

Underwater Computer Vision - Fish
Recognition

Prepared by
Spencer Chang - ​spencerd56@gmail.com
Austin Otto - ​austinreedotto@gmail.com

Advised by

Andrew Danowitz - ​adanowit@calpoly.edu

CPE Senior Project

June 16, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/84280134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:spencerd56@gmail.com
mailto:adanowit@calpoly.edu
mailto:austinreedotto@gmail.com

Table of Contents

Table of Contents 2

Introduction 3

System Requirements 3

System Specifications 3

System Architecture 3

Component Design 4

Bill of Materials 5

System Integration 5
Hardware Integration 5
Software Integration 6
Cameras 8

Project Outcomes and Deliverables 9
Completed 9
Future Work 9

Conclusion 9

References 10

Appendix A - User’s Manual 1​1

Appendix B - Code 1​2

Page 2 of 14

Introduction
The Underwater Computer Vision – Fish Recognition project includes the design and
implementation of a device that can withstand staying underwater for a duration of time, take
pictures of underwater creatures, such as fish, and be able to identify certain fish. The system is
meant to be cheap to create, yet still able to process the images it takes and identify the objects in
the pictures with some accuracy. The device can output its results to another device or an end
user.

System Requirements
The system…
- Shall operate underwater without damage to its components.
- Shall stay underwater for a long period of time.
- Shall take clear pictures of objects and fish while underwater.
- Shall run image processing and machine learning on images without outside help.
- Shall be able to run for a long period of time with a battery or external power source.
- Shall have a way to output results of computations to outside devices while underwater.

System Specifications
Weight 3 lb.

Dimensions 6.625” x 5.125” x 4.125”

Image Resolution 640x480

Battery Life 6000 mAh

System Architecture
The system is contained within a waterproof GSI Outdoors Lexan Gear box containing a
Raspberry Pi 3, Jackery Portable Charger, and Logitech C310 webcam. The Raspberry Pi is
powered by the portable charger and takes images through the C310. The images taken by the
webcam are stored on a 4GB flash drive, and results from the computation will be sent out using
an Ethernet cable put through a cable penetrator to an outside device. The outside device would
communicate with the Raspberry Pi 3.

Page 3 of 14

Figure 1​: System Block Design

Component Design

Figure 2​: Schematic Diagram

Page 4 of 14

Bill of Materials
 Part Part # Distributor Supplier Item # Quantity Unit

Price

Extended

Price

1 Raspberry Pi 3 DEV-13825 Sparkfun DEV-13825 1 $39.95 $0

2 Straight-Through

Ethernet Cable

(Unknown) EE Tech

Support

(Unknown) 1 ??? $0

3 Cable Penetrator PENETRATOR-

10-25-A-R2

BlueRobotics PENETRATOR-10-2

5-A-R2

1 $4.00 $4.00

4 Logitech C310 960-000585 Amazon.com B003LVZO8S 1 $15.00 $15.00

5 Jackery 6800mAh

Portable Charger

(Unknown) Amazon.com (No Longer Sold by

Supplier)
1 $14.99 $14.99

6 Toy Fish (Unknown) Tom’s Toys (Unknown) 2 $7.99 $14.98

7 GSI Outdoors

Lexan Gear Box

735-Lexan Amazon.com B004P8BIPE 1 $13.60 $13.60

Total $62.57

Note: The Raspberry Pi 3 and Ethernet cable were provided to the group. Therefore, no costs
were incurred.

System Integration

Hardware Integration
To prevent the Raspberry Pi, power source, and camera from getting damaged by being
underwater, a small waterproof container contains all of the equipment that was meant to be the
main device. At first, an external device was going to use Wi-Fi to communicate directly with
the system. However, Wi-Fi does not work underwater. The Raspberry Pi’s Ethernet was used
for communication instead. A hole was drilled into the side of the GSI box and a cable penetrator
was inserted to allow an Ethernet cable to reach the Raspberry Pi and allow an external device to
communicate with the system.

Page 5 of 14

The device is meant to sink underwater without additional assistance, but its buoyancy does not
allow it to do so. Therefore, a weight or device has to be used to hold the system underwater.

Software Integration
Following the instructions given through the Raspberry Pi site [1], Raspbian was installed on the
provided 8GB SD card. Additional libraries for different desktop environments were installed
later.

OpenCV 3.2.0 took the longest to install in terms of Raspbian software integration. By following
the PyImageSearch tutorial [2], OpenCV installation started out fairly smooth. Certain OpenCV
dependencies had to be searched for online or through a ‘sudo apt-cache search’ command as the
libraries may not necessarily have the same values as those mentioned in the tutorial. An error
occurred just after reaching 70% completion, where it was claimed that the Makefile could not
find a certain “PCH file” (Figure 3). After re-trying the ‘make install’ command to install
OpenCV 3.2.0 on Raspbian multiple times using all 4 cores of the Raspberry Pi, it was reasoned
that race conditions were at fault for causing such problems. After toning down to 2 cores, the
OpenCV installation was successful, almost instantaneously.

For better object recognition, SIFT/SURF will be useful when installed. Both are
‘opencv-contrib’ addons to OpenCV. The steps for installing these would be to uninstall
openCV-3.2.0 or delete its installed directory, get the virtualenv and virtualenvwrapper as
mentioned in the tutorial [2], and cmake/install openCV-3.2.0 with openCV_contrib-3.2.0 in a
virtual environment called ‘cv’. All of this is recommended by the tutorial above. Virtual
environments are recommended since they isolate any problems that may occur during
programming. It is a great way of testing things without the possibility of crashing the system.

Page 6 of 14

Figure 3​: OpenCV ‘make install’ PCH File Error

VNC Viewer was installed on both the Raspberry Pi [3] and the PC used during the development
of this project. VNC is nearly synonymous with the Remote Frame Buffer (RFB) protocol. On a
high-level, the Raspberry Pi and PC communicate with a server-client relationship. When
connecting, the Raspberry Pi (server) challenges the PC (client) to respond with a valid username
and password. After valid credentials are sent to the Raspberry Pi, both devices communicate
window size, frame buffers, and other things for their protocol. Once those are set, the PC can
now communicate with the Raspberry Pi.

The final software implementation done to Raspbian was the installation of TensorFlow 1.1.
Since Raspbian is a Debian Linux installation, the following instructions may be followed to
install TensorFlow on the Raspberry Pi [4]. No major, lasting bugs were present in the
installation. On one incidence, TensorFlow output minor errors that went away when a clean of
the files was done and installation restarted. A simple TensorFlow program is as below. It is
considered the “Hello, World!” of TensorFlow.

import​ tensorflow ​as​ tf
hello ​=​ tf​.​constant​(​'Hello, TensorFlow!')
sess ​=​ tf​.​Session​()
print​(​sess​.​run​(​hello​))
-> Hello, TensorFlow!

Page 7 of 14

Cameras
Multiple cameras were considered for use in this project, including Cognex, SeaViewer, GoPro,
and Logitech. Before the idea of placing the entire system into an underwater box, underwater
cameras were considered for use, but many were too expensive for our system requirements.
Since the Raspberry Pi 3 was in use, a webcam was seen as a balance of low cost and decent
image quality.

Within the family of Logitech webcams, two different products were tested to see which would
provide the best image quality. The C210 and C310 were tested, and the images taken by the
cameras were compared by the team. Both held passable quality for images, but it was found that
the C310 had better white balance. The C310 was connected to the Raspberry Pi and, using bash
scripts, could take pictures and store them on a 4GB flash drive. See Appendix C for all bash
scripts.

To bring everything under a single program, the ‘fswebcam’ command was integrated into a
Python 3 program using subprocesses shown below.

 homeDir ​=​ ​"/home/pi/";
 destDir ​=​ ​"/mnt/usb/uwphotos/";

 outImg ​=​ datetime​.​datetime​.​now​().​strftime​(​"%Y-%m-%d_%H-%M-%S"​);
 outImg ​=​ ​"test_"​ ​+​ outImg ​+​ ​".jpg";
 camIn ​=​ ​[​'fswebcam'​,​ ​'-r'​,​ ​'640x480'​,​ ​'-d'​,​ ​'/dev/video0'​,​ ​'-i'​,​ ​'0'​,​ outImg​];
 mvPic ​=​ ​[​'mv'​,​ ​(​homeDir ​+​ outImg​),​ ​(​destDir ​+​ outImg​)];
 ​print​(​"TAKING IMAGE"​,​ ​(​count ​+​ ​1​),​ ​"- "​ ​+​ outImg​);
 ​print​(​"*****Start*****"​);

 ​# Call 'fswebcam' to take the image
 process ​=​ ​Popen​(​camIn​,​ stdout​=​PIPE​,​ stderr​=​PIPE​);
 stdout​,​ stderr ​=​ process​.​communicate​();
 ​print​(​"---STDERR---"​);
 ​print​(​stderr​.​decode​(​"utf-8"​));
 time​.​sleep​(​5​);

 ​# Call 'mv' to move the image to the USB drive
 process ​=​ ​Popen​(​mvPic​,​ stdout​=​PIPE​,​ stderr​=​PIPE​);
 stdout​,​ stderr ​=​ process​.​communicate​();

Errors occasionally appear when images were taken in quick succession. Raspbian would say the
“device or resource” is busy or that the “image palette could not be used”, perhaps referring to

Page 8 of 14

RGB. The code for taking pictures was then altered to have a slight delay between image
captures to make the errors occur less often.

Overall, the majority of work was spent creating the hardware, leaving little room for learning
OpenCV and TensorFlow in time to get an adequate machine learning algorithm implemented.
Currently, code was written to utilize the built-in OpenCV GrabCut algorithm. Smaller tests
were also done to use color ranges [5] to segment the background out of the picture. For
instance, pixels with RGB values between ​[17, 15, 100]​ and ​[50, 56, 200]​ would be
considered red. Pixels outside of this range are considered the background. Note that OpenCV
reads pixel values as BGR. These image segmentation attempts were ultimately unsuccessful, but
the tools for recognition of objects are installed.

Project Outcomes and Deliverables

Completed
The system is able to run both OpenCV and TensorFlow without any external help. There is not
much progress in processing images to segment an object from its background. Attempts were
made to use the built-in OpenCV GrabCut algorithm, but the background was still seen as part of
objects as seen in an image comparison below.

Figure 4​: Original and Masked Image of Underwater Toy Fish

With VNC Viewer installed on the Raspbian OS and any other external device, communication
with and control of the Raspberry Pi is easy. It was found that the Raspberry Pi 3 draws a low
amount of energy when taking pictures, but a supposition was stated that the power consumption
would greatly increase with the usage of TensorFlow’s neural networks and OpenCV’s built-in
modules.

Page 9 of 14

Future Work
Two major improvements standout for the system. The first is to include heavier weights within
the GSI box. A recommendation would be to look into fisherman’s bank sinkers, which are
dense and heavy weights commonly used within the fishing community. The trade-off with
adding more weight is between insulation of heat and weight of the box. With more things inside
the apparatus, the heat generated from the components will have less airflow. As discussed, the
benefit of adding weights is that the box will sink by itself. The second is to implement a better
image processing using OpenCV and a neural network algorithm on the Raspbian OS that takes
all images and trains the algorithm to recognize the correct objects. This is the next and hardest
step in development.

Conclusion
Overall, this was a difficult project to complete. Ramping up on machine learning proved to be
the hardest part. TensorFlow is an advanced library within machine learning and should be
tackled by members of a group with adequate time available. Good image processing continues
to hold a high learning curve. ​If the focus of a project is image processing and machine learning,
make the picture-taking apparatus quickly and efficiently, so a testing platform can be created
for software implementation and testing.​ Time was wasted in creating the underwater box for
this project, a mistake that appeared benign but came back to undermine any progress made. In
the future, spend most time working on the TensorFlow and machine learning portion of the
project instead of on the hardware necessary to create the underwater apparatus.

References
[1] Raspberry Pi Foundation. (2017). ​Raspbian​ [Online]. Available:

https://www.raspberrypi.org/downloads/raspbian/​.
[2] Rosebrock, Adrian. (2017, April 16). ​Install guide: Raspberry Pi 3 + Raspbian Jessie +

OpenCV 3 (1st)​. [Online]. Available:
http://www.pyimagesearch.com/2016/04/18/install-guide-raspberry-pi-3-raspbian-jessie-open
cv-3/​.

[3] Raspberry Pi Foundation. (2017). ​VNC (Virtual Network Computing)​. [Online]. Available:
https://www.raspberrypi.org/documentation/remote-access/vnc/​.

[4] Google. (2017, April 26). ​Installing TensorFlow on Linux​. [Online]. Available:
https://www.tensorflow.org/install/install_linux​.

[5] Rosebrock, Adrian. (2014, August 4). ​OpenCV and Python Color Detection​. [Online].
Available: ​http://www.pyimagesearch.com/2014/08/04/opencv-python-color-detection/

Page 10 of 14

http://www.pyimagesearch.com/2016/04/18/install-guide-raspberry-pi-3-raspbian-jessie-opencv-3/
https://www.tensorflow.org/install/install_linux
https://www.raspberrypi.org/documentation/remote-access/vnc/
http://www.pyimagesearch.com/2016/04/18/install-guide-raspberry-pi-3-raspbian-jessie-opencv-3/
http://www.pyimagesearch.com/2014/08/04/opencv-python-color-detection/
https://www.raspberrypi.org/downloads/raspbian/

Appendix A - User’s Manual

Connect and Power On the System
1. Connect the USB webcam to the lower right USB port on the Raspberry Pi.
2. Connect a USB flash drive to the top right USB port on the Raspberry Pi. The port is chosen

for the device driver ‘/dev/sda1’ seen in the mounting and unmounting bash scripts below.
3. Connect the Jackery 6000mAh Portable Charger to the Raspberry Pi’s microUSB port.
4. Plug the Ethernet cable that has been threaded through the box into the Raspberry Pi’s

Ethernet port and the other side to the desired computer.
5. Turn on the device by turning on the portable charger.
6. Once Raspbian boots up, connect using VNC Viewer and enter valid credentials when

prompted.
7. Open the command line and ‘su’, or set user, as someone included in the sudoers file. This

allows you to use ‘sudo’ commands for mounting, unmounting, taking pictures, and moving
files.

8. Run the mount.sh bash script with sudo privileges to mount the USB drive onto the Raspbian
filesystem. Any program referring to ‘/mnt/usb’ can now write/read files without knowing
the exact USB-specific name.

Mouse (if working on Pi w/o VNC) USB Flash Drive

Keyboard (if working on Pi w/o VNC) Webcam

Table 1:​ USB Port Layout

Take Pictures
Prerequisite​: System is correctly connected and powered on.
1. Run the Python 3 webcam code with ‘python3 <filename>’. Since Python 2 and 3 are both

installed on the Raspberry Pi, ‘python3’ chooses Python 3 over 2.
2. After a few seconds the program will take a picture with the name format

"test-<year>-<month>-<day>_<hour>-<minute>-<second>.jpg" and place it in the directory
“/mnt/usb/uwphotos/”. The program has a 5-second wait after each image.

3. The code will repeat step 2 four more times before exiting. The number of pictures taken can
be changed with the limit variable.

Page 11 of 14

Use grabcut.py
Prerequisite​: System is correctly connected and powered on:
1. Access the Raspbian console and enter: “python3 grabcut.py” while in the same directory as

grabcut.py.
2. The program will ask for an image. Make sure the image is in the same directory as

grabcut.py. This is due to the way grabcut.py is currently programmed.
3. Enter the image’s entire name.
4. After a short period of time it will finish its process and produce an image called

“masked-<image’s name>” and place it in the current directory. The program has a set of
hardcoded coordinates that tell the GrabCut algorithm where to check for foreground objects.
This may be changed using any kind of text editor.

5. Repeat steps 2-4 or enter “end” to stop the process.

Appendix B - Code

B.1 - Original ‘fswebcam’ Bash Script, or “webcam.sh”
#!/bin/bash

if​ ​[​ $​# -eq "2"]; then
 DATE​=​$​(​date ​+​'%Y-%m-%d_%H-%M-%S'​);
 NAME​=​"$1_$DATE";
 sudo fswebcam ​-​r ​640x480​ ​-​D $2 ​-​d ​/​dev​/​video0 ​-​i ​0​ $NAME​.​jpg;
 sudo mv $NAME​.​jpg ​/​mnt​/​usb​/​uwphotos​/​$NAME​.​jpg;
else

 echo ​"Usage: ./webcam.sh pictureName delay(sec)";
fi

B.2 - Mounting
sudo mount ​-​v ​/​dev​/​sda1 ​/​mnt​/​usb

B.3 - Unmounting
sudo umount ​-​v ​/​dev​/​sda1

B.4 - Webcam Python 3 Code
import​ subprocess
import​ datetime
import​ time
from​ subprocess ​import​ ​Popen​,​ PIPE

homeDir ​=​ ​"/home/pi/";

Page 12 of 14

destDir ​=​ ​"/mnt/usb/uwphotos/";

count ​=​ ​0;
limit ​=​ ​5;
while​ ​(​count ​<​ limit​):
 outImg ​=​ datetime​.​datetime​.​now​().​strftime​(​"%Y-%m-%d_%H-%M-%S"​);
 outImg ​=​ ​"test_"​ ​+​ outImg ​+​ ​".jpg";
 camIn ​=​ ​[​'fswebcam'​,​ ​'-r'​,​ ​'640x480'​,​ ​'-d'​,​ ​'/dev/video0'​,​ ​'-i'​,​ ​'0'​,​ outImg​];
 mvPic ​=​ ​[​'mv'​,​ ​(​homeDir ​+​ outImg​),​ ​(​destDir ​+​ outImg​)];
 ​print​(​"TAKING IMAGE"​,​ ​(​count ​+​ ​1​),​ ​"- "​ ​+​ outImg​);
 ​print​(​"*****Start*****"​);

 ​# Call 'fswebcam' to take the image
 process ​=​ ​Popen​(​camIn​,​ stdout​=​PIPE​,​ stderr​=​PIPE​);
 stdout​,​ stderr ​=​ process​.​communicate​();
 ​print​(​"---STDERR---"​);
 ​print​(​stderr​.​decode​(​"utf-8"​));
 time​.​sleep​(​5​);

 ​# Call 'mv' to move the image to the USB drive
 process ​=​ ​Popen​(​mvPic​,​ stdout​=​PIPE​,​ stderr​=​PIPE​);
 stdout​,​ stderr ​=​ process​.​communicate​();
 ​print​(​"---STDERR---"​);
 ​print​(​stderr​.​decode​(​"utf-8"​));
 ​print​(​"*****End*****"​);

 count ​+=​ ​1;
 time​.​sleep​(​5​);

B.5 - grabcut.py
#image Segmentation

import​ numpy ​as​ np
import​ cv2

x ​=​ ​'test'

while​ ​(​x ​!=​ ​'end'​):
 x ​=​ input​(​'Image: ')
 ​if​(​x ​!=​ ​'end'​):
 img ​=​ cv2​.​imread​(​x)
 mask ​=​ np​.​zeros​(​img​.​shape​[:​2​],​np​.​uint8)

 bgdModel ​=​ np​.​zeros​((​1​,​65​),​np​.​float64)
 fgdModel ​=​ np​.​zeros​((​1​,​65​),​np​.​float64)

 rect ​=​ ​(​50​,​50​,​590​,​400)
 cv2​.​grabCut​(​img​,​mask​,​rect​,​bgdModel​,​fgdModel​,​5​,​cv2​.​GC_INIT_WITH_RECT)

Page 13 of 14

 mask2 ​=​ np​.​where​((​mask​==​2​)|(​mask​==​0​),​0​,​1​).​astype​(​'uint8')
 img ​=​ img​*​mask2​[:,:,​np​.​newaxis]
 cv2​.​imwrite​(​'masked-'​ ​+​ x​,​ img)

Page 14 of 14

