1.339	
30	 5.153	 1.367	
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 The model for shelf-life as a function of a* is given by ‘Shelf-life’ = 4.455 – 

0.5213 * ‘a*’ (shown as the dotted red line in Figure 28).  The results can be interpreted 

similarly as in the model for hue.  The average shelf-life (and corresponding standard 

deviation) for each a* hue point of interest is shown in Table 2. 

 

 

Figure 28: Shelf-life model as a function of average a*. 
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outside of the range of 30 to 40.  So, with respect to being able to model shelf-life using 

color features, the thesis is successful.   

 

Table 2: Average shelf-life values for a*. 

a*	Value	

Average	
Shelf-life	
(days)	

Standard	
Deviation	

-10	 9.763	 1.583	
-8	 8.592	 1.364	
-6	 7.500	 1.286	
-4	 6.467	 1.278	
-2	 5.536	 1.320	
0	 4.505	 1.292	
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 7.2. Percent Yellow, Green, and Brown 

 

 The percentage of green, percentage of yellow, and percentage of brown are 

calculated each day of every tested banana’s lifetime and then plotted.  The primary color 

of the banana can be determined as the color with the highest relative percentage in the 

given day.  The shape of each color’s line makes sense in terms of how a banana ripens: 

the banana starts green, then turns yellow, then turns from yellow to brown.  The graph 

above is an average of the color percentages for every banana tested.  The difference 

among bananas is the amount of time each color spends at a certain percentage (for 

example, some bananas had 100% green for one day, while some had 100% green for 

four days) and the relative shape of the ‘percent yellow’ curve.  The banana’s hue enters 

the ripe range (hue value of 25 to 23), when the percentage of brown reaches about 70% 

and the percentage of yellow comes down to about 50%.  This can be seen in Figure 6.  

Usually, this is one day after the percent yellow and percent brown lines intersect.  So, 

while hue was used in this thesis to determine the end of life, it may be valid to use 

factors such as percent yellow, percent brown, and percent green.  Hue and a* were used 

in this thesis because they were the most significant in the regression analysis and for 

simplicity: hue and a* involves minimal post-processing (when looking realistically at 

models being implemented in computer vision systems, simple is better).  The T-Value of 

a* is -8.19, the T-Value of hue is 8.19 and the T-Value of percent brown is -7.71.  So, a* 

and hue are the more significant factors.  Thus, no model was built using only the percent 

green, percent yellow, and percent brown data. 
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 7.3. Model Accuracy: 

 

 Using the models created above and the validation process outlined in the 

“Analysis” section of this thesis, results for model validation were computed.  The hue 

model correctly characterized (with a one-day measure of error) 64.89% of the bananas in 

the experiment.  The correct prediction of 64.89% of bananas is an improvement on the 

current banana grading system which is estimated to lose 40% of produce (Geiling, 2015 

and Gunders 2012).  For validation of the a* model, the a* model correctly predicted 

(within one day) 64.84% of sample fruit.  However, there are many reasons that the 

models do not correctly characterize every fruit.  Firstly, every banana ripens at its own 

rate and the model is a representation of the average shelf-life of bananas.  Each banana 

had different starting features: hue value, size, shape, curvature, etc.  Of the features, hue 

value had the biggest effect on shelf-life but the other features had some effect as well.  

So, by discounting the other features, accuracy of prediction is lost.  However, accuracy 

must be lost in order to create a simple, reasonable model that could be implemented in 

the industry (realistically, a model that only takes into account one factor).  Finally, a 

fruit becomes ripe by producing the chemical ethylene, and the rate of ethylene 

production is determined by factors undetectable by computer vision.  The MAD of the 

hue model is 0.9645 and the MAD of the a* model is 0.9819, both of which can be 

considered successful because the resolution of the shelf-life response is one day.   
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 7.4. Regression and Comparison of Models: 

 

 Another method of building a model (without the calculation of remaining shelf-

life using data, as above) is to use regression to find the P-Values of the coefficients to 

determine the most significant features.  This analysis is done by loading the raw data 

into the software Minitab and using the inherent regression function. This is done in order 

to compare the accuracy of the interpolation and extrapolation model-building technique 

to the more traditional regression model-building technique.  The results of using the data 

to calculate the remaining shelf-life to build the model and regressing the raw data to 

build the model are compared at the end of this section.  As demonstrated in the 

“Analysis” section above, because of autocorrelation of features and because regression 

is used as a comparison tool for the interpolation and extrapolation technique, linear 

regression is used instead of multiple regression.  That is, two linear regressions are 

performed: the first uses hue as the predictor and shelf-life as the response.  The second 

linear regression uses a* as the predictor and shelf-life as the response. 

 

Best Subsets Minitab output: 

In Appendix B, we can see the results of the best subsets regression, using Minitab. 

 

Multiple Regression Minitab output: 

The results of one of the multiple regressions is shown in Appendix C.  The VIFs are well 

over the maximum accepted value of 10, so hue average is removed. 
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Multiple Regression without Hue Average Minitab output: 

The results of the multiple regression without Hue Average are shown Appendix D.  

Even after removing the highly correlated Hue Average feature, autocorrelation is too 

large. 

 

Linear Regressions Minitab output: 

The results of the linear regressions for average hue and average a* are shown in 

Appendix E and F (respectively).  The adjusted R-Squared values for the linear 

regression models are shown in Table 3.  The table demonstrates that the linear 

regression model of a* average ends up as the best (largest adjusted R-Squared value) 

model. 

 

Table 3: Regression results. 

Model	 Adjusted	R-Squared	
Linear	Regression:	Hue	 77.35%	
Linear	Regression:	a*	 80.66%	

 

 

 For the regression model of only hue (‘Shelf-Life’ = -8.984 + 0.448 * ‘hue’), 

52.21% of data is correctly predicted within one day and the MAD is 1.340.  For the 

regression model of only a* (‘Shelf-Life’ = 3.838 – 0.624 * ‘a*’), 55.45% of data is 

predicted correctly within one day and the MAD is 1.529.  Comparing these results to the 
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model built by calculating remaining shelf-life based on the raw data, the hue model 

using data calculations is slightly better (64.89%) and the a* model (64.84%) is slightly 

better as well at characterizing existing data.  Further, the hue model has a slightly 

smaller MAD (0.965) and the a* model has a slightly smaller MAD (0.9819).  Ideally, we 

want the MAD to be as close to zero as possible but any value less than one should be 

considered successful (because the resolution of the shelf-life response is one day).  The 

results of all of the models can be seen in Table 3.  A 2-sample proportion test performed 

in Minitab with H0 = P1 = P2 and HA = P1 ¹ P2 to determine whether the difference 

between the data calculation method of a* average and the linear regression model of a* 

average is statistically significant.  The null hypothesis could be rejected. 

 The reason that the shelf-life calculation using raw data method outlined above is 

preferred to regression lies in the assumptions of regression.  Among the assumptions in 

linear regression, the assumption that there is a linear relationship between the color 

features and shelf-life is the most likely assumption to be violated in the regression 

analysis for this thesis.  In terms of the linearity assumption, because there are thirty-six 

bananas, a linear model for each fruit resulted in differing R-squared values.  For three of 

the thirty-six total bananas, the R-Squared value of a linear best-fit line was 1.  For the 

rest (thirty-three) of the bananas, the R-Squared values for a linear best-fit line ranged 

from 0.85 to 0.99.  This is the reason why extrapolation in the data calculation section 

used third-order polynomials instead of linear best-fit lines.  It also explains why the 

regression model was the worst of the validated models.  Another reason that the data 

calculation method is preferred is because most of the error of the regression model came 

early in the banana’s life-times (as shown in Figure 29).  The data calculation model has 
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error spread evenly throughout the banana’s life-times (as shown in Figure 30).  When 

considering distribution decisions, early life data is more important (as outlined in the 

“Data Calculation of Remaining Shelf-life” section of this thesis), so the data calculation 

method is preferred.  It is also important to keep in mind that HSI and L*a*b* may be 

correlated because they come from the same RGB coordinates.  For all of the above 

reasons, the data calculation method is superior. 

 

 

Figure 29: Random error of data calculation model. 
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Figure 30: Increasing error of regression model. 

 

 

Table 4: Summary accuracy data for every model. 

Model	 Correct	Prediction	 MAD	

Data	Calculation:	Hue	 64.89%	 0.965	

Data	Calculation:	a*	 64.84%	 0.982	

Linear	Regression:	Hue	 52.21%	 1.34	

Linear	Regression:	a*	 55.45%	 1.529	
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 7.5. Model Validation: 

 

 In order to formally validate the models, a final experiment is undertaken.  The 

conditions of the first two experiments are replicated (lighting, camera distance, 

temperature, background, camera, and time of measurement) for the validation 

experiment.  12 of the same brand of bananas are purchased.  The color values (average 

hue, average a*, and percent brown) of each banana are extracted (in the same process 

outlined in the Analysis section) and the values are entered into each respective model.  

The models validated are the three models that have the best accuracy (Hue Data 

Calculation, a* Data Calculation, and Linear Regression: a*).  The models produce exact 

shelf-life values so the predictions are rounded to the nearest integers larger than the 

shelf-life prediction and smaller than the shelf-life prediction.  For example, if the model 

outputs a shelf-life of 4.612 days, the banana’s color is measured on the fourth day and 

on the fifth day.  If the banana has not fallen into the “ripe” hue range by the fifth day, the 

measurements continue each subsequent day until the banana’s hue is determined to be 

“ripe”.  The day that the banana’s measured average hue falls into the “ripe” hue range 

(less than a hue value of 25) is the day that the experiment ends for that banana.   

 Because the different models produce different estimates, the banana’s hue is 

measured at least twice for each model.  For example, if a banana’s shelf-life is estimated 

by the three models to be 4.612 days, 4.813 days, and 5.441 days, the banana will be 

measured on days four, five, and six (unless the hue falls below 25 before the sixth day).  

Alternatively, if the model is very close to an integer, the banana will be checked on the 

day before, the day on, and the day after.  For example, if the shelf-life is predicted to be 
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4.991, the banana is tested on days four, five, and six.  The model correctly identifies the 

shelf-life if the observed shelf-life has less than one-day measure of error from the model 

prediction.  The results of the validation are shown in Table 4.   

 

 

Figure 31: Validation experimental results. 
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Table 5: Validation results. 

Model	
Number	of	Bananas	
Correctly	Predicted	

Percent	of	Bananas	
Correctly	Predicted	

Data	Calculation:	Hue	 9	 75%	

Data	Calculation:	a*	 9	 75%	

Linear	Regression:	a*	 7	 58.3%	
  

 Then, because the hue data calculation method has performed the best thus far in 

the thesis, the results of the hue data calculation shelf-life prediction (with the standard 

deviation calculated in the “Analysis” section of this thesis) are plotted against the 

empirically observed shelf-life.  This is shown in Figure 31.  It is important to note that 

all but one of the empirical shelf-life observations fall within the standard deviation of the 

prediction.  It is also important to note that almost all of the predictions are less than the 

empirically observed shelf-life values.  It is not possible to know exactly what caused the 

discrepancy but it is possible that the difference lies in the fact that the validation bananas 

were measured (touched and moved) fewer times than the original experimental bananas.  

Another possible explanation could be a change in farming conditions or other difference 

at the farming and harvesting process (although the same brand of banana was bought at 

the same store). 

 As a final validation step, the sugar content of ten of the twelve banana was tested 

(using the method outlined in Experimental Procedure 1) on the first day that the hue 

value dropped below 25.  All of the bananas that were tested during the validation step 

had a sugar content above 23%. 

 This section of the thesis has presented the shelf-life models, regression, and a 

validation experiment.  A summary of the thesis and suggestions of future work follows. 
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8. SUMMARY AND FUTURE WORK 
 
 
 8.1. Summary: 
 
 
 Ultimately, this thesis has demonstrated proof of concept of a process to use 

computer vision to build a predictive model of shelf-life of fruit.  Computer vision is 

becoming widespread in many industries and is, therefore, a burgeoning field of research.  

It is most widely used on inspection lines of electronic components.  Computer vision 

holds many advantages to its human counterpart: it is faster, more reliable, cheaper in the 

long-term, and more accurate.  Naturally, computer vision is starting to become 

implemented in other industries.  One of the most important fields that computer vision is 

starting to move into is the agriculture industry.  Computer vision excels at doing a well-

defined process many times.  This lends well to industries such as electronics production 

because every piece of one electronic component must look the same.  This means that a 

computer can rapidly capture an image of an electronic component coming onto an 

inspection line, compare certain regions to an ideal (correctly produced) image of the 

component, and then make a decision to sell or discard the component.  In the agriculture 

industry, every piece of produce is unique, so the process described above for electronic 

components is no longer valid. 

 Currently, most companies in the agriculture industry either do not use computer 

vision or use it in a binary grading system.  That is, computer vision is used to extract 

features and then make a decision to either sell or discard the produce.  However, this 

process leads to excessive food waste and an overall inefficient process.  Another 

application of computer vision (specifically for bananas) is to receive all of the fruit 
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before they ripen and then dose them with ethylene before being shipped to retail 

locations.  However, this process does not account for variation of beginning 

characteristics between fruits, it costs money to store and wait for the fruit, and frequently 

leads to fruit and profit loss.  Fundamentally, the existing processes that do use computer 

vision base their distribution decisions on current characteristics.  The process proposed 

in this thesis uses current characteristics to predict future characteristics, which leads to 

more informed distribution decisions.  By modeling future characteristics, the process 

proposed will allow fruit characterized as unfit to sell by existing processes to still be 

utilized (i.e. if the fruit is too ripe to ship across the country, it can still be sold locally) 

which decreases food waste and increases profit.  Further, by changing shipping locations 

instead of date shipped, money is saved in storage costs and holding excess inventory. 

 The process put forth by this thesis involves a distinct methodology that can be 

replicated for a large variety of fruit.  First, the fruit of interest must be selected.  This 

methodology is valid for fruit that fulfills two criteria: (1) the fruit must continue to ripen 

after it has been harvested (a characteristic of climacteric fruit) and (2) the fruit must 

exhibit a distinct change in color as it ripens.  After the fruit has been selected, two 

experiments must be undertaken.  The first experiment measures sugar content through 

the lifetime of a group of the fruit of interest.  The purpose of this experiment is to 

determine the characteristic color of the fruit when it reaches a certain sugar content (the 

sugar content that corresponds to “ripeness” for that fruit).  Essentially, this experiment is 

used to determine the end-point for the second experiment.  In the second experiment, a 

large set of fruit is observed over each fruit’s respective life-time.  The end-point of the 
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fruit’s life is determined by the color corresponding to “ripe” found in the first 

experiment.  The second experiment is large-scale data collection.   

 After the data has been collected, computer vision techniques are used to extract 

features.  Then, computer vision algorithms are applied to convert color representations 

into useful data.  Data late in the fruits’ lives are cut out of analysis and the remaining 

shelf-life data is calculated.  Finally, a model is built to predict the shelf-life of fruit based 

on color characteristics.  The model is then validated.  While the thesis presents the 

process to undergo, the proof of concept of the process is done with bananas. 
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 8.2. Future Work 
 
 
 This thesis lays the groundwork for a myriad of further experiments as well as a 

multitude of alternations of the process.  Naturally, the process may be able to be applied 

to any fruit that adheres to the two criteria enumerated above.  Future work can possibly 

apply the process to many fruits.  Among the best candidates for future fruit are mangoes, 

apples, avocados, blackberries, melons, and tomatoes.  This is because they are 

climacteric and have the most distinct color changes in their life-time of ripeness.   

 While this thesis has focused on the distribution aspect of fruit decision making, 

there is possibly an application of the thesis process earlier in the fruit’s lifetime.  On the 

farm, the process presented in this thesis can be used to determine time to ripeness, time 

to harvest, etc. (perhaps with the help of virtual reality, the thesis process can be 

integrated with current virtual reality glasses).  Another related application of the process 

proposed in this thesis would be in the growing area of robot farming and harvesting.  

Instead of measuring shelf-life, the robot harvesters could measure days until harvest 

using a similar methodology but different inputs. 

 The process proposed in this thesis also has the potential to use machine learning 

techniques, which is the topic of many current papers in the field.  For classification of 

“unripe”, “ripe”, and “spoiled”, instead of using sugar content measurements, machine 

learning techniques such as k-means clustering and neural networks can be used.  

Further, in the model building step of the process, neural networks can be used for 

regression to build the model.  Other machine learning techniques may be used to mine 

the big data that this thesis process produces, including identifying trends and model 

building.   
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 In terms of how the process itself can be changed, the possibilities are almost 

endless.  Different features (other than color), may be used to build the model.  These 

features can be size, shape, firmness, etc.  Also, different representations of color (CIE 

XYZ, HSL, etc.) may be used.  Different measures for “ripeness” may be used – ethylene 

content, firmness, smell, etc.  The analysis step may also be altered to produce different 

models, depending on what the object of experimentation is.  Different validation steps 

may be taken.   

 The model may also be able to be useful in consumer applications.  The 

development of a mobile application that incorporates data from the thesis process can be 

very valuable.  The idea would be to capture an image of a fruit and run it through the 

model (previously created by the process developed in this thesis) in order to produce a 

shelf-life estimate.  This would allow consumers to plan their fruit consumption while 

shopping and would have the overall benefit of reducing food waste.  There is another 

application of the information from this thesis to the field of dynamic pricing.  Similar to 

how the price of hotel rooms or airplane tickets increases as space decreases, a model of 

the price of the fruit as the color changes may be created.  As the fruit ripens, its hue 

value decreases, so the price decreases by a certain amount for each hue value decrease. 

 Stepping away from the realm of agriculture, this process can theoretically be 

applied to anything that breaks.  Treating the day that the object breaks as the “shelf-life”, 

the process could be applied to other industries.  For example, there is a possible 

application to predicting meantime to failure of certain electronics, given that there are 

discernable, changing features over the electronics’ life-time.   
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APPENDIX 
 
(a) 

Area Author 
(Main) 

Year Significance 

Advantages of 
Computer Vision 

Cubero 2011 Machines can see spectrums of visions 
that humans cannot. 

 Zhou 2004 Humans cannot give a detailed level of 
analysis for quality because they only 
assign a number. 

Importance of 
Appearance 

Zhang 2014 Appearance is important because it 
determines market value and it can 
indicate the internal quality. 

 Abdullah 2001 The perception of the appearance of the 
fruit can affect taste. 

 Nunes 2015 Numerous computer vision features have 
been validated by measuring the 
physiological changes of fruit. 

Equipment Vidal 2013 Showed the hardware requirements for 
computer vision. 

 Cubero 2011 Demonstrated the importance of lighting 
for repeatable results. 

 Zhang 2014 Emphasized the difference between front 
lighting and back lighting. 

 Leemans 1998 Unique way of controlling lighting. 

 Cubero 2011 Showed the different kinds of image 
acquisition devices and the necessary 
components of a computer vision system. 

Color Analysis Zhang 2014 Reiterated the importance of color for 
computer vision. 

 Cubero 2011 Showed the difference between RGB and 
HSI color analysis. 

 Vidal 2013 Put forth the reasons that HSI is 
preferred over RGB. 

 Blasco  2003 Used RGB color analysis with a 
Bayesian discrimination model. 

 Shearer 1990 Implemented a unique way to classify 
pixels using RGB analysis. 

 Jha 2010  Distinguished the importance of primary 
and secondary colors. 

 Pace 2014 Implemented the idea of a color ratio and 
showed that color can be an accurate 
indicator of quality. 

 Alfatni 2008 Did color analysis by using RGB color 
intensity. 
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 Abdullah 2001 Showed mathematically why HSI is 
superior to RGB. 

 Blasco 2009 Showed that RGB color analysis can be 
done very quickly.  

 Diaz 2000 Computer vision systems can be 
significantly better than human panels.  

Size/Shape 
Estimation 

Costa 2011 Introduced the idea of comparing 
parameters to an “ideal” fruit. 

 Leemans 1998 Introduced the idea of segmentation. 

 Blasco 2003, 
2007, & 
2009 

Developed the idea of pixel-oriented and 
region-oriented approaches to estimate 
size. 

 Zhang 2014 Introduced a complete model for image 
processing. 

Comparing Computer 
Vision Results to 
Physiological Results 

Pace 2014 Showed that computer vision results 
were valid by measuring ammonia 
content. 

 Aimonino 2015 Validated computer vision results by 
measuring antioxidant content. 

 Zhou 2004 Demonstrated that color was an accurate 
indicator of quality. 

 Manninen 2015 Demonstrated that computer vision 
systems are more accurate than humans 
and used chlorophyll content to validate 
results. 

 Jha 2010 Showed the physiological changes that 
happen when fruit ripens. 

 Zhang 2004 Found that most physiological changes 
mirror computer vision results that 
changes happen within 4-6 days. 

 Velez-
Rivera 

2014 Showed that there was a correlation 
between computer vision classification 
and physiochemical changes 

Economics of Food 
Waste 

Buzby 2011 Estimated the total cost of fruit waste. 

 Gunders 2012 Identified different sources of food 
waste. 

 Iverson 2015 Quantified how much food and fruit is 
lost per year. 
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(b) 
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