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ABSTRACT

Models for Pedestrian Trajectory Prediction and Navigation in Dynamic

Environments

Jeremy Kerfs

Robots are increasingly taking on roles alongside humans. Before robots can ac-

complish their tasks in dynamic environments, they must be able to navigate while

avoiding collisions with pedestrians or other robots. Humans are able to move through

crowds by anticipating the movements of other pedestrians and how their actions will

influence others; developing a method for predicting pedestrian trajectories is a critical

component of a robust robot navigation system. A current state-of-the-art approach

for predicting pedestrian trajectories is Social-LSTM, which is a recurrent neural

network that incorporates information about neighboring pedestrians to learn how

people move cooperatively around each other. This thesis extends that model to out-

put parameters for a multimodal distribution, which better captures the uncertainty

inherent in pedestrian movements. Additionally, four novel architectures for repre-

senting neighboring pedestrians are proposed; these models are more general than

current trajectory prediction systems. In both simulations and real-world datasets,

the multimodal extension significantly increases the accuracy of trajectory prediction.

One of the new neighbor representation architectures achieves state-of-the-art results

while reducing the number of both parameters and hyper-parameters compared to

existing solutions. Two techniques for incorporating the trajectory predictions into

a planning system are also developed and evaluated on a real-world dataset. Both

techniques plan routes that include fewer near-collisions than algorithms that do not

use trajectory predictions. Finally, a Python library for Agent-Based-Modeling and

crowd simulation is presented to aid in future research.
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Chapter 1

INTRODUCTION

Robots have become pervasive in a variety of industries and applications. They are

able to complete military operations, clean homes, fight forest fires, and transport

machinery. Previously, robots were confined to predictable situations like assembly

lines where the robots would perform rote tasks. However, now robots navigate

complex and dynamic worlds and must adjust their behavior in real-time to changing

conditions. Robots must learn from other humans and robots in order to perform well

in these situations. Additionally, robots must accurately perceive their surroundings

and rapidly process this information to make informed decisions and complete their

tasks.

Mobile robots are robots that can move. Roomba vacuum cleaners, self-driving

vehicles, and bomb-disposal robots are all mobile robots. Mobile robots are especially

challenging to develop and deploy because engineers must carefully specify how the

robot should react to all of the conditions that it could encounter while moving. Three

core tasks of all mobile robots are mapping, localization, and navigation. Mapping

is the process of learning and describing the robot’s environment. Localization is

the process of determining where the robot currently is located. Navigation combines

knowledge of the environment (map) and the robot’s position within the environment

(location) to plan routes from the current location of the robot to specific waypoints

(destinations). Mobile robots should then be able to execute these routes by moving

through the environment. The quality of a route may depend on how short it is, the

amount of hazards on the route, and the impact that the route will have on other

agents. Humans are adept at considering all of the aspects of a route and formulating

the best option, so there is potential for robots to learn this behavior from humans,
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but it comes with great challenges.

A common approach in modern robotics research is to train robots to behave like

humans. If mobile robots can navigate and interact with humans in a pleasant, non-

intrusive, and non-threatening way, then the robots will be better able to carry out

mundane tasks that humans would otherwise be required to perform. Autonomous

cars are an application of robotics where it is especially critical that the robot (car)

act in ways that other humans would expect. Even though autonomous cars have

the capability to dart in between cars with just inches of space between the bumpers,

humans would be frightened with these close encounters and might react poorly,

causing accidents. Instead, autonomous cars are designed to drive and respect the

space of other cars the way human drivers do. The same principles can be applied to

other mobile robots. The focus of this thesis will be on pedestrian environments. In

some ways, robot navigation in pedestrian environments involves more uncertainty

than autonomous driving due to the more predictable structure of the driving envi-

ronment. In driving scenarios, the lanes, signs, and right-of-way rules all constrain

the possible movements of a car and other cars around it, while pedestrian environ-

ments like shopping malls, schools, and airports have limited rules, and the behavior

of agents within these environments is much less predictable. Yet, pedestrians still

follow implicit rules and respond in predictable ways to outside events.

1.1 Pedestrian Trajectory Prediction

Before attempting to navigate a crowded area, humans predict the state of the envi-

ronment several steps ahead. They anticipate potential dangers or collisions before

they occur. They detect subtle behaviors of others to understand how people re-

act and behave around one another. Once they have assessed the situation, humans

use their predictions to formulate a desirable route. This thesis will investigate how
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robots can achieve the forecasting ability of humans in pedestrian environments. This

forecasting is an essential component for any robot that must cooperatively interact

with people.

While humans learn many tasks and behaviors through experiential learning (trial-

and-error), moving in crowded environments is learned through watching others’ be-

havior. It would be infeasible and ethically dubious to train robots to move in dynamic

pedestrian environments through trial-and-error since the learning process would cer-

tainly include many collisions. Rather, the preferred approach is to build a system

that can forecast the positions of pedestrians in the future. This prediction system

can then be utilized to plan appropriate routes and avoid collisions.

Humans make decisions based on complex rules and intuitions about their envi-

ronment that they have learned over many years. It is infeasible to fully enumerate

and encode the rules that govern human behaviors into an algorithm for predicting

human movements. The influences of human movements are varied, and attempts

to codify them would likely omit important edge cases (uncommon situations). One

way to overcome this challenge is to build a system that can learn these rules through

examples. Machine learning is the study of algorithms that learn to make predictions

using data. In the case of trajectory prediction, this data could be videos of people

walking in public areas.

Since humans are so adept at learning to predict pedestrian movements, a logical

machine learning algorithm for estimating trajectories is a system that mimics human

learning. While the neuroscience connection is somewhat tenuous, neural networks

are a machine learning algorithm that has a basis in the neural pathways of animal

brains. Neural networks are a widely successful tool for many domains where systems

are taught to recognize and perform tasks at (or above) human-level performance.

Recently, neural networks were applied to predicting human trajectories in dynamic
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environments. This thesis will extend and improve those results in order to develop

a solution for estimating the movements of pedestrians.

1.2 Navigation in Dynamic Environments

After building a model for predicting the trajectories of pedestrians, the next step

is to construct a navigation algorithm that can incorporate these predictions. Such

a navigation system must be able to effectively plan routes that avoid collisions (or

uncomfortably close interactions) between a robot and other robots or pedestrians.

Effectively, the trajectory prediction system provides foresight into where people are

going, and this foresight can be used to plan better routes. Of course, there are

many other factors that go into planning besides the forecasts of pedestrian behavior.

A planning algorithm should be able to take into account the kinematic constraints

of the robot (what kinds of movements are possible), environmental features (terrain

and objects), and the goals of the robot (e.g. minimizing path length or perturbations

of other agents).

Planning, and more specifically path planning, is a rich area of research with

many algorithms designed for specific use-cases. In this thesis, two of these common

approaches are modified and applied to planning robot paths in dynamic environments

using the predictions of pedestrian trajectories from the neural network models. The

first approach extends A* - a search algorithm for finding shortest paths that uses

heuristics to find optimal paths while minimizing the exploration of routes that are

unlikely to be optimal. The second approach is a tree search that calculates the

sequence of movements that bring the robot closest to its destination. In this work,

these two methods are applied to the dynamic navigation task and are evaluated on

real-world datasets.
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1.3 Contributions

This thesis will focus on the use of neural networks for predicting trajectories and

their application to planning in dynamic environments. It makes the following con-

tributions:

• Applies Mixture Density Networks for trajectory prediction,

• Designs four novel neural network architectures for representing pedestrian in-

teractions,

• Constructs two planning approaches for navigating in dynamic environments,

and

• Builds a new library, called Argil, for Agent-Based-Modeling and crowd simu-

lation

Mixture Density Networks allow for a neural network to more accurately represent

the uncertainty of an agent’s position than previous techniques. The previous state-

of-the-art approach used a unimodal distribution for trajectory prediction, which is

unable to capture the multiple likely paths that pedestrians can take. The novel

neural network architectures for pedestrian trajectory prediction achieve comparable

results to state-of-the-art models, but they have fewer hyper-parameters to tune than

existing solutions. These neural network architectures, to the best of our knowledge,

are the first models for trajectory prediction that make no assumptions about which

nearby pedestrians are likely to influence the movements of another pedestrian. To

demonstrate the practical application of the trajectory prediction models, two path

planning algorithms are adapted to dynamic environments by incorporating predic-

tions from the neural network model. Argil, the new Agent-Based-Modeling library,

includes built-in support for crowd simulation and has a flexible and succinct API
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for model design, visualization, and data output. Argil is the first Python library for

pedestrian simulations; it allows developers to more rapidly iterate their simulations

than existing alternatives.

This thesis document will first describe the relevant context for this project in

Chapter 2. Then the other methods and techniques for trajectory prediction and

navigation in dynamic environments will be discussed in Chapter 3. Next, in Chapter

4, the architecture and core attributes of the new neural network solutions will be

presented along with the path planning techniques. In Chapter 5, the construction

of the system will be explained. The experimentation and testing will be discussed in

Chapter 6. Chapter 7 presents the Argil simulation library that was used for building

and debugging the models that are presented in the thesis. The opportunities for

continued research will be presented in Chapter 8, and the significance of this research

will be assessed in Chapter 9.
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Chapter 2

BACKGROUND

Autonomous robot navigation has a rich history of research with many advances

occurring in the past decade. Work in machine learning has become increasingly rel-

evant for robotic systems; this thesis relies heavily on the machine learning technique

called neural networks. This chapter will begin with an explanation of autonomous

robots and perception, followed by a survey of relevant neural network concepts. The

last section will discuss navigation algorithms.

2.1 Autonomous Mobile Robots

Autonomous robots operate without explicit human control. Semi-autonomous robots

receive intermittent instructions from humans but often function independently. There

are number of key capabilities that mobile autonomous robots must posses in order

to be successful. The first priority is that the robots are safe - they do not damage

themselves, objects, people, or animals. Once the robots are deemed safe, they must

be able to cooperate and work alongside humans in a predictable and human-friendly

manner. If the robot is mobile then it must be able to determine its location, under-

stand its environment, and navigate to its destinations. This section will describe the

current state of autonomous robots and how they interact with humans.

2.1.1 Human-Robot Interaction

Human-Robot interaction is the study of how humans and robots exchange infor-

mation and work together or adversarially. It is often considered a sub-discipline

of human-computer interaction, although there are number of key distinctions. The
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nature of robots makes the interaction between them and humans especially critical

because robots have the capacity to directly inflict physical harm. Humans are also

much less familiar with robots than they are with computers, so it is more difficult to

predict how humans will react. Another complication with human-robot interaction

is the delayed response; since robots typically respond with physical actuation, hu-

mans may have to wait longer to receive feedback instead of the immediate feedback

that they receive from a computer screen.

A key aspect of Human-Robot Interaction that is important for this thesis is the

communication between humans and robots. Since humans rarely direct robots, they

are not well-versed in the capabilities and limitations of robots. Most robot systems

must be operated by experts who program the robot explicitly by setting navigational

waypoints or precise arm movements. These modes of interaction are acceptable for

controlled environments, but their performance deteriorates in complex, dynamic

settings. Researchers have attempted to build more robust systems for handling

human-robot interaction; notably researchers from Carnegie Mellon developed the

The Human Robot Interaction Operating System[13], which attempts to rigorously

define how humans and robots should effectively communicate. There are a variety of

ways that humans can communicate with robots - visually, orally, and cognitively[8]

among others.

It is generally desirable for robots to communicate with humans in approximately

the same way that humans communicate with each other. Human-to-human commu-

nication involves conscious choices (like speech) and subconscious actions (like body

language). This paper focuses on the way actions convey information. When humans

are walking in a crowded environment, they communicate with other pedestrians by

signaling their intent through actions. Moving purposefully forwards indicates that

the person wants to continue forwards, while pausing or slowing down indicates that

the person is willing to yield or is preparing to stop or turn. If a person chooses to
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Table 2.1: Common Sensors for Autonomous Mobile Robots

Sensor Method

Lidar laser beam

Sonar sound waves

Cameras visible light

Radar radio waves

take a circuitous route, other pedestrians may conclude that the person was avoiding

a dangerous or unpleasant situation. For robots to navigate and interact in these

crowded environments, they must be able to understand and respond to these subtle

cues and provide the same cues.

2.1.2 Sensing and Perception

In order for autonomous robots to safely operate and complete tasks; robots must be

equipped with sensors for perceiving the world. Additionally, robots must have the

capacity to analyze the sensor inputs and determine appropriate responses. Sensors

and computing resources can be located on the robot platform itself or externally. The

quality of the sensors and the computational resources are key limitations for robots.

Table 2.1 shows the most common sensors found on autonomous mobile robots. It is

critical to consider the available sensors because the information provided by sensors

often differs dramatically from the information available to humans from their senses.

The designs produced in this thesis could be implemented on any robot platform

that has the capacity to identify and track other agents. Cameras and Lidar would

be especially well-suited for navigation in dynamic environments because they can

provide frequent updates (more than 30 times per second), and they typically produce

dense representations of the environment. The raw data from these sensors must be
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processed to estimate the position of other other agents in the scene.

2.2 Neural Networks

Artificial Neural Networks are models for learning complex, often non-linear functions.

They can be used to perform classification, regression, and clustering. The neural

connections and structure of brains inspired the development of neural networks.

The concept was developed in the 1940s, but neural networks lost popularity in the

1990s as other machine learning techniques proved more successful. With massive

increases in computing power and vast amounts of data, neural networks achieved

renewed popularity in the 2000s. In the late 2000s and 2010s, neural network solutions

achieved state-of-the-art results in diverse fields including image classification[29][49],

machine translation[57], and speech recognition[3].

Neural networks are composed of neurons; the neurons have weights that are

adjusted through training to produce the desired outcomes based on the inputs. These

neurons are connected to other neurons; each neuron will apply a function to the

inputs that it receives from other neurons to produce a result. Neurons are grouped

into layers based on which neurons they are connected to and what function they

apply to inputs. There is a tremendous variety of neuron functions and ways of

connecting neurons, but a few designs have proved to be the most useful. Generally

the level of neurons is not meaningful in large, modern neural networks because

the interconnections between neurons is complex. Rather, most neural networks are

described by their layers. Layers are groupings of neurons that all perform equivalent

operations.

The most common and simplest layer for neural networks is the fully-connected

layer. Each neuron in a fully-connected layer receives the output from every neuron

in the previous layer. The neurons will then apply a specific weight to the value of
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each input and then sum the weighted values. Typically a sigmoid or relu (rectified

linear activation) is then applied to the sum in order to add non-linearity to the

network. The final value computed in each neuron is the input to neurons in the next

layer. The weight that each neuron applies to each input is modified during training.

A Feed-Forward Network is a neural network where there are no loops (the outputs

only propagate forward through the network). A simple fully-connected layer can

be written using matrix multiplication and vector addition as shown in Equation ??

where X is the inputs from the previous layer. X is a column vector with m values

where m is the number of neurons in the previous layer. W is the weight matrix with

dimensions l by m where l is the number of neurons in next layer. b is a bias column

vector with l values. f is an activation function like a relu, sigmoid, or hyperbolic

tangent. o is the values of the neurons in the next layer. The first layer in a neural

network is generally the input features, and so there are no parameters in this first

layer.

o = f(WX + b) (2.1)

Neural networks are typically trained through a process called Backpropagation.

For classification tasks (where the neural network outputs the class of the input), the

network is provided with inputs and the correct class of the input. For regression tasks

(the output is a continuous value), the network is also provided with input features

and the actual value of the features. The network is evaluated with the each input,

and the output of the neural network is compared to the correct output. Then the

weights are updated based on the error of the network. Backpropagation calculates

the errors of each neuron based on the error of the entire network. These errors are

calculated by sequentially propagating errors backwards through the network in the

reverse order of the forward prediction step. The process of Backpropogation uses the
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derivative of the neuron functions to determine the errors of the neurons. The weights

are updated based on the contribution to the error using an optimization algorithm;

a basic optimizer is Stochastic Gradient Descent (SGD). However, recently more

advanced variations of SGD have reached common usage. During training, the error

of the network is evaluated on a subset of training data and then the optimization

algorithm is applied to make small updates to the weights in order to minimize the

loss function (a quantitative assessment of neural network performance). This process

is continued for a specified amount of time or once the loss function ceases to decrease.

2.2.1 Recurrent Neural Networks

While Feed-Forward neural networks have no loops, recurrent neural networks (RNNs)

allow the output of neurons to be fed back into the same neuron or previous neurons.

This is an important property because it enables the neural network to perform pre-

dictions based on the current input and the previous state of the network. RNNs are

essential in many domains that involve time series data like translation, natural lan-

guage processing, and video prediction. The additional capabilities of RNNs come at

the expense of more difficult training. Backpropogation can still be used, but it must

be modified to handle the loops in the network. The common extension to Backpro-

pogation is called Backpropogation-Through-Time (BTT), which involves unrolling

the recurrent layers (duplicating the neurons) to create a feed-forward network for

a certain number of steps. The gradients can then be computed on this network,

and the errors are propagated to the unrolled neurons. The weights are updated to

adjust the parameters of the original recurrent neurons. Although BTT is an elegant

solution to training RNNs, it often requires significant memory when the network

must be unrolled for many steps.

Simple recurrent neural network neurons just feed their output back as input along
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with the new input data. The downside of this approach is that it becomes difficult

for a neuron to retain information for many steps. One solution to this is the Long

Short-Term-Memory (LSTM) cell [23]. The basic version of an LSTM cell is shown

in Figure 2.1. There are three gates in an LSTM (forget, input, and output). The

forget gate (in the dashed box on the left) concatenates the previous cell state with

the input and then multiplies the concatenation by a weight matrix and adds a bias

vector; the result is fed into a sigmoid activation function. The output of this process

is multiplied by the previous hidden state. All locations where the forget gate outputs

a low value are lowered in the hidden state - causing the network to ”forget” the values.

The input gate has two parts. The first part applies the sigmoid activation to the

concatenation of the input and previous cell state after multiplying the concatenated

inputs by a weight matrix and adding a bias vector. The second part of the input

gate, applies the hyperbolic tangent function same concatenation after multiplying the

concatenated inputs by a different weight matrix and adding a different bias vector.

The two parts of the input gate are multiplied together (element-wise) and added to

the hidden state - essentially incorporating new information in the cell. The output

gate also has two compoents. The first component is the hyperbolic tangent applied

to the updated hidden state. The next component is sigmoid function applied to

the the concatenation of the input and previous hidden state after multiplication by

another weight matrix and the addition of a final bias vector. These two components

are multiplied together element-wise to produce the next hidden state and output of

the cell.

In Figure 2.1, the pink triangles denote the sigmoid activation function, while the

red triangles are the hyperbolic tangent activation function. The purple hexagons

are multiplications of the input by a weight vector and the addition of a bias vector

(similar to a fully-connected layer). The Mi symbol denotes the parameters used in

the weight matrix and bias vector. The green X denotes element-wise multiplication,

13



Figure 2.1: LSTM Neuron

and the green + is the addition of the vectors. The same structure is expressed in

Equation ??. κ represents the matrix multiplication with a weight matrix, addition

of a bias vector, and the application of the sigmoid activation functions. ρ similarly

represents the multiplication with a weight matrix and addition of a bias vector, but

the activation function is the hyperbolic tangent.

zt = concat(ht−1, xt)

at = κ(zt;Ma)

bt = κ(zt;Mb)

ct = ρ(zt;Mc)

dt = κ(zt;Md)

ct = (ct−1 · at) + (bt · ct)

ht = ρ(ct) · dt

(2.2)
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Figure 2.2: Simple Mixture Density Network

2.2.2 Mixture Density Networks

Many of the most successful applications of neural networks are for predicting cat-

egorical values like the object in an image or the word that was uttered. However,

neural networks have also been used for regression problems where the output is a

continuous value. For example, neural networks have been used to predict stock prices

[26][31]. There are some situations that arise in regression problems where the output

is best approximated with a multi-model distribution. Using stocks as an example,

it would be beneficial for a neural network to express the hypothesis that the stock

price will go down by 1% with 80% certainty or go up by 2% with 20% confidence,

but it is unlikely for it to stay the same. In order for a neural network to produce

such a prediction, the model would have to have several output neurons along with

weights denoting the certainty of each prediction.

Mixture Density Networks are a general framework for making multimodal pre-

dictions. They were introduced by Bishop in 1994 with a demonstration of their

application to inverse robot kinematics[6]. A Mixture Density Network outputs the

parameters of a mixture of probability distributions along with weights for combining
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the component distributions. Typically, the composite distributions are Gaussians,

but it is possible to use other distributions. A simple example of a Mixture Density

Network is shown in Figure 2.2. The network accepts inputs and transforms the

inputs through several layers into the parameters of a mixture distribution.

Mixture Density Networks are closely related to Mixture Models, which are ubiq-

uitous in Bayesian statistics. In probabilistic modeling, Mixture Models are used to

infer the latent substructure of a larger group. Both Mixture Models and Mixture

Density Networks use a composition of distributions to represent a concept. Mixture

Models are used to represent the properties of a population by learning the compo-

nent distributions directly from the data (typically using Expectation Maximization

or Markov Chain Monte Carlo techniques). Mixture Density Networks represent a

prediction by learning the component distributions from a neural network applied to

inputs.

Mixture Density Networks have be incorporated into models for a variety of ap-

plications. Speech and acoustics are good candidates for Mixture Density Networks

because the frequencies can be expressed as a mixtures of Gaussians [44][59]. RNADE

(real-valued neural autoregressive density-estimator) extends Mixture Density Net-

works by sharing distribution parameters and making subsequent distributions con-

ditional on previous ones [54]. RNADE is not considered in this work, but it could be

a candidate for future work. Alex Graves developed a Mixture Density Network to

generate handwriting samples by representing the location of the pen with a mixture

of Bivariate Gaussians [17].

2.2.3 Autoencoders

Autoencoders are a type of neural network used for unsupervised learning. The basic

autoencoder encodes its inputs into a latent representation and then decodes the la-
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Figure 2.3: Autoencoder

tent representation to approximate the inputs. The network is trained by minimizing

the difference between the output of the network and the input. Both the encoding

and decoding layers can be deep neural networks. Figure 2.3 illustrates a simple au-

toencoder where the blue nodes on the left are the original input and the blue nodes

on the right are the reconstructed input. The red nodes are hidden layers, and the

green nodes are the latent representation.

There are two main considerations when designing autoencoders - the encod-

ing/decoding structure and the latent representation. Typically, the encoding and

decoding neural networks are symmetric. The latent representation must be chosen

carefully. If the latent representation has a higher dimension than the input dimen-

sions then the autoencoder risks simply memorizing the input data and returning it

without learning any interesting structure. To avoid this, researchers have developed

several strategies. The most basic solution is to use a small latent layer (like the

one shown in Figure 2.3) that has many fewer units than the input dimensions. An

alternative is to apply regularization to the activations of the neurons in the latent
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representation.

One form of regularization is the sparsity constraint. The sparsity constraint adds

a penalty for all of the neurons in the latent layer that are activated (have a high

output value). The result of the sparsity constraint is that only a few neurons will

be active in the latent layer, which forces the autoencoder to learn the underlying

structure of the input data that differentiates each input from the rest. Care must

be taken when training an autoencoder with a sparsity constraint to ensure that the

sparsity penalty is not too high that no neurons are activated nor too low so that

nearly all neurons activate.

Another more complex form of regularization of the latent representation is the

Variational Autoencoder (VAE). A VAE regularizes the latent representation by forc-

ing activations of the neurons in the latent layer to not significantly deviate from a

Gaussian distribution. VAEs tend to produce dense representations where each neu-

ron in the latent layer is activated, but the values are constrained to a small range.

In a VAE, the encoding layer outputs a list of means and standard deviations (the

number of means/standard deviations is the latent layer size). Then a sample is

taken from each Guassian distribution defined by the means and standard deviations.

These samples become the latent representation of the input. The samples are then

passed to the decoding network to reconstruct the input. The loss for a VAE is the

reconstruction cost (the same as all other autoencoders) and the Kullbach-Leibler

Divergence between the Gaussians defined by the encoder and a predefined Gaussian

(typically with a mean of 0 and a standard deviation of 1). The Kullbach-Leibler Di-

vergence (KL-D) is a continuous value that describes how different two distributions

are from each other. The formula for the continuous version of KL-D is shown below:

DKL(P |Q) =

∫ −∞
−∞

p(x) · log(
p(x)

q(x)
)
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It is important to note that KL-D is not symmetric because DKL(P |Q) does not

necessarily equal DKL(Q|P ).

2.3 Navigation

Navigation is the process of determining the steps necessary to get from one place

to another. Typically, the goal of navigation is to minimize the cost of movement to

a destination. The cost of a route to the destination can include the length of time

required, the amount of energy consumed, or the probability of a collision. Prior to

performing navigation, the areas of the environment that are safe to traverse must be

determined. Additionally, the criteria for selecting a route must be defined. These

criteria can vary, but typically in the context of robotics, the shortest route that

avoids damage to the robot or the environment is chosen. Navigation can occur at

many levels of granularity. For example, a traveler performs navigation by planning

to drive to the train station and take a train to the beach. Then the traveler will

use maps to plan the optimal sequence of roads to take in order to reach the train

station. While driving, the traveler will actively navigate around obstructions in the

road, possibly taking detours in order to avoid accidents. This example shows how

navigation can be performed at a high-level (drive then ride the train) or at a lower-

level (driving wide around an obstruction). Humans are able to seamlessly switch

between levels of planning when necessary, but teaching robots to effectively navigate

is a non-trivial endeavor. Robots must learn or be programmed to predict human

actions, emulate human activity, and respond appropriately to unforeseen events like

natural disasters or malicious behavior.

An excellent example of constructing a robot system for navigation is the Naviga-

tion Stack in the Robot Operation System (ROS)[43]. ROS is a library and framework

that is commonly used for robotics. ROS provides a modular way of defining com-
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Figure 2.4: Costmap

ponents that accomplish specific tasks for the robot. Researchers, corporations, and

hobbyists share their components (called Nodes) with the open source community.

The purpose of ROS is to have a unified way of orchestrating all of the various be-

haviors and functionality of robots. The ROS Navigation Stack is a well-documented

and thoughtfully-designed system for route planning that has been implemented for

many robot platforms. The following paragraphs consider the ROS Navigation Stack

as a case study in how navigation systems can be built and deployed on autonomous

robot platforms. There are many other solutions for navigation systems, but they all

share many of the same design choices, and it is therefore necessary to only study one

of them.

Before a robot can navigate and plan paths, the robot must have a map of the

environment and know its location in the environment. In ROS, a map of the en-

vironment can be produced by the robot while it explores the environment, or an

existing map can be used. The basic map defines what regions are safe and which

are not. In ROS, these maps are costmaps. Figure 2.4 is an example of a costmap
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constructed from a maze layout. The light regions of the map are navigable while

the darker regions are considered dangerous or impossible to move through. Notice

that the original map on the left shows the hard walls of the maze, while the map on

the right has fuzzy boundaries around the walls. The map on the right is generally

preferable because it demonstrates that the robot should not only avoid running into

a wall but also avoid close proximity to a wall since the robot may slide or get pushed

resulting in a collision. These 2D costmaps can be used for planning.

In ROS, there are global planners and local planners. Global planners use the

costmaps and plan a route to the destination that minimizes length of the path while

also avoiding dangerous (darker) areas on the map. The basic global planner uses

the A* search algorithm. A* is an efficient search method that uses heuristics to

focus planning on regions of the map that are more likely to yield optimal routes to

the destination. The local planners use the route defined by the global planner and

outputs instructions for the robot to ensure that the robot uses its actuators to follow

the global plan as closely as possible. A key task for building successful robots is to

write a system that correctly balances long-range and short-range planning. In the

simplest implementation, neither the local planners nor the global planners consider

the movement of other agents. Of course, sensors can detect pedestrians or moving

vehicles, but the robot treats these the same as static obstacles. This is a major lim-

itation because it means that robots using these navigation tools cannot effectively

move in dynamic environments without colliding or being overly cautious and failing

to make forward progress. A navigation system that will succeed in dynamic envi-

ronments must incorporate knowledge of other agent’s trajectories at both the local

and global levels.

While there is tremendous variety in navigation algorithms, there is even greater

diversity in map building techniques. Navigation systems will always be limited by

the accuracy of the available maps. The primary method for building maps is for a
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robot to explore an unknown area and construct a map piece-by-piece as it moves

around. This requires that the robot estimate its own location and the location of

objects around it at the same time. SLAM (Simultaneous Localization and Mapping)

is the term that describes this task and the associated solutions for it. One limita-

tion of most SLAM algorithms is that they are not robust to moving agents in an

environment. For example, if a person walks in front of a robot while it is exploring,

it may denote the person as an obstacle in the map even though the person is not a

permanent fixture of the environment. While maps should be free of transitory ob-

jects and agents, the position and velocity of mobile agents is an essential component

of navigation. The task of fusing static maps with information about mobile agents

is still an active area of research. This thesis will focus exclusively on the effect of

mobile agents on trajectory prediction and applications for navigation, but it is im-

portant to consider that real-world navigation must incorporate static and dynamic

features.
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Chapter 3

RELATED WORK

3.1 Navigation and Trajectory Prediction

Navigation and obstacle-avoidance in dynamic environments is a challenging task for

robots. Recently researchers have developed many methods for robot navigation that

enable robots to actively avoid collisions and minimize the discomfort of humans

while still allowing the robot to reach its destination. Complimentary to navigating

in dynamic environments is predicting how other agents will move. Often the tasks of

trajectory prediction and navigation are approached together, so this section discusses

methods for navigation and trajectory prediction.

3.1.1 Goals of Navigation

The most obvious objective for any navigation technique is to plan a route from

one location to another. A navigation algorithm cannot be considered successful

if it does not produce a viable path to the destination. However, there are many

other considerations when the navigation occurs in a crowded environment. Kruse

et al. produced a thorough survey of the criteria for successful robot navigation

in the presence of humans [30]. Kruse et al. identified three major categories of

evaluation metrics that can be used to determine how well a robot navigates - comfort,

naturalness, and sociability. A robot that does not invoke fear, stress, or unease

in humans would be comfortable for humans to be around. Robots that navigate,

move, and interact like humans are considered natural, while robots that respect

cultural/social rules like right-of-way would have a high degree of sociability. These

categories are abstract and not amenable to specifying in an algorithm; however, other
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researchers have considered quantitative metrics that can measure the success of a

robot at navigating a human environment. Many researchers have devised penalties

for robots that get too close to a person.

3.1.2 Reinforcement Learning

Reinforcement Learning (RL) is the process of learning from repeated trials. The

problem of Reinforcement Learning is typically described a Markov Decision Process

(although there are several other variations). A Markov Decision Process (MDP) is

defined as a state space, an action space, a probability of going from one state to

another conditioned on the action taken, and the rewards that are received for tran-

sitioning from each state to another state. For robot navigation, the state space is

typically all physical locations that a robot can occupy; the action space is all phys-

ical actuations that the robot can perform. The probability of transitioning from

one state to another is dependent on the features of the environment and the other

agents. Rewards are problem-specific, but typically robots would be rewarded for

getting close to their destination and not colliding or interfering with other agents.

Inverse Reinforcement Learning (IRL) is the task of learning the reward function for a

Markov Decision Process. Several researchers have applied IRL to cooperative naviga-

tion. The following paragraphs describe three illustrative examples of reinforcement

learning in robot navigation.

Chen et al. used Deep Reinforcement Learning for producing short collision-

free paths for multiple agents[9]. Deep Reinforcement Learning is a way of solving

RL problems using neural networks to estimate the value of going from one state

to another or the value of an action and state pair. Chen et al. only considered

simulations, but their results showed that neural networks can learn to incorporate

cooperative collision avoidance and constraints to produce efficient and safe paths.
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Ziebart et al. used IRL and Bayesian methods to output the log-likelihood of

a pedestrian’s next locations [60]. They conducted the experiment using real-world

data collected from observing a kitchen. The environment was discretized into a grid,

and the cost of visiting each cell was learned conditioned on the distribution over

possible destinations. They then planned the path of a robot based on the current

map. After planning a step, they simulated the trajectories of other pedestrians and

updated the cost of cells based on the likelihood that pedestrians would be hindered

by a robot’s presence in that cell. The algorithm lets the developer define the trade-off

between efficiency of the robot reaching its destination and the amount of hindrance

to pedestrians. The main limitation of the approach is that it does not model the

responses of pedestrians to the robot (see the Frozen Robot Problem in the next

section). In a realistic scenario, humans move out of each other’s way and are thus

likely to also yield to a robot; however, the approach taken by Ziebart et al. does not

model this possibility.

Kretzschmar et al. designed a probabilistic framework for robot navigation where

the importances of various features on the paths are learned from examples of human

movements [28]. Some of the features considered are proximity to obstacles, proximity

to other pedestrians, and changes in velocity/acceleration. The authors use Mixture

distributions to represent choices between several options (such as passing an obstacle

on the right or the left). The work is experimentally validated using a contrived

environment where humans were observed for four hours. A strong advantage of the

engineered features is that it is possible to interpret the impact of other agents and

obstacles in a straightforward, probabilistic way. The downside of the engineered

features is that it may not generalize to complex environments.
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3.1.3 Probabilistic Models

3.1.3.1 Interacting Gaussian Processes

Trauntman and Krause developed the Interacting Gaussian Process (IGP) model to

solve the frozen robot problem[52]. When a robot is given a destination, but there are

people in the way, the robot may be unable to make forward progress and therefore

appear ”frozen”. Humans do not experience this problem because they engage in

cooperative navigation where humans make room for other humans when they notice

that someone intends to move through the crowd.

The IGP model represents the trajectories of agents (humans and robots) as a

Gaussian Process. A Gaussian Process is a distribution of functions, where the dis-

tribution of values at each step is a Gaussian random variable. In the context of

trajectory prediction, each step is a random variable that defines where the agent is

likely to be; the Gaussian Process is the distribution over these individual random

variables and thus represents a trajectory. Trauntman and Krause developed the

theory for IGP using one-dimensional trajectories, but additional Gaussian Processes

could be used to model the three dimensions of the Euclidean coordinate space. A

Gaussian process is defined by a mean and a covariance function. The distribution for

any time step is a function of all previous time steps. A standard Gaussian Process

has no way of directly incorporating information from other Gaussian Processes (tra-

jectories), so Trautman and Krause introduced a potential function. They multiply

the Gaussian Process’ probability density for each timestep of an agent by a potential

that shifts the distribution away from the other agents. The resulting distribution can

be multimodal, unlike the original Gaussian Process random variables. Trauntman

and Krause parameterized the potential based on the minimum distance that is seen

between pedestrians.
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When predicting the next position of a pedestrian, the Maximum A-Posteriori

(MAP) estimate of the position is chosen. The MAP estimate is the mode of the

posterior distribution, where the posterior distribution is the result of multiplying

the distribution of the step of the Gaussian Process with the potential function. The

mode is the single most likely position. Trauntman and Krause advocate the use

of importance sampling, which approximates the MAP estimate through multiple

samples from the posterior distribution.

IGP is a promising technique because it can represent multimodal distributions

and has relatively few parameters. Trauntman and Krause report that reasonable

estimates can be computed in less than .1 seconds, so the approach seems to be fast

enough for real-world applications. The potential function allows the robot to infer

how people will move in order to accommodate it, thus resolving the frozen robot

problem. IGP was also validated on a robot in a crowded cafeteria [53]. The major

limitation of IGP is that it assumes that robots can move just like humans, and the

custom potential function may not be applicable to heterogeneous agents (cars, bikes,

etc.) or be able to incorporate long-range influences.

3.1.3.2 Obstacle Maps

Vemula et al. constructed a variation of the IGP model that represented the neighbors

of an agent in an occupancy grid [56]. The occupancy grid encodes the locations of

other agents relative to the agent whose trajectory is being predicted. The squared

exponential automatic relevance determination (SE-ARD) kernel is used to learn the

affect of neighbors on the trajectory. Unlike IGP, there is no need to provide the

true final destination of each agent. The major advantage of this work is that the

potential function is learned rather than specified with user-defined parameters. One

limitation of the model is that there is no obvious way for the model to incorporate
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the velocities or previous states of the neighbors.

3.1.4 Social Forces

One of the earliest and most famous methods for modeling pedestrian trajectories

in crowded spaces is Social Forces - introduced and popularized by Helbing et al.

[22]. The Social Forces model represents pedestrians as particles that experience and

exert forces. Repulsive forces push pedestrians from obstacles and other pedestrians.

Attractive forces can pull pedestrians towards their destination and towards their

group. Helbing introduced equations that define these forces along with empirically

validated parameters to produce realistic simulations. At each timestep of a simula-

tion, the forces applied to each pedestrian are combined, and the velocity (direction

and magnitude) of the agent is then computed based on the forces.

The main limitation of Social Forces models is the large number of parameters

that must be specified. The default parameters can yield reasonable trajectories, but

the parameters must be carefully fine-tuned to fit a particular scenario. Different

cultures, environments, and events all affect the desired velocity, distance to others,

and preferred side of a pathway among many other factors. Another significant lim-

itation is that generally all pedestrians are assumed to share the same parameters.

Therefore, each pedestrian responds the same way to other pedestrians and obstacles.

Of course, it is possible to choose parameters for each pedestrian, but this makes the

task of defining the model much more difficult.

Despite its relative simplicity and the challenge of choosing good parameters, the

Social Forces model has been used in several practical applications. Helbing et al.

described the use of Social Forces to model pedestrians during evacuations and used

the resulting models to critique the design of buildings and walkways [21]. Mehran et

al. used the Social Force model to detect abnormal behavior (such as people running
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from a dangerous situation) [36]. Social Force models and other physics-inspired

models have been used to model traffic patterns and produce recommendations for

the construction of roads and paths that can accommodate large crowds [20]. The

Social Forces model has also been used for robot navigation by Mehta et al. [37]

where the robot learned to switch between several policies (follow, go-solo, and stop)

partially influenced by the Social Forces exerted by other agents.

3.1.4.1 Learning Social Etiquette

Robicquet et al. recorded a large collection of videos of people walking, riding, and

biking using drones over crowded areas of Stanford University’s campus[45]. The

dataset is unique in its scale and the inclusion of multiple agent types (cars, bikes,

pedestrians, etc.). The authors used the data to evaluate a novel technique for pre-

dicting trajectories. Their work is closely related to the Social Forces model; however,

several of the parameters are learned rather than specified. Specifically, they learn an

energy potential that represents how sensitive each agent is to other agents. The po-

tential is defined as the multiplication of Gaussians where the standard deviations of

the Gaussians roughly correspond to how much space each agent attempts to main-

tain between themselves and others. The parameters for this energy potential are

learned for each agent trajectory, and the resulting parameter values are clustered to

identify groups of agents who move in similar navigation styles. The parameters are

learned based on an equation that models the displacement of an agent from a linear

trajectory. The most significant result of the paper is the idea that different agents

will have different navigation styles, which means that the Social Forces model (even

with well-chosen parameters) will likely not accurately model heterogeneous scenarios

where individuals have distinct speeds and methods of movement.
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3.1.5 Neural Networks

3.1.5.1 Social-LSTM

Alahi et al. proposed a neural network model to predict pedestrian trajectories[2].

They modeled the trajectory using LSTMs. This was the first major application of

neural networks to pedestrian trajectory prediction. The main insight of the paper

was the creation of a grid of the hidden states of the neighboring agents. The grid

is centered at the agent whose next position is going to be predicted. Each cell

contains a sum of the latent representations (hidden states) of all agents who are

inside that cell relative to the position of the current agent. By incorporating the

hidden states of the neighbors, the network predicts the next position of each agent

based on that agent and all of the neighboring agents. The latent representations of

the neighbors are the output of the LSTM for that agent at the previous timestep.

The authors chose hyper-parameters that defined the grid size and the distance of

relevant neighbors using simulations. Their final model used an 8 by 8 grid that

was 32 pixels wide. They trained the network to output a Bivariate Gaussian that

minimized the negative log likelihood of the actual next position of the agent. During

testing, they sampled from the Bivariate Gaussian and inputted the samples back

into the network to compute a complete path. The network was provided 8 timesteps

of positions and then inference was performed for 12 timesteps in their validation

tests. The model was evaluated on the ETH[41] and UCY[32] pedestrian datasets.

The architectures presented in this thesis are extensions and modifications of the

core model described in the Social-LSTM paper. Here, we will describe the specifics

of the Social-LSTM model. The state of each agent at each timestep is represented by

the output of an LSTM. This Agent-LSTM encodes the coordinates and influence of

neighbors at each timestep. To illustrate the architecture of Social-LSTM (and later

the novel designs presented in this thesis), a sample scenario will be considered. The
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Figure 3.1: Sample Scenario

sample scenario is shown in Figure 3.1. The example objective that will be considered

is the task of predicting the next position of the green agent (whose agent id is 4).

The overall sequence of operations for predicting the location of the green agent

is shown in Figure 3.2. Each green box is a vector or tensor that is calculated for

the green agent. Each box with a dashed gray border is an operation on vectors or

matrices. The s4
t vector is the representation of the influence of neighboring agents

on the fourth agent (green agent) at timestep t. The e4
t vector is the representation

of the current coordinates of the fourth agent at timestep t. The coordinate and

neighbor representations are used as inputs to the Agent-LSTM (LSTMa) along with

the previous hidden state (h4
t−1) and cell state (c4

t−1), where the hidden and cell

states are specific to the green agent. The previous states will represent the previous

trajectory of the green agent. The Agent-LSTM then outputs the next hidden and cell

states along with an output vector. A fully-connected layer is applied to the output

vector to output parameters of a Bivariate Gaussian that specifies the likely position

of the green agent in the next timestep. The fully-connected layer is represented

by Φ with weight matrix Wθ and bias vector bθ. There is no activation function
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Figure 3.2: Core Social-LSTM Architecture

applied in the Φ operation. The details of how the output parameters are used

to define a probability distribution are discussed in Chapter 4 Design. For Social-

LSTM, the probability distribution is specified by just 5 parameters. Equation ??

is the mathematical equivalent of Figure 3.2 for predicting the position of agent i at

timestep t.

oit, h
i
t, c

i
t = LSTMa(s

i
t, e

i
t;h

i
t−1, c

i
t−1;Wa, ba)

Θ4
t = Φ(oit;WΘ, bΘ)

(3.1)

Figure 3.3 and Equation ?? show how the coordinate (eit) and neighbor (sit) em-

bedding vectors are computed. The coordinate vector eit is just a fully connected

embedding of the raw coordinate values with the weight matrix We and bias vector

be. Ψ denotes the embedding using a relu activation. A relu activation is a function

that is 0 when the input value is less than 0 and is equal to the input value when

the input is greater than 0. The construction of the neighbor vector sit is much more

involved. First, a tensor P i
t is created as a grid with dimensions (k, k, l) where k is

the number of cells in the width and height and l is the size of the hidden state from

the Agent-LSTM. The indicator function 1mn is 1 when the input values are within

the mth row and nth column of the grid. The inputs to the indicator function are

the differences between each neighboring agent’s coordinates and the current agent’s

coordinates. The value of every grid cell is the sum of the latent representations of all

32



Figure 3.3: Neighbor and Coordinate Representations for Social-LSTM

neighbors that exist in that cell (when the indicator function is 1). The grid is then

embedded into a tensor by applying a fully-connected layer Ψ with weight matrix Wps

and bias vector bps.

Figure 3.3 does not incorporate the hidden state of the blue agent in the grid

because the blue agent’s current position is outside of the grid.

eit = Ψ(xit, y
i
t;We, be)

P i
t (m,n, :) =

∑
j∈N i

1mn[xjt − xit, y
j
t − yit]h

j
t−1

sit = Ψ(P i
t ;Wps, bps)

(3.2)

Like most neural networks, there are a number of hyper-parameters that must

be set in order to fully specify the model. For Social-LSTM, the important hyper-

parameters are the size of the grid (how much of the environment is included) and

the granularity of the grid (number of cells). Selecting a grid size that is too small

will mean that relevant neighbors that would affect the movement of the agent will

not be considered. On the other hand, a large grid size may sacrifice the precision of

the spatial position of each neighbor since the grid cells will each cover a large portion

of the environment that may include many agents. It may seem desirable to have a
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large grid size (cover much of the environment) and a large number of cells to achieve

high coverage and high spatial granularity, but there are several disadvantages to this.

First, the matrix P and the weight matrix Wpd will become enormous and will occupy

considerable memory during training and inference. Additionally, the network will

have to learn more parameters, which generally requires more training data in order

to encounter many training samples that include the agents in all of the cells.

3.1.5.2 Soft + Hardwired Attention

Fernando et al.[12] designed a novel sequence-to-sequence neural network architecture

based on Social-LSTM. They postulate that a weakness of Social-LSTM is that the

next position of the current agent is predicted using only a function of the hidden

representation of the current agent and the social tensor of the hidden states of

the neighbors at the current timestep. In their research, Fernando et al. use an

attention mechanism to incorporate all previous hidden states of both the current

agent and the neighboring agents when making predictions. This has the benefit of

allowing the neural network to model how the agent reacts to different scenarios and

including that information in subsequent predictions. The attention mechanism uses

learned parameters to weight the previous states of the current agent and hardwired

weights based on Euclidean distance to weight the neighbors’ previous hidden states.

Additionally, the neural network is trained as a sequence-to-sequence model, so the

model never represents the next position with a probability distribution like Social-

LSTM. Rather, the first part of the network encodes a sequence of 20 time steps,

which is then fed into the second part of the network that decodes the next 20 time

steps.

Fernando et al. evaluated their architecture against Social-LSTM on the crowded

Grand Central Station Dataset[58] and Edinburgh Informatics Forum Dataset[34].
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Prior to fitting their model, Fernando et al. first clustered the trajectories based on

destination and then trained separate models for each cluster. Their attention-based

model was superior to Social-LSTM in each evaluation category and dataset. Since

their architecture involves several departures from Social-LSTM, it is not obvious

whether the attention mechanism in particular was the most important modification.

Even the reduced model that omits information about neighbors performs nearly as

well as Social-LSTM.

3.2 Deep Representations

Relatively straightforward convolutional neural networks and recurrent neural net-

works have produced significant results in a variety of domains. However, deeper and

more powerful neural network architectures have begun to show increased potential

in recent years. This thesis relies on these modern designs; this section summarizes

the relevant advances in neural network construction.

3.2.1 Attention in Neural Networks

Attention is the general concept of focusing on specific details. Humans have a well-

developed capacity for attention. When someone is speaking, humans generally con-

centrate on the speaker rather than the plain wall behind the speaker. When driving,

humans focus on the road in front of them and nearby cars rather than the color of the

sky. Of course, humans can also attend to things that are not relevant. Sometimes,

human drivers look closely at accidents, causing them to subconsciously slow down.

During uninteresting speeches, humans may decide to focus on the people they are

sitting next to or the chores that need to be completed later.

Without an ability to attend to specific concepts, humans would likely be over-

whelmed with the amount of information that they can perceive through their senses.
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In a similar way, it can be beneficial to endow neural networks with the ability to

attend to certain aspects of the input rather than others. The key components of

attention mechanisms in neural networks are the selection and representation of the

information to attend to. Many attention mechanisms have been proposed, but the

key distinctions for this thesis are hard versus soft attention and spatial versus tem-

poral attention.

3.2.1.1 Soft and Hard Attention

Attention mechanisms have the potential to improve the accuracy and speed of neural

networks since expensive processing can be applied only to the relevant parts of the

inputs, and extraneous noise in the inputs can be ignored. However, training these

powerful networks can be challenging. The design of the attention mechanism deter-

mines how the model can be trained. If the attention mechanism is fully-differentiable

(called “soft”) then the network can be trained using Backpropagation similar to

most other neural networks. However, if the attention mechanism is not differen-

tiable (called “hard”), then it is no longer possible to use simple Backpropagation.

Therefore for “hard” attention mechanisms, Reinforcement Learning techniques are

usually the method of choice for training.

An example of a “soft” attention mechanism is a weighted combination of all

inputs. One part of the neural network will output a weight for each input, and the

inputs times their weights is then fed into another part of the neural network for

further processing. An example of a “hard” attention mechanism is the selection of a

strict subset of the input. By only choosing some of the input to use, it is no longer

possible to compute the gradients of the attention mechanism.
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3.2.1.2 Spatial and Temporal Attention

A neural network can use attention mechanisms for attending on any type of data;

however, there are two typical applications of attention - spatial and temporal. Some

of the first attention mechanisms were applied in recurrent neural networks to attend

to the state of the network at previous time steps. One of the best examples of this

temporal attention is the seminal paper by Bahdanau et al. about Neural Machine

Translation [4]. They used LSTMs to encode a sentence in one language and then

more LSTMs to decode the sentence in a different language. The decoding LSTMs

received input from the output of the encoding LSTM (as usual) but also from a

weighted summation of the states of the encoding LSTM cells. The weights were

computed using an alignment network (a type of attention). Even earlier, Graves

used a similar methodology for handwriting generation[18]. Graves constructed a

network that could attend to a windows of the input while generating handwritten

characters.

Recently, researchers have considered spatial attention where a neural network is

trained to attend to certain regions in a spatial domain (most often the attention

focuses on a part of an image). An excellent example of spatial attention is the

famous DRAW neural network created by Gregor et al. [19]. The DRAW model is a

Variational Autoencoder that uses a recurrent neural network to read sections of an

input image and then another set of recurrent neurons to reconstruct the input image

by selecting regions of the output canvas and drawing to them. The DRAW network

outputs images much like humans - by copying individual parts of the images at each

timestep. The regions that DRAW attends to are based on the hidden state of the

recurrent neural network from the previous timestep.
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3.2.2 Hierarchical Recurrent Neural Networks

Humans are remarkably adept at understanding relationships in complex systems.

For example, people can look at a building and recognize the materials used to build

the structure as well as the physical interactions among the components that allow

the building to remain upright. Deep convolutional neural networks have been used

to learn the spatial relationships among the components of a face (e.g. noses are usu-

ally located between the eyes, which are above the mouth). However, there has been

much less success in the task of learning complex temporal relationships. Recently,

researchers have advanced the state-of-the-art in speech recognition, text understand-

ing, and translation using recurrent neural networks. Combining convolutional neural

networks and recurrent neural networks has demonstrated promising results on video

understanding and prediction.

One promising direction for learning representations of complex spatial and tem-

poral relationships is hierarchical recurrent neural networks. These models use multi-

ple layers of recurrent cells to encode multiple dimensions. In a hierarchical recurrent

neural network, the outputs of one set of recurrent neurons is used as the input

sequence to another set of recurrent neurons. The first layer could encode the tem-

poral patterns of discrete entities, and the second layer could encode the temporal

representations across multiple entities. The following two paragraphs discuss some

applications of hierarchical recurrent neural networks.

3.2.2.1 Spatial Temporal Learning

Ibrahim et al. used hierarchical LSTMs to learn representations of group activities

[25]. In their paper, an LSTM was used to encode the activity of individuals by

operating on the output of a convolutional neural network at each timestep. The

activity of the group was encoded using another set of recurrent neurons that encoded
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the outputs of each individual in the scene. Du et al. employed hierarchical LSTMs

to recognize actions of individuals based on skeletal movement over time [11]. An

LSTM was applied to the temporal patterns of each skeletal component through

the timesteps. Then further LSTMs encoded these outputs into larger and larger

groupings of skeletal components. Peng et al. used hierarchical LSTMs to understand

geometric scenes [42] with sub-networks called P-LSTM for semantic concepts and

MS-LSTM for structural concepts.

3.2.2.2 Natural Language Processing

Hierarchical LSTMs have also been employed successfully in a variety of Natural

Language Processing tasks. Li et al. constructed a paragraph autoencoder that

used two levels of LSTMs - one for the word sequences and one for the sentence

sequences[33]. This two-level hierarchy outputted text that properly maintained much

of the semantic meaning of the original text. Tan et al. used a Hierarchical LSTM

model for image caption prediction [50]. They modeled the captions using one level

of LSTM that encoded small sequences of words, and the next level of LSTM encoded

these sequences of word groups.
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Chapter 4

DESIGN

To safely navigate a dynamic environment, a robot must be able to predict the future

positions of other agents. Most humans are able to deftly move through large crowds

since they have a keen sense of where people will go. Predicting the trajectory of other

agents is also important for following tasks where a robot will be more likely to main-

tain close proximity to a target if it can anticipate future movements. This section

describes the motivation and structure of four novel neural network architectures for

incorporating the influence of neighboring pedestrians into predicting the pedestrian

trajectories. The goal of the four novel neural network architectures is to learn the

relevance of neighboring agents to the prediction of the next position of an agent. An

improved way of representing the intrinsic uncertainty involved in trajectory predic-

tion will also be presented. These models can be used to directly estimate the most

probable subsequent positions of agents, or the models could be incorporated into full

navigation systems. Two examples of such full navigation systems will be presented

that utilize trajectory predictions to plan routes that are unlikely to interfere with

other pedestrians.

4.1 Multimodal Predictions

Regardless of how well a model learns about the common factors that affect pedestrian

movement, it will never be possible to perfectly predict the path of pedestrians. There

is inherent stochasticity in human movement. A pedestrian may suddenly remember

that they forgot something and turn around, they may see a friend and run over to

meet them, or they may choose to walk around an obstacle on either the right or left
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Figure 4.1: Viable collision avoidance routes

side. Figure 4.1 shows two scenarios where the red agent goes around the blue agent

on either the right or the left side. Both of these routes are possible, so a prediction

of the future locations of the red and blue agents should be multimodal since there

is no way to know which route will be taken.

Since we never have complete certainty about the paths of pedestrians, it does

not make sense to use point-estimates. Instead, the algorithms should express the

likely subsequent position of the agent as a probability distribution. Social Forces

(SF) outputs point-estimates, and there is no obvious extension that would enable it

to output probability distributions. Interacting Gaussian Processes (IGP) outputs a

probability distribution, which can be multimodal. Unfortunately, the distributions

predicted by IGP are mathematically complex, and thus sampling procedures are

fairly involved. Social-LSTM outputs a Bivariate Gaussian distribution, which is

unimodal.

Social-LSTM was proven to be superior to IGP in several benchmarks, but Social-

LSTM is limited because it cannot represent a multimodal trajectory since it outputs

a single Gaussian. IGP, however, is capable of multimodal outputs. Therefore, it is

sensible to develop a neural network like Social-LSTM that has the additional ca-

pacity for multimodal outputs like IGP. We propose to construct a Mixture Density
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Network to output a mixture of Bivariate Gaussians for trajectory prediction. The

parameters of the mixture of Bivariate Gaussians can be produced by a network

like Social-LSTM or one of the alternative architectures proposed in the subsequent

section. By outputting the parameters of a mixture distribution, the model can pro-

duce multimodal predictions. Additionally, sampling from the mixture distribution

is trivial since it has a known formula.

There are two major advantages of a Mixture Density Network for pedestrian

trajectory prediction over a single Bivariate Gaussian. The first advantage is repre-

senting multiple likely paths. If two pedestrians approach directly toward each other,

it is possible for them to pass on either side of each other. It would be beneficial

for a network to be able to predict those two distinct possible outcomes, which is

not achievable with a single Bivariate Gaussian. Additionally, a Mixture Density

Network can predict the location of pedestrians many timesteps ahead more readily

than a network that outputs a single Bivariate Gaussian. When the predictions are

made for multiple timesteps away there are more possibilities for the location of the

pedestrian, and the ability to specify a mixture of Bivariate Gaussians would likely

contribute to greater accuracy.

The Social-LSTM model outputted five parameters to define a single Bivariate

Gaussian - ux, uy, σx, σy, p. Then the likelihood of the subsequent position of the

agent was given by the Bivariate Gaussian distribution. The Probability Density

Function (PDF) for a Bivariate Gaussian is shown in Equation ??. The higher the

value of the PDF at the ground-truth position, the better the network is performing.

ux is simply the expected x position of the agent in the next time step, while uy is the

expected y coordinate of the agent in the next time step. σx and σy are the standard

deviation of the x and y coordinates respectively; they represent the uncertainty of the

prediction. p is the covariance of the x and y distributions. Note that the PDF is not

the probability of the agent being located at a given x and y position. The Bivariate
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Gaussian distribution is continuous, so the probability of any specific location is 0.

For convenience, the log of the PDF is often used since the range of values is smaller,

and the formula can be written as additions rather than multiplications.

f(x, y) =
1

2πσxσy
√

1− p2
exp(− z

1− p2
)

z =
(x− ux)2

σx
+

(y − uy)2

σy
+

2p(x− ux)(y − uy)
σxσy

(4.1)

The alternative formulation proposed in this thesis uses a mixture of Bivariate

Gaussians. To keep the parameters simple, the Bivariate Gaussians are diagonal. A

diagonal Bivariate Gaussian means that the covariance is set to 0. Diagonal Bivari-

ate Gaussians are ellipses that are oriented vertically or horizontally - there is no

correlation between the x and y distributions. In small-scale experiments, diagonal

Bivariate Gaussians did not reduce the performance of the networks, and it makes the

models less complex. Since IGP uses two independent Gaussian Processes (GP), the

joint stationary distribution of the two GPs was also a diagonal Bivariate Gaussian

before considering the impact of neighbors. Equation ?? shows the single Bivariate

Gaussian PDF, which is just Equation ?? when p is 0.

f(x, y) =
1

2πσxσy
e−z

z =
(x− ux)2

σx
+

(y − uy)2

σy

(4.2)

The PDF in Equation ?? can easily be expanded into a mixture distribution by

outputting parameters to multiple Bivariate Gaussian and outputting a weight for

each Bivariate Gaussian component. The weights must sum to zero. The mixture

model PDF is the weighted sum of the PDFs of the individual Bivariate Gaussians

as shown in Equation ??.
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F(x, y) =
n∑
j=1

αjfj(x, y) (4.3)

For the Mixture Density Network formulation with n component Bivariate Gaus-

sians, there are 5n parameters since there are n of ux, uy, σx, σy, and αi. The αis

are the weights of each Bivariate Gaussian. These parameters are produced using the

final fully-connected layer of the network. Equation ?? shows how the parameters

of the mixture model are calculated from the output of the network. oti is the final

representation of agent i at timestep t. The network is trained to produce otis that

represent all information about an agent necessary to predict its next location. This

information could include the agent’s previous locations, velocity, and the influence

of neighbors. Φ denotes a fully-connected layer with weight matrix WΘ, biases bΘ

and no activation function. The size of WΘ is (n ∗ 5, m) where m is the number of

components in the mixture and m is the output dimensions of oti. Similarly, bΘ has

dimensions (n * 5). The mixture parameters are then extracted from the result of

the fully-connected layer that produced Θ (with dimensions n*5). It is important to

note that the standard deviations are element-wise exponentials of raw values since

standard deviations must be greater than zero. The softmax applied to the α values

ensures that sum of the αs is 1.0, which is essential for the mixture distribution to be

a valid probability distribution.
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Θ = Φ(Ot
i ;WΘ, bΘ)

ux = Θ[1...n]

uy = Θ[(n+ 1)...2n]

σx = eΘ[(2n+1)...3n]

σy = eΘ[(3n+1)...4n]

α = softmax(Θ[(4n+ 1)...5n])

(4.4)

Equation ?? shows how a softmax is computed over a vector. The constant e is

raised to the power of each element of the original vector. These exponentiated values

are then scaled by dividing by the summation of e to each of the entries in the vector.

softmax(v) =
evi∑k
j=0 e

vj
(4.5)

4.1.1 Prediction Examples

Figure 4.2 illustrates how predictions are made over a series of timesteps. In this dia-

gram, the current pedestrian whose next location is being predicted is the black dots

(the largest dot is the current position and the smaller dots are previous locations).

The cross is the ground-truth position that is being predicted. The background color

is a representation of the predicted distribution. The predicted likelihood for the next

position is greatest in the dark red zones and lowest in the purple regions. The colors

are on a logarithmic scale of the PDF of the predicted distribution. This example was

taken from a simulation that is similar to the Hallway scenario (discussed in Chapter

5), but with more pedestrian-pedestrian interactions. The predictions were produced

using the Neighbor-Attention model (presented in the next section), which outputs

the parameters for a mixture of 20 Bivariate Gaussians. In this example, it is not pos-
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Figure 4.2: Basic Trajectory Prediction

sible to identify the component Bivariate Gaussians because the distribution appears

to be unimodal. However, for this situation, a unimodal distribution appears to fit

the data well. Although mixture outputs have the capacity to represent multimodal

distributions, they can also represent unimodal distributions.

Figure 4.3 highlights the importance of the Mixture Density Network formula-

tion. This example was constructed using the same modified Hallway scenario with

the same model as the previous example. The white dots are another agent in the

scene that is initially heading directly towards the black agent. Unlike, the unimodal

distribution in Figure 4.2, there are two obvious modes of the predicted distribution

in this situation. The reason for the two modes is that the network is not sure whether

the black agent will go forward with the white agent to his left or right. This is a

contrived example, but it is still a useful depiction of how the models can predict

future positions. Examples from real-world scenarios are similar, but the multimodal

distributions are not as distinct (and therefore more difficult to visualize).
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Figure 4.3: Multimodal Trajectory Prediction

4.2 Neighbor Representations

A critical component of predicting the next position of the agent is the environment

in which the agent is moving. For example, pedestrians do not typically collide with

walls or other pedestrians. This work focuses on the representation of neighboring

agents and how these neighbors can influence the trajectory of an agent. Social

Forces (SF), Interacting Gaussian Processes (IGP), and Social-LSTM (S-LSTM) are

all capable of modeling the following aspects that influence pedestrian trajectories:

• Nearby Pedestrian Avoidance,

• Group Cohesion, and

• Continuity.

Nearby pedestrian avoidance means that pedestrians tend to walk in a way that

minimizes the chances of getting too close to another person. Group cohesion de-
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scribes the tendency of people to walk with people that they know. Pedestrians also

prefer to continue walking at a constant velocity and avoid sudden shifts in direction,

which means that people select actions based on continuity with previous actions.

Social Forces and Interacting Gaussian Processes also account for the goal oriented

behavior of pedestrians who are trying to get to their destination.

Features that may affect pedestrian movement but cannot readily be accounted for

in Social-LSTM, Social Forces, or Interacting Gaussian Processes are the following:

• Long-range mimicry behavior,

• Long-range planning, and

• Environmental features.

When a person is walking and they see people walking in a circuitous route in the

distance, the person may assume that the best route is the longer way rather than

the direct way. In this way, people incorporate the behavior of distant pedestrians

into their own walking choices; this is called mimicry. Additionally, pedestrians of-

ten consider the potential for collisions with fast-moving agents (quick pedestrians,

bicyclists, cars, etc.) even though the agents are not close by. The SF, IGP, and

S-LSTM models limit the impact of distant agents, so these models would not readily

incorporate long-range features. Finally, environment features like the quality of the

walking surface are not accounted for in any of the models, although Social Forces

explicitly incorporates aversion to collisions with solid objects.

One goal of this thesis is to develop models that are capable of representing the

influence of mimicry behavior and long-range planning. The addition of environmen-

tal features could be readily incorporated by inputting a dense semantic map into

the network, but this will be left for future work. To produce a general model, the

selection of valid neighbors must be learned by the neural network instead of specified
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Figure 4.4: Structure of Personal Space

as hyper-parameters or engineered potentials. Figure 4.4 shows how SF, IGP, and

Social-LSTM represent the personal space of pedestrians. For SF, the influence of a

neighboring pedestrian is related to their position on equipotential lines of an ellipse

where influence decays exponentially from the agent. Pedestrians in front of the agent

have greater influence than ones on the sides. For IGP, the influence of neighbors

also decays exponentially by Euclidean distance from the agent, but there is no dif-

ference between neighbors in front or on the sides of the agent. Social-LSTM uses

a grid centered at the agent, and the representations of agents within each grid cell

are summed to represent the immediate neighbors. Social-LSTM allows the model to

selectively weight the influence of each grid cell. However, neighbors that are outside

all of the grid cells will not be considered by the model.

Four novel architectures were constructed to consider all neighbors when predict-

ing trajectories. These architectures were inspired by Social-LSTM, but they all differ

in how they represent neighboring pedestrians. The differentiating feature of each de-

sign is the calculation of the neighbor representation (referred to as the social tensor

in the Social-LSTM paper). The diagrams presented in this section reference the
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sample scenario shown in Figure 3.1. All of the diagrams demonstrate how the next

position of the green agent is calculated. To differentiate between the architectures,

the models will be referred to using an abbreviation that describes how the model

represents the influence of neighboring agents. Social-LSTM will be referred to using

the abbreviation S-LSTM.

All four novel architectures share the same overall structure of Social-LSTM. This

basic model structure was presented in Chapter 3 in Figure 3.2 and Equation ?? where

the diagram refers to the scenario of predicting the subsequent location of the green

agent (agent id of 4) in the next time step. The coordinate embedding e is calculated

exactly the same as in the Social-LSTM model for all architectures. The neighbor

representation s, however, is calculated in a different way for each model. These ways

of representing the neighbors are discussed next. There are two underlying goals that

unify the approach for each architecture:

• Reduce spatial hyper-parameters and

• Consider influence of all agents.

As stated above, the existing state-of-the-art solutions for trajectory prediction

involve specific hyper-parameters that define the influence of neighbors. These hyper-

parameters are a major roadblock for developing new robot navigation systems that

incorporate agent trajectory prediction. These hyper-parameters must be tuned to

each environment (based on the speed and preferences of other agents). If a sys-

tem can learn to detect which pedestrians are relevant and likely to influence the

behavior of other agents, then the engineers do not have to spend time testing and

tuning parameters. Additionally, even with well-tuned parameters, there are likely

cases where distant agents may influence the trajectories of other agents. A model

should be capable of incorporating both close-range and long-range interactions in

order to output the best possible estimates of the trajectories of other agents. The
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architectures presented in this thesis do not assume which pedestrians are relevant

and do not require any special hyper-parameters for adjusting the importance of other

agents. In this way, these designs can save engineers time and have the potential to

more accurately estimate trajectories since the influence of other agents is learned by

the model.

4.2.1 Occupancy Grid (OCC)

Tracking multiple targets simultaneously while also moving is not an easy feat. In

order for robots to utilize pedestrian trajectory prediction for planning, the robot

must first be able to track all of the neighboring agents over time. Since this may

not always be feasible, the Occupancy Grid (OCC ) architecture is presented as a way

of predicting trajectories without historical knowledge of neighboring agents. The

additional advantage of representing neighbor coordinates in a large grid is that it is

trivial to encode uncertainty in the measurements of other pedestrians. Typically, the

sensors on robots have limited accuracy and therefore measurements are accompanied

by a degree of uncertainty. A robot may detect a person, but represent the knowledge

of that person as a probability distribution that describes the likely position of the

person rather than the precise coordinates of the person.

The Occupancy Grid architecture creates an agent-centric grid that has a width of

twice the scene width and a height of twice the scene height. The grid is partitioned

into cells where the number of cells is a hyper-parameter although in testing the

granularity (cell count) of the grid had a minimal effect on performance once the

cell count exceeded about 100. Each cell is initially set to zero. Then the PDF of

the coordinate for each neighboring agent in the scene is evaluated at each grid cell

and the result is added to the value of the grid cell. The PDF of the coordinates

can be provided by a robot based on the accuracy of its sensors. In the experiments
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Figure 4.5: Occupancy Grid Architecture (OCC)

conducted for this thesis, the PDF was specified as a diagonal Bivariate Gaussian

centered at the actual position of the agent, and variance in the x and y directions

set to approximately the minimum observed distance between agents.

Equation ?? shows how the values of each grid cell are calculated. f jt is the PDF of

the distribution of the neighbor j’s position at time t. For the experiments presented

in this thesis, f was defined as the PDF of N ((xjt , y
j
t ), (σ, σ)). Where (xjt , y

j
t ) is the

true position of neighbor j at time t and σ is the square root of the minimum distance

between two agents. sit is the embedding of the grid using weights Wgs and biases bgs.

Gi
t(k, l) =

∑
j

f jt (k, l)

sit = Ψ(Gi
t;Wgs, bgs)

(4.6)

Figure 4.5 shows how the Grid is computed and used in the context of the entire

network. The gray OCC box outputs an n by n matrix where n is the number of

cells in the width and length of the grid. The inputs to the OCC operation are the

coordinates of the other agents and not the latent representations from the Agent-

LSTM. Of course, for real applications, the inputs would be the parameters of a

distribution specifying the uncertainty about the location of the neighboring agent.
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The Social-LSTM paper also presented an Occupancy model, but this was using

the same small grid as used in the full Social-LSTM approach. Additionally, the

Occupancy model in the Social-LSTM paper was binary where each grid cell was 1 if

there was one or more agents in it or 0 otherwise.

The major limitation of the Occupancy Grid architecture is that there is no way

to represent the velocities or previous trajectories of neighboring agents. This is a

severe limitation because strategies for avoiding collisions depend on knowledge of

velocity. For example, if there is one agent in front of another; if the agents are

heading towards each other, then at least one of them should take evasive action and

step to one side. However, if both agents are going in the same direction, there is no

need to alter their course. In the Occupancy Grid model the network cannot learn

how to respond differently in those two situations. Nonetheless, the Occupancy Grid

model is less complex than the other ones and has the added benefit of allowing for

uncertain measurements of the location of neighbors.

4.2.2 Hierarchical LSTM (HIER)

It is common practice for pedestrians to scan to the left and right before crossing a

street. During this scan, the pedestrian is assessing the location and velocity of other

pedestrians and vehicles before determining whether it is safe to cross the street.

This also happens as pedestrians navigate dense crowds; they tend to search the

environment for paths that are most free of obstructions. The way pedestrians scan

their surrounding was the motivation for the Hierarchical LSTM (HIER) model. It

is intuitive for humans to construct a mental map of the environment by considering

each agent one at a time and storing the relevant information about that agent in

their memory. The Hierarchical LSTM model seeks to emulate this behavior.

The Hierarchical LSTM model replaces Social-LSTM’s grid-pooling of the neigh-
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Figure 4.6: Hierarchical LSTM Architecture

boring agents with an additional LSTM. To differentiate the two LSTMs, the LSTM

for the agent will be referred to as Agent-LSTM, while the LSTM that processes the

neighbors will be referred to as Neighbor-LSTM. The Neighbor-LSTM encodes all of

the latent representations of the neighbor trajectories into a single tensor. This tensor

is the neighbor representation that is then inputted into the Agent-LSTM along with

embedding of the current agent’s coordinates. Figure 4.6 shows how the Neighbor-

LSTM is applied to the trajectory representations of the neighbors to produce the

neighbor tensor s. The initial cell state and hidden states are 0 vectors, but then the

hidden states and cell states are populated with the important information from each

latent state of the neigbors.

Equation ?? defines how the neighbor representation tensor is calculated for the

Hierarchical LSTM architecture. The input to the Neighbor-LSTM is a concatena-

tion of the latent representations of a neighbor’s trajectory along with the embedding
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of the coordinates of the current agent. The reason that the current agent’s coordi-

nate embedding is included is to enable the network to learn the importance of each

neighbor relative to the current agent rather than the importance of each neighbor

in the general sense. Essentially, the gates of the LSTM can calculate values that

depend on the distance of the neighbor to the current agent and use that information

to determine the impact of the neighbor on the current agent’s path. Equation ??

shows how the Neighbor-LSTM is applied sequentially to all of the neighbors in the

scene. jv
i
t represents the hidden state of the Neighbor-LSTM and jz

i
t represents the

cell state of the Neighbor-LSTM after encoding the jth neighbor at timestep t when

the current agent is i. The is the output of the LSTM at the intermediate timesteps.

The intermediate outputs of the Neighbor-LSTM are discarded because only the out-

put after processing the final agent includes all of the relevant information about each

neighbor in the scene.

, 1v
i
t, 1z

i
t = LSTMn(h1

t−1, e
i
t; 0,0;Whs, bhs)

, 2v
i
t, 2z

i
t = LSTMn(h2

t−1, e
i
t; 1v

i
t, 1z

i
t;Whs.bhs)

...

sit, k−1v
i
t, k−1v

i
t = LSTMn(hkt−1, e

i
t; k−1v

i
t, k−1z

i
t;Whs, bhs)

(4.7)

Since LSTMs are adept at capturing information over long time horizons, the

order of the processing of each neighbor should not be significant, although the model

might be more robust if during training the order of the neighbors is shuffled. Another

possible choice would be to sort the neighbor representations by their distance to the

current agent in descending order (farthest away first). This may potentially help the

model capture the information from the nearby agents, which are more likely to be

important, but it was not implemented in this version. A huge number of neighbors in

the scene may make the calculation of the neighbor tensor very slow since the LSTM
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is applied to each one, but it is unlikely that a robot’s sensors could detect more than

a few dozen agents since other agents would be occluded from view.

4.2.3 Spatial Attention (SATTN)

Humans are inundated with information in crowded scenarios like shopping areas,

schools, and airports. Each of a human’s senses provide a different perception of

the environment. Some percepts provide critical information to navigating - seeing

an imminent collision or hearing a train approaching - while other senses may be

superfluous - smelling exhaust or seeing an advertisement. Humans have a fine-tuned

mechanism for attending to only the relevant percepts that can be used to aid in

decision-making. Attention is especially important for navigation; humans cannot

process all available information so they must choose what is the most relevant.

When crossing a street, the most salient information would be about the oncoming

traffic, while knowledge about other pedestrians across the street is less significant.

The goal of the Spatial Attention architecture is to train a network to attend to the

neighboring agents that are present in the regions that are most likely to influence

the movement of the current agent.

The Social-LSTM architecture can be considered a type of attention model where

the regions that deserve attention are predefined using hyper-parameters. The SATTN

architecture lets the model learn these regions. The primary motivation for the Spa-

tial Attention architecture is the DRAW network that was created by Gregor et al.

[19]. The attention mechanism in the DRAW network is a set of parameters that

align a collection of Gaussian filters against a patch of the input image. The DRAW

network uses Soft-Attention, which means that the entire network is differentiable and

can be trained using Backpropagation. For the DRAW network, only five parameters

are needed to specify the grid used to apply the Gaussian filters. Unlike the DRAW
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network, the Spatial Attention architecture for trajectory prediction employs one or

more distinct Gaussians for attention. The number of attentions is a hyper-parameter

of the model. In handwriting generation, it is acceptable to focus on a single region

of the input image, but in trajectory prediction it may be important to attend to

multiple distinct regions.

The SATTN architecture is not a traditional attention mechanism because the

model learns global attention regions while most attention networks (including DRAW)

select the region to attend to based on some function of the inputs. While it would

be straightforward to compute the attentions based on the inputs to the network

(current trajectory of the agent), there is far less data available in trajectory predic-

tion than other domains (like handwriting recognition), so the decision was made to

learn global attentions rather than ones specific to the state of the inputs. The next

section will present an alternative attention architecture that does use the state of

the current agent to attend to different agents.

Ri
t(m) =

∑
j∈N i

gm(xjt − xit, y
j
t − yit) · q

j
t−1

sit = Ψ(Ri
t;Wrs, brs)

(4.8)

Equation ?? describes the way that the neighbor tensor is computed. m is the

attention index where Ri
t has the shape (n, l) where n is the number of attentions and

l is the dimension of the latent representation of the trajectories of each agent. m

goes from 1 to n. gm is the PDF of a diagonal Bivariate Gaussian N(µmx , µ
m
y , σ

m
x , σ

m
y )

where each parameter is learned by the network. The total number of parameters

learned by the model for the attention mechanism is n * 4 since each attention require

4 parameters. The total value of each attention component of the neighbor tensor is

the sum of each neighbor agent’s hidden representation weighted by gm evaluated on

the difference between the neighbors coordinates and the current agent’s coordinates.
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Figure 4.7: Spatial Attention Architecture

The attention matrix R is embedded into a vector s using a fully-connected layer

with relu activation and weight matrix Wrs and bias vector brs.

Figure 4.7 is a visual representation of the attention architecture. In the diagram

Σ refers to all learned parameters, which is each µmx , µmy , σmx , and σmy .

4.2.4 Neighbor Attention (NATTN)

Like the Spatial Attention architecture, the Neighbor Attention model learns to attend

to parts of the input that are most likely to be relevant in predicting the trajectories.

Unlike, SATTN, the Neighbor Attention architecture selects the importance of other

pedestrians individually rather than through weights given by Gaussians. NATTN

is a more traditional attention model because the inputs are used to determine what

parts of the input should be attended to. The intuition behind the Neighbor Atten-

tion model is that humans may perform a cursory glance around the environment

then focus on the aspects of the environment that are most meaningful. The NATTN

model is the only architecture that essentially performs two layers of analysis of other

pedestrians. Informally, the first layer considers the positions of the other pedestrians

in relation to the current pedestrian and outputs a measure of how influential each

other pedestrian is likely to be to the current pedestrian. These measures of impor-

tance are used to create a weighted vector of the latent representations of the other
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pedestrians. Like the SATTN model, the Neighbor Attention model is Soft-Attention

and is therefore fully differentiable and can be trained using Backpropagation.

Concurrently with our effort to build attention mechanisms for trajectory pre-

diction, Fernando et al.[12] also devised an attention architecture that shares some

similarities with the Neighbor Attention model (but almost not overlap with SATTN ).

However, Fernando et al. only learned temporal attention where their model learned

to attend to the latent state of the current pedestrian at previous timesteps. They

used hard-wired attention that weights the latent representations of other neighbors

using the inverse of Euclidean distance. Therefore, the only learned attention in the

work of Fernando et al. is in the temporal domain, while the model presented here

only learns attention in the spatial domain. The models presented by Fernando et al.

still face the same limitations as Social-LSTM, IGP, and Social Forces because the

importance of neighbors is predefined rather than learned.

qit =
eΨ(eit,e

m
t ;Wu,bu)∑

l e
Ψ(eit,e

l
t;Wu,bu)

Ait(m) = q(m) · hmt−1

sit = Ψ(Ait;Was, bas)

(4.9)

Equation ?? describes the way that the neighbor tensor is computed. As before,

Ψ is a fully-connected layer with a relu activation function. qit is a vector with

length equal to the number of neighbors that holds the importance weights for each

neighbor. These importance weights are calculated using a softmax over the fully-

connected layer that has as inputs the embedding vector of the coordinates of the

current pedestrian and the coordinate embedding of each other pedestrian. When

the Ψ function with parameters Wu and bu outputs a large value for a neighbor,

then that corresponding entry in the qit vector will be large (and thus the neighbor is

considered important). The softmax is used to force the sum of the entries in the qit
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Figure 4.8: Spatial Attention Architecture

vector to equal one, which ensures that no single latent representation of a neighbor

can be massively inflated. Each entry of the matrix Ait is calculated as the weight of

the neighbor m times the latent representation of neighbor m (hmt−1) at the previous

timestep. The weights are broadcast to perform element-wise multiplication. Finally,

the Ait matrix is embedded into a social tensor using the relu activation function,

weights Was, and biases bas.

Figure 4.8 is a visual representation of the attention architecture. The X in

the gray box represents element-wise multiplication of the entries of qit against the

corresponding latent representations. The diagram clearly highlights the fact that this

model incorporates two representations of the neighbors (the coordinate embedding

and the latent trajectory representation), while all other architectures only used one

representation.
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(a) S-LSTM (b) OCC (c) HIER

(d) SATTN (e) NATTN

Figure 4.9: Structure of Social Tensor

4.2.5 Representation Summary

Figure 4.9 illustrates the conceptual differences between the various ways of repre-

senting the social tensor that models the influence of neighbors on the path taken by

the current agent. The colors correspond to the latent representations of the other

pedestrians in the example scenario where the goal is to predict the next position

of the green agent. The Social-LSTM model (S-LSTM ) uses a grid where the hid-

den representation of each nearby agent is placed in the grid cell according to each

neighbor’s location relative to the current agent. The total size of the grid restricts

which agents are relevant to the current agent. In Figure 4.9, the blue agent is not

represented in the Social-LSTM social tensor since it is outside the grid around the

green agent (and is thus not considered relevant). In all three architectures proposed

in this thesis, all agents are considered. The Occupancy Grid (OCC ) encodes the
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coordinates of other pedestrians into a large grid that encompasses the entire scene.

The white dots in the Occupancy Grid example are the large values in the grid (rep-

resenting regions where pedestrians are located). The Hierarchical LSTM (HIER)

remembers information about each neighboring agent by sequentially examining each

agent’s latent representation. The mixing of the colors in the Hierarchical LSTM

social tensor indicate how the Neighbor-LSTM incorporates components from the

latent representations of each neighboring agent. The Spatial Attention (SATTN )

model learns to weight the influence of neighbors based on regions that are defined

by learned parameters. In Figure 4.9 the SATTN model is learning four regions that

each weight the influence of the neighbors differently (where the number of regions is

a hyper-parameter). Finally, the Neighbor Attention (NATTN ) architecture selects

the importance of neighbors by comparing their coordinates to the current agent’s

coordinates and applying those weights to the latent representations of the neighbors.

In the figure, the box for the NATTN model illustrates how the social representation

is a weighted combination of the latent representations of all neighbors (similar to the

SATTN model). All of the depictions in Figure 4.9 are representations prior to em-

bedding with the exception of the HIER model, which does not require an additional

embedding layer.

Figure 4.10 shows the relevant regions in a scene that are considered by each

architecture. The scene is taken from the Stanford Drone Dataset[45]. The regions

shown in the diagram are for illustration purposes only and do not represent the true

regions learned by each architecture. The green agent is the target of the prediction

and all other agents are highlighted in pink. The Social-LSTM model uses grid

pooling, so only those agents within the yellow grid are considered. The Occupancy

Grid uses a massive grid with many tiny cells that capture the coordinates of all

agents. The Hierarchical LSTM considers all other agents, which is why a yellow circle

is placed on all agents. The Spatial Attention model selects the regions of neighbors
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(a) S-LSTM (b) OCC (c) HIER

(d) SATTN (e) NATTN

Figure 4.10: Relevant Neighbor Regions for Architectures

to consider by modifying the parameters of one or more Bivariate Gaussians. In the

figure, the Gaussians are represented by yellow ellipses. The darker yellow regions are

given more weight. The figure depicts a boundary around the ellipses to highlight their

shape, but in the real model every neighboring agent is included in every attention

component. The weight approaches zero for agents that are far away from the center

of the Bivariate Gaussian. The Neighbor Attention model incorporates information

from all agents, but it selectively weights each agent, which is why some of the yellow

circles on agents are shown darker than others.

The grid of latent representations used by the Social-LSTM model requires a much

larger number of parameters than the architectures that are proposed in this research.

Table 4.1 shows that S-LSTM learns nearly double the parameters of the next largest

model (Hierarchical LSTM) and learns more than four times as many parameters as

the smallest model (Neighbor Attention). Architectures with fewer parameters are

generally advantageous because less memory is required to store the values. However,
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Table 4.1: Number of Learned Parameters for Architectures

Model Parameters (thousands)

S-LSTM 669

OCC 247

HIER 342

SATTN 161

NATTN 153

fewer parameters does not necessarily translate into faster inference or less overall

memory consumption during inference. The memory and speed requirements of a

model are highly specific to the software used to implement them. Nonetheless,

reducing the number of parameters in a model can achieve a variety of desirable

results including reducing the likelihood of over-fitting and producing more compact

representations that can be more readily used in other systems.

4.3 Planning in Dynamic Environments

4.3.1 Dynamic Horizon A*

The A* search algorithm is nearly ubiquitous in path planning applications due to its

simplicity and impressive performance. Before planning a route using A*, the map is

usually discretized into cells where each has a cost associated with it (see Chatper 3

for a detailed treatment of costmaps). The cost of each cell can be used to constrain

the search space or alternatively to penalize paths. In the constraint formulation,

cells with costs above a threshold are marked as unnavigable and excluded from the

planning. For the penalty formulation, the cost of each cell is a component of the

overall cost of a route; this means that longer paths may have an overall lower cost if

they traverse lower cost cells.
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A* requires a heuristic cost function that is admissible, which means that the

heuristic function must always produce an optimistic estimate of the expected cost

from the current location to the goal. When the cost of each cell is used as a penalty,

creating an admissible and useful heuristic cost function is much more difficult than

the constraint case. In this work, A* will be used on a costmap where the robot is

constrained to some cells while others cells are deemed impassable. The A* search

performed for this project departs from the standard use-case because it must consider

dynamic elements in the environment.

The proposed extension to A* is Dynamic Horizon A* where dynamic objects

are incorporated into the costmap only when they are near the robot. The rationale

for this choice is that agents that are far away will likely move before the robot is

able to reach their current location, yet it is important for the robot to plan a route

that avoids nearby agents. The horizon must be specified according the specifications

of the robot. The requirement of defining a horizon may appear antithetical to the

previous work on eliminating hyper-parameters in the trajectory prediction models,

but the horizon value is much different. The horizon is based on the kinematic

constraints of the robot - how far it can move in a single timestep. For Social-LSTM,

the hyper-parameters are chosen to best predict human trajectories where it is not

known a-priori which neighbors may affect the trajectories. For a robot, the influence

of neighboring pedestrians is known since the robot is merely planning a route that

is free of obstructions. The horizon value is specified as a radius from the current

location of the robot. All cells within this horizon circle (defined by the radius) are

checked to ensure that they are not likely to be occupied in the next timestep by

another agent and that there are no static obstacles in that cell. Cells outside of the

circle are considered valid if there is no static object in the cell.

The likelihood of a cell being occupied is calculated using the neural network mod-

els for pedestrian trajectory prediction. For each agent in the scene, the parameters
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of the distribution of their likely next location is specified by the output of the neural

network. Samples are drawn from these distributions and the distance between the

sampled points and the coordinates of the cell are compared. If the distance between

the cell and the sample is less than two times the radius of a pedestrian, then the

sample indicates a potential collision. By taking many samples (in the experiments,

1000 samples were taken), the proportion of collisions with the samples indicates the

overall probability of a collision if the robot moves to that cell in the next timestep.

The developer of the robot can then define a threshold where a probability greater

than the threshold means that the cell is not safe since the possibility of collision is

too high, while probabilities lower than the threshold mark valid cells.

The Dynamic Horizon A* approach is convenient because it can be readily incor-

porated in path planning systems that only handle static obstacles. Additionally, it

is fast and will converge to the shortest possible path for the current costmap. How-

ever, there are two drawbacks. The first issue is that it only considers one timestep

into the future and thus it cannot consider the long-range influences of other agents

potentially walking into its path in the future. The second issue is that it has an

inflexible cost function. A* planners are used to calculate the shortest safe path to

the destination, but there are other criteria that may affect the choice of a path. For

example, the robot may wish to minimize the amount of times that it forces pedes-

trians to walk around it. There is no clear way to incorporate such a goal into the

A* search procedure.

While not immediately apparent, a well-chosen horizon value should enable the

Dynamic Horizon A* method to minimize the effects of the frozen robot problem.

The frozen robot problem occurs when the robot cannot plan a viable route - no safe

path exists. If static objects block all paths to the destination, then there is obviously

no planning algorithm that can overcome the issue, but there are other cases where

dynamic agents (pedestrians) may currently block all paths to the destination. Yet,
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Figure 4.11: Dynamic Horizon A* at Each Timestep

people are likely to make room for a robot or other pedestrian trying to go forward.

Since the robot only considers cells invalid when a neighbor is likely to be in the

cell and the cell is within the horizon, the robot can still plan a path towards the

destination that is blocked by people as long as the people are outside of the horizon.

A horizon that is too large may cause the robot to plan circuitous routes or fail to

find any route (frozen robot problem). A horizon that is too small may allow the

robot to collide with pedestrians.

Figure 4.11 is an example of the plan created by the Dynamic Horizon A* algo-

rithm at each timestep. After constructing the path (shown in black), the subsequent

position of the robot (at the next timestep) is the location on the planned path that

is closest to the destination but still possible for the robot to reach within a single

timestep. The dashed line in the figure indicates the dynamic horizon. The white

dots are the positions of other pedestrians, and the background is a heatmap showing

the probability of agents occupying the space in the next timestep. The path clearly

avoids the red regions (areas that are highly likely to be occupied) within the circle.
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However, the path goes directly through the red regions outside of the horizon be-

cause it is expected that the pedestrians will have moved past these areas by the time

the robot reaches them.

4.3.2 Tree Search

An alternative to the A* approach described above is a local tree search. A tree

search constructs a tree of nodes (representing states or positions) and links between

the nodes (representing actions or movements). The goal of the search is to find a path

that maximizes a reward or minimizes a cost. For navigation, the nodes are positions

of the robot, and each layer of the tree (nodes with the same depth) are positions

of the robot at a specific timestep. The root of the tree is the current position of

the robot. Unlike the A* method, the state-space can remain continuous, but the

action-space (set of all actions) will be made into a discrete set. The discrete set of

actions essentially limits the state-space to also be a countable set since only a finite

number of actions can be taken. For the purposes of navigation in two-dimensional

space, the actions will be defined as tuples of distance and angle pairs. As a concrete

example, consider that the robot can move any number of feet in {0, 1, 2} at any

angle in {0, π
4
, π

2
...7π

4
} for each timestep. That makes the total action-space contain

24 pairs although 7 of those are redundant because the angle does not matter if the

robot does not move forward.

Even with a discrete set of actions, it may be intractable to explore a sequence

of all possible actions from each reachable state. Therefore, it is desirable to explore

paths (action sequences) that are more likely to lead to optimal (or near optimal)

routes. However, it is also reasonable to explore paths that may not at first appear

as optimal as the others, but may in the end be the most successful. The trade-off

between searching around the paths that are known to be good and searching for other
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paths whose payoffs are unknown is a famous issue usually described as exploration

versus exploitation. A class of problems called Multi-Armed bandits are often used

to analyze solutions that balance exploiting known good solutions while exploring

for potentially better solutions. One technique that is useful for these situations in

Upper Confidence Bound (UCB), which is explained thoroughly in Sutton’s book on

Reinforcement Learning [48]. Equation ?? shows the details for UCB where Q(s, a)

is the value of a certain action a taken in state s. N(s, ·) is the number of times the

state s has been visited (explored), while N(s, a) is the number of times the action a

has been chosen in state s. The c variable is a user-defined weight for how to balance

the first and second terms.

Q(s, a) + c ·

√
ln(N(s, ·))
N(s, a)

(4.10)

Using UCB, the search should explore (choose the action) that maximizes the

UCB equation. If the Q(s, a) for an action is high then it will be more likely to be

chosen since it has performed well. However, the second part of the equation will

skew the algorithm to choose actions that have not been explored as often as the

other actions from the current state. One method of tree search is called Monte

Carlo Tree Search where nodes are typically chosen using the UCB criteria (although

other methods can also be used) when statistics of the states and actions are known

(have already been visited). For unvisited states, a random action is generally chosen.

Since good heuristics for estimating the value of being in a state are available for path

planning (namely the distance of the current state to the goal) it is not necessary to

choose actions randomly. Rather, the UCB equation is used at each state to choose

actions during the search process, which means that the approach taken in this thesis

is not Monte Carlo Tree Search since there is no randomization.

The initial quality of a state and action (Qo(s, a)) is set according to the Equation
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?? where dist is a function that calculates the Euclidean distance between two points.

v is the maximum velocity of the robot and n is the maximum number of timesteps

into the future that will be considered. g is the destination coordinates and so is the

starting coordinates of the search (current position of the robot). V (s) is the value of

a state, which is one minus the scaled distance from the state s to the goal. The worst

possible result of the robot’s movement from so after n steps is being w away from

the goal, while the best possible result is being only b away from the goal. Therefore,

w and b are used to scale the value of a state V (s) to be between 0 and 1. The initial

quality of a state and action pair (Qo(s, a)) is the value of the state that results from

taking action a from the state s to reach s′.

w = dist(so, g)− v ∗ n

b = dist(so, g) + v ∗ n

V (s) = 1− (dist(s, g)− w)/(b− g)

Qo(s, a) = V (s′)

(4.11)

During the search process, the planning starts at the root node (current state of

the robot) and selects the action that maximizes the UCB equation. Then the same

procedure is applied at the subsequent state and so on until the maximum depth (n)

is reached. The value of the last node in the exploration is then propagated backwards

to all of the previous states to update each Q(s, a) where the new Q(s, a) is just the

average value of all sequences that go through that pair. The number of visits to each

state and each state and action pair are also updated. This procedure is repeated

many times. Once the search is complete, the action from the root node that was

visited most often is chosen for the next movement of the robot.

Of course, this discussion has omitted the key details of what happens when a state

is not valid. The validity of a state is calculated using the same logic as was used for
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the A* approach where many samples are taken from the predicted distributions of the

next location of each agent. A state is invalid if the probability of a collision is greater

than a threshold. The major advantage of the tree search is that there is an explicit

notion of time since each level of the tree occurs as the same timestep. Therefore

at the root node, the probability distributions based on the current positions of the

nearby agents are used. At the second depth, a position for each neighboring agent

is sampled from the first set of predicted distributions. The previous locations of the

agents along with these estimated positions at the next timestep are used as inputs

to the neural network to output new parameters for probability distributions that

represents where the agents will likely be two timesteps into the future. A similar

procedure is used at greater depths of the tree. In this way, the algorithm is able to

take into account the movement of other agents across many timesteps, which was

not possible in the Dynamic Horizon A* approach.

When the chosen action yields a state that is invalid, the iteration down the

current sequence is terminated early. The value that is propagated up the tree to

root is the value associated with the state before the invalid state. This captures the

intuitive notion that if last valid state were reached then no progress could be made

by choosing that action that led to the invalid state. Cutting the search short in these

cases can dramatically decrease the average quality of the states and actions that led

to the invalid state, so the search will prioritize actions that do not lead to invalid

states.

One feature of this tree search method is that it will often visit the same sequence

of states and actions many times. Although that appears undesirable, it is actually

useful because each time a node deep in the search tree is reached, the estimated

current positions of other agents will be different due to the stochastic sampling of

the distributions. By visiting these states multiple times, the algorithm verifies that

these desirable sequences of actions are robust to all the possible movements of the
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pedestrians. Even just a few times when a seemingly optimal sequence results in

an early termination due to one of the states becoming invalid will reduce the value

of that sequence and force the search to consider paths that are more likely to be

successful. Sometimes the search finds an optimal path early (for example, when

there are no nearby pedestrians), and repeated traversal of the path does not yield

new information. In these cases, the search is stopped when the number of visits

to one action is more than double all visits to the other actions in that state and

the number of total visits to the state is greater than a user-defined number (in the

experiments, this number was 10).

In the formulation of the tree search here, the quality of the action and state

pairs is a function of the distance to the goal after taking the action in that state;

however, this same tree search approach could handle alternative metrics like how

much the robot disturbs other agents. In Monte Carlo Tree Search, the value of a

leaf node (last node in a search sequence) is typically estimated by applying a rollout

policy from that state to completion (reaching the goal). The current approach just

uses the heuristic of distance to the goal from the last state to define this value of

the leaf node, but a rollout policy may be needed if there are no good heuristics for

approximating the chosen metric of a good path.

Overall, tree search is a straightforward way of finding paths in a dynamic envi-

ronment that minimize a cost or maximize a reward. It is robust at handling highly

stochastic environments because it can repeatedly explore a sequence of actions. Since

the tree search uses the neural network models for predicting the locations of pedes-

trians, theoretically it should be highly effective at solving the frozen robot problem

because it can detect how pedestrians will respond when it plans a route directly

towards the blocking pedestrians.

Figure 4.12 showcases how the tree search picks the next position of the robot. All
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Figure 4.12: Tree Search at Each Timestep

of the thin black lines are movement sequences that were evaluated by the algorithm.

The thick black line is the final sequence. The robot will move take the first action

in the final sequence. The figure depicts the large variety of paths that were tested.

The darker lines are generally all pointing towards the left, which indicates that these

paths were the most promising (result in a position that is closest to the destination).

The final sequence appears to bend upwards (even though the destination is slightly

lower than the current position). The reason for this deflection is to make room for

the pedestrian directly below the robot. By simulating the movement of the other

pedestrians, the algorithm detects that at future timesteps, the robot may collide

with the agent directly below it if the robot moves lower. After moving forward at

this timestep, the entire tree search is repeated at the next timestep.
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Chapter 5

IMPLEMENTATION

There is no exact process for training and evaluating neural networks. There are

many techniques that can be applied to solve issues like slow convergence, local min-

ima, and overfitting. Many of these techniques and procedures have one or more

hyper-parameters that must be appropriately set to ensure the desired results. The

techniques and methods outlined in this section were evaluated on small simulation

scenarios before running on the final datasets. Using simulations allowed for the

rapid testing of hyper-parameters and techniques since the networks converge much

faster on simple scenarios with few agents. The simulations were also used during the

construction of the architectures to ensure correctness of the implementation.

5.1 Simulations

All of the simulations were were created using the Social Forces model. Argil - a

library designed for pedestrian simulation - was used to model, visualize, and process

the scenarios. More information about Argil is presented in Chapter 7. Argil includes

an implementation of the Social Forces model that was inspired by the implementation

in Menge[10].

For debugging, two environments were constructed - a Hallway scene and a Fork

scene. Sample frames from the Hallway are shown in Figure 5.1, and sample frames

from the Fork scene are shown in 5.2. In each figure, the current location of the agent

is the largest circle while the trail of smaller circles shows the previous locations of

the agent. In all scenarios, there are ten agents moving from one sink towards one of

the other sinks. A sink is an entrance or exit from the environment (the Hallway has
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Figure 5.1: Representative Sequence from Hallway Simulation

two sinks and the Fork has three sinks.

Data was obtained by simulating the progress of agents for 2000 timesteps, and

each agent began its path after a random delay where the delays are calculated from

the uniform distribution with lower bound of 0 and upper bound of 400 timesteps.

Each scene corresponds roughly to a 10 meter by 10 meter region in the real-world.

For every tenth timestep, the position of all agents was recorded.

For the Hallway scenario, agents were randomly assigned to a starting side and

each agent then moved towards the other side horizontally. The vertical start and end

positions of each agent were calculated using a Normal distribution with a standard

deviation of 2.0 centered at a y-coordinate of 7.5 for the agents traveling right and a y-

coordinate of 2.5 for agents traveling left. This choice of y-coordinate ensures that the

majority of the agents traveling right will be on the upper half of the hallway while

those traveling left will be on the lower half. Figure 5.1 shows how the tendency

of agents to travel together in the same direction results in relatively few head-on

collision-avoidance situations.

The Fork scenario (Figure 5.2) includes a much greater number of pedestrian

interactions. Agents in the Fork scenario were randomly assigned to one of the three

start sides and then a goal destination was also selected at random. To make the
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Figure 5.2: Representative Sequence from Fork Simulation

scene even more interesting, each agent was also given a waypoint in the center where

all three pathways converge. These center waypoints must be reached by the agent

before it can continue on to its final destination. The center waypoints were assigned

using the Uniform distribution where every position in the center is equally likely to

be chosen.

Evaluating architectures on multiple types of interactions provides a better esti-

mate of how well the model may perform on real-world situations where there is a

mix of complex and simple interactions. Since the Hallway simulation involves few

pedestrian interactions, it was used to validate that all neural network architectures

were capable of learning the linear patterns of movement. The models converged to

reasonable solutions within 30 minutes to one hour on the Hallway simulations, so

these simulations were used to evaluate general hyper-parameters. The Fork scenario

involves many interactions between agents; the Fork simulations were used to validate

the neighbor representations to ensure that the models were able to detect nearby

agents.
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5.1.1 Hardware and Software

All neural network models were trained on Amazon EC2 with the memory optimized

instances. r4.large instances (15.25 Gigabytes RAM, 2 vCPUs) were used for small

simulations with fewer than 10 agents; the r4.xlarge instances (30.5 Gigabytes of

RAM, 4 vCPUs) and the r4.2xlarge instances(61 Gigabytes of RAM, 8 vCPUs) were

used for scenarios with more than 10 agents. Training on GPUs was only marginally

faster than CPUs, so the less expensive servers without GPUs were used. The bot-

tleneck that prevented faster training on GPUs was the high memory requirements

of the models during training. When the maximum number of agents in a scene was

ten, most models used 4 to 8 Gigabytes of RAM. For models trained on environments

where up to 40 agents were present in an individual scene, 10 to 35 Gigabytes of RAM

were required. The SATTN model typically had the highest memory requirements

since each attention Gaussian would need to process all other agents in a loop.

All networks were implemented in TensorFlow[1] v1.0, and the networks were

trained with a learning rate of .003 using the RMSProp[15] optimizer. Every epoch

(training using all samples) the learning rate was annealed by 10%. Decaying the

learning rate has been shown to help networks converge to better solutions. Gradient

clipping was employed to prevent the error gradients for becoming too large or too

small. When the absolute value of the gradient becomes large, the parameters can

quickly approach infinity or negative infinity. To avoid this, each individual gradient

was clipped to be between positive five and negative five.

In general the training of the neural network models was chaotic. Small changes

to the hyper-parameters like learning rate or Dropout probability could dramatically

affect the convergence. Using the Social Forces simulations was essential to quickly

debug the architectures. A logistical challenge of building the models was the high

memory requirements; a custom system for queuing training jobs on AWS servers was

77



developed to reduce time spent configuring and setting up training jobs.

5.2 Reducing Overfitting

Overfitting is the term used to describe models that effectively memorize the training

data, and then fail to generalize well to new datasets. Overfitting is an especially

common problem in deep neural networks because the networks have a high capacity

to learn relationships in the data that may be just noise in the training data rather

than true patterns. In this work, four techniques were employed to reduce overfitting

and improve the generalization performance of the networks: data augmentation,

Dropout, weight regularization, and early-stopping.

5.2.1 Data Augmentation

The first method was to artificially expand the training data through data augmen-

tation. Each frame of the original datasets was flipped in the x-direction, y-direction,

and both directions to produce three equivalent representations of the trajectories.

A visualization of the data augmentation strategy is shown in 5.3. Using flipped

coordinates enables to the network to learn the relative movement of the pedestrians

rather than the movement in just one direction.

Neural networks are most successful when they are presented with many unique

samples. Many successful image classification networks use tens of thousands of im-

ages, and translation networks are often trained with hundreds of thousands of words

or sentences. Data augmentation is a simple technique for increasing the number of

training samples. The data augmentation is this thesis is relatively naive and only

helps the network learn orientation agnostic relationships. More involved methods

like jittering the coordinates could be beneficial, but these will be left for future work.

78



Figure 5.3: Data Augmentation

5.2.2 Dropout

Dropout[47] was the second method that was implemented to avoid overfitting. Dropout

is a technique that randomly sets some of the activations in layers of the network to

0 during training. By setting some activations to 0, the model is forced to more fully

utilize all parameters of the network. An alternative view of Dropout is that it causes

the network to learn an ensemble of smaller (reduced) networks. Recently, the con-

cept of Dropout has been used to quantify the uncertainty in a neural network[14].

Dropout has been applied with success to a diverse array of neural network archi-

tectures. Dropout is most readily applied to Feed-Forward networks that include

fully-connected layers or convolutional layers. Applying Dropout to recurrent neural

networks requires a careful approach. If Dropout is applied to the memory (hidden
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or cell state) of a recurrent neuron, then the performance of the model may degrade

drastically, as information is no longer able to propagate through time properly. Thus

it is typical to use Dropout only on the inputs or outputs of recurrent neurons.

The major source of overfitting in the models that were tested was the neighbor

representation. During initial experiments, the networks would memorize configu-

rations of neighbors to predict subsequent locations of an agent. To prevent this,

Dropout was applied only to the neighbor tensor. Dropout was applied to the neigh-

bor representation with a keep probability of 50%. Therefore, 50% of the values in

the neighbor representation were set to zero during each batch of training. After the

validation loss stopped decreasing, the Dropout was removed, and the models were

trained further. In this way, the networks are forced to rely on the sequence of pre-

vious positions of the agent first before learning how neighbors might influence that

trajectory.

5.2.3 Weight Regularization

Weight regularization is a well-known method that is used in linear regression and

neural networks. Weight regularization adds an additional penalty (based on the

magnitude of the weights) to the loss function. In L1 regularization, the penalty

is computed using the absolute value of the weights, and in L2 regularization, the

penalty is computed using the squared value of the weights. In both cases, the model

then learns a set of weights that simultaneously maximize accuracy and minimize the

absolute value or squared value of the weights. L1 regularization tends to produce

sparse weight matrices where only some of the weights are significant and the others

are close to zero. L2 regularization tends to produce weight matrices where all weights

are relatively small, with few or no large weights. Weight regularization can be applied

to any of the parameter matrices in a network, but it is typically not applied to the
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bias vectors.

For the neural networks considered in this thesis, weight regularization was used to

avoid nan (not a number) values. Generally a nan value occurs when a weight matrix

has massive values (or tiny values) that cause a value to reach positive or negative

infinity. Nan values cannot be used as parameters of a probability distribution, so it

is essential that the neural network never introduce nans. By regularizing the weight

matrices, no nan values were produced. For all trained models, L2 regularization

with a scale factor of .001 was applied to the weight matrices of the final probability

parameters (not the bias vectors).

5.2.4 Early-Stopping

All models were trained for approximately 100 epochs, although some were trained

for less if the loss failed to decrease after 400 batches. Additionally, early-stopping

was implemented to reduce the chances of overfitting. After each epoch, the loss on

a validation set was computed. If the loss on the validation set increased by more

than a set threshold from the last evaluation, then training was halted. If a network

is allowed to train forever, it may continue to improve its fit on the training data,

but it may perform worse on new data. The early-stopping technique is one way of

detecting the point at which the network begins to no longer learning generalizable

rules but rather begins memorizing the randomness inherent in the training data.

While effective, early-stopping requires careful planning in order to ensure that

the training is not stopped too soon. For the training of the models in this thesis, a

slack of .3 was chosen. As long as the network never produced a validation error that

was .3 worse than the best validation error, then it was allowed to continue to train.

This slack is especially important in the beginning of training where there is still large

changes to the weights. After the training was halted, the weights associated with
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Figure 5.4: Autoencoding Architecture for Trajectories

the smallest validation error were used in the evaluation on the test data.

5.3 Pre-training with Autoencoders

Autoencoding networks were designed and evaluated to test various ways of encod-

ing the neighbor information into vectors and represent previous trajectories. It is

straightforward to create a trajectory autoencoder like the one shown in Figure 5.4.

This autoencoder works by first embedding each coordinate in the trajectory of an

agent (the gray trapezoids) then feeding those embedded coordinates into the LSTM.

In the diagram, there are three coordinates that constitute the trajectory. After the

final coordinate is processed, the output of the LSTM is used as an input to a de-

coding LSTM. The decoding LSTM outputs a dense vector for the same number of

timesteps as the encoding LSTM was applied. Each of these outputs is decoded using

a fully-connected layer. The autoencoder is then trained to minimize the squared

Euclidean distance between the output of the decoder and the actual coordinates at

each timestep. Both variational regularization and activity regularization were tried.

However, neither regularization technique improved the performance of the network,
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Figure 5.5: Effect of Pretraining on Learning

so in the final version no regularization was applied.

The weights and biases of the coordinate embedding layer and the encoding LSTM

that were learned during autoencoding were used to initialize the weights in the base

model (an architecture that uses a single LSTM and incorporates no information

about neighbors). The decoding LSTM parameters and the decoding fully-connected

layer parameters were not used since there is no analogue of them in the real archi-

tectures. The use of weights from another model is called pre-training. Pre-training

has been shown to not only increase the rate of convergence of a network but also

improve overall performance. Figure 5.5 is a representative example of how the use

of pre-training increased the rate at which the network was able to learn.

While the autoencoded weights for the LSTM benefited the baseline model that

omits information about neighbors, these LSTM weights could not be restored into

the other models since more than just the coordinates are inputs to the LSTM in

the other models. Nonetheless, the success of autoencoding is what motivated the

use of Dropout and then removing Dropout. By using Dropout on the neighbor rep-
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resentations and then eliminating Dropout, the networks rely more heavily on the

previous trajectory than neighbors at the onset of training. This is akin to learning

the representation of the trajectories using autoencoding before applying those rep-

resentations in the full prediction model. A Hierarchical Autoencoder was developed

to encode coordinates into trajectory tensors with one LSTM and then use another

LSTM to encode all of trajectory tensors into a single tensor that was then decoded

into trajectory representations and then individual coordinates. Unfortunately, the

Hierarchical Autoencoder failed to converge to meaningful values and was thus not

incorporated into final designs.
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Chapter 6

RESULTS

There are three aspects of this thesis that can be evaluated using both qualitative and

quantitative techniques. The first is the ability of the proposed neural network archi-

tectures to accurately predict the subsequent locations of pedestrians in a crowded

scene. The second is how well a Mixture Density Network can estimate the final

destination of a pedestrian (where they will exit the scene), which cannot readily be

accomplished with models that specify only a single Bivariate Gaussian. Finally, the

path planning algorithms are compared to the routes chosen by real-world pedestri-

ans.

6.1 Trajectory Prediction

Two experiments were conducted to examine the effectiveness of each trajectory pre-

diction network - one on simulated pedestrians and one on a real-world dataset. In

addition to the Social-LSTM model and the four models presented in this thesis,

another baseline model was trained and evaluated. The baseline does not include

neighbor information and is just a simple LSTM over the coordinates of individual

agents. The metric used to compare models is the mean log likelihood of the ground

truth positions given the parameters outputted by the neural networks.

Score =

∑n
i=1 log(P ((xi, yi)|Θi))

n
(6.1)

Equation ?? shows how the mean log likelihood measure is calculated where n is

the number of instances to predict and i is the index of the instance. An instance

85



is a case where the agent was observed for the certain number of timesteps, and

the coordinates xi and yi are the ground-truth positions of that agent in the next

timestep (not known to the neural network.) Θi are the parameters of the probability

distribution produced by the neural network for instance i.

The authors of Social-LSTM (and the authors of IGP) evaluated their models on

predicting the actual trajectories of agents over several timesteps into the future. This

approach was not taken in this research because outputting a single point-estimate

for where a pedestrian is likely to be disregards the inherit uncertainty in where that

agent may go. In the Social-LSTM paper, the authors show an example where Social-

LSTM predicted on valid path while the actual agent chose a different path. In their

analysis, this valid path was heavily penalized since it deviated significantly from the

ground-truth. However, acknowledging that path as a possible choice for the agent

is important for navigation applications where all possible paths of an agent should

be considered. Therefore, evaluating the models using the probability of the ground-

truth locations better captures the ability of a network to specify its certainty in the

predictions. Of course all models proposed in this thesis could be used to output a

single path by sampling from the distributions specified by the parameters outputted

by the neural network, but these exact paths are not as important to the task of

navigation.

6.1.1 Simulations

Using the same procedure that was used to build simulations for debugging, a final

scenario was constructed and run for evaluation of the models. The evaluation envi-

ronment is the Intersection (Figure 6.1) where agents move between four sinks. Each

agent was assigned a random starting location and a random end location. Agents

were also assigned a midpoint location deterministically by calculating the average of
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Figure 6.1: Representative Sequence from Intersection Simulation

the starting and ending x and y coordinates. The Intersection scenario involves many

interactions between nearby agents.

Like the original Social-LSTM paper, coordinates were embedded in a vector of

size 64, and the Agent-LSTM contains 128 values in the hidden and cell states. The

S-LSTM model was trained using an 8 by 8 grid and a neighborhood size of .05, which

is roughly equivalent to the original 32 pixel neighborhood size used in the Social-

LSTM paper when converted from pixel-space to the scaled simulation data. For the

S-ATTN model, the number of attentions was set to 4. All models were trained over

8 timesteps where at each timestep the model predicted the position of each agent

at the next timestep. The loss function is the negative log of the PDF of the next

position using the parameters outputted by the network.

100 iterations of the Intersection simulation were created for training, 20 for vali-

dation, and 20 for testing. Training was halted when the error on the validation set

started to increase according to the method described in Chapter 5.

Table 6.1 shows the complete results from the Intersection scenario. The columns

labeled with Single refer to models that outputted only one Gaussian while the

columns labeled Mixture predicted using 20 Gaussians. Bold entries indicate the

highest value in each column. The entries in the table are calculated using Equation
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Table 6.1: Results for Intersection Simulation

Single Mixture

BASE 5.88 6.49

S-LSTM 6.73 7.58

OCC 6.48 7.21

HIER 7.29 7.50

SATTN 6.17 7.04

NATTN 6.72 7.49

??. The higher values correspond to a better model that has higher accuracy at

predicting where the agent will move next. While the model is trained with a loss

function that is applied at each timestep, the results are only based on predicting the

position of an agent after observing a full 8 timesteps of positions of that agent.

The results are also summarized in Figure 6.2. The dashed red line indicates the

score of the BASE model (does not incorporate neighbor information) with only a

single Bivariate Gaussian probability distribution. The dashed yellow line is the score

of the BASE model using 20 Bivariate Gaussians.

When using only a single Bivariate Gaussian, the Hierarchical LSTM achieved

the best performance, but the original Social-LSTM model barely outperformed the

Hierarchical LSTM when using a mixture of Gaussians. For all models, using a Mix-

ture Density formulation significantly improved performance. Notably, the Neighbor-

Attention architecture also outperformed the Social-LSTM model when the output

was a single Bivariate Gaussian. Due to the randomness of the training process, it

is likely that the differences among Social-LSTM, Hierarchical LSTM, and Neighbor

Attention models are not significant for practical purposes.

All models that incorporated information about neighboring agents outperformed
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Figure 6.2: Intersection Simulation Results

the baseline. For the single Bivariate Gaussian ouptut, the worst performing model

(besides the baseline) was the Spatial Attention architecture. The Spatial Attention

model learned to attend to regions specified by a mean of zero and relatively large

standard deviations of approximately 1.5. This indicates that the Spatial Attention

model was only incorporating vague information about neighbors. The reason that

it outperformed the baseline is likely partly attributable to the additional entropy

induced by the neighbor vectors, which allowed it to train longer before overfitting.

The Occupancy Grid (OCC ) model only outperformed the baseline and Spatial

Attention model. This is not surprising because the OCC model does not have access

to the velocities of the other agents, so it may not be able to adequately anticipate

some evasion behavior that depends on which direction the neighboring agents are

heading.
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Figure 6.3: Sample Frames of UCY Dataset[32]

6.1.2 UCY Pedestrian Dataset

While simulations are useful for choosing hyper-parameters and selecting potential

architectures, real-world datasets provide the strongest validation of neural network

models. The authors of the Social-LSTM paper used data from the ETH[41] and

UCY[32] datasets. Both of these datasets were constructed from an overhead camera

looking at an area of land where many people were walking. The position of the

agents at at each timestep was recorded and logged. The duration of the timestep

between measurements for both datasets was .4 seconds. The UCY datasets have

significantly higher concentrations of people and therefore the interactions between

pedestrians have a larger impact on the trajectories of individuals. Additionally, the

height of the video recorded for the ETH and UCY datasets is different, so it is not

easy to train using both datasets unless accommodations are made for the difference

in height. Due to the difficultly of normalizing the scale of the ETH and UCY datasets

caused by the disparity in camera heights, only the UCY datasets were used for the

validation of the models presented in this thesis. UCY was chosen over ETH because

there are more trajectories and the crowds are denser. Specifically, the three Zara

datasets were used. A sample sequence from the first video is shown in Figure 6.3.

The Zara sequences of the UCY dataset include both videos and annotations. For

this project, only the annotations were used. The annotation files are listed as a spline

for each agent where each timestep when the agent was present is an entry in spline
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for that agent. The entries include the x and y position of the agent (in pixels with

the center of the video being 0,0) along with the frame number and the gaze direction

(not used). Before training, the coordinates were shifted and scaled to be between 0

and 1 to make it easier to compare the results to those from the simulations where

the scale was also 0 to 1. The first two videos were used for training and the third

was used for testing and validation. Together, the first two videos have 19527 frames.

The first 2000 frames of the third video was used for validation and to perform early

stopping. The remaining 5524 frames from the third video were used to evaluate the

performance of each architecture.

The setup of the parameters and systems were the same as for the Intersection

simulation, although this time the Social-LSTM used a scaled equivalent of a 32 pixel-

wide grid since that was the recommendation of the authors. Like before, the models

were trained to compute the parameters of a probability distribution. The mean log

probability of all predictions on the last timestep (8) for the test data was collected

and summarized in Table 6.2. When only a single Gaussian was used, the Social-

LSTM model was the best, while the Hierarchical LSTM exceeded the performance

of all other architectures when outputting parameters for 20 Gaussians (Mixture).

Surprisingly, the best models are different from the Intersection Simulation where

the Hierarchical LSTM was the best when using a single Gaussian, but the Social-

LSTM architecture was the best for the mixture of Gaussians. These slightly different

outcomes further confirm the idea that the Social-LSTM and Hierarchical LSTM

appear to achieve nearly equivalent results.

Figure 6.4 is a visual summary of the data. One notable occurrence in the results

is that the mixture of Gaussians actually hurt the performance of the two attention

models even though it provided a major boost to all of the other architectures. One

explanation for this behavior is that the mixture of Gaussians makes the models

more prone to overfitting, and thus the generalization error suffered. For future
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Table 6.2: Results for UCY Dataset

Single Mixture

BASE 6.01 6.41

S-LSTM 7.98 8.07

OCC 6.94 7.53

HIER 7.79 8.14

SATTN 6.99 6.93

NATTN 7.90 7.45

work, more rigorous regularization could be incorporated to test this hypothesis. The

reason that more Gaussians makes the model prone to overfitting is that the Mixture

Density Networks have more capacity to learn specific training examples. In the worst

case, for each set of similar trajectories, the mixture versions may output parameters

that specify a mode for the next position of each trajectory in the set of similar

trajectories. However, this approach would not learn the true underlying motivations

for how pedestrians pick their next movements and thus would perform poorly on

new examples. Since all other architectures performed better using many Gaussians,

it does not seem that overfitting was a major issue overall.

The pattern of performance in the UCY data is similar to the results from the

Intersection scenario, which means that the simulation was a useful analogue to real-

world interactions. Although never achieving the best result, the Neighbor Attention

model also achieved results that are only slightly lower than the Hierarchical LSTM

and Social-LSTM models (especially in the single Gaussian case). Once again, the

Spatial Attention and Occupancy Grid architectures were the worst performing of the

proposed models. For the single Gaussian case, the Occupancy Grid was the worst

while for the mixture case, the Spatial Attention was the worst. Remarkably the

Occupancy Grid achieved impressive results (7.53) when allowed to output parameters
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Figure 6.4: UCY Results

for a mixture distribution.

6.1.2.1 Limitations

A major limitation of this dataset is its size. Using less than 20,000 frames of video for

training is meager in comparison to the hundreds of thousands of training samples that

are available in other domains. Compounding the small dataset size is the fact that

many frames do not even include pedestrian-pedestrian interactions since sometimes

there are only one or two pedestrians in the scene (although there are still many

more interactions that other datasets like ETH). The results certainly indicate that

the Hierarchical LSTM and the Neighbor Attention models are comparable or nearly

comparable to the well-configured Social-LSTM model, but larger datasets should be

able to show the differences between them.
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The scene is also fairly narrow in the geographic area that it covers. People can

cross the environment in just over 15 timesteps, so the dataset does not adequately

test whether the models can learn from long-range interactions. Since there are only

two exists from the scene (on the left and on the right), there are few interactions

between agents coming at each other from perpendicular directions. There is no no-

ticeable mimicry behavior, and the scenes are composed solely of pedestrians who are

moving at relatively the same speed. These limitations, however, are also beneficial

to training because the consistent destinations (left or right) mean that goal-oriented

behavior is not a major contributing factor to the movements of people since it is

obvious what the end destinations will likely be. Thus the movements of pedestrians

are more attributable to navigating around other people and obstacles, which better

tests the models proposed in this thesis. The authors of Social-LSTM noted that the

ETH datasets often had few pedestrians in the scenes, so much of the choices made by

agents were related to their end-goal rather than their interactions with others. This

made it difficult for the authors to demonstrate the advantage of the Social-LSTM

model.

6.2 Destination Prediction

A major advantage of outputting a mixture of Gaussians is that long-range posi-

tions can be estimated despite the fact that there may be multiple likely results.

The Mixture Density Network formulation of each architecture discussed in this the-

sis is capable of robustly estimating the destination of agents in the environment.

The ability to predict destinations (or more aptly the probability distribution of the

destination) is an important function for several applications. Interacting Gaussian

Processes (IGP[52]) and the extension to IGP proposed by Vemula et al. [56] rely on

estimates of the pedestrian destinations to predict trajectories and navigate cooper-
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atively. The paper describing IGP assumes that destinations are known in order to

simplify the evaluation, while Vemula et al. learn a prior distribution over discrete

destinations using a Bayesian approach. Both of these methods could benefit from a

system that can accurately estimate destinations. Moreover, predicting destinations

could have applications in analyzing the impact of a robot on pedestrians. If a prob-

ability distribution can describe the likely destinations of other pedestrians, then the

robot can seek a route that minimizes its interference with the optimal routes that

the pedestrians could take.

To validate the effectiveness of Mixture Density outputs for long-range prediction,

the baseline LSTM model with no neighbor influences was trained to output the des-

tinations of pedestrians in the Intersection simulation. The baseline architecture was

used because nearby pedestrians do not affect pedestrian destinations in the Intersec-

tion scenario. In a real-world situation, other architectures could easily replace the

baseline LSTM. For the tests, the positions of pedestrians for four timesteps were in-

putted into the neural network, which then predicted the parameters for a probability

distribution specifying where the pedestrian would likely leave the environment.

For comparison, a traditional Gaussian Mixture Model was fit on the training

data using the Scikit-Learn implementation [40]. The traditional Gaussian Mixture

Model learns Gaussians that best represent the destinations of the agents in the

training set. No location or velocity information is available to the Gaussian Mixture

Model. There are a number of more advanced techniques for constructing models

that incorporate position and velocity in predictions. These complex models are often

represented as graphs of dependencies between variables. Unfortunately, designing

effective probability models of this nature is time-consuming and error-prone, so the

naive Gaussian Mixture Model was retained as the baseline.

The results are summarized in Table 6.3 using varying numbers of Bivariate Gaus-
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Table 6.3: Destination Prediction Results

Number of Gaussians Mixture Model Neural Network

1 -0.634 1.638

2 0.461 2.279

3 1.398 2.903

4 1.518 2.409

5 2.943 3.860

10 2.478 3.908

20 2.783 4.396

sians. The models were trained using the same data as the trajectory prediction task,

and the models were evaluated on the held-out test data.

In all cases, the neural network outperformed the traditional Gaussian Mixture

Model, which does not consider the velocity or position of the agent. Increasing

the number of component Gaussians generally improved the Mixture Model and the

neural network. There is no reliable way to directly compare these results to the

solution proposed by Vemula et al. in their paper because they chose to discretize

the possible destinations. The ability of this model to learn to predict destinations

in the continuous domain makes it more accessible for new environments since there

is no need for a human to manually specify what areas are considered potential

destinations.

A qualitative comparison of the predictions is show in Figure 6.5. The Single label

refers to the neural network trained to output the parameters of a single Bivariate

Guassian, while the Mixture label refers to the neural network trained to output the

parameters of 20 Bivariate Gaussians. The red regions are the most likely, followed

by orange, yellow, green, blue, and finally purple, which is the least likely areas.

The black dots show the positions of the agent overtime while the black cross is the

96



(a) Single (b) Mixture

(c) Single (d) Mixture

(e) Single (f) Mixture

Figure 6.5: Qualitative Destination Prediction Results
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actual destination. It is clear that the Single Gaussian cannot adequately represent

the distinct possibilities, while the multiple Gaussians align closely to the potential

exits from the Intersection scenario. Parts c and d shows a partial failure case where

the agent appears to be moving towards the top exit, when in reality the agent’s

end destination is on the right. Notice that the Mixture version still has a light blue

area at the actual destination, indicating that the network predicts there is still a

minute chance that the agent will end up at the right exit. The Single version cannot

represent this small chance, so instead it outputs high variance. Note that each figure

has an individual color-scale, so in reality the peak (red region) of the Single versions

are much lower than the peaks of the Mixture version.

6.3 Planning in Dynamic Environments

Evaluating planning algorithms on dynamic environments is a difficult problem. These

algorithms cannot be applied to real-world robots before they have demonstrated their

safety and effectiveness in simulations. The major hurdle that prevents robust evalua-

tion is the fact that other agents in the environment will react to the movements of the

robot. These planning algorithms should be able to consider how these pedestrians

will react to the robot when it follows the path. Unfortunately, there is no accurate

way to simulate exactly how pedesrians will respond. Therefore, the approach taken

here mimics how IGP tested its route planning solution. In scenes from the UCY

dataset, one pedestrian is selected to be replaced by a robot. The planning algo-

rithm is then used to develop a route for the robot to reach the original pedestrian’s

destination. People in the scene react and avoid the original pedestrian, so ideally,

the planning algorithm can exploit the room made by the original pedestrian in the

scene. Although this is not a perfect evaluation since the pedestrians in the scene are

reacting to the original pedestrian’s route and not the one taken by the robot, it still
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presents a meaningful way of comparing these algorithms.

There are two criteria that are used to evaluate the performance of the algorithms.

The first is the average displacement of the robot’s proposed location from the actual

location of the original pedestrian at each timestep. This measure assess how closely

the robot follows the path taken by the pedestrian. The underlying assumption for

this metric is that the pedestrians are choosing an optimal path that is the shortest

safe path. Although this assumption is unlikely to be completely valid, manual in-

spection of the scene indicates that humans generally follow a straightforward and

short path that is free of collisions. The second measure of success is the number

of near collisions where the robot got too close to a pedestrian in a way that would

make that person uncomfortable.

For these experiments, the Social-LSTM model was trained on the first and third

Zara datasets. Routes were planned for 20 pedestrians in the second Zara dataset.

Most paths were approximately 15 timesteps long. Four different planning approaches

were evaluated. The A* algorithm with no obstacles (A* NO) just plans the shortest

path to the destination without considering any impediments. The A* algorithm with

static obstacles (A* SO) only considers the current location of pedestrians as obstacles

- people are treated as static objects. The last A* approach uses the Dynamic Horizon

modification (A* DH) where regions that the neural network predicts a pedestrian

may enter in the next timestep are considered unnavigable. Finally, the tree search

approach (TS) uses the neural network to predict multiple timesteps into the future

in order to plan routes. The horizon for the Dynamic Horizon A* was chosen as a

circle with radius equal to .2 where the entire scene has a width and height of 1.0.

The tree search plans 3 timesteps ahead, and for both TS and A* DH, the threshold

for determining whether a location is valid is a 1% probability of collision. The area

of each person is a circle with radius equal to .015. A near collision is when the

distance between any two agents is less than 2.5 times the radius of a pedestrian. At
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Table 6.4: Results of Path Planning

Mean Displacement Number of Near Collisions

A* NO 0.10 13

A* SO 0.15 13

A* DH 0.12 6

TS 0.09 1

each timestep the A* algorithms are able to move to the cell that is farthest along

the path as long as the distance from the cell to the start is less than or equal to 1.2

times the average velocity of an agent. For the tree search, the robot can move 0,

.6 ·v, or 1.0 ·v (where v is the average velocity of an agent) and in any direction where

12 angles are evenly spaced around the unit circle. The A* algorithms discretizes the

environment into a grid that is 100 by 100.

For each timestep in the scene, all planning algorithms searched for the best

path and outputted the best subsequent location of the robot. These positions were

recorded, and then the neural network was applied to the ground-truth values of all

agents in the scene for that timestep and predictions were outputted for their next

locations. Each time the neural network predicted a position, it included the coor-

dinates of the original pedestrian that was replaced by the robot. These predictions

were used at the next timestep to determine whether cells were valid or not. Each al-

gorithm was rerun at each timestep starting with the last position that the algorithm

outputted. Variations of A* like D* are optimized for situations where there is sig-

nificant re-planning, but these were not considered since the speed of the algorithms

was not a factor in the analysis.

The results from the 20 tests are shown in Table 6.4. Lower mean displacement

means that the path followed more closely what the pedestrian actually took, which

is desirable because it is assumed that pedestrians choose the shortest reasonable
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path. The tree search approach achieves the smallest mean displacement and the

fewest number of near collisions among all of the approaches. The A* algorithm

with no obstacles (A* NO) and with only static obstacles (A* SO) depart drastically

from the path taken by the pedestrian, and collides or nearly collides with someone

in more than half of the tests. When the Dynamic Horizon A* is used, the robot

experiences near collisions six times. Upon manual inspection of the routes, it appears

that these near collisions happen because the algorithm plans a route where it gets

stuck between agents and cannot get to a safe state. In the real-world people would

likely move around the robot and it is unlikely that the collisions would occur, but it

still demonstrates how the limited ability of the algorithm to incorporate long-term

forecasts can lead to behavior that is unlike human behavior. Finally, the tree search

method (TS) performs remarkably well, achieving the closest proximity to the original

pedestrian’s path and the fewest number of collisions.

The following figures illustrate examples of the planned paths - both successful and

not successful. The translucent circles in the background are the positions of the other

pedestrians over time where the smaller dots are farther back in time than the largest

dots. In many cases it is difficult to determine where exactly each pedestrian was at

each step of the plans, but the goal of the figures is to highlight the differences between

the plans rather than the exact interactions with the pedestrians. The black lines are

the actual path taken by the original agent that was replaced by the robot, and the

black X marks the final destination of the pedestrian. In nearly all cases, the planned

routes did not end up reaching the goal because the algorithms sometimes took steps

smaller than the average velocity of the agent. This is not a major detriment to the

results because proximity to the destination is still a good indication of the success

of the plan.

Figure 6.6 showcases several common themes in the planned routes. The first path

to notice is the brown one for the A* that did not consider any obstacles (all states

101



Figure 6.6: Sample Routes 1

were valid). Since the destination involves much more change in the x coordinate

than in the y coordinate, the basic A* algorithm planned a route that moved directly

in the x direction before moving diagonally toward the goal. This is not a natural

movement for people since humans generally prefer smooth arcs; however, it would

be a decent path for a robot that can often change directions much more quickly than

a human. However, both the A* without obstacles and with only static obstacles

chose to go directly towards the destination when that way was largely blocked by

pedestrians. The Dynamic Horizon A* took a relatively jagged path, but it followed

the contours of the actual path quite well. Besides a slight deviation at the outset

when the tree search chose to move lower in the y direction, the tree search path very

closely aligns with the actual path. In all of these paths, the planned routes have

many more abrupt turns than the smooth ground-truth route. In order for a robot to

plan routes that are closer to those of humans, it may be beneficial to add a criteria

that the angle between subsequent positions is below some value.

Figure 6.7 also shows the preference for the A* algorithm to first move horizontally
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Figure 6.7: Sample Routes 2

and then move diagonally towards the goal. Using a finer granularity of cells may

induce the A* algorithms to plan routes that do not involve as much flat horizontal

movement. In this example, the Dynamic Horizon A* plans a route that seems to

exercise excessive caution in moving away from the pedestrians when no agent actually

approached it. While it is desirable to independently validate planning algorithms

and neural networks for trajectory prediction, this example shows how intertwined

the two are. In this case, it appears that the network outputted a high probability

that one of the agents would move upwards even though none of them did. Improving

the models for trajectory prediction may make both the Dynamic Horizon A* and

tree search methods perform even better. The tree search plan in this scenario follows

the path of the original pedestrian closely in the beginning, including going from a

diagonal path to a horizontal one, but it then departs to take a route that is much

lower than the actual route. By inspecting the pedestrians in the scene, it looks as

though the tree search chose to go beneath (lower y coordinates) than the gold-colored

agent, while the actual path went above and behind the gold agent. Although the

true path and the tree search plan are not close throughout the sequence, it appears
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Figure 6.8: Overly Cautious Behavior

that the tree search plan is a reasonable approach.

While many of the paths appeared quite close to the actual path, there were some

routes that made massive deviations from the real pedestrian’s movements. Figure

6.8 shows the Dynamic Horizon A* and tree search methods move higher around

the pedestrians rather than taking the more straightforward route used by the real

pedestrian. This massive departure may have been caused by the large uncertainty

in the neural network prediction that made the probability of the other pedestrians

colliding with the robot non-negligible. Careful inspection of the pedestrian dots

shows that the red pedestrian is walking very close to the actual pedestrian, so the

neural network could have outputted predictions showing that the red pedestrian

might be in the way of the robot in future timesteps. Nonetheless, the massive evasive

action seems unnecessary and might be ameliorated by reducing the threshold for

making a state invalid. In this situation, the direct routes of the A* without obstacles

or with only static obstacles actually more closely resembles the real pedestrian’s

route.
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Figure 6.9: Failure to Walk Side-by-Side

Another failure case is shown in Figure 6.9. In the original scene, two pedes-

trians were walking together from the left side to the right side (the gold dots and

the pedestrian replaced by the robot - black line). However, none of the planning

algorithms take into account the propensity of pedestrians to walk side-by-side, so

the A* without obstacles, Dynamic Horizon A*, and tree search choose direct paths

that take a higher path towards the destination. Only the A* with static obstacles

stays on the correct side of the gold agent. Another factor not shown in the diagram

is that the upper routes are actually going right in front of buildings - something that

humans prefer not to do in order to avoid collisions with opening doors or people

exiting the buildings. If walking side-by-side with a pedestrian is desired behavior for

a robot, then the planning algorithms could be replaced with a method for mirroring

the movements of the pedestrian.
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Chapter 7

ARGIL - CROWD SIMULATION

Argil1 is an Agent-Based-Modeling framework with a focus on robot, crowd, and

swarm simulations. Agent-Based-Modeling (ABM) is the process of simulating sce-

narios where one or more agents interact with each other and the environment. ABM

is used in a variety of disciplines. Biologists have used ABM for modeling evolutionary

behavior or ecological situations. Sociologists have used ABM when simulating the

interactions individuals and groups. Generally, ABM is conducted with the goal of

analyzing the composite behavior of all agents together, although the same software

can be used for assessing the behavior of individual agents.

Prior to Argil, there were limited options for light-weight crowd simulations. Ad-

ditionally, existing crowd simulation tools could not effectively handle custom agents

and customized behavior without significant developer effort. Argil combines the

benefits of dedicated crowd simulation software with the flexibility of ABM solutions.

7.1 Design

Argil was designed to be intuitive and easy-to-use, yet powerful enough for serious

simulations. One of the major differentiating features of Argil is its robust support

for visualization and data collection. Argil is a Python library, so all models and

experiments are defined and invoked by writing Python code.

1The word ”argil” is a type of pottery clay. It was chosen as the name of the library since it
connotes creativity and flexibility - two guiding principles for the framework.
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7.1.1 Model Definition

The most important component of Argil is the agent models. An Agent model must

supply a step and reset method. The step method is called during each timestep

of the simulation to update the agent, while the reset method is called prior to the

start of the simulation to initialize the agent. Argil includes a built-in agent called

SocialForceAgent that moves according the Social Forces model. While it is easy to

build agents with custom behavior, the focus of this thesis is on crowd simulations,

so only the SocialForceAgent will be used. An example of how a SocialForceAgent

can be defined is shown in Listing 1. The first line creates the agent and defines its

start location and radius. The second line adds a color property to the agent, and

the third line adds a waypoint (a goal for the agent to reach).

1 agent1 = SocialForceAgent(x=4, y=5, radius=.3)

2 agent1.color = "blue"

3 agent1.add_waypoint((10, 5))

Listing 1: Definition of an Agent

Argil also supports Objects, which are just like Agents, but they do not change

during the a simulation. An Environment is created to contain all of the agents and

objects for a simulation. A sample definition of objects and an environment is shown

in Listing 2.

1 upper_wall = Object(x=0., y=0., width=10., height=1.)

2 lower_wall = Object(x=0., y=9., width=10., height=1.)

3

4 agents = [agent1]

5 objects = [upper_wall, lower_wall]

6 env = Environment(agents, objects, width=10., height=10.)

Listing 2: Definition of Objects and an Environment

Once the environment is defined, simulations can be run using the environment.
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Figure 7.1: Initialization of Simulation

During a simulation, the step methods of each agent are called at each timestep, and

the relevant state of the agents is stored. Developers have complete control over what

information is recorded during the simulations. Three functions can be written by

developers to access the state of the environment before and during the simulation.

Figure 7.1 shows the pre-simulation initialization. The glance and survey functions

are user-defined. The glance function is applied to each object and each agent, and it

returns the time-invariant properties of each entity (properties that will be constant

throughout the simulation). The survey function is applied to the whole environment

and returns information about the environment as a whole such as the height, width,

and resolution. The results of applying the survey and glance functions are stored

and returned after the simulation.

During execution of the simulation, another user-defined function is invoked at

each timestep on each agent. The process taken by the simulator at each timstep is

shown in Figure 7.2. The simulation will store the results returned by the invoca-

tions of observe and return it at the end of the simulation. A sample of how these

glance, survey, and observe are defined is shown in Listing 3. Once the simulation is

completed, the record can be used to produce visualizations or datasets.
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1 def glance(entity):

2 if isinstance(entity, SocialForceAgent):

3 return {"_shape": "circle",

4 "radius": entity.radius,

5 "color": entity.color}

6 else:

7 return {"_shape": "rectangle",

8 "x": entity.x,

9 "y": entity.y,

10 "width": entity.width,

11 "height": entity.height,

12 "color": "black"}

13

14 def observe(agent):

15 return {"x": agent.x, "y": agent.y}

16

17 def survey(env):

18 return {"width": env.width, "height": env.height}

19

20 sim = RecordSimulation(glance, observe, survey, num_steps=100)

21 record = sim.run(env)

Listing 3: Simulating an Environment

7.1.2 Visualization and Data Output

The records produced by running a Simulation are not readily analyzed outside of

Argil since the type is custom-built for Argil. However, to assist with analyzing

Simulation results, Argil supports a variety of ways to visualize and inspect the

data collected from a Simulation. Currently, there are three Producers that oper-

ate on the Records - D3Producer, MatplotlibProducer, and PandasProducer. Both

the D3Producer and MatplotlibProducer were designed to operate in the context of a

Jupyter Notebook[27]. Jupyter Notebooks are a way of writing and executing code

(most often Python code) within a browser and displaying the output of the code

directly after each block of code. Figure 7.3 is a screenshot showing an Argil simula-
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Figure 7.2: Observations while running Simulation

tion embedded in a Jupyter Notebook. Each Producer relies on certain fields existing

in the records (except for the PandasProducer which is agnostic to the field names).

Generally, the visualization Producers require that the x and y positions of the agents

be specified at each time step and that the size and shape of each entity is also defined.

The D3Producer uses the Javascript D3 visualization library[7]. D3 is a powerful

framework for binding data to elements in the DOM (Document Object Model). DOM

elements can be any HTML tag in a webpage. For the D3Producer, the simulation

results are visualized inside a single SVG (Scalable Vector Graphic) embedded in

the webpage. During the loading of the page, the inanimate objects are rendered

in the SVG. Then the animation capabilities of D3 are used to dynamically update

the agent elements in the SVG at a user-specified rate. The animation loops back to

beginning after completing the entirety of the sequence. The animations are produced

by serializing the data contained in a Record (that was retrieved from Simulation)

into JSON and injecting the JSON into an HTML/Javascript template. The resulting

HTML/Javascript contains all of the markup for describing the visualization as well
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Figure 7.3: Argil Visualization in Jupyter Notebook

as the logic for animating it. Since Jupyter Notebooks are browser-based, the web

animations produced by the D3Producer can be added into the Notebook.

The MatplotlibProducer uses the popular Matplotlib visualization library [24] to

construct animations, videos, and images of the simulation. Single-step graphics can

be created by rendering the state of all agents and objects in a Matplotlib figure.

Animated GIFs and HTML5 videos can be produced by updating the components

of a figure using Matplotlib’s animation utilities. It is possible to save the graphics,

GIFs, and HTML5 videos as files, but they can also be visualized directly in a Jupyter

Notebook. The MatplotlibProducer is the preferred visualization solution since it is

easier to customize, and there are many options for outputting the results. One

downside of the MatplotlibProducer is that generating videos or animated GIFs can

take more several minutes for simulations that are more than 500 steps.

Finally, the PandasProducer converts the Records into Pandas dataframes. Pan-

das is a Python library for storing and manipulating data in a structured way [35].

Pandas is a common tool used in Data Science, and it offers the flexibility of storing
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heterogeneous data in a single dataframe (strings, integers, floats, booleans, categor-

ical values, etc. are all valid types in a dataframe). Additionally, Pandas provides

methods for saving dataframes as CSVs (Comma Separated Values), Excel, SQL, and

JSON among several others.

7.2 Comparison

Argil is a novel combination of unstructured Agent-Based-Modeling and crowd sim-

ulation. Table 7.1 shows a non-exhaustive list of some of the more popular crowd

simulation and Agent-Based-Modeling frameworks. Generally, the crowd simulation

solutions define simulations using a markup language like XML, and there is generally

limited support for ad-hoc agent behavior. However, many of the crowd simulation

packages are written in C++ and offer spectacular performance even when simula-

tions incorporate thousands of agents. Several crowd simulation libraries support

multiple types of agents (cars, bikes, carts, etc.) and can use features from real-world

maps. The Agent-Based-Modeling frameworks are generally less performant than the

crowd simulators, but models are usually written in a programming language and

there is tremendous flexibility to customize the behavior of individual agents.

Due to its use of Python, Argil cannot match the speed of dedicated crowd sim-

ulators. However, it offers users the unique ability to construct models in a scripting

language (Python) and exercise complete control over the parameters and behavior

of each agent. Of special importance to many academic projects, it is trivial to con-

struct multiple types of agents (robots, pedestrians, animals, etc.) in Argil while this

is an arduous process in crowd simulators. None of the other Agent-Based-Modeling

solutions have built-in support for crowd simulation. Several Agent-Based-Modeling

libraries use custom scripting solutions that are not as well known as the Python lan-

guage. Most Agent-Based-Modeling libraries offer custom-built visualizations, while

112



Argil leverages open-source tools for building visualizations that are easily customized

by users who are familiar with Matpoltlib or D3.

Mesa (an ABM library written in Python) is the closest existing solution to Argil

and served as a major source of inspiration. Much of the naming conventions and

overall software structure are attributable to Mesa (although some of the naming was

chosen to correspond to the conventions of reinforcement learning and OpenAI Gym

2). However, Argil differs from Mesa in several key areas. Argil focuses on crowd

simulation, while Mesa is designed for general models (especially ones with discrete

positions). In Mesa, collecting data is a separate process and API from visualization,

whereas Argil has a unified API for all types of data collection and visualization.

Mesa produces visualizations using a mostly custom Javascript system with a Python

server, while Argil uses the popular libraries Matplotlib and D3, making Argil quicker

and easier to deploy.

7.3 Performance

Since Argil is written in pure Python, it will never achieve the speed that is possible

with frameworks like Menge, which are written in C++. However, Argil is currently

fast enough to quickly simulate small scenarios (less than 50 agents), and there are

several ways to accelerate it. Generally, ABM simulations are run several times

in order to generate sufficient data for analysis. Oftentimes, researchers will change

several parameters and rerun simulations to assess the effect of each parameter setting.

Currently, Argil supports running simulations in parallel using multi-processing in

Python. Simultaneous execution of simulations can be useful for many configurations

of a small scenarios, but it will not accelerate the simulation of large-scale scenarios

where within-simulation parallelism is desirable.

2https://gym.openai.com/
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Table 7.1: Comparison of Simulators

Software Language Type Applications Visualization

Menge C++ Crowds academic Custom

Massis Java Crowds academic Custom

SUMO XML, Python Crowds traffic Custom

PedSim C/C++ Crowds academic Custom

Massive N/A Crowds films/games 3dsMax, Maya

Miramy Maya Crowds films/games Maya

Golaem Maya Crowds films/games Maya

Agentbase CoffeeScript ABM academic Custom

Repast Java, ReLogo ABM general Custom

NetLogo NetLogo ABM general Custom

Swarm Obj-C, Java ABM general Custom

Mesa Python ABM general Custom

Argil Python Both academic/general Matplotlib, D3

Two experiments were conducted on Argil to measure its performance. A laptop

with a 3.0Ghz i7 processor and 8GB of RAM was used. Figure 7.4 shows the time

required for Argil to execute 20 runs of a simple pedestrian scenario with varying

numbers of agents. Figure 7.5 shows the time required to run 100 simulations of

a 10 pedestrian scenario using varying numbers of processes. For the simulations

produced in this thesis, Argil was able to generate sufficient data for training in less

than 5 minutes.

114



Figure 7.4: Effect of Number of Agents on Performance

Figure 7.5: Effect of Multi-Processing on Performance
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Chapter 8

FUTURE WORK

8.1 Trajectory Prediction

In this thesis, like other works on trajectory prediction, it is assumed that the exact

coordinates of all agents are none with certainty at each timestep. However, this as-

sumption is almost never satisfied in real-world situations. Sensors are not perfect, so

robots typically use probabilistic representations of other objects or agents. Robots

can generally be less certain about the position and velocity of objects that are far

away since the sensor readings loose accuracy with increasing distance. Kalman Fil-

ters and Particle Filters are commonly used in autonomous robot systems since they

can increase prediction certainty after repeated readings from sensors and a model

of the motion for the entity that is tracked. Besides uncertainty about the positions

of other agents, robotic systems may intermittently fail to detect a pedestrian when

they are occluded by objects or other pedestrians. A useful extension to this work

would be to consider real-world sensor readings as inputs to a trajectory prediction

system. The Occupancy Grid architecture comes close to handling uncertain mea-

surements by allowing coordinates to be specified as a probability distribution, but

the Occupancy Grid has the severe limitation that it has no way of representing the

velocities and previous positions of neighbors. A better solution is needed so that

uncertain measurements can be used in a way that still includes information about

the trajectory of the agent. One possibility for this is to include velocity measure-

ments along with coordinates in any of the architectures. These velocities could also

be represented by a probability distribution. There is considerable prior art on neural

networks outputting uncertainty in their predictions, but including uncertain inputs
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into a neural network is still an active area of research.

As mentioned previously, an improved trajectory prediction network would include

information about the environment. Obviously, pedestrians typically prefer to walk

on sidewalks instead of across bushes. One way to include this information would

be create a dense semantic map and provide it as an input to the network at each

timestep. The semantic map could be a n x m x k grid where the width of the

environment is n, the height is m, and there are k different types of terrain. Each cell

in the three dimensional map would be 1 if that location belonged to that certain type

of terrain. This map would closely resemble an image with many channels (where

typical images have three channels - red, green, and blue). There are many techniques

for neural networks to learn from images, so these methods (especially convolutional

layers) could be used to incorporate the relevant components of the map into the

prediction of the next location of an agent.

In 2014, Goodefllow et al. introduced Generative Adversarial neural networks

(GANs) [16]. GANs are actually two neural networks - one network (generator)

takes random noise as input and outputs a sample that is intended to be similar

to an observation from some dataset. The second network (discriminator) tries to

predict whether a given sample was produced by the generator or came from the real

dataset. A GAN could be constructed by training a generator to produce plausible

trajectories while the discriminator predicts whether the trajectory was produced by

real-humans from a dataset of trajectories or was made by the generator. In the

basic form, the generators in a GAN are provided a noise vector, but there has been

some work on conditioning generators to produce outputs that conform to specific

criteria. For navigation, the generator could be conditioned with the destination of

the robot. The networks are trained together. The loss for the generator is the ability

of the generator to distinguish its outputs from the real trajectories. The loss for the

discriminator is its misclassification of trajectories. At convergence, the discriminator
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should output an approximately 50% chance that each input is from the real dataset

or was generated. The resulting trajectories produced by the generator would have the

desirable property that they cannot be distinguished from human trajectories. GANs

have shown promising results in a variety of areas, but they remain challenging to

implement and train.

8.2 Planning in Dynamic Environments

An end-to-end neural network for planning paths in dynamic environments would be

a major achievement. Such a neural network could first be trained to predict the

trajectories of pedestrians (as was done for Social-LSTM and the models presented in

this thesis). However, the next step could be training through reinforcement learning

to output a path that optimized certain criteria (shortest route to the goal, collision

avoidance, etc.). A solution similar to this proposal was used in AlphaGo - the

first computer program to beat grandmasters at the strategic game of Go [46]. The

researchers first trained a neural network to predict the moves of grandmasters, then

they fine-tuned the network through repeated games of self-play. Another potential

method to achieve the same result would be to build a realistic simulator of pedestrian

movements that can create new scenarios and update the positions of the agents

appropriately through time. Such a simulator could be created using a network

architecture similar to those presented in this thesis but transformed into a Variational

Autoencoder. By sampling from the distribution of the autoencoder, new scenarios

could be constructed. Then another neural network could be trained to output the

benefits of state, action pairs where the state is the sequence of previous positions of

the robot and the action is the movement of the robot. This is called Q-learning, and

recently neural networks were shown to be highly adept at learning these functions

that map states and actions to their value (a notable example is DQN, which learned
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to play Atari games[38]). The network would be trained against the simulated scenes

to produce high values for state, action pairs that maximize a reward. This reward

could be inversely proportional to the length of the route or a penalty for collisions

or other criteria that define a good path.

One major roadblock to the implementation of these planning algorithms for real-

world robots is the uncertainty in how humans may react to robots. Much of this work

assumed that people will treat robots much the same way that they treat humans,

but this is unlikely to be an accurate assumption. Obviously, experiments with a

physical robot in uncontrolled pedestrian environments would yield data about how

humans tend to react. The most significant experiments in this area were performed

by Trauntman et al.[53]; however, there is much more work to be done to validate

these planning approaches in real situations. One especially important problem is how

a robot should react to an adversarial agent. Humans may be interested in testing the

robot by blocking its path or intentionally hitting it or colliding with it. Reacting in

a controlled and predictable way in such situations is critical for humans to develop

trust in these autonomous mobile robots. Future research should consider how robots

can respond to unusual behavior. Real-world experiments are fraught with ethical and

logistical challenges, but these experiments are essential to widespread deployment of

robots that can interact with humans in pedestrian environments.

8.3 Crowd Simulation and Modeling

The major limitation of Argil is its performance compared to other crowd simulators.

Native Python code is too slow for large-scale scenarios, but fortunately there are a

number of ways to improve performance while still maintaining the convenient Python

API. One option is to use Cython[5] for the performance critical code. Cython is a

way for Python to call native C code. Rewriting some of the equations that calculate
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the Social Forces in C could produce significant speedups. Alternatively, it may be

possible to vectorize using Numpy[55], which is a vector/matrix library that uses C

and Fortran for mathematical operations. The most promising solution to increase

the performance of Argil is to utilize a framework like Theano[51] or Tensorflow[1]

for the simulations. Theano is a matrix/vector library like Tensorflow that is used for

scientific applications and neural networks. Both Theano and Tensorflow offer trans-

parent use of GPUs and highly optimized vector operations. Argil could support an

API for constructing models in idiomatic Python and then convert the Python ex-

pressions into equivalent Tensorflow or Theano graphs. These graphs could then be

executed in parallel on CPUs or GPUs. All of the optimizations present in Theano

or Tensorflow could be leveraged for massive speedups in Argil simulations. Addi-

tionally, Argil could stay focused on modeling and visualizations instead of adding

the complexity of maintaining native code for accelerating simulations. The use of

Tensorflow or Theano would require careful planning and the implementation may be

difficult, but the performance benefit would likely be substantial.

Argil would also benefit from the ability to perform live simulations. The original

design of Argil was to run a simulation, record the relevant information and then use

that information to visualize the simulation. Unfortunately, this original approach

requires that the simulation run to completion before it can be analyzed, which is a

major impediment to rapid iteration on complex models. By showing each frame of

the simulation at each timestep while the next frame is being calculated, researchers

can quickly diagnose issues. In addition, less memory is required because the entirety

of the simulation’s states are not stored in memory since they can be released after

the next frame is ready. There is already an alpha feature in Argil that uses pygame1

to show a simulation while it is being run, but the code is rough and prone to issues.

Pygame is a Python library primarily designed for building games. The major ad-

1https://www.pygame.org/
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vantage of pygame is that it has excellent support for multiple platforms including

Windows, Mac, Linux, and even some mobile operating systems. Further work will

be needed to make the pygame simulation robust enough for live simulations.
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Chapter 9

CONCLUSION

Predicting the future positions of pedestrians in crowded scenes and navigating in

these dynamic scenes are difficult problems. Pedestrian movements are stochastic,

and even humans sometimes struggle to estimate where other pedestrians are going.

Since so many factors can influence the routes that pedestrians take, it is unlikely

that a rule-based system could effectively predict trajectories in the myriad possible

scenarios that a robot could encounter. Therefore, using machine-learning techniques

has the advantage that no rules are necessary; however, these machine-learning meth-

ods are generally convoluted and computationally expensive. This project focused

on neural network solutions to trajectory prediction because neural networks have

achieved exceptional results in a variety of fields, and they can learn complex nonlin-

ear relationships (and trajectories are typically complex and highly nonlinear). The

inspiration for this thesis was a current state-of-the-art algorithm Social-LSTM that

uses recurrent neural networks to estimate the most likely subsequent positions of

pedestrians. This algorithm was highly successful because it learns how the neigh-

boring pedestrians impact the movement of the current pedestrian using a grid that

contains latent representations of nearby pedestrians. For this thesis, several exten-

sions and modifications to the Social-LSTM algorithm were designed, implemented,

and tested. Two methods for incorporating these trajectory predictions into a full

navigation system were explored as well. Additionally, a new Python library for

simulating pedestrian interactions was developed.

The first contribution of this research was the use of Mixture Density Networks

in pedestrian trajectory prediction. The original Social-LSTM paper predicted the

subsequent position of pedestrians using a single Bivariate Gaussian. A Bivariate
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Gaussian is unimodal and cannot represent the multiple likely paths that a pedestrian

could take. The solution that used the neural networks to output the parameters for

a mixture of many Bivariate Gaussians significantly improved the accuracy ]in both

simulations and the real-world UCY dataset. In addition to improving the ability of

the neural network to predict the next position of pedestrians, the Mixture Density

Network outputs enable the same neural networks to predict pedestrian locations

much farther into the future. The long-range prediction capabilities of the neural

networks using mixtures of Gaussians was evaluated on a simulated Intersection sce-

nario. Overall, Mixture Density outputs are a promising area for human trajectory

prediction, and future models should incorporate them.

The next contribution was the development of four novel architectures for repre-

senting the influence of neighbors on the trajectory of pedestrians. The first archi-

tecture was an Occupancy Grid that is unique among pedestrian prediction models

in that it allows for the explicit inclusion of uncertainty about the current location of

neighboring pedestrians. The sensors on robots are never perfectly accurate, so the

ability to input the confidence in the measurement of the location of an agent will be

of practical utility to real-world robots. The second architecture was the Hierarchical

LSTM, which mimics the way humans scan a scene and remember the relevant com-

ponents. The Hierarchical LSTM does not limit the inclusion of neighbors based on

a grid or pool the neighbors. This makes the Hierarchical LSTM capable of detecting

long-range influences that might not be possible for the original Social-LSTM model.

The major issue with the Hierarchical LSTM is that it is difficult to train and when

the number of neighboring agents is large, its memory usage spikes and inference can

take a long time. These issues may be irrelevant in robotics applications because the

number of agents seen by a robot is limited by the capacity of its sensors; however, if

the number of agents is still too large, then heuristics could be used to prune agents

that are known to be irrelevant and only input potentially relevant neighbors into
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the Hierarchical LSTM. The next architecture is the Spatial Attention model that

learns to weight the importance of neighbors based on their displacement from the

agent whose next position is being predicted. The Neighbor Attention model uses the

coordinates of the neighboring pedestrians in relation to the current agent to decide

how to weight the importance of each other pedestrian on the trajectory of the cur-

rent agent. Through evaluation on a simulated dataset and real-world data from the

UCY dataset, the Hierarchical LSTM was the most promising architecture. In most

tests, the Hierarchical LSTM was comparable with the state-of-the-art Social-LSTM

model, but the Hierarchical LSTM does not require careful hyper-parameter choices

for the selection of a neighborhood region. The removal of the hyper-parameters

could potentially accelerate the rate at which the Hierarchical LSTM model could be

deployed on a robot platform since less fine-tuning is required. The Occupancy Grid

performed better than the baseline that did not account for neighbors, but it was not

as successful as the other models. The Spatial Attention model had disappointing

performance (barely outperforming the baseline), but future work may be able to

improve it. The Neighbor Attention architecture was nearly as performant as the

Hierarchical LSTM and Social-LSTM, but it uses fewer parameters than the other

architectures and is a promising alternative.

Dynamic Horizon A* is a modification to the traditional A* algorithm that treats

certain locations as invalid when the probability of another pedestrian occupying that

location in the next timestep is above a threshold. These locations were only consid-

ered impassable if the location was within a set radius from the current location of the

robot. The horizon keeps the robot from planning around agents that are far away

from the robot because these agents will probably move before the robot approaches

their current position. Tree search was also applied to finding routes by searching

for actions that get the robot closest to its destination without causing the robot to

collide with other pedestrians. Tree search planned several timesteps into the future
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and incorporated predictions of the other pedestrians into the future. Dynamic Hori-

zon A* is mostly compatible with other planning systems that rely on A*, and it

requires only one inference of the neural network per planning iteration. Tree search

requires many inferences on the neural network for each planning iteration, but it of-

fers the flexibility of a customized reward/cost functions and the ability to incorporate

long-term movements of other pedestrians in its planning. The planning approaches

were tested on the UCY dataset where a pedestrian in the scene was replaced by a

simulated robot that then planned a route to the original pedestrian’s destination.

The tree search most closely mimicked the behavior of the pedestrian and also had

the fewest near collisions. The Dynamic Horizon A* method also outperformed the

baselines that only included static obstacles or no obstacles at all.

Finally, Argil, an Agent-Based-Modeling (ABM) and crowd simulation, was de-

signed and built to help others run crowd simulations. Argil offers a number of

advantages over existing ABM and crowd simulation tools. Argil has built-in support

for pedestrian models (which no other general ABM framework currently supports).

Argil offers greater flexibility than existing crowd simulation utilities, which typically

require models be written in customized markup languages or using proprietary soft-

ware. There are two visualization options in Argil that together allow for simulations

to be shared as GIFs, videos, images, and web animations. The interface and struc-

ture of Argil is intentionally kept simple; Argil has a unified, cohesive API for the

extraction of data and the visualization of results. The performance of Argil simu-

lations is currently adequate for many research projects with fewer that 50 agents,

but larger simulations are time-consuming. The speed of Argil simulations certainly

detracts somewhat from Argil’s utility to some potential users, but there are still

many applications that can use Argil without any noticeable performance issues.
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9.1 Recommendations

For trajectory prediction, Mixture Density Networks have rigorously demonstrated

their value over a single Bivariate Gaussian. Mixture Density outputs do not increase

the complexity of networks significantly, sampling from them is trivial, and they show

significant accuracy improvements. They should likely be incorporated into future

trajectory prediction systems. The four novel architectures that were proposed had

mixed results. A well-tuned Social-LSTM model with sum-pooling in a grid is still

likely to offer the best performance and accuracy. Yet, in novel situations where it is

not known how far away pedestrians may influence another pedestrian, the Hierarchi-

cal LSTM model may be an excellent candidate. The Occupancy Grid architecture

would be a reasonable choice for applications where there is significant uncertainty in

the actual location of neighboring pedestrians. The Spatial Attention model requires

further refinement before using in real-world application, but the Neighbor Attention

architecture could be useful when the system is memory-constrained.

Tree search is a more promising approach to planning than the Dynamic Horizon

A* both because of its ability to find shorter and collision-free paths as well as its

flexibility to incorporate a custom cost/reward function. There are a number of ways

for the tree search or Dynamic Horizon A* methods to be fine-tuned for a specific

scenario including modifying the horizon parameter, the threshold for determining

whether a state is valid, the granularity of the grid in A*, and the number of steps

executed by the tree search. Future navigation systems for navigation in dynamic

environments should investigate the advantages of tree search and the general idea of

planning using the estimated positions of agents multiple timesteps into the future.

Argil is an useful tool for small-scale experimentation and for visualizing simula-

tions. For small-scale robotics research projects, Argil will be more than adequate for

simulating dynamic environments. Large-scale crowd simulations with hundreds of
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agents are best performed with dedicated simulation software like SUMO or Menge.

Argil is also a great tool for reinforcement learning and educational projects where

students can program (or train) one agent and let the agent interact with other

agents.
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