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Introduction 
Since the Industrial Revolution, humans have been using technology and automation to ease 
their lives. Some notable examples include the assembly lines of the Ford Model-T in the 1920’s 
and the production of the first drive direct arms in the 1980’s. The growth of automation has 
transformed the manufacturing industry, making assembly quicker and cheaper. With assembly 
lines of robotic-driven automation replacing work that was previously done by humans, it 
continues to grow even today,  
 
A modern example of problem solving using automation is Amazon’s Kiva robots. Amazon, one 
of the world’s largest e-commerce companies, uses a large system of automated packaging 
robots. Even though these robots have identical hardware, they each perform semi-unique tasks 
every day. Their primary tasks is to move racks of packages around the warehouse floor to the 
locations where it needs to be delivered. These robots are not reprogrammed each time a new 
request is received. Instead, they are told what the task is and they are preprogrammed to know 
how to complete it. This is an example of modern day problem solving using automation.  
 

Problem Statement 
Having to program the steps of a complex job over many robots individually is a cumbersome 
task. This obstacle is the next big problem facing automation today. While companies like 
Amazon have pioneered fleet robot type autonomy, there is still much to improve and a long 
way to go. Our senior project, MotherBrain, will be a simple case study looking into how a 
small-scale and simple centralized robot fleet might operate. The concept of MotherBrain is to 
create a simple way to program a fleet of semi-autonomous robots to complete a scalable task. 
This simple and scaleable task is simply moving to a location based on color and shape image 
data. Put simply, the robots in the fleet will automatically move to the color on a board that 
matches their own color. However, the robots do not sense the image data. Instead they receive 
commands from a central computer which reads and interprets the image data. This computer 
then decides what command to send the fleet in order to complete the task.  
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Software 

Block Diagram 

 
Flowchart 1: High Level software Process Chart 

 
The MotherBrain computer was designed to perceive, interpret, and issue commands to the 
fleet. Because of this, the firmware on the robots is made to be as simple as possible. The 
transmitter module and all of the robots are programmed using C, the RF24.h library, and the 
Arduino library. The transmitter reads input from its standard input serial data stream 
compresses it, and then sends through SPI to the RF24 transceiver. The robots read in the data 
and interpret each piece of the data in the command. The RF packets are constructed into four 
byte chunks. The first chunk indicates which robot the command was meant for. If the robot 
number matches the sent command, the robot will actuate its motor speed and direction to the 
value sent in the second and third bytes. The fourth and final byte in the RF packet tells the 
robot whether this command should be held forever, or for only some fraction of a second. 
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If the packet was successfully transmitted to a receiving robot, an acknowledgement is sent 
back to the sender.  If the sender does not receive an acknowledge after a certain amount of 
time, it tries to send the message again for a certain amount of retries.  We configured the 
timeout to be 750us, and to retry up to 15 times.  This gave us the best success rate in high 
noise environments and over the longest distances even in low power transmission modes.  If 
an acknowledgement has still not been received after 15 attempts, a message is passed back to 
the user interface that the sending failed.  
 
Before interfacing with the camera, it was necessary to manually set the webcam’s 
configuration. These configuration setting involved disabling automatic color balancing and 
automatic white balancing. Once the camera is properly configured, reading its frames is fast 
and easy. Each frame is read in, split into 3 narrow color bands of red green and blue, then 
processed for contours.  Those contours allow the AI to distinguish the robots as well as their 
targets. 
 

UI Description 
 
The user interface and computer vision work is all coded in Python3. The interface is created 
using the Python tkinter library. This library makes laying out the video stream, data stream, and 
buttons simple and structured. Packing the modules is as simple as calling the tkinter function to 
create a button and telling it what function to call when it is pressed.  
  

 
Image 1: UI Layout and Interface 
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The left side of the UI allows the user to see what the camera sees. This video stream can be 
toggled between the raw video with overlaid contours, and three preset color filters (red, green, 
and blue). In addition to the physical square targets that the robots home to, targets can be 
created for individual robots by left, right, or middle clicking on the screen. A blue target can be 
seen on image 1 above as a blue circle. Once these targets are reached, they disappear, and 
the robot while drive to the next target in its queue. 
 
The buttons on the right side of the screen allow the filter to be changed, custom commands to 
be sent, and the AI to be toggled. The data block at the top right prints the commands being 
sent to the robots in real time as well as their response code in case of transmission failure. 
The approximation epsilon defaults to 0.70, but can be manually changed. Epsilon is an 
approximation which controls how much the computer vision algorithm is allowed to 
approximate the contours of a shape to minimize its edges. Therefore, a slightly jagged or 
aliased image of a triangle can be approximated to improve its detection accuracy. 

Vision Algorithm 
We used OpenCV to capture the images from the webcam and used that image to find contours 
 

1. Take a single frame with the camera 
2. Blur the image to reduce the amount of noise while capturing 
3. Isolate the image based on a color 
4. Convert that isolated image to grayscale 
5. Search for contours using cv2.findContours 
6. Find contours with three sides 
7. Exclude triangles that are too small 
8. Calculate the lengths of the sides to determine the shortest side of the isosceles triangle 
9. Determine robot angle from isosceles triangle sides 
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Hardware 

Block Diagrams 

 
Block Diagram 2: MotherBrain Robot Hardware System 

Power 
The power system for the robots consists of one 3S LiPo battery source and a three stages 
power regulator framework. Power regulation is necessary because LiPo batteries are an 
unregulated power source. They have a nominal charge of 11.1V, but can charge to as high as 
12.6V and discharge to as low as 9V. The first stage feeds the unregulated LiPo battery into the 
microcontroller. The mcu regulates the voltage down to 5V (low power) with its internal LDO 
voltage regulator. The second stage bucks the unregulated LiPo to 5V through a highly efficient 
3 amp buck converter. This high power 5V source is used to power the servo wheels and RF 
module. The third and final stage feeds the high power 5V source to an LDO which regulates it 
into a 3.3V 1 amp source. A high power 3.3V source is necessary to power the RF module with 
sufficient power for high signal-to-noise ratio communication channels.  

Control 
The microcontroller controlling the robots is a ATmega328 based Arduino nano. This 
microcontroller was chosen for its small form factor and easy programmability. Its main purpose 
is to interface with the NRF2401+ RF module which communicate bi-directionally with the mcu 
over SPI. The signals sent through the RF module is interpreted as a move command. The 
microcontroller interprets the signal and executes that move command with a PWM signal(s) 
sent to the two servo wheels.  
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Actuation 
There are only two actuators used by the robots. Both actuators are continuous rotation servos 
which move the robot. Because of their relatively high power usage, these servos are powered 
from a high power 5V source and not the low power microcontroller source. Each wheel is 
controlled with a PWM signal sent by the microcontroller which dictates its speed and direction.  

Communication 
Communication with the robots and the MotherBrain is done over a 2.4GHz RF channel. This 
channel is interfaced with by the NRF2401+ module on the robots and the MotherBrain 
computer. Each robot in the fleet has a unique channel number which is sent at the top is the 
RF packet. Once the signal is decompressed, the robot check’s if the command was sent to its 
own channel. Channel 0x00 is reserved as a flooding every robot in the fleet. The packets are 
structured as such: [ 8 bit channel number | 16 bit speed command number | 8 bit time 
argument ]. 

Schematic 

 
Schematic 1: Robot Schematic Rev 5 

7 



Mechanical 

 
Image 2: Adobe Illustrator Chassis Design 

Chassis 
This is the final revision of the mechanical chassis which gives clearance under the robot for the 
small servo and wheels to fit as well as the ball bearing on the other side. The etching on the 
wheels allow for the servo to have a “+” attachment and to fit and have grip on the wheels.  
 
The isosceles triangle etched out on the top of the robot is used to fill with a certain color paint 
which allows the computer vision to detect the robot as well as the direction the robot is driving 
in. The isosceles triangle helps the computer vision detect which direction by determining the 
shortest side of the triangle and finding the perpendicular centerpoint. 
 
Because we needed to have the triangle visible on top of the robot for the computer vision to 
detect, the robot chassis had to be extended so the PCB and battery could fit underneath. We 
wanted the chassis to be as small as possible and achieved the minimum given the hardware. 
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Image 3: Physical Robot Chassis and Build 

Build 
 
The aim for this construction was to not screw anything together besides a PCB holding screw. 
This was a bit more difficult than typical lasercutting projects like Roborodentia where the robot 
was a box. Standoffs, wheels, and etching to create the divot in the wheels and the triangle on 
top needed to be done. An additional issue we ran into was the standoffs were too small and 
snapped too easily. Multiple revisions had to be done on the robot to get it where it is now 
 
The general build of the robots was a clam-shell case covering the main robot components in a 
consistent color and shape. The chassis was put together so that the major robot parts were 
placed in between the two main covers. These main components include the robot motherboard 
and the robot battery. It was important to cover all components with the top and bottom shell, so 
the chassis color could be ignored and only the colored triangles filtered through the CV 
algorithm(s). 
 
The wheels are made of smooth laser cut plexiglass which did not allow for enough traction to 
move the robot in a consistent manner due to the wheels spinning out.  Adhering rubber bands 
to the wheel hub, increased traction and allowed the robot to move in a consistent manner. 
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Bill of Materials 
PCB     

Comment Designator Quantity Price Extended Price 

10uF 16V capacitor C1, C2, C3 3 $ 0.25 $ 0.75 

M7 Diode D0 1 $ 0.14 $ 0.14 

Green LED D1 1 $ 0.34 $ 0.34 

Yellow LED D2 1 $ 0.34 $ 0.34 

Arduino Nano Molex IC1 1 $ 0.42 $ 0.42 

Molex (1x3) J2, J3 2 $ 0.38 $ 0.76 

MP1584EN Buck M1 1 $ 1.67 $ 1.67 

Molex (4x2) P3 1 $ 0.38 $ 0.38 

0805 22k resistor R1 1 $ 0.10 $ 0.10 

0805 10k resistor R2 1 $ 0.10 $ 0.10 

0805 330 resistor R3, R4 2 $ 0.10 $ 0.20 

AMS1117-3.3 U1 1 $ 0.80 $ 0.80 

  TOTAL $ 5.02 $ 6.00 

     

ROBOT     

Comment Designator Quantity Price Extended Price 

Arduino Nano x 1 $ 4.00 $ 4.00 

Servos x 2 $ 1.80 $ 3.60 

NRF2401+ Module x 1 $ 1.20 $ 1.20 

3S Lipo Battery x 1 $ 13.50 $ 13.50 

Screw Mounted Bearing x 1 $ 2.40 $ 2.40 

  TOTAL $ 22.90 $ 24.70 

     

COMPUTER     

Comment Designator Quantity Price Extended Price 

Computer (2x core w/ GPU) x 1 $ 300.00 $ 300.00 

Webcam 720p x 1 $ 14.00 $ 14.00 

Webcam Stand x 1 $ 16.00 $ 16.00 

  TOTAL $ 330.00 $ 330.00 

     

TOTAL     

Comment Designator Quantity Price Extended Price 

PCB x 2 $ 6.00 $ 11.99 

ROBOT x 2 $ 24.70 $ 49.40 

COMPUTER x 1 $ 330.00 $ 330.00 

  TOTAL $ 360.70 $ 391.39 
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Lessons Learned 

Mytch Johnson 
I learned a lot about embedded system design, power system design, and PCB fabrication for 
this project. I spent most of my time designing and debugging the embedded system for the 
robot. It was a lot of trial and error to design a single sided PCB that could fit and route to 
everything within a reasonable amount of space. Even once the system was designed, there 
was a lot of debugging with the design. Most complication came from the multi-stage power 
system and I learned a lot about proper routing protection for a DC-DC system.  
 
If I were to do anything different, I would skip right to SMT devices on our PCB as soon as 
possible. Through-hole devices have a tendency to wear quicker and the traces are more apt to 
lift with the PCB milling machine we ended up using to fabricate our PCBs. I would also added 
power protection circuitry earlier in the design process.  

Darius Holmgren 
I learned a lot about the implementation of computer vision and different ways of optimizing it. 
Using colors and contouring is a lot faster than I ever would have imagined.  Trying to use 
multiple frames to remove artifacting and noise improved the image only moderately and proved 
to not be worth it.  Processing the images in real time at a reasonable framerate was more 
important. 
 
If I were to do this project again, I would have done more planning as far as creating a custom 
structure for holding abstracted data which would allow me to do more complex tasks extensibly 
instead of hacking functionality together. 

Matthew Ng 
I always imaged computer vision to be a daunting task. After working with some color detection 
and contouring and using the OpenCV library, I realized how well Python works at capturing 
frames and detecting colors based on their hue. I also learned how computer vision is extremely 
difficult when there are other colors in the area. During my freshman year, there was a 
roborodentia team that used computer vision to detect goals and shoot directly into them. This 
robot was amazing when there was no one else in the room. During competition however, their 
robot spazzed out like crazy. We ran into this issue as well when we moved into the ATL. The 
lights pointed straight down compared to the IEEE lights that pointed upwards diffusing the light. 
The computer vision saw those lights and if our robot drove under it, the light reflected off the 
robot would make the robot disappear. 
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If I were to do this again, I would want to create a course that could be under an awning that 
was lit evenly. I plan on working more with computer vision and image processing for my 
graduate thesis and hope to improve on this senior project idea. 

Tam Van 
I learned a good deal about computer vision and real time operations. It was fascinating to see 
how effective the computer vision was in detecting the colors and shapes on the robots. Filtering 
out noise was more computationally expensive and did not provide any significant 
improvements. 
 
If I were to do this project again, I would have spent more time developing the computer vision. 
There are times when the computer vision would have difficulty detecting the robots if an ample 
amount of light was not present.  

Conclusion 
All in all, MotherBrain was a great exercise in computer vision, fleet robotics commutation, and 
small scale power electronics. It was interesting to build a fleet robotics approach from the 
ground up, and to see which ideas worked well and which ones did not. Even though the 
project’s scope was limited to two robots, the software was theoretically able to scale up. The 
challenge was finding more colors to differentiate one robot from another. This project gave all 
four of us a taste of what a modern day robot might look like, and how to solve some of the 
more complex obstacles it faces.  
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Appendix 
Link to Github Repo: https://github.com/DariusHolmgren/MotherBrain 
RF24 library: https://maniacbug.github.io/RF24/classRF24.html 
 
 

Photographs 
 

 
 

A top-down view of the board and robots. 
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The microphone stand used to capture the top-down view of the board. A webcam is attached to 

the stand. 
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A through-hole iteration of the motherboard. 
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Version one of the robot motherboard (through-hole) 
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Final version of robot  motherboard (surface-mounted) 
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