KETTLE COOLING AND SUSTAINABILITY PROJECT

by

Nico DeGiorgio

Agricultural Systems Management

BioResource and Agricultural Engineering Department

California Polytechnic State University

San Luis Obispo

2017

TITLE	:	Kettle Cooling and Sustainability Project		
AUTHOR	:	Nico DeGiorgio		
DATE SUBMITTED	:	June 1, 2017		

Senior Project Advisor

Signature

Date

Department Head

Signature

Date

ACKNOWLEDGEMENTS

First and foremost, I would like the thank my siblings and parents for their unwavering support through my college education to develop such a report and to pursue my professional goals.

I would also like to thank my industry advisor, Ken Mozek, for his enthusiasm in answering my many questions and for the opportunity to shadow the technical sales meetings. This mentorship has been pivotal in my professional development as I transition from my undergraduate institution into industry.

I would also like to thank my project advisors, Dr. Peter Livingston and Dr. Franklin Gaudi, for their combined engagement in my project from conception to completion.

Finally, I would like to thank various Cal Poly faculty, Dr. Timothy Delbridge and Dr. John Chen, for their constructive criticism in the subjects of finance and thermodynamics respectively.

DISCLAIMER STATEMENT

The university makes it clear that the information forwarded herewith is a project resulting from a class assignment and has been graded and accepted only as a fulfillment of a course requirement. Acceptance by the university does not imply technical accuracy or reliability. Any use of the information in this report is made by the user(s) at his/her own risk, which may include catastrophic failure of the device or infringement of patent or copyright laws.

Therefore, the recipient and/or user of the information contained in this report agrees to indemnify, defend and save harmless the State its officers, agents and employees from any and all claims and losses accruing or resulting to any person, firm, or corporation who may be injured or damaged as a result of the use of this report.

ABSTRACT

A particular frozen food processing facility uses a once-through cooling process to bring their kettle-cooked product's temperature down from nearly boiling temperatures to the eighty degree Fahrenheit range. This process is water intensive and facility managers are seeking to reduce their potable water consumption. Sales engineers from Air Treatment Corporation, an HVAC&R manufacturers' rep, initiated a number of meetings to propose heat rejection solutions and illustrate their associated payback potentials.

This report contains methods of analyzing a food production process, the technical sales process, thermodynamic principles, refrigeration technologies, and the application of technical knowledge to provide a long-term, system solution. To justify the purchase of a system solution, a detailed engineering economic analysis was conducted to account for the time-value of money and equipment specifications.

The goal of this report is to show the potential for monetary savings by combining technical, system solutions with sustainability.

Keywords: cooling tower, industrial fluid cooler, sales engineering, food processing, heat rejection, cooling, refrigeration, sustainability, HVAC, HVAC&R, BAC, thermodynamics, capital budgeting, engineering economics, industrial water, water use, wastewater, sewage rate, water rate, pro forma financial statement, technical sales, return on investment, closed circuit cooling tower

TABLE OF CONTENTS

Evaporative Cooling Systems	. 12
Vapor-Compression Refrigeration Systems	. 14
Case Study: Cheese Production Facility – Load Shifting	. 15
HVAC&R Industry Terminology and Thermodynamic Principles	. 15
Heat Rejection Performance – Vapor-Compression Systems	. 15
Heat Rejection Performance – Evaporative Systems	. 17
PROCEDURES AND METHODS	. 20
Initial Considerations	. 20
Regional Weather Conditions	. 20
Manufacturer	. 20
Manufacturer Product Line	. 22
Kettle Testing Background	. 24
RESULTS AND DISCUSSION	. 27
Compilation of Kettle Testing Data	. 27
Developing the Energy Balance for the Closed-System	. 28
Total Current Heat Transfer from Product	. 30
Current Rate of Heat Transfer from Product	. 30
Determining Final Water Temperature from Kettle Jacket	. 30
Method 1	. 31
Method 2	. 31
Establishing Design Day Conditions and Troubleshooting Inputs	. 34
Codes, Standards, and Ratings Systems	. 34
Additional Selection Requirements	. 35
BAC Software Selection	. 35
Engineering Economics of Product Selection	. 39
Capital Budgeting Metrics	. 39
Pro Forma Income Statement	. 41
Capital Budget Analysis Results	. 50
Sensitivity Analysis	. 51
Scenario 1: Reduction of the Cost of Water	. 51
Scenario 2: Reduction of the Cost of Sewage	. 51

Scenario 3: Energy Rate Price Hikes	51
Scenario 4: Complete Failure of Industrial Fluid Cooler	51
RECOMMENDATIONS	53
REFERENCES	54
APPENDICIES	56
APPENDIX A Water Flow Diagram Through Facility	56
APPENDIX B Process Flow Diagram Before CCCT	57
APPENDIX C Process Flow Diagram After CCCT	58
APPENDIX D Lee Industrial Kettle Dimensions	59
APPENDIX E Kettle Test Summary	60
APPENDIX F Total and Rate of Heat Rejection Calculations	61
APPENDIX G Steam Tables for Water as a Saturated Liquid	71
APPENDIX H Cooling Tower Water Use Calculations	72
APPENDIX I Final Closed Cicuit Cooling Tower Selection	79
APPENDIX J Cicruclation Pump Piping Friction Losses through Facility	80
APPENDIX K Circulation Pump Selection	82
APPENDIX L Cooling Tower Energy Expenditure Computations	
APPENDIX M Pro Forma Income Statements for Project	87
APPENDIX N Pro Forma Income Statements for Sensitivity Analysis	90
APPENDIX O Santa Rosa Historical Water Rates	93
APPENDIX P ASM Senior Project Contract with Requirements Met	94

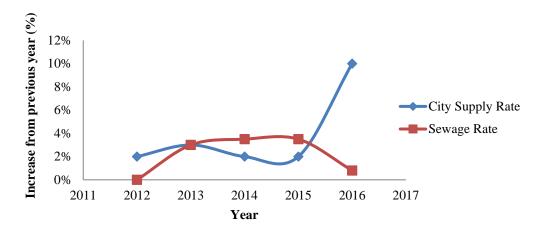
LIST OF TABLES

Table 1 Food processes and associated water consumptions	3
Table 2 Estimated 2000 Water Use in California's Industrial Sectors	9
Table 3 Variables from the Psychrometric Chart	18
Table 4 Decision Matrix for Open or Closed Circuit Cooling Tower	21
Table 5 Sample Kettle Cooling Test	25
Table 6 Summary of Kettle Testing Data with various conditions	27
Table 7 Total heat rejection for each condition	30
Table 8 Rate of heat rejection for each condition	30
Table 9 Steam tables for saturated water	33
Table 10 CTI STD-201 thermal certification limits	34
Table 11 Design Day Criteria	35
Table 12 BAC software selection results	
Table 13 Decision Matrix for FXV Model	38
Table 14 Distribution of industrial fluid cooler water use	49
Table 15 Summary of important financial rates	50
Table 16 Results for various corporate finance metrics	50

LIST OF FIGURES

Figure 1Behavior of annual water and sewage rates	1
Figure 2 Pie Chart of Industrial Water Users	2
Figure 3 Facility's Water Consumption Diagram	3
Figure 4 Technical Sales Cycle	5
Figure 5 Spectrum of various bacterias' optimal temperature range	6
Figure 6 Typical tomato paste food process v. recommended	8
Figure 7 Energy savings from tomato water reuse	9
Figure 8 Sample rate structure based solely on time-of-day principle	10
Figure 9 Typical Closed-circuit cooling tower	13
Figure 10 Air and Water Temperature through Tower Profile	13
Figure 11 Diagram showing how heat rejection is achieved	
Figure 12 Ideal refrigeration cycle	16
Figure 13 Actual Refrigeration Cycle	16
Figure 14 Refrigeration cycle with highlighted enthalpy points	17
Figure 15 Latent and sensible components of total heat rejection vector	
Figure 16 Wet bulb temperature and specific enthalpy lines respectively	19
Figure 17 Closed Circuit Cooling Tower Product Line Set 1	22
Figure 18 Closed Circuit Cooling Tower Product Line Set 2	23
Figure 19 Kettle No. 18, 500-gal jacketed capacity fitted with agitator	25
Figure 20 Temperature Profile of Representative Kettle Cooling Test	26
Figure 21 Schematic of control mass for closed-system calculation	28
Figure 22 Control-volume schematic	31
Figure 23 T-v diagram for Water	32
Figure 24 LCF tower selected	36
Figure 25 Rec cooling tower selection	37
Figure 26 Plot of Water Rate v. Time	41
Figure 27 Plot of Sewage Rate v. Time	42
Figure 28 Cooling tower load profile	43
Figure 29 Psychrometric chart with indicated process	46
Figure 30 Water Usage Calculator Inputs	47
Figure 31 Water Usage Calculator Outputs	47
Figure 32 Water Usage Graph	48

LIST OF ABBREVIATIONS


ATC	Air Treatment Corporation
BOD	Biochemical Oxygen Demand (Biological Oxygen Demand)
BTUH	British Thermal Units per Hour
CCCT	Closed Circuit Cooling Tower (industrial fluid cooler)
CTI	Cooling Technology Institute
EOY	End of Year
F	Fahrenheit
HVAC&R	Heating, Ventilation, Air-Conditioning, and Refrigeration
IRR	Internal Rate of Return
MACRS	Modified Accelerated Cost Recovery System
MARR	Minimum Acceptable Rate of Return (hurdle rate)
MIRR	Modified Rate of Return
NAICS	North American Industry Classification System
NPV	Net Present Value
OCCT	Open Circuit Cooling Tower
PP	payback period
ROI	Return on Investment
R Tons	Refrigeration Tons
SGMA	Sustainable Groundwater Management Act
TSS	Total Soluble Solids
TWC	Tomato Water Condensate
WEN	Water Energy Nexus

INTRODUCTION

Water Supply and Utility Background

Due specifically to periods of extended drought across California, Governor Brown issued a statewide mandate declaring heightened regulation on potable water-use and associated waste. (SWRCB 2016). Although the state's measure requires a 20% reduction in water use by 2020, local water agencies will tailor the framework of how they will conduct their conservation efforts. Sonoma County Water Agency relies heavily on precipitation for its freshwater deliveries which requires adequate storage and timely allocation. The unpredictability of atmospheric rivers (CW3E) and a recent reduction of snowpack by 25% (Berg 2017) presents challenges to the water managers to ensure a consistent surface water supply for the future.

Groundwater will also become increasingly difficult to access as time progresses. Local governments in Sonoma County have already posed the idea of developing fees on unsustainable pumping behavior and are empowered to do so by the Sustainable Groundwater Management Act of 2014 (SCSGM 2016). Due to a combination of conservation efforts and the growing challenges in water management, water sales have had a steep decline. This has forced the City of Santa Rosa and Sonoma County Water Agency to increase their rates to restore cash flow for operations and maintenance as seen in Figure 1 below. Supporting documentation provided by the city of Santa Rosa can be found in Appendix O (SRW 2016).

Annual Changes in Santa Rosa Rates

Figure 1 Behavior of annual water and sewage rates

Due to this, industrial consumers can expect rate increases for both water and sewage, despite the fact that their consumption could remain stable. This will force companies to reanalyze the way they use their water and adopt reduced water-consumptive practices. Inefficient use of water,

correlated with unsustainable practice, is in opposition to the Reasonable and Beneficial Use Doctrine which could lead to penalties (Wilson 2011).

Industrial Water Use

In Santa Rosa, industrial demand of potable water amounted to 251 acre-feet or over 81 million gallons among 69 customers. This would amount to an average of about 1.2 million gallons per year per industrial user. A particular food processing facility uses high volumes of water for sanitation, cooking, and cooling applications relative to the industrial average for Santa Rosa.

Figure 2 below shows the portion of water that the facility uses relative to all other commercialtype users which includes manufacturers or processors of materials defined by NAICS code sectors 31 to 33 in Santa Rosa (UWMP 2015).

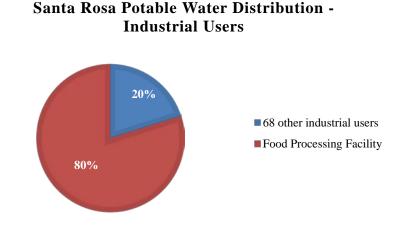


Figure 2 Pie Chart of Industrial Water Users

This level of consumption has led the food processing facility and the city to investigate steps in production that contribute to the highest levels of consumption. In order to do this, the city hired water-use consultants to audit the process to identify areas needing improvement.

Process Assessment

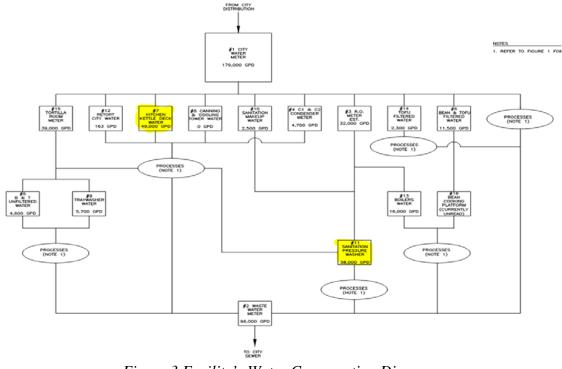


Figure 3 Facility's Water Consumption Diagram

After conducting the facility-wide audit, it was determined that the kettle deck was consuming the largest volumes of water for a single process relative to the other processes throughout the facility. Table 1 summarizes the results of the audit.

Table 1 Food Processes and associated water consumptions

Facility Processes	Acre-Feet/yr	Gallons/yr	Percentage
Total	1500	65,335,000	100%
Kettle Deck	411	17,885,000	27%
Sanitation	318	13,870,000	21%
All other	771	33,580,000	51%

In doing this, various consultants and members of the given food processing facility have come to an agreement that the current once-through kettle cooling operation is critical to the path of improved water-use. It should be noted that more recent information after the audit was released related to water consumption at the kettle deck with values closer to 18 million gallons.

Improvements to this cooling process have been made by members of a manufacturers' representative known as Air Treatment Corporation. They represent a large number of

HVAC&R related manufacturers including: ABB controls and drives, Polaris heat exchangers, and BAC heat rejection equipment (i.e. cooling towers, thermal energy storage, and evaporative condensers). Particular to the water used at the kettle deck, a closed-circuit cooling tower has been proposed to meet the cooling capacity while dramatically reducing the amount of water consumed. Although there are many features involved in the refrigeration process, this report focuses on the cooling of the food product from boiling water temperatures to the eighty degree Fahrenheit range. Improvements are expected to produce large monetary benefits from the reduced water usage and the anticipated increase production capacity. The objective of this report is to outline the methods of Air Treatment Corporation's product solution selection, the sales process, and the anticipated payback with a capital budgeting analysis.

Project Initiation

Sales Cycle

Once the job was prospected, Air Treatment Corporation began to engage in the technical sales process. A sales engineering manager from ATC was sent out to meet with clients in order to further define the problem. After meeting with the plant supervisor, a follow-up meeting was scheduled to learn more about the various constraints that would influence the type of refrigeration solution to be selected. Facility managers expressed that a decision would need to be made before the end of the fiscal year in 2016 and the payback would need to be in the range of three years. The next step in the technical sales process required the sales engineer to synthesize a proposed system solution with these key financial parameters in mind.

The next meeting consisted of a detailed economic analysis, including relevant equipment specifications, in order to illustrate returns on investment. While alternatives were addressed, there was a clear need to implement a recirculating system for the once-through cooling process. Upon further probing, there were a multitude of areas needing improvement for other facility refrigeration process thus expanding the scale of the project. Utilizing the areas of expertise in the room, appropriate data and information were collected in order to begin measuring the extend of savings that could be achieved from load shifting for the proceeding cooling process from 80 to 35 degrees Fahrenheit. This increase in project scope allowed solutions to be split into two phases: kettle cooling upgrades and mechanical cooling upgrades.

While negotiation strategies are important in the sales process, not enough information released in order to mention for this specific project. However, rebates provided by local utilities were leveraged as an incentive to pursue this capital investment.

With the right balance of professional consultation and expression from the clients, ATC closed the deal for cooling improvements at the kettle deck known as the first phase. The second phase was to replace the air-cooled condensing system, but is outside the scope of this report. For the first project phase, a specific model of an industrial fluid cooler will be selected that best accommodates the food processing facility parameters. Figure 4 below illustrates the basic components of the technical sales cycle.

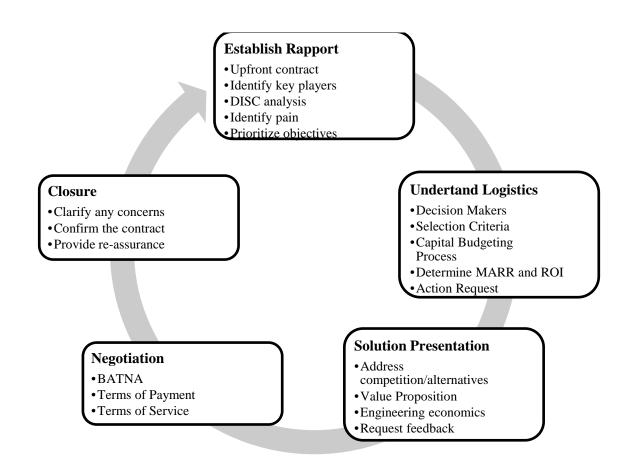


Figure 4 Technical Sales Cycle

Project Parameters

There are many benchmarks that can be applied to an "improved" operation. Facility improvements could result in environmental benefits to the community and further optimize production capacity, however, these are difficult project with information currently available. This report is primarily concerned with the savings incurred from reduced water consumption and improvements to the refrigeration system. A number of variables are involved with the justification of such a project: governmental regulation, utility incentive programs, facility constraints, and company priorities. To create a relevant benchmark of success, the company's priorities were outlined for the cooling solution to the kettle deck operation. The given food processing facility has arranged their list of priorities in the following order:

- 1) Food safety and quality
- 2) Water consumption
- 3) Cooling capacity

This list of company priorities will play an integral role in the decision making process for the best, long-term system solution.

LITERATURE REVIEW

Food processing

Definition

Food processing can be defined as any manipulation of the physical or chemical composition of raw ingredients in order to produce a food product. These processes include, but are not limited to the following: sanitizing, pressurizing, mincing, mashing, liquefying, cooking, baking, cooling, and packaging. Each of these processes has associated consumptions of energy and water. Learning more about the sequence and dependencies between the events in these food processes give us better understanding as to where beneficial improvements can be made.

Food Safety

When food production and processing became industrialized, leading to increased capacity, this provided for tighter tolerances in all aspects of food safety and quality assurance. Due to this, governmental organizations such as the Food and Drug Administration, have implemented provisions like Hazard Analysis and Risk-Based Preventive Controls in order to prevent food borne illnesses. Food processing companies are at minimum expected to produce a product that is deemed "safe" with non-toxic levels pathogenic bacteria, viruses, and other various contaminants. Ranging from food handling to temperature regulation, there are many opportunities for commodities to be spoiled and result in detrimental losses.

More specifically, with frozen foods processing, taking cooked product from boiling temperatures to freezing temperatures crosses a hazardous region for mesophilic microorganisms to thrive and reproduce. Figure 5 shows the growth behavior mesophilic pathogens in food. These bacteria are most replicate in food quickest around 100 Farenheight (38 Celsius) which is dangerous for human consumption because of how close this temperature is to the average human body temperature (AgriLife Extension 2016).

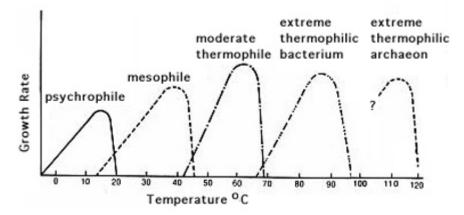


Figure 5 Spectrum of various bacteria's optimal temperature range (Todar 2008)

Because of this, the FDA has set regulations in the Food Code that require hot foods within the region of 135F to 70F to be cooled in under two hours (Food Code 2013). This is to avoid dangerous levels of bacteria growth, limiting exposure to humans. Popular pathogens in food include, but are not limited to the following: Salmonella, Campylobacter, and E. coli.

Furthermore, refrigerant selection is also important in regards to food safety. Propylene glycol is an example of a food grade refrigerant with water to reduce the freezing point for low temperature applications. Food-grade refrigerants are required when refrigerants come into such close proximity with the product throughout the plumbing of food processing facilities.

Food Quality

Characteristics like taste, appearance, nutritional value, and structure are greatly influenced by a product's temperature profile. Based on consumer preferences, the tolerances for these qualities can be extensive requiring high system precision and redundancy. Specialty food products, which lack GMO, lose the benefits of reduced risk of disease, improved food structure, and longer shelf life. Because the given facility produces a non-GMO product, they are forced to look into their production practices to provide desirable characteristics to stay competitive (UCSC 2005).

One characteristic particularly important to the given facility is the food structure. When foods are frozen, the water contained within the product's plant cell walls expand. This compromises the structure of food product, especially with relatively high water contents. However, this can be avoided by rapidly cooling which forms many smaller internal ice crystals, thus minimizing cell wall rupture (UMich 2014).

In summary, product physical and chemical consistency in food production are extremely important in high volume, automated operations. Ensuring a strong cold chain with proper cooling capacities provides greater resistance to inconsistencies and hazards in system outputs. These considerations play an important role in properly assigning heat rejection solutions to the kettle deck cooling process.

Case Study: Industrial Tomato Processing Operation - Water Energy Nexus

When looking to create an operational definition for success in this project, it is important to put inputs and outputs in comparable terms. For example, contributions from research institutions and the Department of Energy used various water-energy nexus methodologies to analyze a particular tomato processing facility and recovery payback potentials. With an understanding of the tomato paste production process in Figure 6 below, tomato water condensate could be recovered to sanitize, to transport tomatoes in processing flume, or to recover thermal energy. By analyzing the process in terms of comparable flows of heat and water, the TWC was recycled and used for steam generation in the "hot break". The hot break is an essential process in the

tomato paste processing industry to provide a desired viscosity. In this case, the circled region indicates where the water was recommended to be reused.

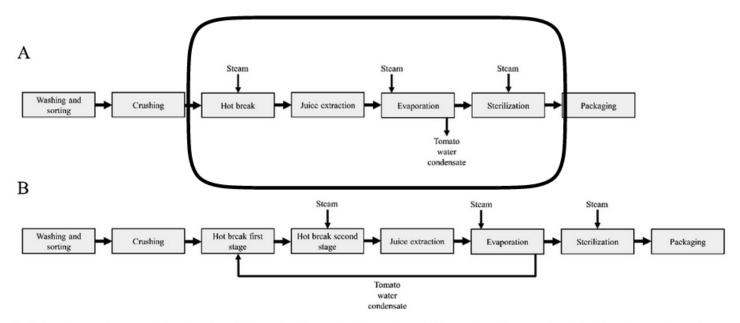


Fig. 1. Flow diagram of processes in tomato paste production under (A) conventional processing and (B) processing with recovered waste heat from tomato water condensate applied to the hot break.

Figure 6 Typical tomato paste food process v. recommended (Amán 2015)

This type of reuse had a cascading effect and allowed for four different sources of savings down the process chain. First off, the cost natural gas burned to create the steam was reduced. Additionally, the volume of water and its associated well pumping cost for steam production were also negated. Tomato water previously was sent to a cooling tower before being disposed of as sewage. Moreover, since the TWC would be recycled for its heat, the facility could avoid energy expenditures related to the cooling tower.

Furthermore, the study emphasized that less volume of water would be drained to wastewater facilities contributing to even more cost-benefits (Amán, Maulhardt, Wong, Kazama, & Simmons 2015).

It's clear that the sustainable strategies implemented produced large annual cost-savings, but each facility must analyze its own process by food type and facility constraints in order to make the best improvements. In summary, two universally important resources are of utmost importance to all production facilities: time and money. However, breaking down the constituents that contribute to slack time and unnecessary expenditures are key to streamlining unique processes to their highest potential. Improved operating efficiency and sustainable improvements are made possible with proper system analysis and adaptations.

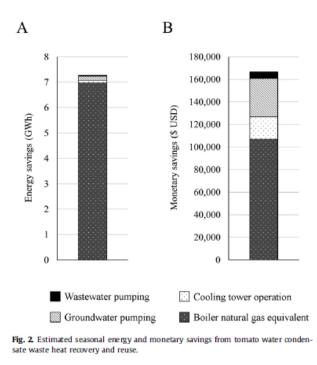


Figure 7 Energy savings from tomato water condensate recirculation and reuse (Amán 2015)

Constituents of Financial and Time-Based Constraints

Water-use

Industries can get their water from two categories of sources: public supply and/or groundwater. Water is used in many tasks of food processing: conveyance, cooking, cooling, sanitation, brining, and even as an ingredient in the final product. Food and kindred products manufacturing are among the top three most water consumptive industries in California rate at 1967 gallons per employee per day. As of year 2000, food processing (i.e. dairy, meat, fruit and vegetable, and beverage processing) constitutes 24% of all industrial water use as seen in Table 2 (Gleick 2003)

Table 2 Estimated 2000 Water Use in California's Commercial and Industrial Sectors in AF/year (provided by Pacific Institute)

Commercial Water Use	(AF/Year)	Industrial Water Use (AF/Year)		
Schools	251,000	Dairy Processing	17,000	
Hotels	30,000	Meat Processing	15,000	
Restaurants	163,000	Fruit and Vegetable Processing	70,000	
Retail	153,000	Beverage Processing	57,000	
Offices	339,000	Refining	84,000	
Hospitals	37,000	High Tech	75,000	
Golf Courses	229,000	Paper	22,000	
Laundries	30,000	Textiles	29,000	
		Fabricated Metals	20,000	
Unexamined Commercial	621,000	Unexamined Industrial	276,000	
Total Commercial (a)	1,852,000	Total Industrial	665,000	

For cooling processes, regional water availability and resupply rates will greatly influence where industrial users can expect to get water from. Specific to California, freshwater resources have become increasingly important and at times limited due to the transforming climate. Therefore, the largest consumptions of water, whether it is cooling or sanitation, should be evaluated for improvements.

Due to geographical and political differences between regions, the structure for water and sewage rates vary greatly. Sewage rates can be based on total volume, demand flow rate, TSS, BOD content, or any combination of these. Dependent on each food process, steps can be taken to optimize the cost of sewage based on a given rate structure. For example, if wastewater treatment plants only charged by TSS and not total volume, theoretically water could be used to dilute effluent, lowering the concentration seen at the wastewater facility, thus reducing sewage rates. Although this is an unrealistic scenario, this is the premise behind food processing system optimization as it relates to water-use.

Electricity

Electrical supply capacity, hours of operation, and building load profile are also common constraints in the food manufacturing and processing industry. With a general understanding of power generation, power distribution, and power quality, this allows us to understand why certain characteristics are considered in system selection.

It is important to keep in mind that electrical utility rates are determined by a provided a rate structure dependent on the following criteria: user-type, demand type, power quality, and time-of-usage. Typical peak hours of operation are from 12 P.M. to 6 P.M. as seen in Figure 8 below.

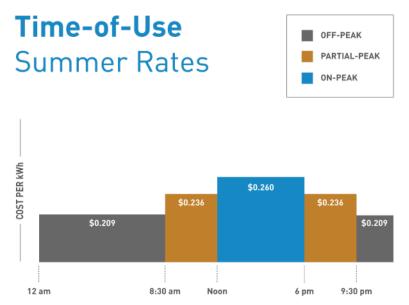


Figure 8 Sample rate structure based solely on time-of-day principle (provided by PG&E)

Though electricity consumption is a relevant variable, water –use efficiency will likely contribute to the greatest source of savings further influencing a system solution.

Fixed Assets

Among many resource constraints, existing facility processing equipment and buildings space availability are variables that system optimizers have the least control over. This is because there are many contingencies outside of cooling optimization that go into the way a facility best processes their food. As a response, sales and application engineers must be diligent to recognize this and propose system solutions that best integrate with existing food processing systems.

Capital goods such as equipment may include, but is not limited to the following: heat exchangers, cooking kettles, blanchers, storage vessels, filters, and pasteurizers. In the case of the given food processing facility, jacketed kettles are used to both cook and cool the food product. The Lee industrial kettles come with a variety of features including: agitators, uniflow jackets, lid-types, and hydraulics for tilting based on capacity. These special features and equipment capacities play an important role in the kettle cooling capacity calculation with appropriately applied assumptions.

The largest and generally the costliest form of capital is the industrial building itself. This is subject to the least amount of change when seeking to implement heat rejection solutions. Refrigeration equipment often consumes a large footprint of area and need to be selected with the necessary constraints in mind for future developments, current processing operations, and scheduled maintenances.

Additionally, minimum spatial requirements are specifically important to consider as well. Compromising the proper spatial requirements of certain heat rejection equipment is detrimental to its performance when the discharge air is recirculated back into the air inlet.

Finally, sound pollution to the surrounding environment could be an issue if facilities are located in residential areas. Proper sound attenuation equipment is available for equipment with noise produced by fans and compressors.

Prospective Operation

Future operation and expansion are also extremely important to consider in providing a system solution. A growing business may be looking into other relevant capital investments that could couple well with the system solution in mind. In the case of the given food processing facility, a Blentec food processor has been purchased to improve the mechanical cooling process. This will be taken into consideration when ATC proposes a system solution for phase 2 of the cooling process.

Refrigeration in Food Processing

Principles and operation of refrigeration technologies

Refrigeration equipment commonly takes advantage of the chemistry of selected refrigerant fluids in order to optimize heat transfer with minimized compressor power expenditure. Generally, most matter experiences three states: as a solid, a liquid, and/or a gas. Depending on the state variables they are prescribed (temperature, pressure, etc.), they can occupy any of these forms. Based on changes of these state variables, substances can experience phase changes going from liquid to gas, solid to gas, etc. Particularly, water has a relatively high latent heat of vaporization. This means that it will accept much more heat while changing phase to a vapor compared to many other fluids at atmospheric pressure. This makes water an effective medium for heat rejection at the right wet-bulb conditions.

Evaporative Cooling Systems

One prime example of an evaporative cooling system is the cooling tower. Cooling towers uniquely take advantage of water's chemistry capable of rejecting equivalent amounts of heat without the use of a compressor. Given certain parameters of relative humidity, dry-bulb, and wet-bulb temperatures, evaporative cooling may be applied. In order to identify the appropriate conditions for this kind of cooling, psychrometric charts are a tool used to approximate the feasibility for a given application.

Where water vapor pressure in the ambient air is greater, water molecules will be less likely to escape a droplet, thus reducing the extent of evaporation. Conversely, lower vapor pressure will contribute to more molecules escaping the confines of a droplet. Wet-bulb temperature serves as an indication for the efficacy of evaporative cooling which is dependent on atmospheric pressure and relative humidity at a given dry-bulb temperature. Dry-bulb only takes into account the gas constituents of air when measuring the average kinetic energy of a substance (i.e. temperature). Understanding the distinction between the dry-bulb and wet-bulb temperatures is important in order to understand when evaporative cooling systems can be implemented.

Facilities where the exit water temperature required is above the regional wet-bulb temperature could consider evaporative cooling as product solution to cooling (BAC 2015). An example of commonly recognized evaporative cooling equipment is the cooling tower as shown in Figure 9.

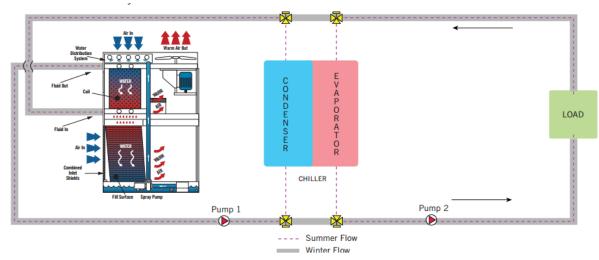


Figure 9 Typical Closed-circuit cooling tower (BAC Product Handbook Vol. 5)

As previously mentioned, cooling towers can be used in conjunction with water-cooled chillers or they be directly applied to the heat load. This equipment removes heat from surrounding air by allowing water and air to passing through channels or fill. Above the fill are water sprayers reducing droplet size with application across the entirety of the top layer of fill. We can expect the reduction in droplet size facilitates a more rapid mass and energy transfer between the airwater boundaries due to the increased droplet surface area-volume ratio. Additionally, the tortuous path the water must take increases the air-water interface time allowing extended evaporation to occur. The evaporation on the draining water rejects heat into the outside environment thus cooling the return water. Figure 10 below illustrates the relationship between the temperature of the water in the circuit and the air passing through the tower.

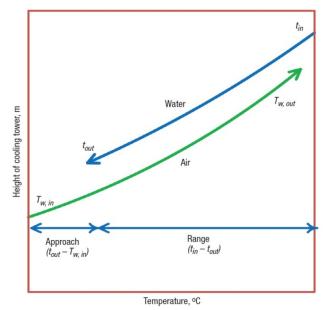
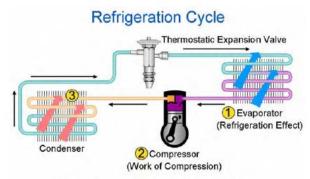



Figure 10 Air and Water Temperature through Tower Profile (Vengateson 2017)

Industrial fluid coolers, also known as closed-circuit cooling towers, utilize heat-exchanging coils to keep the process fluid in a separate circuit. The refrigerant fluid is either potable water or a water-glycol mixture.

The coined term for a cooling tower being the sole heat rejection medium is known as "free cooling". This is because no mechanical cooling is used, resulting in little to no operating costs. Technically, input work is still required to pump water with associated pipe friction losses and sprayer pressures requirements. Additionally, work-input is required to run the fans for induced inlet air and heaters for defrost cycles in cold regions. However, these amounts are relatively small compared to the amount of input energy normally required to achieve the same level of cooling with a vapor-compression based chiller.

Vapor-Compression Refrigeration Systems

^{1 + 2 = 3 (}Total Heat of Rejection) Figure 11 Diagram showing how heat rejection is achieved (provided by Carrier)

Figure 11 illustrates the various components of a vapor-compression refrigeration cycle. This is a popular cycle found in industrial refrigeration equipment. The compressors require great input horsepower in order to achieve those high pressures. The compressor provides the pressure necessary to ensure condensation through the next step for optimal heat rejection into the hot reservoir. In order to avoid high operating expenses, while cooling large loads, application engineers may select thermal energy storage technology over on-demand chillers.

On-demand chillers can provide for immediate blast chilling, but often have high associated energy consumption costs. If operations take place during peak-hours of the electrical grid, this can result in exponentially higher utility rates. Secondly, if a central system chiller needed maintenance, there would not be a reserve source of cooling to keep operation going. Finally, implementing a design with a singular chiller would be difficult in order to meet the varying demand from a food processing facility and from the changes in atmospheric climate. Strategies to avoid these problems require application engineers to explore load shifting strategies and technologies by utilizing thermal energy storage.

Case Study: Cheese Production Facility – Load Shifting

A study on a cheese production facility in Hanford, California serves a great example to the advantages of load shifting with thermal energy storage. Designing a system to build ice overnight when rates are low and demand is not immediately necessary allows the cooling requirements to be appropriately satisfied during operating hours. A multitude of thermal energy storage options were considered, but a dynamic, slurry thermal energy storage system was chosen with 130% reserve storage capacity in the case of scheduled maintenance. In addition, this particular solution did not require a defrosting cycle with its ice insulation-effect inhibiting design. Finally, the dynamic TES system allows for ice storage and production to be separated.

Static systems are designed with the intent that the ice formed around the coils remains until it is melted externally from warm water downstream of load or internally from the coil. However, the dynamic system results in the higher cooling capacity for the short durations. There are two reasons for this: 1) the high surface area of the slurry ice particles and 2) the direct contact of warm water from the load with the slurry ice (Gladis 1997).

These principles of heat transfer and load shifting strategies are pivotal to providing the best long-term solution for a given cooling process like those at the given food processing facility. A deeper look into client expectations, facilities operations, and available technologies will provide for more beneficial, long-term solutions.

HVAC&R Industry Terminology and Thermodynamic Principles

Cooling capacity and total heat rejection are other constraints to be specified in this project. In order to properly analyze a cooling method, it is important to understand the difference between an open system and a closed system in thermodynamics. An open system is where mass and energy crosses the thermal boundary thus displacing heat into surroundings. However, a closed system allows heat energy to cross the boundary, but no mass. These fundamental thermodynamic definitions of systems are the framework behind many refrigeration system technologies.

Furthermore, cooling capacity is defined by tons of refrigeration or the amount of energy required to completely freeze a ton of liquid water at 0 degrees Celsius in a period of 24 hours. In other words, cooling capacity is the amount of transferred heat energy that is capable of being rejected over a certain period of time. This is the HVAC&R industry's standard unit for measuring rate of heat rejection between temperature regions across a certain boundary.

Heat Rejection Performance – Vapor-Compression Systems

Measuring thermal performance is different for each piece of heat rejection technology. For example, chillers using the vapor-compression cycle measure this efficiency with the COP from Equation 1.

 $COP (refrigeration) = \frac{Q_{in}}{W_c}, \text{Eqn. 1}$ Where, $Q_{in} = heat \ gained \ through \ the \ evaporator \ coils, kJ \ or \ BTU$ $W_c = work \ expended \ by \ the \ compressor, kJ \ or \ BTU$

The vapor-compression process can be seen in Figure 12 with the pressure-enthalpy diagram. This measure of efficiency accounts for the amount of heat absorbed through the evaporator coil per unit of energy expended by the compressor. It should be noted that this is a theoretical value and could largely misrepresent realistic COP values due to irreversibility of the operation in actual performance. Figures 13 illustrates the difference between ideal and actual operation.

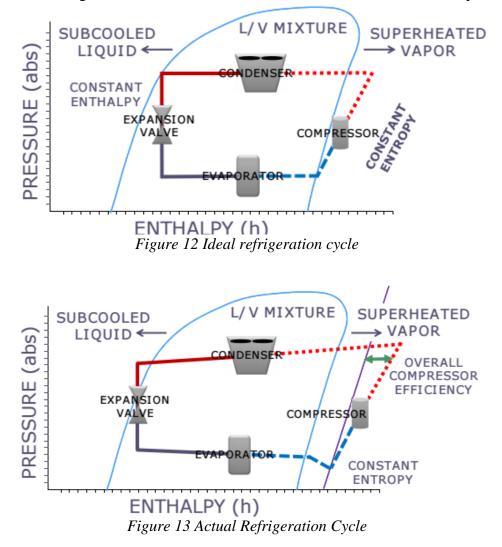
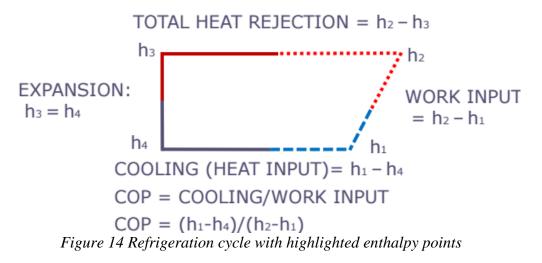



Figure 14 below illustrates the enthalpy values at different points in the refrigeration cycle and how they are used to calculate total heat rejection and compressor work.

Heat Rejection Performance – Evaporative Systems

Cooling towers are a prime example of an evaporative cooling system. They are often used in conjunction with chillers to absorb the heat from condenser side. This allows for the heat energy to be transferred into the atmosphere leveraging the latent heat of vaporization of water. The thermal performance or efficiency of a cooling tower is based on the following equation:

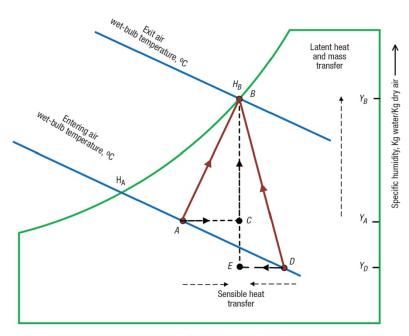
$$\mu = \frac{(t_i - t_o)}{(t_i - t_{wb})} * 100, \text{Eqn. 2}$$

Where,

 $\mu = \text{Cooling tower efficiency, \%}$ $t_i = \text{inlet temperature of water to the tower, °F or °C}$ $t_o = \text{outlet temperature of water from the tower, °F or °C}$ $t_{wb} = \text{wet bulb temperature, °F or °C}$

Simply put, there are two primary things that contribute to improved cooling tower thermal efficiency: range and approach. Range is the difference between the entrance and exit temperatures of the recirculating water. Approach is the proximity of the exit water's temperature to the regional wet-bulb temperature.

This measures of efficiency neglect to factor the energy and water consumption required to accomplish this cooling effect. Furthermore, a decision matrix with cost and unique features should be used to compare the heat rejection options to best meet a given project's definition of success.


While the pressure-enthalpy diagram is useful for measuring the heat rejected in chillers, cooling towers use the psychrometric chart for that information. In order to extract useful information from the psychrometric chart, we must know three independent variables: barometric pressure, dry-bulb temperature, and a value that indicates the concentration of vapor in the air (wet-bulb temperature, humidity ratio, water vapor pressure, dew point, etc.) Table 3 indicates the variables found on the psychrometric chart and how they are obtained.

Quantity	Symbol	Measurable?
Dry bulb temperature	T _{DB}	Yes
Wet bulb temperature	T _{WB}	Yes
Dew point temperature	T _{DP}	Yes
Barometric pressure	Pbar	Yes
Water vapor pressure	Pwv	No
Relative humidity	RH	Yes
Specific enthalpy	h	No
Specific volume	V	No
Humidity ratio	W	No

Table 3 Variables from the Psychrometric Chart (provided by Green Building Advisor)

The psychrometric chart is a tool used to identify the properties of air based on the amount of water vapor present. With three independent variables and the correct assumptions, this tool allows both the heat rejection and the volume of water evaporated to be calculated for a given cooling tower.

The psychrometric chart below illustrates the sensible and latent heat absorbed by the air as it passes through the tower's fill to the outlet.

With value for air flow and two known points, the volume of water evaporated from the cooling tower can be computed based on the change in specific humidity or humidity ratio. The increase in the humidity ratio represents the water vapor absorbed by the air as it passes through the

cooling tower. In most circumstances, it is safe to assume that air exits the cooling tower at saturated conditions or 100% relative humidity as seen in Figure 15.

Path A-C-B represents conditions where the ambient air is below the temperature of the tower inlet water. Path D-E-B represents the opposite situation, which greatly affects the amount of water the equipment can expect to evaporate for the same amount of total heat rejection. Changes in wet-bulb temperature are the primary drivers for changes in specific enthalpy, which indicate the cooling effect of the equipment. The similarity between the slope of specific enthalpy and the slope of wet-bulb lines verify that strong relationship in Figure 16 below.

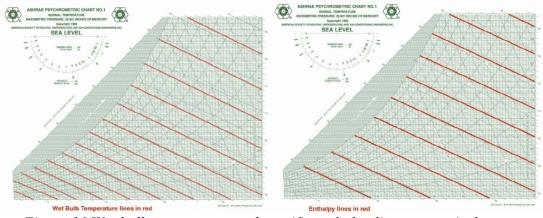


Figure 16 Wet bulb temperature and specific enthalpy lines respectively

Establishing proper dry-bulb conditions for accurate estimates of cooling tower water usage and heat rejection are imperative and require justification.

PROCEDURES AND METHODS

Initial Considerations

Regional Weather Conditions

For the given food processing facility, the current cooling process of 70 F water is being routed through to cool the kettles. Additionally, regional wet-bulb temperatures of 67.5 F indicate that Santa Rosa climate provides favorable conditions for evaporative cooling in this application. These wet-bulb conditions are guaranteed for 99% of the year while 3 to 4 days of the year are expected to have wet-bulb temperatures above this temperature (BAC 2015). Weather data indicates that annual dry-bulb temperature is 71.3 F while higher-end temperatures in summer months reach approximately 80 F (US Climate Data 2017). This information indicates that cooling towers should be considered for a refrigeration solution.

Manufacturer

Among the many cooling tower manufacturers, Baltimore Air Coil Company will be the equipment manufacturer ATC is representing. BAC offers industry leading technology for both open and closed-circuit cooling towers. In order to determine which should be selected, a decision matrix was developed in order to quantitatively determine between tower types. Based on a series of meetings, the information of qualitative features the client was looking for were be translated into quantitative values. The raw scores were developed according to the client's priority levels of the objectives. Table 4 below indicates which of the two would be selected.

OCCT of	COCT						
OCCT or							
Raw Sco	oring						
<u>Matrix</u>							
	1-3 where, 1	= poor, 2 = sa	tisfactory, 3 = ex	cellent			
	Food	Food	Capacity	Energy	Treatment	Product	
	Safety	Quality	Increase	Savings	Savings	Cost	
ОССТ	2.00	2.00	2.00	3.00	2.00	2.00	
СССТ	3.00	2.00	2.00	2.00	3.00	2.00	
Importa	nce Factor						
	0-1 where, 1	= highest imp	oortance, 0 = lov	vest impor	tance		
	Food	Food	Increase	Energy	Treatment	Product	
	Safety	Quality	Capacity	Savings	Savings	Cost	
	1.00	1.00	0.50	0.50	0.75	0.50	
Weighte	ed Scoring Ma	atrix					
	Food	Food	Increase	Energy	Treatment	Product	
	Safety	Quality	Capacity	Savings	Savings	Cost	Total
ОССТ	2.00	2.00	1.00	1.50	1.50	1.00	9.00
СССТ	3.00	2.00	1.00	1.00	2.25	1.00	10.25

Table 4 Decision Matrix for Open or Closed Circuit Cooling Tower

A closed-circuit cooling tower has been determined as the better category for a refrigeration solution at the given food processing facility. While the OCCT provides reduced energy costs, it compromises food safety by having an open circuit make contact with food processing equipment inside the facility. Furthermore, the closed-circuit cooling tower has associated water savings because the water does not need to be treated. With this established, a more detailed selection process of which model industrial fluid cooler (i.e. CCCT) will be selected.

There are six main models of cooling towers to select from the BAC provider. The towers vary primarily based on the fan system and the single cell heat rejection capacity ranges. Each product provides unique features which will be outlined in Figure 17 and 18 below.

	FXV	FXV DUAL AIR INTAKE	PFI	
Model				
Flow and Fan System	Induced Draft Combined Flow, Axial Fan	Induced Draft, Combined Flow, Axial Fan	Induced Draft, Counterflow, Axial Fan	
Single Cell Capacity Range	29 - 424 Nominal Tons* 87 - 1,272 USGPM at 95°F to 85°F at a 78°F	344 - 624 Nominal Tons* 1,032 - 1,872 USGPM at 95°F to 85°F at a 78°F	18 - 360 Nominal Tons* 54 - 1,080 USGPM at 95°F to 85°F at a 78°F	
UNIQUE FEATURES	 Advanced Coil Technology minimizes scaling and fouling potential Combined Flow Technology increases cooling capability Large access doors for easy maintenance access Single-point wiring for motors and vibration cutout switch Independent Fan and redundant pump options Pre-assembled platform packages Shake table tested up to S_{DS} of 2.4g 	 Advanced Coil Technology minimizes scaling and fouling potential Combined Flow Technology increases cooling capability Ideal for large tonnage applications Highest single cell capacity 	 Ideal competitor replacement unit Patent-pending OptiSpray[™] Technology lowers operating costs OptiCoil[™] System Dry operation mode for severe weather operating conditions Independent Fan and redundant pump options Shake table tested up to S_{bs} of 3.75g Single-piece rigging 	

Figure 17 Closed Circuit Cooling Tower Product Line Set 1

VF1	VFL	HXV HYBRID TOWER	
			Model
Forced Draft, Counterflow, Centrifugal Fan	Forced Draft, Counterflow, Centrifugal Fan	Induced Draft, Combined Flow, Axial Fan	Flow and Fan System
4.1 - 543 Nominal Tons* 12.3 - 1,629 USGPM at 95°F to 85°F at a 78°F	3.9 - 108 Nominal Tons* 11.7 - 324 USGPM at 95°F to 85°F at a 78°F	160 - 305 Nominal Tons* 480 - 915 USGPM at 95°F to 85°F at a 78°F	Single Cell Capacity Range
 Centrifugal fan for indoor and ducted installations Moderate dry operation for systems that benefit from dry operation Optional finned coils to enhance dry operation mode 	 Low profile to met low height requirements Centrifugal fan for indoor and ducted installations Moderate dry operation mode for systems that benefit from dry operation Optional finned coils to enhance dry operation mode Single-piece rigging 	 Hybrid technology - using sensible, adiabatic, and evaporative heat transfer - for water conservation up to 70% over conventional evaporative products Maximum dry operation for systems that benefit from dry operation Suitable for high temperature process fluids greater than 180°F 	UNIQUE FEATURES

Figure 18 Closed Circuit Cooling Tower Product Line Set 2

It is important that we calculate the minimum tonnage required to see which of the cooling towers will be needed. To estimate initial feasibility, capacity ranges in the product literature are based on typical conditions where inlet water is 95 F, outlet water is 85 F, and the wet bulb temperature is 78 F. The associated tonnages ranges are based on a nominal 3 gpm per ton of cooling. Selection software will tailor the expected performance of a cooling tower for a design day in Santa Rosa. A "design day" includes information about the cooling process load and the prescribed atmospheric conditions.

The unique features of each tower indicate where their application would best be suited. The PFI towers are designed to operate in climates with high seasonal temperature variation with anticipated dry operations during the winter. These features disqualify the PFI as a potential solution because it would be difficult to justify the inflated cost in a temperate region as Santa Rosa. Additionally, the models equipped with centrifugal fans are used to overcome static head caused by indoor installation and the ductwork. Because of this feature, models with centrifugal fans have higher energy consumption making it irrelevant for the outdoor application at the given food processing facility. Finally, the HXV hybrid tower can be disqualified as a solution because they are best suited for applications with process fluids at temperatures greater than 180 F. This leaves two potential system solutions: the FXV and dual air intake FXV as seen in Figure 17 above. In order to determine which of the two is more feasible, we must calculate the required tons of refrigeration from the current process and develop "design day" parameters for the selection of new equipment.

With an understanding of company priorities and the facility's current cooling process, the following steps were taken to develop the best system solution:

- 1. Compile Kettle Cooling Testing Data
- 2. Calculate the current, total heat transferred out of the product, $Q_{out}(BTU)$
- 3. Calculate the current, rate of heat transfer out of the product, \dot{Q}_{out} (BTUH or R Tons)
- 4. Determine the final water temperature of the once-through cooling system, T_f (°F)
- 5. Establish design day criteria and troubleshoot inputs
- 6. Select industrial fluid cooler model using BAC selection software
- 7. Conduct an engineering economic analysis to project returns on investment
- 8. Conduct a sensitivity analysis to determine integrity of project

Kettle Testing Background

The plant manager at the given food processing facility conducted kettle tests where a temperature probe measured the changes in temperature over the course of approximately two hours at given kettle inlet water temperatures. This raw data collection would allow us to complete the first step to provide the best system solution. Table 5 and Figure 19 are the components of a sample kettle cooling test. A complete summary of kettle testing data can be found in Appendix E.

Figure 19 Kettle No. 18, 500-gal jacketed capacity fitted with agitator Table 5 Sample Kettle Cooling Test

Test 4, Kettle 18 (Agitator 19 RPM)								
Date	WIP	Back Lid	Bypass Valve	Flow Rate (GPM)	Waste %			
9/29/2015	631219	Open	Open	15	100%			
Time	WIP Temp	Cooling Rate	Gallons Used	Gallons Wasted	Gallons Recycled			
8:20 AM	206° F		0	0	0			
8:35 AM	158° F	48° F	225	225	0			
8:50 AM	130° F	28° F	450	450	0			
9:05 AM	117° F	13° F	675	675	0			
9:20 AM	106° F	11° F	900	900	0			
9:35 AM	97° F	9° F	1125	1125	0			
9:50 AM	91° F	6° F	1350	1350	0			
10:05 AM	86° F	5° F	1575	1575	0			
10:20 AM	82° F	4° F	1800	1800	0			
10:35 AM	79° F	3° F	2025	2025	0			
2:15	127° F	14.11° F						

25

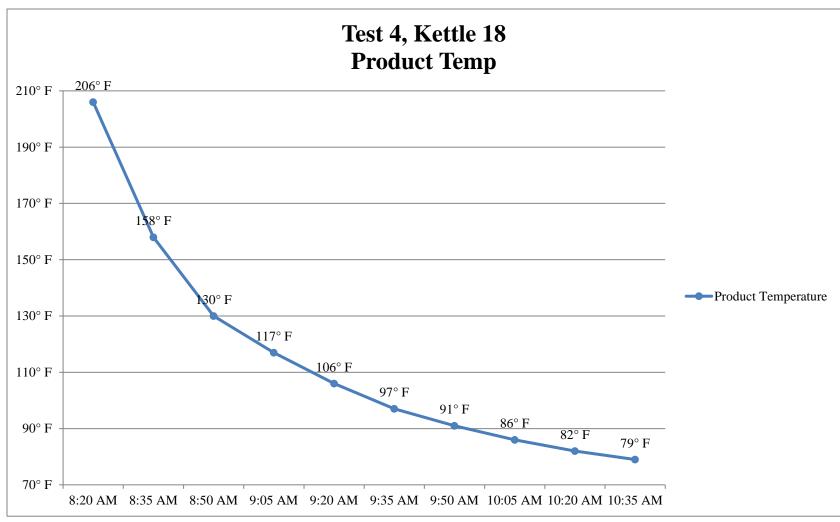


Figure 20 Temperature Profile of Representative Kettle Cooling Test

RESULTS AND DISCUSSION

Compilation of Kettle Testing Data

The kettle cooling test information was collected and organized in a fashion that gave us information about the behavior of the product temperatures as water flowed through the jackets over a certain period of time. That period of time represents the amount of time normally consumed in order to achieve desired cooling of the food product.

Condition	Initial Temp (Water)	Initial Temp (Product)	Final Temp (Product)	Change of Temp (Product)	Total Hours	Jacket Water Flow	Total Water Used	Jacket Water Flow
Average	70	199	85	-114	2.07	≈15	1799	870
All Tests	F	F	F	F	hrs	gpm	gal	gph
Extreme	73	208	76	-132	1.50	15	1350	900
All Tests	max F	max F	min F	delta F	min hrs	max gpm	gal	gph
Representative	70	206	79	-127	2.25	15	2025	900
Test 4, No. 18	F	F	F	F	hrs	gpm	gal	gph

Table 6 Summary of Kettle Testing Data with various conditions

Conclusions from the kettle cooling tests indicate three different process-cooling conditions: average, extreme, and representative conditions. Average conditions were based on averages taken from over 9 sets of kettle tests involving a variety of kettle capacities (i.e. 500 gal, 400 gal, 300 gal). Extreme conditions were based on the highest initial product temperature, lowest product final temperature, warmer inlet water, and the minimum cooling time. The large value heat rejection value from the control-mass thermodynamic problem will explain why the specific temperature, duration, and flow values were chosen. Finally, the representative condition includes a kettle that undergoes a testing process involving a common kettle capacity with expected temperature ranges based on what the head cook has experienced in the past. For these criteria, Kettle No. 18 from Test 4 was deemed representative as seen in Figure 19, Table 5, and Figure 20 above. The variation of values in the data set may result from varying flows through the kettles, size variance in kettles, and varying day-to-day water inlet temperatures. The following considerations should be included in future kettle cooling tests to ensure that readings are most representative:

- Use proper flow measurement and logging technology for cooling water
- All solutions should be agitated at the same speed
- Constituents and characteristics of food product per kettle test should be documented
- Location of the temperature probe should be documented

- Human errors in testing procedures should be documented
- Inlet water temperatures for each kettle test should be documented
- Measurement of product weight should be documented

Developing the Energy Balance for the Closed-System

The following assumptions were made in order to produce a feasible value of tonnage required:

- The food product is contained primarily within the hemispherical portion of the kettle
- Food product is filled to 60% of total kettle capacity
- Sensible heat transfer between food product and cooling water
- Heat rejected from walls of steel kettle to surrounding atmosphere negligible
- Kettle lid was closed, creating a closed system
- Heat primarily conducted through steel jacketed portion
- Isochoric process
- 15 gpm of water flow per kettle

Guided by the zeroth law of thermodynamics, heat transfer can be expected from a variance in temperatures across the boundary. Additionally, the first law of thermodynamics states that energy is neither created nor destroyed, but transferred or transformed instead. This transfer occurs to/from the system, through a defined boundary, from/to a surrounding environment. It is important to note that only changes in energy can be readily observed with this simplicity. Figure 19 below illustrates the schematic used to conduct energy balance computation.

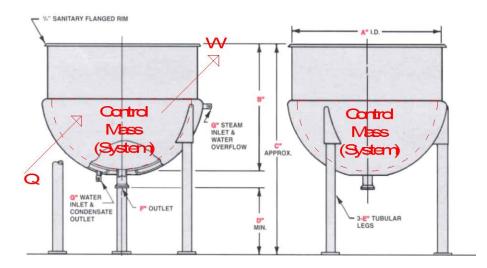


Figure 21 Schematic of control mass for closed-system calculation

For a proper deduction of heat rejected, the fundamental energy balance should be used. The simplified energy balance equation for a closed system is denoted as follows:

$$\Delta E_{total} = \Delta U + \Delta KE + \Delta PE$$
, Eqn. 3

Where, $\Delta E_{total} = net \ change \ in \ energy \ of \ system, BTU$ $\Delta U = net \ change \ in \ internal \ energy \ of \ system, BTU$ $\Delta KE = net \ change \ in \ kinetic \ energy \ of \ system \ , BTU$ $\Delta PE = in \ potential \ energy \ of \ system, BTU$

We know that the system is not changing in kinetic or potential energy, therefore:

 $\Delta E_{total} = \Delta U = Q_{system} - W_{system}$, Eqn. 4

Where, $\Delta E_{total} = total change in energy of system, BTU$ $\Delta U = change in internal energy of system, BTU$ $Q_{system} = heat exchanged into system, BTU$ $W_{system} = work exchanged out of system, BTU$

Sign convention for heat and work into system are opposites. While heat flowing in the system is represented as a positive number, work into system is represented by a negative number. The schematic illustrates heat and work and their associated directions.

Since this is an isochoric process (i.e. constant volume), we assume the fluid does no work to the system. Another assumption is that the lids on the kettles are kept closed during the cooking/cooling process. Therefore, this creates a fully "closed" system where no mass crosses the boundary. The change in total energy of the fluid can be described by:

$$\Delta E_{total} = \Delta U = Q_{system} = 0 = Q_{in} - Q_{out}$$
, Eqn. 5

Since there is no heat flow into the product, which produces:

$$\Delta E_{total} = -Q_{out}$$
$$-Q_{out} = -Q_{Product (system)} = m c \Delta T, \text{Eqn. 6}$$

Where, $Q_{product} = heat \ rejected \ from \ food \ product, BTU$ $\Delta T = difference \ between \ final \ and \ initial \ product \ temperature, ^F$ $m = mass \ of \ food \ product, lb$ $c_{beans} = specific \ heat \ of \ representative \ food \ product, \frac{BTU}{lb^{\circ}F}$

Using the mass of our product, a representative heat capacity, and a best condition for temperature change, we can solve for the heat rejected out of the kettles. The following results were obtained by calculating the heat rejected with all three of those conditions. The kettles cook a large variety of products including, but not limited to: vegetables, black-eyed peas, sauces,

beans, and some various chili recipes. Beans provided a representative heat capacity and bean density was used to estimate the mass of product in the kettles. A representative mass of 2700 lbs was calculated. Additionally, eight 500-gallon kettles were used to represent a design day heat load. Since each of our kettles requires 15 gpm of water flow, we can expect a total required refrigerant flow of 120 gpm. The following tables contains the results of our calculations.

Total Current Heat Transfer from Product

Table 7 Total heat rejection for each condition

Q product	Per Kettle	All 8 Kettles	
Condition	BTU	BTU	
Average	-277,000	-2,216,000	
Extreme	-321,000	-2,568,000	
Rep.	-309,000	-2,472,000	

Current Rate of Heat Transfer from Product

The rate of heat transfer is dependent on the amount of time the kettle tests consumed. Most of the tests were around two hours. Test durations will be deduced according to their corresponding condition.

Table 8 Rate of heat rejection for each condition

Q rate	Duration	Per Kettle	All 8 Kettles	Per Kettle	All 8 Kettles
Condition	hrs	BTUH	BTUH	R Tons	R Tons
Average	2.07	-134,000	-1,072,000	-11	-89
Extreme	1.50	-214,000	-1,712,000	-18	-143
Rep.	2.25	-138,000	-1,104,000	-12	-92

Among these three conditions, the average condition was determined to be the best information to use for the selection software. With knowledge of the rate of heat rejection, various methods can be used to determine the temperature of the water leaving the kettle jacket.

Determining Final Water Temperature from Kettle Jacket

There were two methods used in order to determine the final water temperature: using cooling tower equations and using steam tables with control-volume analysis.

Method 1

With proper rearrangement, Equation 7 is used to determine the final water temperature.

$$\Delta T = T_f - T_i = \frac{\dot{Q}}{L_{in} * c_w} , \text{ Eqn. 7}$$

Where,

 $\dot{Q} = rate of heat rejected, \frac{BTU}{hr}$ $\Delta T = the difference between the water inlet and outlet temperature, °F$ $<math>L_{in} = mass flow rate of the water, \frac{lb}{hr}$ $c_w = specific heat of water, \frac{BTU}{lb°F}$

Since the assumption was made that the only significant heat transferred is to the jacket water, the water flows in a fixed volume, the following equivalence can be developed:

$$-\dot{Q}_{product} = \dot{Q}_{jacket water}$$
, Eqn. 8

Water in this temperature range was considered relatively incompressible so a single value for density could be used. Using Equation 8 above, the final temperature of the water was calculated to be 88 F. This final water temperature value makes sense because our food product and water are approaching thermal equilibrium. We can verify this is a reasonable value by cross-referencing with the T-v diagram and steam tables for water.

Method 2

Using control-volume equation and properties of the initial condition, the final temperature of the water can be determined. Figure 22 below is a schematic for the given problem:

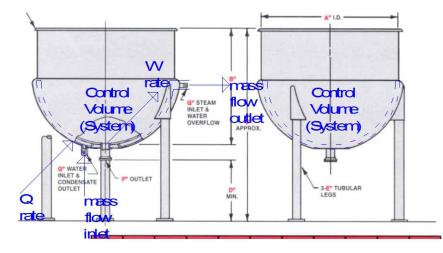


Figure 22 Control-volume schematic

The following assumptions must be applied for simplified analysis:

- Steady-state operation
- Conservation of mass principle
- Liquid is relatively incompressible
- Inlet and outlet diameters are equivalent
- No significant change in potential energy from the inlet and outlet
- No significant change in kinetic energy from the inlet and outlet
- No phase change
- Isochoric process

Due to the behavior of water in the compressible liquid region, the enthalpy for a liquid can be well represented by the enthalpy for a saturated liquid at a given temperature. Figure 23 indicates the unique behavior of compressible liquids that justify the use of the saturated liquid values for the steam tables.

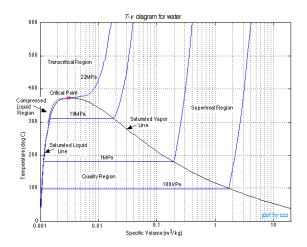


Figure 23 T-v diagram for Water (provided by Ohio University)

Initially, the control-volume equation is represented as:

$$\begin{aligned} \frac{\partial E}{dt} &= 0 = \dot{Q}_{CV} - \dot{W}_{CV} + \dot{m}[(h_i - h_e) + .5(V_i^2 - V_e^2) + g(z_i - z_e) \text{ Eqn. 9} \\ \\ \frac{\partial E}{\partial t} &= change \text{ in energy over time}, \frac{BTU}{s} \\ \dot{Q}_{cv} &= rate \text{ of heat rejected into control volume}, \frac{BTU}{s} \\ \\ W_{CV} &= rate \text{ of mechanical work out of control volume}, \frac{BTU}{s} \\ \dot{m} &= mass \text{ flow rate of the water}, \frac{lb}{s} \end{aligned}$$

$$c_{w} = specific heat of water, \frac{BTU}{lbF}$$

$$h_{i} = enthalpy inlet, \frac{BTU}{lb}$$

$$h_{e} = enthalpy at outlet, \frac{BTU}{lb}$$

$$V_{i} = velocity at inlet, \frac{ft}{s}$$

$$V_{e} = velocity at exit, \frac{ft}{s}$$

$$g = gravitational constant, \frac{ft}{s^{2}}$$

$$z_{i} = elevation at inlet, ft$$

$$z_{e} = elevation at exit, ft$$

With the applied assumptions, the equation can be simplified to the following:

$$\frac{\partial E}{dt} = 0 = \dot{Q}_{CV} + \dot{m}(h_i - h_e), \text{Eqn. 10}$$

Since we know two independent properties, inlet temperature and inlet state, we can use the steam tables. Since the saturated liquid can represent the enthalpy values for compressible liquids, a value can be interpolated from the table for the initial enthalpy. Equation 10 above can then be used to determine the exit enthalpy. Finally, another interpolation including both temperature and enthalpies for the inlet and outlet reveals an exit water temperature of 87.7 F.

Table 9 Steam tables for saturated water (provided by Wiley 2011)

		Specific Volume ft³/ lb		Internal Energy Btu/lb		Enthalpy Btu/lb		
Temp.	Press.	Sat. Liquid	Sat. Vapor	Sat. Liquid	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor
°F	lbf/in.2	Uf.	Ug	U _f	Ug	ht	h _{fg}	hg
64	0.2952	0.01604	1056	32.09	1031.8	32.09	1057.3	1089.4
66	0.3165	0.01604	988.4	34.09	1032.4	34.09	1056.2	1090.3
68	0.3391	0.01605	925.8	36.09	1033.1	36.09	1055.1	1091.2
70	0.3632	0.01605	867.7	38.09	1033.7	38.09	1054.0	1092.0
72	0.3887	0.01606	813.7	40.09	1034.4	40.09	1052.8	1092.0
74	0.4158	0.01606	763.5	42.09	1035.0	42.09	1051.7	1093.8
76	0.4446	0.01606	716.8	44.09	1035.7	44.09	1050.6	1094.
78	0.4750	0.01607	673.3	46.09	1036.3	46.09	1049.4	1095.
80	0.5073	0.01607	632.8	48.08	1037.0	48.09	1048.3	1096.
82	0.5414	0.01608	595.0	50.08	1037.6	50.08	1047.2	1097.3
84	0.5776	0.01608	559.8	52.08	1038.3	52.08	1046.0	1098.1
86	0.6158	0.01609	527.0	54.08	1038.9	54.08	1044.9	1099.0
88	0.6562	0.01609	496.3	56.07	1039.6	56.07	1043.8	1099.9
90	0.6988	0.01610	467.7	58.07	1040.2	58.07	1042.7	1100.7
92	0.7439	0.01611	440.9	60.06	1040.9	60.06	1041.5	1101.6
94	0.7914	0.01611	415.9	62.06	1041.5	62.06	1040.4	1102.4
96	0.8416	0.01612	392.4	64.05	1041.2	64.06	1039.2	1103.3
98	0.8945	0.01612	370.5	66.05	1042.8	66.05	1038.1	1104.2
100	0.9503	0.01613	350.0	68.04	1043.5	68.05	1037.0	1105.0

The two methods of calculating exit temperatures verify that 88 F is a reasonable value to use for outlet temperature of exit water. The appropriate assumptions bulleted above provide for a

simple analysis in order to streamline proposal development. This allows sales engineers to quickly determine feasibility of a project and provide system solutions in a shorter time-period keeping businesses profitable. Design engineers are anticipated to apply a much more thorough analysis when the job contract is won. With the appropriate range of inlet and outlet temperatures, wet-bulb temperature, and required refrigeration tons, design day conditions can be developed and then the selection software can be used.

Establishing Design Day Conditions and Troubleshooting Inputs

Codes, Standards, and Ratings Systems

Upon initial selection, design variables were input as follows: 120 gpm flow, 88 F degree tower inlet water, 70 F tower outlet temperature, and a 67.5 F wet-bulb temperature. Pure water is used as our refrigerant because of our temperature range of application. However, warnings showed up with the list of equipment selections because software inputs/design day conditions did not meet Cooling Technology Institute's standards.

Codes, standards, and rating systems decided by ASHRAE and the Cooling Technology Institute have provided minimum performance requirements for heat rejection equipment. Based on test procedures CTI ATC-105S and CTI STD-201 RS, this will provide a performance rating for closed-circuit cooling towers. For propeller or axial fan closed-circuit cooling towers, the minimum performance requirement is ≥ 16.1 gpm/HP at conditions of 102 F/ 90 F/ 75 F (ASHRAE Standard 90.1). These temperatures represent the inlet water temperature, outlet water temperature, and regional entrance wet-bulb temperature respectively.

Since BAC selection software follows those standards and warnings were indicated, specifically the minimum approach parameter, the original software selection criteria needed to be adjusted. This re-selection is required because the leaving fluid temperature must be 5 F above regional wet bulb temperature according to the CTI STD-201 limits of thermal certification as seen in Table 10.

	SI Units	IP Units
Wet Bulb Temperature	10°C to 32.2°C	50°F to 90°F
Maximum Process Fluid Temperature	51.7°C	125°F
Minimum Range	2.2°C	4ºF
Minimum Approach	2.8°C	5°F
Barometric Pressure	91.4 kPa to 105 kPa	27 in Hg to 31 in Hg

Table 10 CTI STD-201 thermal certification limits for Cooling Towers/Closed-Circuit Coolers

Consequentially, in order to achieve the same total heat rejection, the range must be kept the same but at a pair of higher inlet and outlet water temperatures. A second, modified selection was made with the following criteria: FXV model, 120gpm, 95F/75F/67.5F, pure water, and with a price ranked listing of the results. Previous methods for calculating exit water temperature verify that water can expect to leave at 93 F for the second selection, but an intentional 95 F was

applied to provide an additional safety factor for thermal performance. Table 11 illustrates the modifications to design day conditions.

Design Day	Tower Inlet Temp	Tower Outlet Temp	Ambient Dry Bulb Temp	Wet Bulb Temp	Range/ Approach	Heat Rejection Rate	Fan Speed	Tower Efficiency
	F	F	F	F	F	BTUH	%	%
Original	88	70	80	67.5	18/3.5	1,080,000	50%	88%
Modified	95	75	80	67.5	20/7.5	1,200,000	50%	73%

Table 11 Design Day Conditions

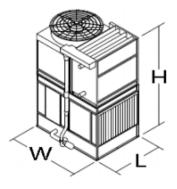
Additional Selection Requirements

Once the design day criteria had been input, there were additional selection requirements a selector could have used. This included a maximum fluid pressure drop, number of tower units, model accessories, and limits on sound pollution, total horsepower, and dimensions. After the construction site had been surveyed for its available space, there were no other requirements necessary to further refine selection.

BAC Software Selection

Although modified selection reflects a lower tower efficiency, it provides system redundancy for non-ideal weather conditions and complies with CTI standards. The software produced a list of models with the top two options being the FXV-0806B-28D-L and the FXV-806B-32D-K. Both options were absent of warnings and met thermal performance standards. The options were low first cost selection (LFC) and recommended selection (Rec) based on payback impact respectively.

Baltimore Aircoil Company, Inc. **Closed Circuit Cooling Tower Selection Program** 7.5.3 NA March 03, 2017


Version: Product data correct as of:

Project Name:	CCCT Solution		
Selection Name:	Final Selection LFC		
Project State/Province:	California		
Project Country:	United States		
Date:	April 27, 2017		
Model Information		Design Conditions	
Product Line:	FXV/FXV3	Fluid:	Water
Model:	FXV-0806B-28D-L		
Number of Units:	1	Flow Rate:	120.00 USGPM
Coil Type:	Standard Coil	Entering Fluid Temp.:	95.00 °F
Coil Finning:	None	Leaving Fluid Temp.:	75.00 °F
Fan Type:	Standard Fan	Wet Bulb Temp.:	67.50 °F
Fan Motor:	(1) 15.00 = 15.00 HP/Unit		
Total Standard Fan Power:	Full Speed, 15.00 BHP/Unit		
Total Pump Motor Power:	(1) 2.00 = 2.00 HP/Unit	Fluid Pressure Drop:	0.86 psi
Intake Option:	None	Reserve Capability:	5.16%
Internal Option:	None		
Discharge Option:	None		
-			

Thermal performance at design conditions and standard total fan motor power is certified by the Cooling Technology Institute (CTI).

Engineering Data, per Unit

Ling bata, per entre		
Unit Length: 05' 11.75" + 01' 06.00" (Pump) =	= 07' 05.75"	(Total)
Unit Width:	08' 05.75"	
Unit Height:	18' 01.00"	
Approximate Shipping Weight:	7,034	lbs
Heaviest Section:	4,788	lbs
Approximate Operating Weight:	10,314	lbs
Approximate Remote Sump Operating Weight:	9,349	lbs
Air Flow:	38,740	CFM
Spray Water Flow:	290	USGPM
Coil Volume:	102	U.S. gallons
Coil Connections:		
(1) 4" Coil Inlet and Outlet, Based on 120.00	USGPM Flo	w per Unit
Remote Sump Connections:	(1) 6"	
Heater kW Data (Optional)		
0°F (-17.8°C) Ambient Heaters:	(1) 4	kW
-20°F (-28.9°C) Ambient Heaters:	(1) 6	kW
Minimum Distance Required:		
From Solid Wall:	4	ft
From 50% Open Wall:	3	ft

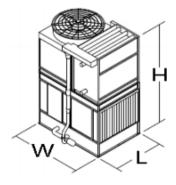
Energy Rating:

23.29 per ASHRAE 90.1, ASHRAE 189 and CA Title 24.

Note: These unit dimensions account for the selected fan type for the standard cataloged drive configuration, but they do not account for other options/accessories. Please contact your local BAC sales representative for dimensions of units with other options/accessories.

Figure 24 LCF tower selected

Baltimore Aircoil Company, Inc.


Closed Circuit Cooling Tower Selection Program Version: 7.5.3 NA Product data correct as of: March 03, 2017

Project Name:	CCCT Solution		
Selection Name:	Final Selection Rec		
Project State/Province:	California		
Project Country:	United States		
Date:	April 27, 2017		
Model Information		Design Conditions	
Product Line:	FXV/FXV3	Fluid:	Water
Model:	FXV-0806B-32D-K		
Number of Units:	1	Flow Rate:	120.00 USGPM
Coil Type:	Standard Coil	Entering Fluid Temp.:	95.00 °F
Coil Finning:	None	Leaving Fluid Temp.:	75.00 °F
Fan Type:	Standard Fan	Wet Bulb Temp.:	67.50 °F
Fan Motor:	(1) 10.00 = 10.00 HP/Unit		
Total Standard Fan Power:	Full Speed, 10.00 BHP/Unit		
Total Pump Motor Power:	(1) 2.00 = 2.00 HP/Unit	Fluid Pressure Drop:	0.95 psi
Intake Option:	None	Reserve Capability:	1.48%
Internal Option:	None		
Discharge Option:	None		

Thermal performance at design conditions and standard total fan motor power is certified by the Cooling Technology Institute (CTI).

Engineering Data, per Unit

Engineering Data, per Unit		
Unit Length: 05' 11.75" + 01' 06.00" (Pump) =	= 07' 05.75"	(Total)
Unit Width:	08' 05.75"	
Unit Height:	18' 01.00"	
Approximate Shipping Weight:	7,176	lbs
Heaviest Section:	4,930	lbs
Approximate Operating Weight:	10,578	lbs
Approximate Remote Sump Operating Weight:	9,613	lbs
Air Flow:	35,170	CFM
Spray Water Flow:	290	USGPM
Coil Volume:	117	U.S. gallons
Coil Connections:		
(1) 4" Coil Inlet and Outlet, Based on 120.00	USGPM Flo	w per Unit
Remote Sump Connections:	(1) 6"	
Heater kW Data (Optional)		
0°F (-17.8°C) Ambient Heaters:	(1) 4	kW
-20°F (-28.9°C) Ambient Heaters:	(1) 6	kW
Minimum Distance Required:		
From Solid Wall:	3.5	ft
From 50% Open Wall:	3	ft

Energy Rating:

32.00 per ASHRAE 90.1, ASHRAE 189 and CA Title 24.

Note: These unit dimensions account for the selected fan type for the standard cataloged drive configuration, but they do not account for other options/accessories. Please contact your local BAC sales representative for dimensions of units with other options/accessories.

Figure 25 Rec cooling tower selection

Selection Criteria: 120 gpm, 95F/75F/67.5F, pure water, price rankingBTUH rejection-1,200,000-100TonsEfficiency73%							
BTUH rejec	BTUH rejection		-1,200,000		Tons	Efficiency	73%
Selection Type	Product	Qty	Model	Series	Total	Total	Warnings
					Fan	Pump	Exist
					Motor	Motor	
					(HP)	(HP)	
LFC	FXV	1.00	FXV- 0806B- 28D-L	no	15.00	2.00	No
Rec	FXV	1.00	FXV- 0806B- 32D-K	no	10.00	2.00	No
	Unit	Fluid	Reserve	Price	Payback	Energy	Warnings
	Height	Pressure	Capability	Rank	(Years)	Rating	Exist
		Drop	(%)	+		(USGPM	
		(psi)		+		/HP)	
LFC	18′ 01.00″	0.86	5.16	1.00		23.29	No
Rec	18′ 01.00″	0.95	1.48	1.02	1.07	32.00	No

Table 12 BAC software selection results

Now that we have models of cooling towers, another decision matrix was created to objectively select the best system solution.

Table 13 Decision Matrix for FXV Model

FXV Co	mparison Tab	le									
Raw Sc	oring Table										
1-3 where, 1 = poor, 2 = satisfactory, 3 = excellent											
	Product	Energy		Reserve							
	Cost	Rating		Capacity							
28D-L	2.00		2.00	2.25							
32D-K	1.75	3.00		2.00							
Import	ance Factor										
0-1 wh	ere, 1 = highe	est impor	rtance	, 0 = lowest i	mportance						
	Product	Energy		Reserve							
	Cost	Rating		Capacity							
	0.50		0.75	1.00							
Weight	ed Scoring M	latrix			TOTAL						
28D-L	1.00		1.50	2.25	4.75						
32D-K	0.88		2.25	2.00	5.13						

Based on the decision matrix, the FXV-806B-32D-K is the best, long-term system solution. Although the first model provides a reserve capacity, it does not compare to the level of impact

the energy savings of the second model. This was the model recommended for best payback in terms of annual energy savings. Specifics on various savings will be described in the engineering economics portion of this report.

Engineering Economics of Product Selection

Capital Budgeting Metrics

For this report, the five payback metrics used are: return-on-investment, the payback period, net present value, internal rate of return, and modified internal rate of return. Each method of budget analysis gives decision makers unique insight into the feasibility of the project.

Return on Investment

This value can be given as a percentage or dollar amount comparing the cost of investment to the expected returns over a certain period. This term is very familiar to facility managers when it comes to making decisions for capital investments. Although this does not include the time value of money, this should be included in sales presentations to indicate feasibility and facilitate a simple understanding among decision makers. For the pro forma spreadsheet, the ROI was computed over the first three years and did include discounted cash flows.

$$Simple \ ROI = \frac{Investment \ Revenue - Investment \ Cost}{Investment \ Cost}, Eqn. 11$$

Payback Period

This method provides a rough estimation as to how quickly a project can be paid off. This is also useful for determining the feasibility of the project during the sales presentation. This will allow decision makers to understand how the project needs to be financed and how it fits within the vision of the company's priorities. Normally in sales presentations, this method does not account for the time-value of money. However, cash flows on the pro forma statements have all future cash flows discounted taking the time-value of money into account.

$$PP(yrs) = n(yrs until full recovery) - \frac{cumulative \ cash \ flow \ at \ year \ n}{year \ n \ cash \ flow}, Eqn. 12$$

Net Present Value

This indicates how the initial cash outflow (investment) can be compared to discounted future cash inflows and outflows. A positive NPV value tells us that our future cash flows justify the initial investment taking the time-value of money into consideration. Determining a representative discount rate is important and will be further explored.

$$NPV = \sum_{t=1}^{T} \frac{C_t}{(1+r)^t} - C_o$$
, Eqn. 13

Where, $C_t = net \ cash \ inflow \ during \ the \ period \ t$ $C_o = total \ initial \ investment \ costs$ $r = discount \ rate$ $t = number \ of \ time \ periods$

Internal Rate of Return

This value indicates the discount rate at which future cash flow benefits from a project would have a net present value of zero. The higher the IRR, the more valuable a capital investment appears. This method allows for easier interpretation, regardless of financial scale, with percent values. Although the time-value of money is considered, the IRR calculation assumes that positive cash flows from the project can be reinvested at a return rate identical to that of the initial project. To accommodate for this, the MIRR constructs a more conservative reinvestment rate and includes the finance rate.

$$NPV = 0 = \sum_{t=1}^{T} \frac{C_t}{(1 + IRR)^t} - C_o$$
, Eqn. 14

Where,

 C_t = net cash inflow during the period t C_o = total initial investment costs r = discount rate t = number of time periods

Modified Internal Rate of Return

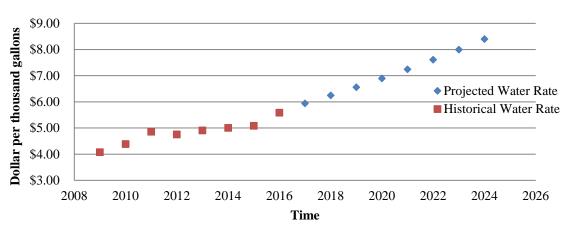
This method offers a more realistic value for rate of return. This is because the water savings could not be directly reinvested in another identical cooling tower because our operation only requires one solution of that capacity. Thus, the reinvestment rate of return for this project is based on the cost of capital. Since this is a private company, information normally used to calculate the cost of capital is not available. Therefore, the cost of capital for publicly traded food processors was used for the reinvestment rate. From a sample of 87 different food processors, a cost of capital was determined to be 5.76% (NYU 2017). Additionally, any negative cash flows would be discounted by a finance rate of 6%. This represents a typical interest rate at which banks will loan to industrial customers on construction jobs. The resulting percentage values are always lower than the IRR.

$$MIRR = \sqrt[n]{\frac{FV \text{ (positive cash flows, reinvestment rate)}}{-PV \text{ (negative cash flows, finance rate)}} - 1, Eqn. 15$$

Minimum Acceptable Rate of Return

This is a value that is used by facility managers to decide whether a project is attractive or not. An acceptable project is deemed when the IRR or MIRR exceeds the hurdle rate (MARR). Typically, the hurdle rate developed by financial mangers is dependent on the company's cost of capital and risk tolerance.

Pro Forma Income Statement


This type of financial document is a tool used by budget analysts to understand the resulting cash flows from anticipated changes in operation ranging from acquisitions to large capital investments. This document will allow sales engineers and decision makers to compute payback metrics to justify or nullify the project. The full pro forma spreadsheet for the 8-year budget analysis can be found in Appendix M. The following subtopics are items affecting or representing various cash flows.

Initial Investment Costs

Determining relevant cash flows includes any positive or negative change in cash as a result of the new investment. The most obvious cash flow would be the net capital investment the company must make for the cooling tower including the following components: installation, freight cost, sales tax, and the equipment itself. This fixed cost is primarily justified by the decrease in processed water contributing to a positive, gradient cash flow series.

Water Rates

The pro forma financial statements are in terms of discrete years (2017, 2018, etc.) despite the fact that water rates are increased on a semi-annual basis in the months of January and June. Based on averages of historical water rate increases, an annual increase of 5% was applied to projected water rates. Figure 26 below and includes historical water rates with projections of their future values of water rate. Appendix O verifies the historical water rates.

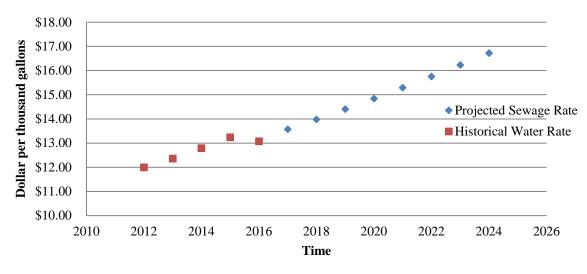

Santa Rosa Water Rate Trend

Figure 26 Plot of Water Rate v. Time

The historical data, the Sonoma County Water Agency website, and public media outlets suggest that this rate increase is a feasible value to apply. Representing the changes in the water rates was an important step in the budget analysis because neglecting those changes would have led to a discrepancy of approximately \$85,000 dollars less in the net present value for the 8-year budget analysis.

Sewage Rate

In addition to the water that delivered, the company must pay for the water it sends back to the wastewater treatment plant. The sewage rate for this particular application is based solely on the volume of water sent back, not necessarily the quality of the water (i.e. B.O.D., TSS). However, the gradual sewage rate increases were computed similarly to the methodology applied to water rates previously discussed. Figure 27 below. Appendix O verify the historical sewage rates.

Santa Rosa Sewage Rate Trend

Figure 27 Plot of Sewage Rate v. Time

This rate increase is accounted for in the pro forma financial statements in terms of discrete years with an annual 3% rate increases. Neglecting the changes in sewage rates would have led to a discrepancy of approximately \$114,000 dollars less in the net present value for the 8-year budget analysis.

Cooling Tower Energy Consumption

The next relevant cash flow would be the energy consumption from running the new piece of heat rejection equipment. This energy consumption is due to the running fan, the sump pump, and the circulation pump that goes into the facility. PG&E electricity provider applies complicated algorithms and rate structures in order to encourage sustainable energy consumption. Among the many things that influence the electricity rate, power-quality and the

demand charge associated with current rate plans will not be considered in the scope of this study. However, factors like the projected rate increases over the 8-year period, time-of-day rate structure, and customer type will be considered. The most recent electricity rates publicly available, for industrial customers (E-20) requiring primary power distribution (i.e. supplied voltage between 2,000 and 50,000 volts), are in Figure 28 outlining the \$ per kWh and distribution of operating hours.

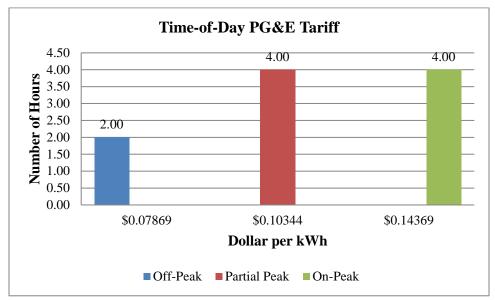


Figure 28 Cooling tower energy load profile

The rates in the bar chart above are associated with 2016 values, but will be applied over the entirety of the year to simplify analysis and eventually provide a more conservative NPV per year. The distribution of hours of cooling-tower operation was based on the facility's standard operating procedures of cooking and cooling five batches of product within the period of 3:30 AM and 9:30 PM. Each batch of food product is cooled within two hours to meet FDA standards for food safety, to retain food quality, and maintain current food-processing capacity. Finally, over the 8-year budget analysis, the electricity rates are anticipated to increase each year by 3%.

The power requirements for the fan and the sump pump were based strictly off the nominal horsepower ratings listed on the tower datasheet generated by BAC software. Although a variable frequency drive will be used to adjust the fan speed, thus lowering power consumption, full-speed operation was considered exclusively for the energy consumption analysis. In reality, tower fans can be expected to be operating at speeds as low as 50% of maximum.

The circulating pump power consumption was based on interpretations from the pump curve and worst case pumping scenario for the system curve. With a designated operating point, one could determine a representative power consumption for the energy analysis. Two scenarios were considered for operating points: normal and worst-case operation. Normal operation is based on operation of 8 kettles of 500-gallon capacity operating simultaneously on the main kettle deck. However, the worst-case scenario was based on the to the simultaneous cooling of 8, 500-gallon kettles hydraulically furthest from the pumping station. Based on interpretation of the piping

layout diagram provided, head and flow requirements were developed to represent the most power intensive pumping scenario. The following head and flow requirements were largely based on kettle design, friction loss estimates, static head, NPSH, and changes in elevation. Pipe friction losses were based on the Hazen Williams equation to provide rough estimates on pumping costs. Friction loss calculations will need to be reviewed by the refrigeration design engineer using the Darcy–Weisbach equation to account for turbulent flow and the temperature gradients throughout the pumping system. Furthermore, friction losses across various valves and the glycol heat exchanger were included as rough estimates, but also require further investigation. Finally, a deeper understanding of kettle deck operation will provide an optimized pump selection based on a representative system curve. By providing a slightly oversized pump station and variable frequency drive, operators can adjust pump speed according to what minimizes energy cost while maintaining production capacity. Once the head requirements for both scenarios were considered, the following equations could be applied to estimate the required motor horsepower for the pump station.

$$Water HP = \frac{TDH * GPM}{3960}, Eqn. 16$$

 $Brake HP = \frac{WHP}{Pump Eff.}$, Eqn. 17

$$Motor HP = \frac{Brake HP}{Motor Eff}, Eqn. 18$$

With normal operation and worst case operation requiring 5.7HP and 8.8HP respectively, a nominal 10HP motor would be selected for the capital budget analysis. In reality, a variable frequency drive will allow operators to adjust motor speed allowing for adjustable flow and head. Therefore, expenses on the pro forma financial statements will be inflated compared to what the food processing facility will actually incur.

Cooling Tower Water Usage

Another annual cost associated with our capital investment would be the water losses required to cool the refrigerant returning back to the heat load in our closed-loop. Calculating the total water usage is important for the pro forma financial statements to investigate payback on project. Total water use by cooling towers can be described by Equation 19 below.

The first category of water loss would be due to evaporation. Simply put, the spray water in the tower making contact with the refrigerant coils, which are plumbed into the kettle jackets, allows the heat to be rejected into the atmosphere via evaporation. This is represented by the latent component of heat transfer discussed in the literature review.

The next source of water loss is called drift loss. This loss is usually composed of only .1% to .3% of refrigeration circulation rate (e.g. at .1% and 100gpm refrigerant flow, 0.1gpm of drift loss). These consist of liquid droplets that get forced out of the outlet due to high air flow. Another loss is the required bleed-off of the water in the sump tank of the cooling tower. The selected cooling tower has been designed for 3 cycles of concentration. Due to all of these various losses, the remaining water eventually increases in concentration of bicarbonates and other constituents that could potentially compromise cooling tower operation. To prevent this, water is systematically bled-off in order to prevent costly maintenance caused by the formation of deposit on the coil surface.

For this report, two approaches were used to compute water usage: 1) interpretation from the psychometric chart with rule-of-thumb equations 2) utilizing an online cooling tower water-loss calculator.

Method 1

For the first method, psychrometric chart software by Greenheck was used to provide accurate values for properties at the inlet and exit of the cooling tower. The following assumptions were used for the computations:

- Mass and energy transfer scenario
- Total energy rejected by tower absorbed by air
- Conservation of mass principle through tower system
- Exit air at saturated conditions (i.e. 100% relative humidity)
- Atmosphere at a pressure of 1atm
- Fan running at half-speed
- Affinity law applies
- Average specific volume acceptable for water loss estimation
- 80 F dry bulb inlet temperature representative for a "design day"

These assumptions allow us to use the psychrometric chart to indicate the location for the two points, compare the change in enthalpy, and dictate the change in humidity ratio. The change in humidity ratio indicates the amount of water vapor added into the air as it passes through the cooling tower as seen in Figure 29.

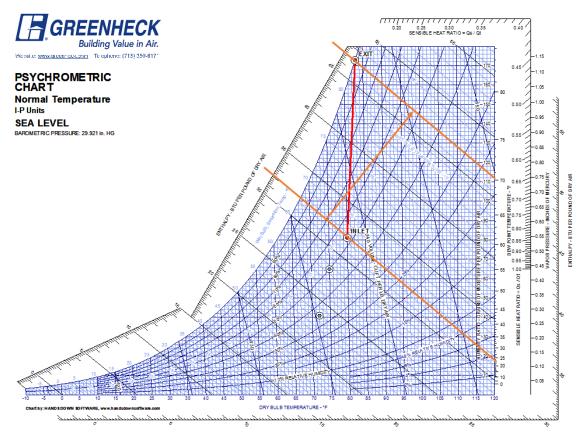


Figure 29 Psychrometric chart with indicated process and the associated enthalpy change

After adjustments to exit dry-bulb temperatures were made to correspond to a 1,200,000 BTUH rate of heat rejectetion and tower specifications, Equation 19 indicated the evaporative loss to be 1.95 gpm.

$$air flow\left(\frac{ft^{3}}{min}\right) * air density\left(\frac{lb \, dry \, air}{ft^{3}}\right) * \Delta W\left(\frac{lb \, H20}{lb \, dry \, air}\right) = Evap \, Loss\left(\frac{lb \, H20}{min}\right) Eqn. 19$$

For drift loss, the rule-of-thumb of .3% of circulating tower flow was used which amounted to 0.36 gpm. Blowdown used an equation based off the percentages of evaporative and drift loss relative to circulating flow. Equation 20 below, with three cycles of concentration, indicates that 0.62 gpm were lost due to blowdown.

$$Blowdown (gpm) = circulating flow * \left[\frac{\% Evap loss}{cycles of concentration - 1} - \% Drift\right], Eqn. 20$$

This amounted to a total water usage of 2.93 gpm for Method 1.

Method 2

The second method required input information about tower flow, range, ambient wet-bulb temperature, cycles of concentration, and drift rate. Figures 30 and 31 illustrate the input variables and the output for water usage respectively.

Operating Co	nditions			
Tower Water Flow	120	gpm	27	m³/h
Hot Water Temperature	95.00	°F	35.00	°C
Cold Water Temperature	75.00	°F	23.89	°C
Wet-Bulb Temperature	67.50	°F	19.72	°C
Drift Rate	0.005	96		
Concentrations	3			

Figure 30 Water Usage Calculator Inputs (provided by SPX Cooling)

Water Usage		
Evaporation	2.24 gpm	0.51 m³/h
Drift	0.01 gpm	0.00 m ³ /h
Blow down	1.11 gpm	0.25 m³/h
Total Usage	3.35 gpm	0.76 m³/h

Figure 31 Water Usage Calculator Outputs (provided by SPX Cooling)

Method 2 amounted to a total of 3.35 gpm of industrial fluid cooler water usage. The following graph was generated by the calculator to indicate water usage based on varying wet bulb temperature and cooling tower range.

© 2016 SPX Cooling Technologies, Inc. 9/26/2016 1:40:50 AM

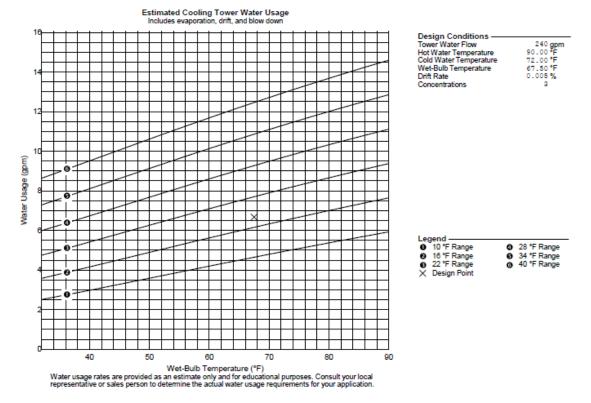


Figure 32 Water Usage Graph (provided by SPX Cooling)

Both Method 1 and 2 provided reasonable values of 2.93 gpm and 3.35 gpm respectively. It should be taken into consideration that changing ambient dry bulb inlet temperature, tower aging, and fan speed will produce varying water loss values. However, the inlet dry bulb temperature, fan speed, and wet bulb temperatures selections were intentional to represent a "design day". With these considerations, a 3 gpm of water use will be used for the pro forma financial statements to illustrate realistic payback period and return on investment. The distribution of water use from Method 1 was used and the blowdown value was increased by 0.07 gpm. Table 14 indicates volume of water consumed by each category of use and their relative percentages of total water use. It is important to separate these types of water use because blowdown must be accounted for in the sewage costs as well. Table 14 below was developed in accordance with 3110 operational hours per year.

Blowdown	Drift	Evaporative	Total Water Use	
127,828	67,176	363,883	558,887	gal/year
23%	12%	65%	100%	

Table 14 Distribution of industrial fluid cooler water use

Miscellaneous cash flows

This equipment also has an associated annual cost for maintenance and inspection. The cost associated for the technician services is two negative cash flows of \$1500 dollars per year.

When looking to determine opportunity cost of the cooling tower investment, it is difficult to develop a substantial cost compared to the benefits this investment provides. The unit will takeup approximately 143 square-feet and is placed behind the building in a remote location. Due to the immense returns on investment, opportunity cost related to space can be neglected. The only opportunity cost associated with this investment is not using the cash in another type of investment (stock market, bond, annuity, etc.). Since this is covered by the MIRR, the pro forma statements will not double count opportunity cost in the pro forma financial statement.

On a final note, a boost in productivity may occur due to this improvement in the cooling process. However, the positive cash flows associated with the increased operational capacity is important, but outside the scope of this budget analysis.

Depreciation

Depreciation of the cooling tower product was received from the IRS website with tables of asset class codes and their associated MACRS. The cooling tower was found to have a 7-year recovery period (OK State 2007). It should also be noted that the salvage value of the cooling tower is zero considering how specialized the tower is to this particular facility. This would make the cooling tower a particularly difficult product to resell.

Discount Rate

In determining the discount rate, the factors that influence its selected value are the internal required rate of return and internal financial advisory.

The required rate of return is influenced primarily by the current risk-free rate of return and inflation. The risk-free rates are commonly associated with the returns offered on treasury bonds. Treasury bills at the end of year 2016 indicate an approximate rate of return of .5% for the maturity of a year-length treasury bond. An approximate inflation rate of 2% was determined based on typical values observed in the 5 years prior to 2016. The sum of these two would produce an approximate required rate of return of 2.5%.

The liquidity of assets and the health of the food processing industry influence the risk tolerance of the internal financial advisory for the given food processing facility. Since much of this

facility's fixed assets contribute to its equity, the company's liquidity ratio is anticipated to be low. Additionally, the company's current assets consist mostly of raw food as inventory, which is a nondurable good, thus further contributing to a lower liquidity ratio. This ratio indicates how easily the company could transform capital into liquid funds in the case of an emergency to pay off debts. These financial and market behavior allow managers tailor the minimum acceptable rate of return to their respective industry. Accounting for project risk and the liquidity of the facility, an additional 3.5% should contribute to the minimum attractive rate of return.

Since the MARR was estimated to be 6%, this will also be used as the discount rate. Managers must adjust the pro forma financial spreadsheet to use a discount rate that reflects the given facility's precise minimum attractive rate of return.

Capital Budget Analysis Results

Table 15 Summary of important rates used to develop pro forma financial spreadsheet

Annual Rate	Category
2.0%	inflation
0.5%	T-bill yield
6.0%	discount/finance
5.8%	reinvestment (cost of capital)
3.0%	sewage rate increase
5.0%	water rate increase

Table 16 Results for various corporate finance metrics

ROI = EOY 3	32%	NPV =	\$ 1,230,042.47	IRR =	42%	MIRR =	21%	Payback Period =	2.31	years
EUT 5								Periou -		

Table 16 above shows that this project is highly profitable. By EOY 3, the company can expect to make their money back with a recovery of \$212,672. The net present value indicates that this project is worth over 1.2 million dollars in year 2016. Furthermore, the IRR and MIRR are likely to exceed the company's hurdle rate which further encourages initiating the project ATC has to offer.

Sensitivity Analysis

Before engaging in lofty financial investments, a sensitivity analysis should be used to test the integrity of the project potential changes in variables contributing to significant cash flows. This analysis was conducted for each individual scenario that could jeopardize the profitability of this capital investment:

- 1. A reduction in the cost of water by 25%,50%,75%, and 100% for all 8 years
- 2. A reduction in the cost of sewage by 25%,50%,75%, and 100% for all 8 years
- 3. An electric energy rate increase of two to three times the normal rate for all 8 years
- 4. A complete failure of the original cooling tower followed by a complete reinvestment of the original net capital investment amount: \$664,600

Scenario 1: Reduction of the Cost of Water

The measure of the success of the project can be interpreted from its resilience to the reduction of the water rate in the sensitivity analysis. The excel document tables indicate that if the water rate was reduced to zero, for all 8 years and ceteris paribus, the sewage rate savings would still provide a NPV of \$664,601 and an IRR of 27%. With further testing, profitability was most sensitive to changes in the sewage rate.

Scenario 2: Reduction of the Cost of Sewage

Keeping all other factors constant, if there was no sewage rate applied to the facilities wastewater, for eight consecutive years, this would make the project unprofitable with a NPV of -\$7,626 and an IRR of 5.7%. This negative net present value makes sense for an investment project considering the discount rate is 6%. Essentially, the earnings are being discounted at a higher rate than the potential for returns. However, this scenario is highly unlikely considering the sewage rates are trending to rise 3% annually and the facility will continue to discharge water to treatment facilities.

Scenario 3: Energy Rate Price Hikes

The capital investment was also resilient to increases in energy costs two to three times the normal rate described by the E-20 industrial consumer rates from PG&E. Despite the tripled energy costs, for all 8 years, the net present value was largely unaffected with a NPV as high as \$1,170,053.

Scenario 4: Complete Failure of Industrial Fluid Cooler

Also, it was determined that the cooling tower would have to break down 3 consecutive years for EOY 1, EOY 2, and EOY 3 to produce the first negative present value. Even if the machinery were to break down twice, for EOY 1 and EOY 2, the project would still have a NPV of \$316,187. This was tested by adding a negative -\$664,600 cash flow into the maintenance category ceteris paribus. This demonstrates the large future cash flows in savings that come from the water and sewage savings.

Final Engineering Economics Remarks

Both the sensitivity analysis and the financial metrics indicate that the industrial fluid cooler capital investment would be a highly profitable investment at the given food processing facility.

RECOMMENDATIONS

The kettle cooling and sustainability project can expect three outcomes: water and sewage savings equivalent to an average of \$397,342 annually, a 97% decrease in water usage, and an improved refrigeration process contributing to improved food safety. Additionally, the local water authorities of Santa Rosa have provided rebates amounting to \$200,000 dollars to assist with the initial investment.

After the kettle cooling improvements, the given food processing facility should invest in the improvement of the second phase of cooling. The system solution has a glycol heat exchanger plumbed into it to streamline this improvement. The upgrade would allow the facility to:

- 1) Eliminate the bucket cooling process by using the kettles as heat exchangers
- 2) Lower the end cooling temperature in phase two
- 3) Improve the flexibility of both phase 1 and 2 cooling processes
- 4) Provide the capability to further reduce phase 1 cooling time
- 5) Ensure resilience of cooling tower performance on days with high wet-bulb temperatures.
- 6) Meet the increase in capacity of incoming food processing equipment

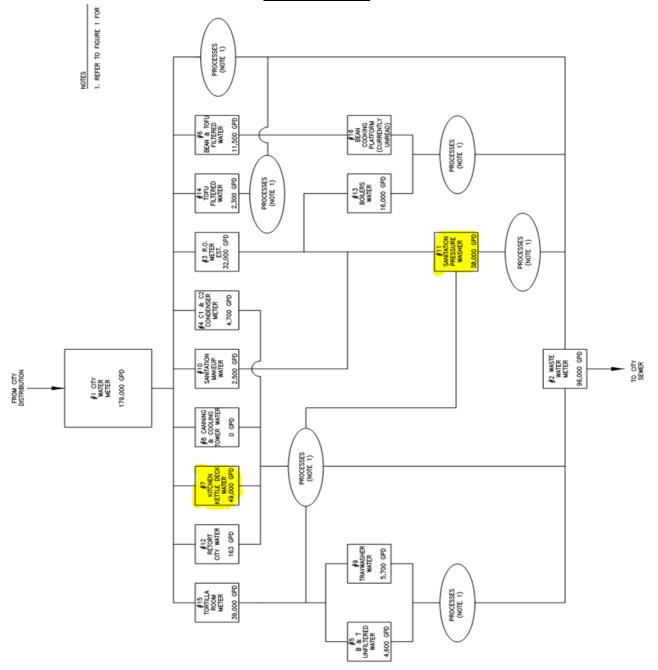
Improved monitoring of flow rates and temperature profiles of the kettles are also important for future facility improvements. Additionally, an outline of the food processing facility's daily kettle deck operation should be documented so that the pumping station and distribution system can be further optimized. Furthermore, an internal case study should be conducted by the given food processing facility to measure how much more product is being produced as a result of the system solution.

Currently, the facility kettle decks produce an average of 4663 lbs per operational hour with 3110 operating hours per year (See Appendix B). Since kettle deck is responsible for 77% of the total food production, improvements to the kettle deck are likely to result in greater annual production output. Assuming there are no upstream bottlenecks and the demand for the product was there, this would translate into increased annual sales. This extrinsic benefit of increased revenue could be applied to the pro forma financial statements further justifying the project. The conclusions of such a study would further incentivize future project improvements to increase in production capacity at the kettle deck of similar food processing facilities. Systems solutions, such as Kettle Cooling and Sustainability Project, are relevant to many industrial and commercial facilities by coupling profitability with sustainability.

REFERENCES

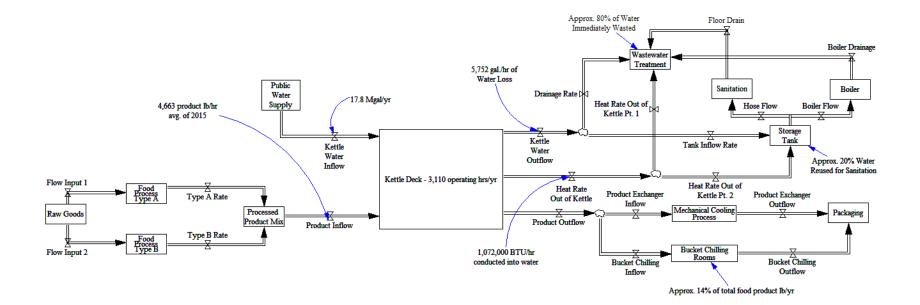
- Amon, R., Maulhardt, M., Wong, T., Kazama, D., & Simmons, C. (2015). Waste heat and water recovery opportunities in california tomato paste processing. Applied Thermal Engineering, 78, 525.
- BAC. (2015, October). Product & Application Handbook Volume V [PDF]. Baltimore: Baltimore Air Coil Company.
- Berg, N., & Hall, A. (2017). Anthropogenic warming impacts on California snowpack during drought. Geophysical Research Letters, 44(5), 2511-2518.
- C. (2016, June). CITY OF SANTA ROSA 2015 URBAN WATER MANAGEMENT PLAN [PDF]. Santa Rosa: Santa Rosa Water Department.
- C. (2016, January). City of Santa Rosa Utility Rates [PDF]. Santa Rosa: Santa Rosa Water Department.
- Center for Western Weather and Water Extremes. (n.d.). Retrieved January, 2017, from http://cw3e.ucsd.edu/overview/
- Damodaran, A. (2017, January). Cost of Capital by Sector (US). Retrieved May, 2017, from http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/wacc.htm Erbe, D. (2016). Energy Standard for Buildings Except Low-Rise Residential Buildings [PDF]. Atlanta: ASHRAE.
- Food Technology & Processing. (n.d.). Retrieved November, 2016, from http://aggie horticulture.tamu.edu/food-technology/food-processing-entrepreneurs/microbiology-of food/
- Gladis, S., Ice Slurry Thermal Energy Storage for Cheese Process Cooling, American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Inc. from ASHRAE Transactions 1997, Volume 103, Part 2.
- Gleick, P. H. (2013, November). Waste Not, Want Not: The Potential for Urban Water Conservation in California. Retrieved October, 2016, from http://pacinst.org/publication/waste-not-want-not/
- Jasperse, J. (2014, December). SGMA in Sonoma County Presentation [PDF]. Sonoma County Water Agency.
- Prakash Rao, Aimee McKane, and Andre de Fontaine. (2015). Energy Savings from Industrial Water Reductions, 2015 ACEEE Summer Study on Energy Efficiency in Industry, Buffalo, NY

United States Geological Survey (2010). Water Use Data For California [Data file]. Retrieved

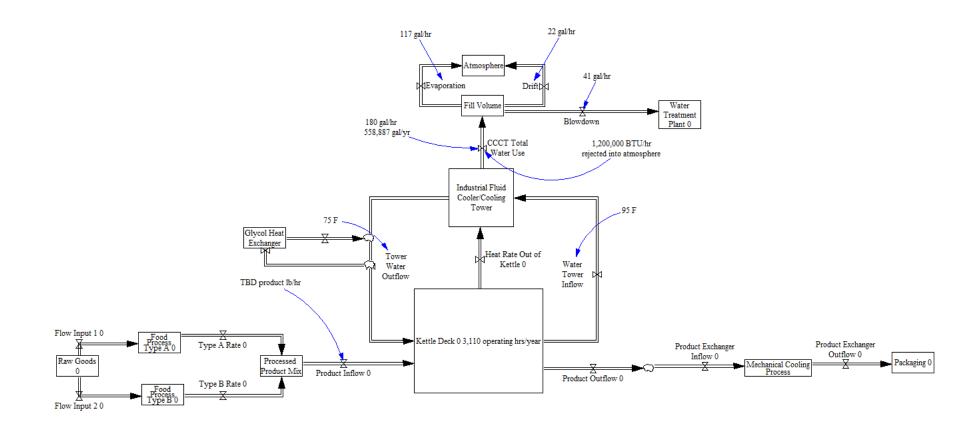

from https://waterdata.usgs.gov/ca/nwis/water_use/

- United States, Food and Drug Administration, U.S. Public Health Service. (n.d.). Food Code 2013 (pp. 90-91). U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES.
- Vengateson, U. (2017). Cooling towers: Estimate evaporation loss and makeup water requirements. Chemical Engineering, 124(4), 64-67.

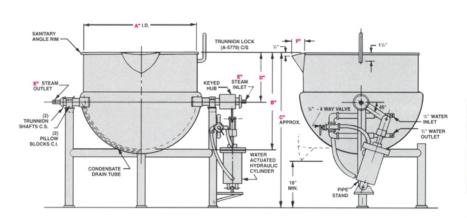
Wilson, C. M. (2011, January). THE REASONABLE USE DOCTRINE & AGRICULTURAL WATER USE EFFICIENCY (Rep.). Retrieved April, 2017, from State Water Resources Control Board website: http://www.waterboards.ca.gov/board_info/agendas/2011/jan/011911_12_reasonableused octrine_v010611.pdf

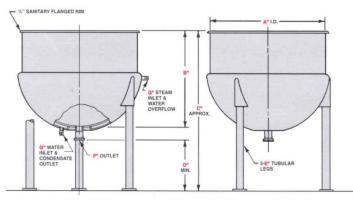

APPENDICIES

APPENDIX A



ŝ


APPENDIX B


APPENDIX C

APPENDIX D

CAPA	CITY	25	30	40	50	60	75	80	100	125	150	200	250	300
10	Α	23	23	251/2	291/2	32	32	36	36	38	42	48	52	54
Ň	В	201/4	22	231/2	23	24	271/2	25	30	34	341/2	36	39	42
NSIONS	С	44	46	471/2	48	491/2	53	50 ¹ /2	55½	60	611/2	64	67	70
ш	D	121/2	14	141/4	123/4	121/2	16	111/2	16 ¹ /2	191/2	19	171/2	181/2	201/2
DIM	E	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	1	1	1	1
	F	23/4	3	3	3	31/2	31/2	31/2	31/2	4	4	5	5	5

CAPA	CITY	5	10	15	20	25	30	40	50	60	75	80
S	Α	163/4	17 ⁵ /a	183/4	22	23	23	251/2	291/2	32	32	36
	В	10	14	16 ¹ / ₂	17	201/4	22	231/2	23	24	271/2	25
DIMENSIONS	С	261/8	301/8	32 ⁵ /8	331/8	363/8	381/8	395/8	39 ¹ /8	401/8	435/8	411/8
NS	D	15	15	15	15	15	15	15	15	15	15	15
ME	E	11/2	11/2	11/2	11/2	11/2	11/2	11/2	11/2	11/2	11/2	2
ā	F	11/2	11/2	11/2	11/2	11/2	11/2	11/2	11/2	11/2	11/2	2
	G	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	1

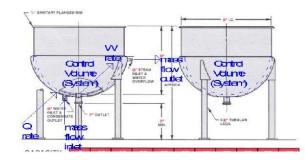
CAPA	CITY	100	125	150	200	250	300	400	500	600	750	1000
	Α	36	38	42	48	52	54	58	62	66	68	72
ŝ	в	30	34	341/2	36	39	42	47	51	54	62	72
DIMENSIONS	С	461/8	501/8	505/8	521/8	55 ¹ /8	58 ¹ /8	631/8	671/8	701/8	781/8	881/8
NS	D	15	15	15	15	15	15	15	15	15	15	15
ME	E	2	2	3	3	3	3	3	3	3	3	3
ā	F	2	2	2	2	2	2	2	2	3	3	3
	G	1	1	11/2	11/2	11/2	11/2	11/2	11/2	2	2	2

APPENDIX E

Test 1	Ti (Water)	Ti (Product)	Tf (Product)	Delta T	Agitator	Time Start	Time End	Hrs	Min	Tot. Hrs	Flow	Volume	Total test flow
Kettle No.	F	F	F	F	y/n	h:mm:ss	h:mm:ss				gpm	gal	gph
3		206	87	-119		4:50:00 PM	7:25:00 PM	2.00	35.00	2.58	14	2170	840
8		206	87	-119		6:05:00 PM	7:45:00 PM	1.00	40.00	1.67	15	1500	900
10		208	87	-121		5:00:00 PM	6:45:00 PM	1.00	45.00	1.75	14	1470	840
Test 2													
8		203	87	-116	У	2:10:00 PM	4:10:00 PM	2.00	0.00	2.00	14	1680	840
9		207	79	-128	У	2:10:00 PM	4:10:00 PM	2.00	0.00	2.00	15	1800	900
10		204	88	-116	у	2:10:00 PM	4:10:00 PM	2.00	0.00	2.00	14	1680	840
Test 3													
9		204	80	-124		8:55:00 AM	10:25:00 AM	1.00	30.00	1.50	14	1260	840
10		198	83	-115		8:55:00 AM	10:25:00 AM	1.00	30.00	1.50	15	1350	900
Test 4													
16		203	80	-123	у	8:20:00 AM	10:35:00 AM	2.00	15.00	2.25	15	2025	900
17		204	87	-117	У	8:20:00 AM	10:35:00 AM	2.00	15.00	2.25	14	1890	840
18		206	79	-127	у	8:20:00 AM	10:35:00 AM	2.00	15.00	2.25	15	2025	900
Test 5													
17	73	166	82	-84	у	8:00:00 PM	10:30:00 PM	2.00	30.00	2.50	14	2100	840
18	73	166	76	-90	У	8:00:00 PM	10:30:00 PM	2.00	30.00	2.50	15	2250	900
Test 6													
18	73	205	91	-114	У	1:00:00 PM	2:50:00 PM	1.00	50.00	1.83	14	1540	840
Test 7													
18	68	205	85	-120	У	9:35:00 AM	11:25:00 AM	1.00	50.00	1.83	15	1650	900
17	68	207	85	-122	У	9:35:00 AM	11:25:00 AM	1.00	50.00	1.83	15	1650	900
Test 8													
9	67	195	93	-102		10:00:00 AM	12:30:00 PM	2.00	30.00	2.50	14	2100	840
9	67	180	90	-90		4:15:00 PM	6:45:00 PM	2.00	30.00	2.50	15	2250	900
Condition	Ti (Water)	Ti (Product)	Tf (Product)	Delta T	Tot. Hrs	Flow	Volume	Total test flow					
Average	70	199	85	-114	2.07	15	1800	870					
All Tests	F	F	F	F	hrs	gpm	gal	gph					
Extreme	73	208	76	-132	1.50	15	1350	900					
All Tests	max F	max F	min F	delta F	min hrs	max gpm	gal	gph					
Representative	70	206	79	-127	2.25	15	2025	900					
Test 4, No. 18		F	F	F	hrs	gpm	gal	gph					

APPENDIX F

	А	В	с	D	E	F	G	Н	Ŧ
1	Giver				L.	r.	5		
2		 Variable	Value	Unit	Description	า			
		No of	Kettles	0					
3		NO. 01	Ketties	8					
4		Vke	ettle	500	gal	(total kettle v	olume)		
5		0.0000004-010-02480-0409	l Water mption	17.89	mil. gal.				
6		Kettle Di	mensions		inches	(see APPEND	IX D)		
7		No. of coc	oks per day	5					
8		Operati	ion Days	311					
9		Kettle Testir							
10			on: Santa Ros						
11		Coolant q		15	gpm				
	0.000 - 100								
13 14			ransferred ou t transfer usin	ut of the bear	is, Qout (Bl	0)			
14		and the second second second second	provided by			S			
16		cooling test		the nettic					
17		0		once passed	through ke	ttle jacket, Tf (F)		
18	Assur								
19		100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	ted area is a						
20				to jacketed p		2010			
21		15		o phase chan	-	erant)			
22	1000			for part i) an		-			
23 24				on for part iii)		e filled with 2/	3rd of the pro	duct	
24				5 days per ye					
26		kettle lids cl							
27	2001 803	matic:							
28						l	l		
29		Z_{m}	SANITARY FLANGED RIM			A* 1.0			
30		Ì		¥	<u> </u>				
31									
32			- Cont		÷ 1.	1 A cont		12	
33		\	Mas	s ///	STEAM		1		
34 35		_ /	(Syste	T "	ATER VERFLOW APPROX				
35		— Q	TH		<u>t</u>				
37			OF WATER	- POUTLET	1	N T		-	
5,			OUTLET		PLP.	- 3-F TL	JEULAR		


	А	В	С	D	E	F	G	Н	Т
38	~				MIN.	LEGS		I <u>I</u>	1
39			Ц Ц	Щ	+ +	Щ			
40									
41									
42	Sol'n	:							
43	i)	System:		Beans (food	inside kettle	e)			
44		Boundary:		Steel (kettle	walls)				
45		Surrounding	g:	Water (in ke	ttle jacket)				
46									
47						at transfer can	be expected	from a	
48 49		variance in t	temperatures	across the b	oundary.				
49 50		Additionally	the first law	ofthormod	maios stato	s that energy	ic noither cro	atad par	
51						om the system			
52		Sharan Saparas a	and from/to a		- Marine States		, in ough a d		
53		,,,,	,						
54		lt is importa	int to note th	at only chang	ges in energ	y can be readi	ly observed w	vith this	
55		simplicity.							
56									
57		The simplifi	ed energy ba	ance equation	on for a close	ed system is d	enoted as foll	ows:	
58									
59							11. C.D.		
60						$E + \Delta PE$, Eq		6	
61 62		we know th	lat the system	n is not chang	ging in kinet	ic or potential	energy, there	etore:	
63									
64									
65				$\Delta E \ total = 0$	$\Delta U = \Delta U = 0$	$Q_{net} - W_{net}$,	Eqn. 2		
66									
67				here,					
68		*Note the s	sign convenți	= neat, + into	to the system	out of system m out of system			
69			v	- work, - III	o system, +	out of system			
70		AV 82.7% 100.0		and some thereas		e), we assume			
71		100				kettles are kep			
72			0.	State of the State State and States and States and		fully "closed	< 1000 • 2000 04 11 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0		
73		12222001/300 20402 - 100222010	boundary. Th	eretore, the	change in to	otal energy of	the fluid can l	be described	
74 75		by:							
75									
70						2	-		
78			$\Delta E_{total} =$	$\Delta U_{total} = \zeta$	$Q_{net} = 0 =$	$Q_{surrounding}$	– Q _{system} Ec	qn. 3	
79		1							
80				Q_{surrow}	unding = Q	_{system} Eqn. 4			
81									
82									
83		Equation 4 s	says that the	quantity of h	eat remove	d from the coo	oked food (sy	stem), is	

	А	В	С	D	E	F	G	Н	1
84		transferred	to and from	the water-jac	ket (surrou	nding).		•	
85				-					
86		Now that we	e have simpli	fied the equa	ition, we ca	n use the "ket	tle cooling tes	st"	
87		information	to compute	how much se	nsible heat	is rejected fro	m the cooked	d product	
88		with the cur	rent once-th	rough cooling	g process.				
89									
90		With the ini	tal and final t	emperature	points of th	e food produc	t, we know th	at the	
91		sensible hea	at transfer eq	uation can b	e used.				
92									
93		0							
94		Q_{P}	$_{roduct} = m c$	ΔT , Eqn. 5					
95		wh	ere,		Q = m	(<i>lb</i>) * $c\left(\frac{BTU}{lb * F}\right)$) ∗ ΔT (F)		
96			mass			UD *F	·		
97		2000.88	heat capacit	v				1	
98		ΔΤ	= temperatu	re change					
99								-	
100		N		1 1	6.1				
101		Note: There	is no expect	ed phase cha	nge of the p	product during	neating.		
102 103									
103		It is importa	nt to undors	and the con	litions unde	er which the th	o kottla tosts	Wora	
104						alue which wil			
105		Provide the sole tradition of the baselood	izing our syst		Sentative v		i be used to si	ize oui	
107		system for s		.cm.					
107		I've selecter	l three meth	nds we can u	se to annro	kimate the tot	al heat transfi	erred:	
109		i ve selectee	a three mean					circu.	
110	a)	average valu	ues from all k	ettle tests			test 10.1		
111			ne cooling co						
112	c)	5-10	entative kett	107 NO 101 7100	ions				
113									
114		The most re	presentative	kettle would	be one wh	ich was guarer	nteed to have	the lid closed	
115		for the dura	ation of the c	ooling test, w	as agitated	, and only rep	resented the	500 gal	
116		container							
117									
118		Representat	tive weight fo	or the food pr	oduct is giv	en by the proc	duct of the de	nsity of beans	
119		and 60% of	the volume o	f the 500gal	container. (Our representa	tive food ma	ss is 2679lbs.	
120									
121			î (() I	i	i i	ĩ	r	
122									
123		Contraction of the second state of the second states of the second state			at energy a	certain substa	nce can absor	rb per degree-	
124		mass change	e in temperat	ture.					
125					6 H · ·				
126		We found a	reasonable v	alue from the	e tollowing	resource below	N		
127		UEDE							
128	2004	HERE							
129	a)	Obtaining th	ne averages f	rom each of t	he kettle co	ooling tests wil	give us appr	opriate	i

	А	В	с	D	E	F	G	Н	The second se
130	~		der to meet t				9		
131		values in or		ne needs of t	our acoign.	1			
132		m	2,700	lbs					
133		c		BTU/(lb*F)					
134		ΔT	-114						
135		Ti	199			· · · · · · · · · · · · · · · · · · ·		· · · · ·	
136		Tf	85	atom a state of the state of th					
137	b)		2020-010		operly coole	ed, we can app	ly the most e	xtreme case	
138		The second s		10110-1010-0010-10-10-00-00-00-00-00-00-		l longest test o			
139		•				0	•		
140		m	2,700	lbs					
141		с	0.90	BTU/(lb*F)					
142		ΔT	-132	F					
143		Ti	208	F					
144		Tf	76	F					
145	c)	m	2,700	lbs					
146		с	0.90	BTU/(lb*F)					
147		ΔT	-127	F					
148		Ti	206	F				[
149		Tf	79	F					
150									
151									
152									
153		Q product	Per Kettle	All 8 Kettles					
154		Condition	BTU	BTU	hrs	e			
155		Average	and the second second second second	-2,216,000					
156	10 g (1	Extreme		-2,568,000					
157	c)	Rep.	-309,000	-2,472,000	2.25				
158	::)	The sets of		in demonstration					
159 160	11)					ount of time the time the second s			
160		102010-01091010-010910-010-0100	ing three met		Jurs. Test ut		e deduced sin	many to the	
162		correspond	ing three met	nous.					
163									
164									
165		Q rate	Per Kettle	All 8 Kettles	Per Kettle	All 8 Kettles			
166	-	Condition		BTU/hr	R Tons	R Tons			
167	a)	Average		-1,072,000					
168	10000	Extreme		-1,712,000					
169		Rep.		-1,104,000					
170		10000000 • 100 00			-	ue for sizing o	ur cooling to	wer.	
171									
172	iii)	To calculate	the tempera	ture of the re	eturn water	to the cooling	tower, we m	ust use the	
173			nd the followi						
174					Q _{Product} =	Qwater			
175					eproduct	<i>∝water</i>			

176 177					E	F	G	Н	1
177				-O _{syst}	$m = 0_{curr}$	_{pundings} , Eqr	. 4		
				00,000		oundrigge i i			
178									
179									
180									
181		We can assu	ume the heat	contributed	due to frict	on in the kettl	e jacket to be	negligible.	
182		Knowing th	e properties	of water, spec	cifically that	it is being sen	sibly heated,	we can apply	
183		sensible he	at transfer ed	quation again.	(
184						1773.000 LD			
185				Q = m	(lb) * c (-	$\left(\frac{TU}{E}\right) * \Delta T (F)$			
186						· · · · ·			
187									
188				(+)	heat into s	ystem			
189		Q system		134,000	BTUH	(from "averag	e" condition)		
190									
191		Twater f	=	Qsystem/(m	C) +Twater	i			
192									
193		m (water)	=	(gal./min) (c	ooling time) (lb/gal)			
194			=	lb					
195		mass flow	=	7,486	lb/hr				
196									
197		1 kJ/kgK	=	0.24	BTU/(lbF)				(
198									
199		C* (water)	=	4.18	kJ/(kgK)				
200			=	1.00	BTU/(lbF)				
201		T (water)	=	70.00	F,	$\Delta T = T_f - T_i =$	Q.		
202						$I = I_f - I_i =$	$= \frac{1}{L_{in} * c_w}$, E	qn.3,	
203	2								
204	5	Twater f	=	88	F				
205		Approximation	te ΔT =	18	F				
206									

T-v diagram and steam table verification of T final (T outlet) of water I. Sketch

ll. Given

state 1 & 2 are in comp	ressible liquid	
Q out	-277000	BTU
v flow	15.00	gal/min
Dia. Inlet	1.50	inch
A inlet	0.0123	ft^2
cook time	2.07	hours

III. Assume Control volume Steady-state operation Liquid relatively incompressible Conservation of mass m dot inlet = m dot outlet = m dot A inlet = A outlet = A Pressure at inlet 60.31 psi *non-significant p-loss Pressure at outlet 54.56 psi ΔKE = 0, ΔPE = 0

Fluids highly incompressible, so enthalpy is largely a funciton of temperature Due to the behavior of water in the compressible liquid region, the enthalpy for a liquid can be well represented by the enthalpy for a saturated liquid **at a given temperature**.

IV. Analyze a. find final temperature of water

$$\frac{\partial E}{dt} = 0 = \dot{Q}_{CV} - \dot{W}_{CV} + \dot{m}[(h_i - h_e) + .5(V_i^2 - V_e^2) + g(z_i - z_e)]$$

Simplify first law

$$\frac{\partial E}{dt} = \mathbf{0} = \dot{Q}_{CV} + \dot{m} [(h_i - h_e)]$$

Inlet Water 70 F

Qcv	-277000	(+) into	systen	n
Q dot cv	-133852	BTU/hr		
Q dot cv	-37	BTU/s		
Wcv	0.00	BTU/hr		isochoric process
spec. vol	0.01606	ft^3/lb		at 70 degree F
v dot	15.00	gal/min	i.	
m dot	2.08	lb/s		
hi	38.09	BTU/lb		
he	55.96	BTU/lb		
Interpolate!				
Т		h		
F		BTU/lb		
	70.00		38.09	
	x		55.96	
	96.00		64.06	
Tf	87.9	F		

Inlet Water 75 F

-277000	(+) into	systen	n	
-133852	BTU/hr			
-37	BTU/s			
0.00	BTU/hr		isochoric process	S
0.01606	ft^3/lb		at 70 degree F	
15.00	gal/min			
2.08	lb/s			
43.09	BTU/lb			
60.96	BTU/lb			
	h			
	BTU/lb			
75.00		43.09		
x		60.96		
96.00		64.06		
92.9	F			
	-133852 -37 0.00 0.01606 15.00 2.08 43.09 60.96 75.00 x 96.00	-133852 BTU/hr -37 BTU/s 0.00 BTU/hr 0.01606 ft^3/lb 15.00 gal/min 2.08 lb/s 43.09 BTU/lb 60.96 BTU/lb h BTU/lb 75.00 x	-133852 BTU/hr -37 BTU/s 0.00 BTU/hr 0.01606 ft^3/lb 15.00 gal/min 2.08 lb/s 43.09 BTU/lb 60.96 BTU/lb h BTU/lb 75.00 43.09 x 60.96 96.00 64.06	-37 BTU/s 0.00 BTU/hr isochoric process 0.01606 ft^3/lb at 70 degree F 15.00 gal/min 2.08 lb/s 43.09 BTU/lb 60.96 BTU/lb h BTU/lb 75.00 43.09 x 60.96 96.00 64.06

Variance in the final temperatures of the food product are a result of varying flows through the kettles, size varience in kettles, and varying inlet water temperature dependent on the kettle testing date. Additionally, the final temperature of the water is indicative of initial cooling conditions when the rate of heat transfer is highest.

As the temperature of the food product approaches 85F, we can expect exit water temperatures to be lower due to the decreased rate of heat transfer. This behavior

of the final water temperature can be verified by observing the temperature profile for test 4, Kettle 18 in and newtons law of cooling.

510		
311	Since BAC selection software follows the standards and codes listed above, specifically the	
312	minimum approach parameter, I will need to reconsider my software selection. This re-	
311 312 313	selection is required because the leaving fluid temperature must be 5F above regional wet	
314	bulb temperature according to the CTI STD-201 limits of thermal certification (CTI).	

	А	В	С	D	E	F	G	Н	1
315		Additionally	, we must ma	ake sure that	our design	criteria indicat	es a heat reje	ection above	
316		the value re	equired by the	e average cor	ditions.				
317		1							
318		2 Checks				Reserve	C		
319		Minimum A	pproach Requ	uirement	ΟΚΑΥ	2.5	F		
320		Design reje	ction meets d	emand	ΟΚΑΥ	12%			
321									
322							-		
323									
324						certification? different for cool	ing towers/close	d circuit	
325		coolers	and evaporative	condensers.		uniforcial for cool	ing towers crose		
326		For Co	oling Towers and	d Closed-Circuit		Units	IP Unit		
327			ilb Temperature		10°C	to 32.2°C	50°F to 90		
			um Process Fluid um Range	Temperature		1.7°C 2°C	125°F		
328		- Minimu	um Approach		2	8°C	5°F		
329		Barome	etric Pressure		91.4 kPa	a to 105 kPa	27 in Hg to 3	I in Hg	
330									
331									
332			Section and sectors	• The second second	and the second	ages represent		•	
333						wet-bulb e.g. F		23	
334		automotion and and and and and and and and and an				f the year {35		encien an economica (
335		1% of the ye	ear {88 hours	}. This is impo	ortant beca	use the evapor	tive cooling a	ffect will be	
336		compromis	ed for that sh	ort period of	time. Depe	nding on the a	pplication, th	is may be	
337		more or les	s important.						
338									
339		Low wet-bu	ılb temperatu	res indicate f	that the air	(based on low	humidity leve	els) allow for	
340		the water-c	oated thermo	ometer to ev	aporate, th	us removing h	eat, thus lowe	ering	
341		temperatur	es.						
342									
343									
344		WB		WB		DD Heating		DD Cooling	
345		0.40%		1.00%		3047		375	
346		69.20		67.50					
347									
348		*How much	variation fro	m the base t	emperature	of 65F, extra	heating or co	oling required	
349		·				.com/english/			
350						_			
351		1						3	
352									
353		To ensure r	edundancv of	design, I sele	ected used a	a delta T of 20	F (increasing t	he range by 2	
354						cooling tower			
355						, the following			
356		critera belo				in the renewing	celection wa		
357									
358		Selection C	riteria: 120 m	om 955/755	/ 67 55 pur	e water, price	ranking		
359		Inlet Temp	95.0	Outlet			Wet-Bulb	67.5	
360		iniet remp	35.0	outiet	iemp	73.0	Wet-Duib	07.5	
900									

	А	В	С	D	E	F	G	Н	1
361	1	BTUH reject	ion	-1,200,000		-100	Tons	Efficiency	73%
362		Selection Type	Product	Qty	Model	Series	Total	Total	Warnings
363							Fan	Pump	Exist
364							Motor	Motor	
365							(HP)	(HP)	
366		LFC	FXV	1.00	FXV-0806B- 28D-L	no	15.00	2.00	No
367		Rec	FXV	1.00	FXV- 0806B- 32D-K	no	10.00	2.00	No
368			Unit	Fluid	Reserve	Price	Payback	Energy	Warnings
369			Height	Pressure	Capability	Rank	(Years)	Rating	Exist
370				Drop	(%)	÷		(USGPM	Sec. 200 (11)
371				(psi)	•	+		/ HP)	
372		LFC	18' 01.00"	0.86	5.16	1.00		23.29	No
373		Rec	18' 01.00"	0.95	1.48	1.02	1.07	32.00	No
374									

		Specific Volume ft ³ /lb		Internal Btu	~	Enthalpy Btu/lb			
		Sal.	Sal.	Sat.	Sal.	Sat.		Sat.	
Temp.	Press.	Liquid	Vapor	Liquid	Vapor	Liquid	Evap.	Vapor	
°F	lbf/in.2	vf	UE	uf	ug	hf	hfg	he	
04	0.2952	0.01604	1050	32.09	1031.8	32.09	1057-3	1089.4	
66	0.3165	0.01604	988.4	34.09	1032.4	34.09	1056.2	1090.3	
68	0.3391	0.01605	925.8	36.09	1033.1	36.09	1055.1	1091.2	
70	0.3632	0.01605	867.7	38.09	1033.7	38.09	1054-0	1092.0	
72	0.3887	0.01606	813.7	40.09	1034-4	40.09	1052.8	1092.9	
74	0.4158	0.01606	763.5	42.09	1035.0	42.09	1051.7	1093.8	
76	0.4446	0.01606	716.8	44.09	1035-7	44.09	1050.6	1094.7	
78	0.4750	0.01607	673.3	46.09	1036.3	46.09	1049-4	1095.5	
80	0.5073	0.01607	632.8	48.08	1037.0	48.09	1048.3	1096.4	
82	0.5414	0.01608	595.0	50.08	1037.6	50.08	1047.2	1097.3	
84	0.5776	0.01608	559.8	52.08	1038.3	52.08	1046.0	1098.1	
86	0.6158	0.01609	527.0	54.08	1038.9	54.08	1044-9	1099.0	
88	0.6562	0.01609	496.3	56.07	1039.6	56.07	1043.8	1099.9	
90	0.6988	0.01610	467.7	58.07	1040.2	58.07	1042.7	1100.7	
92	0.7439	0.01611	440.9	60.06	1040.9	60.06	1041.5	1101.6	
94	0.7914	0.01611	415.9	62.06	1041.5	62.06	1040.4	1102.4	
96	0.8416	0.01612	392.4	64.05	1041.2	64.06	1039.2	1103.3	
98	0.8945	0.01612	370.5	66.05	1042.8	66.05	1038.1	1104.2	
100	0.9503	0.01613	350.0	68.04	1043.5	68.05	1037.0	1105.0	

APPENDIX G

		Specific Volume ft ³ / Lb		Internal Energy Btu/lb		Enthalpy Btu/lb		
	Press. lbf/in. ²	Sat. Liquid v _f	Sat. Vapor v _g	Sat. Liquid _{Uf}	Sat. Vapor _{Ug}	Sat. Liquid h _f	Evap. h _{ig}	Sat. Vapor h _g
70	0.3632	0.01605	867.7	38.09	1033.7	38.09	1054.0	1092.0
72	0.3887	0.01606	813.7	40.09	1034.4	40.09	1052.8	1092.9
74	0.4158	0.01606	763.5	42.09	1035.0	42.09	1051.7	1093.8
76	0.4446	0.01606	716.8	44.09	1035.7	44.09	1050.6	1094.7
78	0.4750	0.01607	673.3	46.09	1036.3	46.09	1049.4	1095.5
80	0.5073	0.01607	632.8	48.08	1037.0	48.09	1048.3	1096./
82	0.5414	0.01608	595.0	50.08	1037.6	50.08	1047.2	1097
84	0.5776	0.01608	559.8	52.08	1038.3	52.08	1046.0	1098.1
86	0.6158	0.01609	527.0	54.08	1038.9	54.08	1044.9	1099.0
88	0.6562	0.01609	496.3	56.07	1039.6	56.07	1043.8	1099.9
90	0.6988	0.01610	467.7	58.07	1040.2	58.07	1042.7	1100.7
92	0.7439	0.01611	440.9	60.06	1040.9	60.06	1041.5	1101.6
94	0.7914	0.01611	415.9	62.06	1041.5	62.06	1040.4	1102.4
96	0.8416	0.01612	392.4	64.05	1041.2	64.06	1039.2	1103.3
98	0.8945	0.01612	370.5	66.05	1042.8	66.05	1038.1	1104.2
100	0.9503	0.01613	350.0	68.04	1043.5	68.05	1037.0	1105.0

APPENDIX H

Total water use by a cooling tower is given by the formula below:

Water Use = Evaporative Loss + Blowdown + Drift

Calculating the total water usage is important for the pro forma financial statements to investigate payback on project. Computation can involve two different methods.

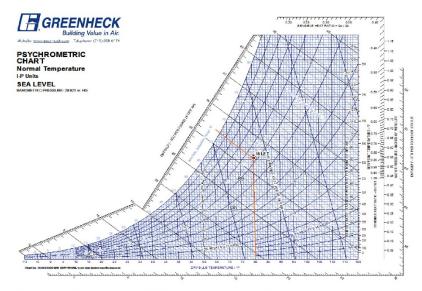
Method 1 Psychrometric Chart and Rule of Thumb Equations Method 2 Online Water Loss Calculator

Both of these methods will be used to cross reference each other to ensure a representative value for water loss.

Given:

Tin	95 F	water					
Tout	75 F	water					
wet bulb	67.5 F						
dry bulb	80 F	*santa rosa high summer temperature					
v dot	120 gpm	water					
m dot	59,832 lb/hr	water					
density	8.31 lb/gal	water					
approach	7.5 F						
Qdot out	-1,200,000 BTUH	energy rejected by selected cooling tower					
3 cycles of c	3 cycles of concentration						

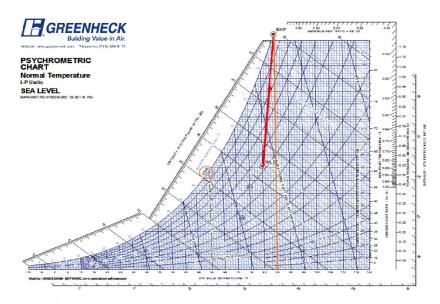
Req'd:


- a) Determine evaporative "make-up" water component
- b) Determine drift
- c) Determine blowdown

Assume: mass+energy transfer problem

total energy rejected by tower absorbed by air (water vapor + dry air) increase in humidity ratio due solely from evaopration of water through tower exit air at 100% relative humidity 1 atm barometric pressure fan running at half speed, affinity law indicates half mass flow average specific volume of INLET and EXIT conditions used to calculate density Sol'n:

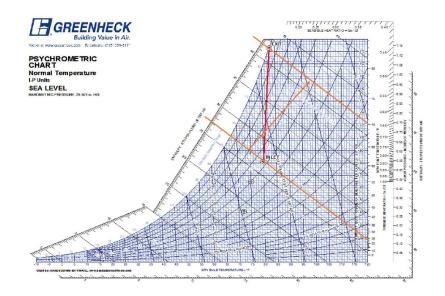
Method 1


a) Determine evaporative "make-up" water component

For exit conditions, use 100% RH and *tentative* dry bulb temperature in order to plot a point. This can be seen in first psychrometric chart below.

Once point is plotted, use software to connect the dots into a process. The software indicates how much energy enters the air based on the difference of enthalpy. This change in enthalpy can be seen in the second chart below.

Since the total heat rejected from the tower is assumed to enter the air, a representative dry bulb temperature will be assigned based on a total rate of heat rejection of: approximately 1,200,000 BTUH


The software indicates that the total heat accepted by the air to be 1,400,000 BTUH which is slightly higher than expected conditions. By testing other dry bulb exit air temperatures, 83F was determined to be the most accurate. Equation 6 is the hand calculation used by the software to determine the total energy gained by the air.

$$air flow\left(\frac{ft^{3}}{min}\right) * density \frac{lb \, dry \, air}{ft^{3}} * enthalpy \, change\left(\frac{BTU}{lb \, dry \, air}\right) * \frac{60min}{hr}$$
$$= heat \, rejection \, rate\left(\frac{BTU}{hr} \, or \, BTUH\right)$$

Qdot

1,206,000 BTUH

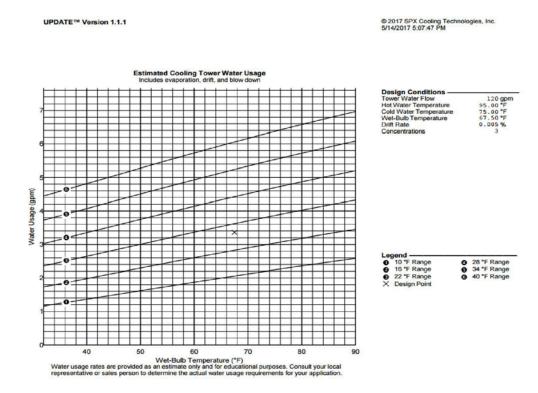
*positive value because heat absorbed into air (water vapor + dry air)

The image below indicates the conditions for the EXIT state (current point) and the process between the two points. It should be noted that this is at conditions of half fan speed. The sensible and latent components of total energy can be seen below as well.

Process		Curre	nt Point
Connect State Points	<u></u>	DB	83.000
	*	RH 💌	99.90000
Total Energy	1,196,045	Air Flow	17585
Sensible Energy	59,577	DB	83.000
	-	WB	82.976
Latent Energy	1,136,468	RH	99.90 172.8
🥅 Moisture Difference	1,036.4	v	14.218
🥅 Sensible Heat Ratio	0.050	h	47.027
Enthalpy/Humidity Ratio	1,154	DP	82.960
		d	0.0703
		vp	1.1373
		AW	12.156

Now that we have established a EXIT state point, we can now use this point to identify the humidity ratio for both INLET and EXIT points. Taking the difference between these two will indicate the increase in humidity ratio which is equvalient to the amount of evaporated water from the tower per lb dry air.

Tower Water Flow	120	gpm	27	
Hot Water Temperature	95.00	°F	35.00	
Cold Water Temperature	75.00	°F	23.89	
Wet-Bulb Temperature	67.50	°F	19.72	
Drift Rate	0.005	96		


Method 2 A Water Usage Calculator required the following inputs.

With this information, the calculator produced the following results

Water Usage

Evaporation	2.24	gpm	0.51	m ³ /ł
Drift	0.01	gpm	0.00	m³/ł
Blow down	1.11	gpm	0.25	m³/l
Total Usage	3.35	gpm	0.76	m ³ /l

The following graph was generated by the calculator to indicate water usage based on varying wet bulb temperature and cooling tower range

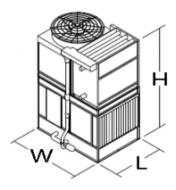
Both Method 1 and 2 provided reasonable values. It should be taken into consideration that changing ambient dry bulb inlet temperature, tower aging, and fan speed will produce varying water loss values. However, the inlet dry bulb temperature, fan speed, and wet bulb temperatures selections were intentional to represent a "design day".

3gpm of water use during tower operation will be used for the pro forma financial statements to illustrate realistic payback period and return on investment. To accommodate, blowdown for Method 1 was raised by .07gpm

Below is the distribution of water use between each category relative to total water use:

Annual Usage 3110 operational hours Blowdown Drift Evaporativ: Total Water Use 127,828 67,176 363,883 558,887 gal/year 23% 12% 65% 100%

APPENDIX I


Baltimore Aircoil Company, Inc. Closed Circuit Cooling Tower Selection Program Version: 7.5.3 NA Product data correct as of: March 03, 2017

Project Name: Selection Name: Project State/Province: Project Country: Date:	CCCT Solution Final Selection Rec California United States April 27, 2017		
Model Information		Design Conditions	
Product Line:	FXV/FXV3	Fluid:	Water
Model:	FXV-0806B-32D-K		
Number of Units:	1	Flow Rate:	120.00 USGPM
Coil Type:	Standard Coil	Entering Fluid Temp.:	95.00 °F
Coil Finning:	None	Leaving Fluid Temp.:	75.00 °F
Fan Type:	Standard Fan	Wet Bulb Temp.:	67.50 °F
Fan Motor:	(1) 10.00 = 10.00 HP/Unit		
Total Standard Fan Power	Full Speed, 10.00 BHP/Unit		
Total Pump Motor Power:	(1) 2.00 = 2.00 HP/Unit	Fluid Pressure Drop:	0.95 psi
Intake Option:	None	Reserve Capability:	1.48%
Internal Option:	None		
Discharge Option:	None		

Thermal performance at design conditions and standard total fan motor power is certified by the Cooling Technology Institute (CTI).

Engineering Data, per Unit

Unit Length: 05' 11.75" + 01' 06.00" (Pump)	= 07' 05.75"	(Total)
Unit Width:	08' 05.75"	
Unit Height:	18' 01.00"	
Approximate Shipping Weight:	7,176	lbs
Heaviest Section:	4,930	lbs
Approximate Operating Weight:	10,578	lbs
Approximate Remote Sump Operating Weight:	9,613	lbs
Air Flow:	35,170	CFM
Spray Water Flow:	290	USGPM
Coil Volume:	117	U.S. gallons
Coil Connections:		
(1) 4" Coil Inlet and Outlet, Based on 120.00	USGPM Flo	w per Unit
Remote Sump Connections:	(1) 6"	
Heater kW Data (Optional)		
0°F (-17.8°C) Ambient Heaters:	(1) 4	kW
-20°F (-28.9°C) Ambient Heaters:	(1) 6	kW
Minimum Distance Required:		
From Solid Wall:	3.5	ft
From 50% Open Wall:	3	ft

Energy Rating:

32.00 per ASHRAE 90.1, ASHRAE 189 and CA Title 24.

Note: These unit dimensions account for the selected fan type for the standard cataloged drive configuration, but they do not account for other options/accessories. Please contact your local BAC sales representative for dimensions of units with other options/accessories.

APPENDIX J

Scenario 1, 8 Kettles, Area 2

Location	Loc. Description	Nominal Pipe Diameter	U/S Pressure	U/S head	Velocity	U/S Velocity Head	Flow	Change in Distance	Change in Elevation	Misc. Friction Loss	D/S Friction Loss	No. of turns
letter		in	psi	ft	ft/s	ft	gpm	ft	ft	ft	ft	
Α	Pump Outlet	3.00	78.00	180.18	5.45	0.46	120.00	15.00	0.00	2.31	0.65	4.00
В	Tower Entrance	3.00	76.72	177.22	5.45	0.46	120.00	0.00	7.00	1.18	0.00	0.00
С	Tower Exit	3.00	73.18	169.05	5.45	0.46	120.00	7.00	-7.00	0.58	0.30	1.00
D*	Tower GL	3.00	75.83	175.17	5.45	0.46	120.00	32.00	0.00	9.04	1.38	7.00
E	Wall GL (3" mani)	3.00	71.32	164.75	5.45	0.46	120.00	40.00	40.00	0.58	1.72	1.00
F	Supply Wall RL	1.25	53.10	122.67	3.92	0.24	15.00	32.00	0.00	0.58	2.20	1.00
G	Supply RL (right turn)	1.25	51.90	119.89	3.92	0.24	15.00	160.00	0.00	0.58	11.01	1.00
н	Supply RL (left turn)	1.25	46.88	108.30	3.92	0.24	15.00	73.00	0.00	0.58	5.02	1.00
1	Supply RL end	1.25	44.46	102.70	3.92	0.24	15.00	40.00	-40.00	0.58	2.75	1.00
1	Supply GL	1.25	60.33	139.37	3.92	0.24	15.00	16.00	3.00	0.58	1.10	1.00
к	Kettle Inlet	1.25	58.31	134.69	3.92	0.24	15.00	0.00	0.00	13.28	0.00	3.00
L	Kettle Exit	1.25	52.56	121.41	3.92	0.24	15.00	8.00	-3.00	1.73	0.55	3.00
M	Submain Entrance	1.50	52.52	121.33	8.17	1.04	45.00	8.00	0.00	0.58	1.68	1.00
N	Submain Exit/ Return GL	1.50	51.55	119.07	8.17	1.04	45.00	40.00	40.00	0.58	8.41	1.00
0	Return RL	1.50	30.34	70.08	8.17	1.04	45.00	73.00	0.00	0.58	15.35	1.00
Р	Return RL (right turn)	1.50	23.44	54.15	8.17	1.04	45.00	145.00	15.00	0.58	30.49	1.00
Q	Return (expansion)	2.50	3.63	8.39	6.86	0.73	105.00	10.00	0.00	2.00	0.82	0.00
R	Return RL (left turn)	2.50	2.41	5.57	6.86	0.73	105.00	8.00	0.00	0.58	0.66	1.00
S	Return RL (tot. flow)	2.50	1.78	4.11	7.84	0.96	120.00	18.00	0.00	0.00	1.88	0.00
т	Return Wall RL	2.50	0.96	2.23	7.84	0.96	120.00	40.00	-40.00	0.58	4.19	1.00
U	Wall GL (3" mani)	3.00	16.43	37.96	5.45	0.46	120.00	20.00	0.00	1.16	0.86	2.00
v	Expansion Tank Losses	3.00	15.56	35.94	5.45	0.46	120.00	5.00	0.00	0.58	0.22	1.00
W	Pump Inlet	3.00	15.22	35.15	5.45	0.46	120.00	0.00	0.00	0.00	0.00	1.00

Note: Friction losses based on engineering drawings that could not be included in the Appendices due to confidentiality

NPSHA	34.17 ft
Remaining Head	39.77 ft
Hvp (@ 90F)	1.60 ft
SF	4.00 ft

2 Grundfos

$$Hf (segment) = 10.5 \left(\frac{GPMseg}{c}\right) * (Lsegment) * (ID)^{-4.87} Eq. 1$$

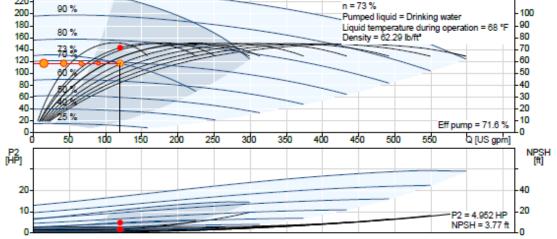
Bernollis Equation = $P1 + Z1 + \left(\frac{v^2}{2g}\right) = P2 + Z2 + \left(\frac{v^2}{2g}\right) + Hf$

$$Q = V * A$$

It should be noted that the Hazen Williams equation is typically accepted in agricultural and civil applications. Darcy-Weibach equations should be used for final design.

According to pump curve, our NPSHR is well below NPSHA for both worst case and normal operating conditions.

APPENDIX K


CRNE 45-2

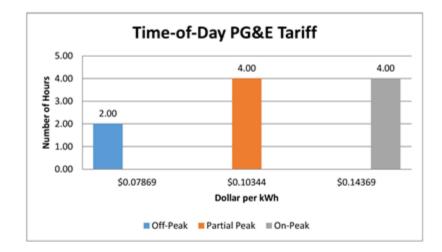
Vertical, multistage centrifugal pump with integrated frequency converter. Pump materials in contact with the liquid are in stainless steel (EN 1.4301)

Product photo could vary from the actual product

Conditions	of Service	Pump Data	Motor Data		
Flow:	120 US gpm	Max pressure at stated temperature:	232 psi / 250 °F	Rated power - P2:	14.75 HP
Head:	117 ft	Liquid temperature range:	3232 °F	Rated voltage:	460 V
Efficiency:	59.9 %	Maximum ambient temperature:	104 °F	Main frequency:	60 Hz
Liquid:	Drinking water	Shaft seal:	HQQE	Enclosure class:	IP55
Temperature:	68 °F	Flange standard:	ANSI	Insulation class:	F
NPSH required:	3.77 ft	Pipe connection:	3"	Motor protection:	YES
Viscosity:	1 cSt	Product number:	98183877	Motor type:	160AA
Specific Gravity:	1.000				
H (ft)				2 x CRNE 45-2, 60H	z eta
(ft) 240 220- 200- 90			Q = 120 US gpm H = 117 ft n = 73 %	nd valves not included	- 100
180-			Pumped liquid = Dr	inking water during operation = 68 °F	

1/10

APPENDIX L


	\$ estima	ate of e-usage				
Given:	CCCT op	eration hours		10	hours/day	
		onal Days		311 days/work year		
		on times		330am	to	9pm
	No. of b	atches		5	batches/day	
	Fan HP				total HP	
	Sump Pu	ump HP		2	total HP	
	Circulati	ng Pump HP		10	total HP	
	Unit No.			1		
	Model o	f Selection		FXV-0806B-32	D-K	
Reg'd:	i)	Determine hou	r of operation			
	ii)	Determine tim	es of operation	1		
		*must conside	r peak rates for	electricity		
	iii)	Determine ind	ustrial energy r	ate (E-20)		
		https://www.p	ge.com/tariffs/	electric.shtml		
	iv)	Determine tota	al horsepower i	input into CCCT		
		a)	fan			
		b)	sump pump			
		c)	circulating pu	mp		
	v)	Determine ene	ergy consumption	on	E - 20 rates	
	vi)	Determine cos	t of energy usa	ge	\$0.14369	per kWh
					\$0.10344	per kWh
Sol'n:	i)	Hours of op.			\$0.07869	per kWh
		3110) hours per yea	r		-
	ii)	Off-Peak	Partial Peak	On-Peak		
	iii)	\$ 0.07869	\$ 0.10344	\$ 0.14369	per kWh	
		2.00	0.00	0.00	hours	
		0.00	4.00	0.00		
		0.00	0.00	4.00		

Estimated Kettle Operation Schedule

3:30:00 AM	4:30:00 AM	5:30:00 AM	6:30:00 AM	7:30:00 AM
		2		
8:30:00 AM	9:30:00 AM	10:30:00 AM	11:30:00 AM	12:30:00 PM
	2			
1:30:00 PM	2:30:00 PM	3:30:00 PM	4:30:00 PM	5:30:00 PM
2				4
6:30:00 PM	7:30:00 PM	8:30:00 PM	9:30:00 PM	
			4	

note:

Demand charges will be neglected. This takes a full understanding of the facility operation. Power factor adjustment will also be neglected

vi)	Fan	нр		10	tota	I HP		7.5	LW.
vij									
		p Pump HP		-		I HP		1.5	KVV
	Circi	ulating Pum	1	10	max	(HP		7.5	
	Unit	No.		1					
	Tota	l Power		12	HP			16.4	kW
	Off-	Peak	Par	tial Peak	On-	Peak			
	Ś	0.07869	Ś	0.10344	S	0.14369			
		2.00		4.00		4.00			
	\$	2.58	Ś	6.79	ŝ	9.43			
	*	2100	Ŧ	0.70	*	5115			
Total Cos	t of En	ergy Per Da	iy		\$	18.80			
Total Cos	t of En	ergy Per W	ork	Year*	Ś	5,846.47			
		gy rates are			stan	t			
	-	n Oct 1st 2		,		•			
		ease per ye							
					The	-Future-of-l	ectricity-		
Prices-in-	Califor	nia-Final-D	raft	 1.pdf 					
pg. 27									
Power	=		(F*	x)/t	=		(E)/t		
	=		E/t	* t (hours)	* \$/	Έ			
	=		\$ fo	or annual e	nerg	y consumpt	tion		
					-0	, , , , , , , , , , , , , , , , , , , ,			

Ciculating Pump Horsepower Computation

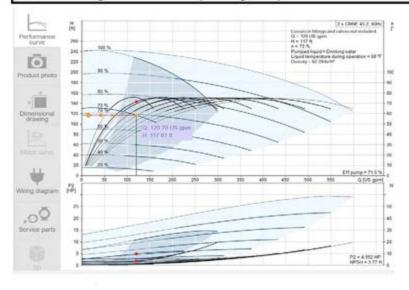
Circulating Pump HP was based on interpretations from the pump curve and worst case pumping scenario for the system curve. This is where the highest flow and head would be required. This was based on friciton losses and elevation changes of the hydraulically furthest kettles in the facility. The selected pipe sizes and kettle deck operation should be further investigated to provide an optimized pump selection based on the system curve. By providing a slightly oversized pump station and variable frequency drive, operators can adjust pump speed according to what minimizes energy cost while maintaining production capacity.

Based on interpretation of the piping layout diagram provided, the following head and flow requirements were developed to represent the most power intensive pumping scenario. This occurs when the 8 hydraulically furthest, highest capacity kettles require cooling flow simultaneously. The following head and flow requirements were largely based on kettle design, friction loss estimates, static head, NPSH, and changes in elevation. Computations were based on Hazen Williams equations to provide rough estimates on pumping costs. Friction loss calculations will need to be reviewed by the refrigeration design engineer using the Darcy–Weisbach equation to account for turbulent flow and the temperature gradients throughout the pumping system.

With all this considered, the following values were deemed acceptable to estimate power req'd

	Normal Op.	Worst Case	
TDH	117	180 f	t
Flow	120	120 g	pm

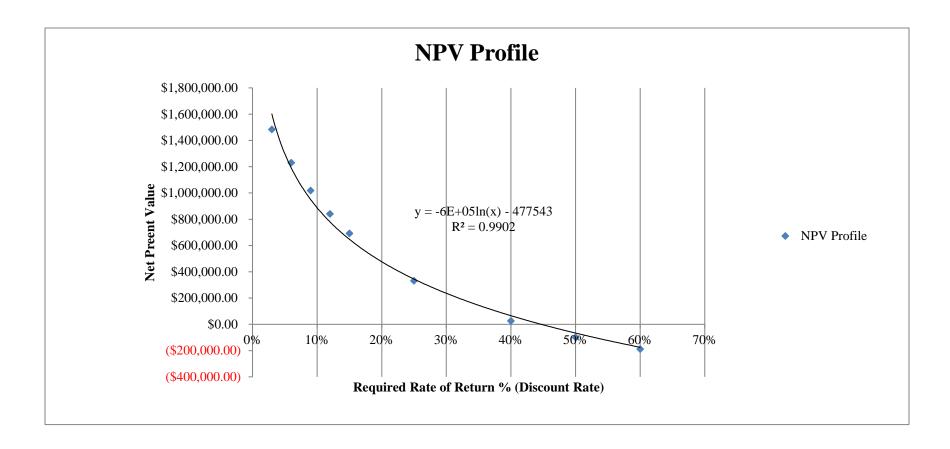
The minimum energy req'd for each scenario to pump the water is calculated with the following:


TDH * GPM	WHP	Matan UD Brake HP
$Water HP = \frac{3960}{3960}$	Brake $HP = \frac{1}{Pump \ Eff.}$	$Motor HP = \frac{1}{Motor Eff.}$

The following efficiencies were provided by Grundfos Pump Selection Software:

Model: CRNE 45-2 A-G-G-E-HQQE

Motor eff	86.2%		
Pump eff	71.6%		
	Normal Op	Worst Case	
WHP	3.55	5.45	hp
BHP	4.95	7.62	hp
Motor HP	5.74	8.84	hp


With a variable frequency drive, operators will be able to adjust motor rotational speed allowing for adjustable flow and head. A nominal **10 HP motor** was selected for conservative savings estimates on the capital budget analysis.

Sizing result		
Туре	CRNE 45-2	
Quantity * Motor	2 * 14.75 H	Р
Flow	120	US gpm
H total	117	ft
Power P1	4.409	kW
Power P2	4.952	HP
Eff pump	71.6	%
Eff motor	86.2	%
Eff pump+mtr	59.9	% =Eta pump * Eta motor
Eff total	59.9	%
Flow total	11055980	gal/year
Consumption	13681	kWh/Year
Price	On request	
Total costs	On request	/10Years
Life cycle cost		/10Years

APPENDIX M

		RCS h Flow	0.1429 2017		0.2449 2018		0.1749 2019		0.1249 2020	0.0893 2021		0.0892 2022	0.0893 2023		0.0446 2024
	Yea	ar O	EOY 1		EOY 2		EOY 3		EOY 4	EOY 5		EOY 6	EOY 7		EOY 8
I. Investment Cash Flows															
Net Capital Investment	\$	(664,600.00)													
Installation	\$	(284,000.00)													
Freight	\$	(6,500.00)													
CCCT FXV model	\$	(374,100.00)													
Equipment	\$	(344,000.00)													
Sales Tax	\$	(30,100.00)													
II. Operating Cash Flows															
_															
Revenues			\$ 349,165.53	Ş	,	Ş	375,106.12	Ş	388,838.50	\$	Ş		\$ 433,343.81	Ş	449,359.46
Gallons of Water and Sewage Save	ed		17885000		17885000		17885000		17885000	17885000		17885000	17885000		17885000
Water Rate per 1000 gal.			\$5.95		\$6.25		\$6.56		\$6.90	\$7.25		\$7.61	\$8.00		\$8.40
Sewage Rate per 1000 gal.			\$13.58		\$13.99		\$14.41		\$14.85	\$15.29		\$15.76	\$16.23		\$16.72
Expenses			\$ (13,915.01)	s	(14,311.40)	\$	(14,723.16)	\$	(15,150.93)	\$ (15,595.38)	\$	(16,057.19)	\$ (16,537.11)	\$	(17,035.88)
Cost of Water and Sewage from C	сст		\$ (5,068.54)	\$	(5,289.53)	\$	(5,520.63)	\$	(5,762.33)	\$ (6,015.12)	\$	(6,279.53)	\$ (6,556.11)	\$	(6,845.45
Gallons of Water Used			558887		558887		558887		558887	558887		558887	558887		558887
Water rate per 1000 gal.			\$5.95		\$6.25		\$6.56		\$6.90	\$7.25		\$7.61	\$8.00		\$8.40
Sewage rate per 1000 gal.			\$13.58		\$13.99		\$14.41		\$14.85	\$15.29		\$15.76	\$16.23		\$16.72
Cost of Energy from CCCT			\$ (5,846.47)	\$	(6,021.87)	\$	(6,202.52)	\$	(6,388.60)	\$ (6,580.26)	\$	(6,777.66)	\$ (6,980.99)	\$	(7,190.42)
Maitainance			\$ (3,000.00)	\$	(3,000.00)	\$	(3,000.00)	\$	(3,000.00)	\$ (3,000.00)	\$	(3,000.00)	\$ (3,000.00)	\$	(3,000.00)
EBITDA			\$ 335,250.52	\$	347,577.24	\$	360,382.96	\$	373,687.57	\$ 387,511.81	\$	401,877.31	\$ 416,806.70	\$	432,323.58
Depreciation			\$ 94,971.34	\$	162,760.54	\$	116,238.54	\$	83,008.54	\$ 59,348.78	\$	59,282.32	\$ 59,348.78	\$	29,641.16
EBIT			\$ 240,279.18	\$	184,816.70	\$	244,144.42	\$	290,679.03	\$ 328,163.03	\$	342,594.99	\$ 357,457.92	\$	402,682.42
Taxes (less)			\$ (60,069.80)	\$	(46,204.17)	\$	(61,036.11)	\$	(72,669.76)	\$ (82,040.76)	\$	(85,648.75)	\$ (89,364.48)	\$	(100,670.61
NOPAT			\$ 180,209.39	\$	138,612.52	\$	183,108.32	\$	218,009.28	\$ 246,122.27	\$	256,946.24	\$ 268,093.44	\$	302,011.82
Depreciation (more)			\$ 94,971.34	\$	162,760.54	\$	116,238.54	\$	83,008.54	\$ 59,348.78	\$	59,282.32	\$ 59,348.78	\$	29,641.16
OCF			\$ 275,180.73	\$	301,373.06	\$	299,346.86	\$	301,017.82	\$ 305,471.05	\$	316,228.56	\$ 327,442.22	\$	331,652.98
III. Terminal Year Cash Flows															
Salvage Value															\$0.00
IV. Net Cash Flow															
V. Results	\$	(664,600.00)	\$ 275,180.73	\$	301,373.06	\$	299,346.86	\$	301,017.82	\$ 305,471.05	\$	316,228.56	\$ 327,442.22	\$	331,652.98
ROI = 32%		NPV =	\$ 1,230,042.47		IRR =		42%		MIRR =	21%		Payback Period =	2.31		years

Rate
3%
6%
9%
12%
15%
25%
40%
50%
60%

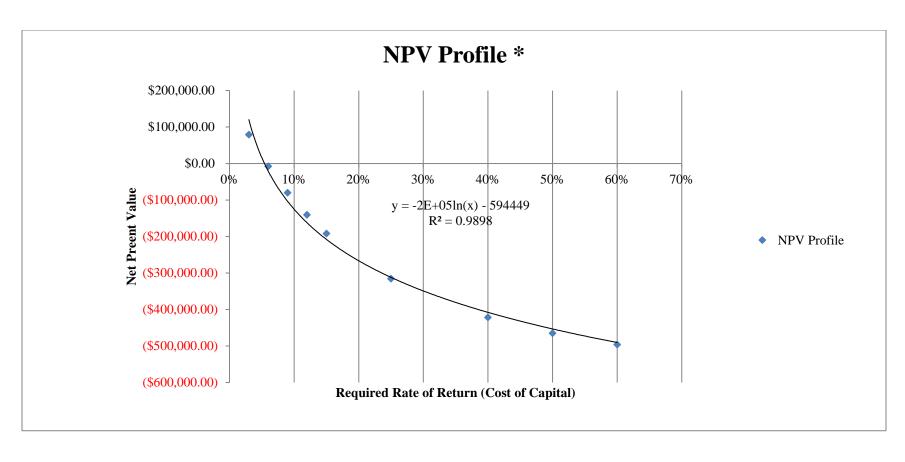
Neglecting changes in...

water rate	\$ (85,603.92)
sewage rate	\$ (114,924.63)
both	\$ (200,528.55)

3-year 5-year 33.33% 20.00% 44.45 32.00	7-year	10-year		Department of recovery period														
			15-year	20-year														
44.45 32.00 14.81 10.20 7.41 11.52 11.52 5.76	14,29% 24,49 17,49 12,40 8,93 8,92 8,93 4,46	10.00% 18.00 14.40 11.52 9.22 7.37 6.55 6.55 6.55 6.55 3.28	5.00% 9.50 8.55 7.70 8.93 6.23 5.90 5.91 5.91 5.91 5.91 5.91 5.91 5.91	3.750% 7.219 6.677 5.713 5.285 4.888 4.522 4.461 4.462 4.461 4.462 4.461 4.462														
		•	2.95	4.461 4.462 4.461 4.462 4.461														

6% discount rate

6% discount/finance rate


3% sewage rate increase

5.8% reinvestment rate

5% water rate increase

APPENDIX N

				MA	RCS		0.1429	0.2449	0.1749		0.1249	0.0893		0.0892		0.0893	0.0446
				Casl	h Flow		2017	2018	2019		2020	2021		2022		2023	2024
				Yea	r 0		EOY 1	EOY 2	EOY 3		EOY 4	EOY 5		EOY 6		EOY 7	EOY 8
I. Investme	nt Cash Fl	ows															
Net Capita	Investme	nt		\$	(664,600.00)												
	Installatio	n		\$	(284,000.00)												
	Freight			\$	(6,500.00)												
	CCCT FXV	model		\$	(374,100.00)												
		Equipment	t	\$	(344,000.00)												
		Sales Tax		\$	(30,100.00)												
II. Operati	ig Cash Flo	ws															
Revenues						Ş	106,351.47	\$ 111,735.52	\$ 117,392.13	Ş	123,335.10	\$ 129,578.94	\$	136,138.88	Ş	143,030.91	\$ 150,271.85
	Gallons of	Water and	Sewage Sa	ved			17885000	17885000	17885000		17885000	17885000		17885000		17885000	17885000
	Water Rat	e per 1000 g	gal.				\$5.95	\$6.25	\$6.56		\$6.90	\$7.25		\$7.61		\$8.00	\$8.40
	Sewage Ra	ate per 1000) gal.				\$0.00	\$0.00	\$0.00		\$0.00	\$0.00		\$0.00		\$0.00	\$0.00
Expenses						\$	(12,169.84)	\$ (12,513.48)	\$ (12,870.90)	\$	(13,242.69)	\$ (13,629.46)	\$	(14,031.86)		(14,450.56)	\$ (14,886.26)
		ater and Sev		ссст		\$	(3,323.37)	\$ (3,491.61)	\$ (3,668.38)	\$	(3,854.09)	\$ (4,049.20)	\$	(4,254.19)	\$	(4,469.56)	\$ (4,695.83)
	Gallons of	Water Used	d				558887	558887	558887		558887	558887		558887		558887	558887
	Water rate	e per 1000 g	gal.				\$5.95	\$6.25	\$6.56		\$6.90	\$7.25		\$7.61		\$8.00	\$8.40
	Sewage ra	te per 1000	gal.				\$0.00	\$0.00	\$0.00		\$0.00	\$0.00		\$0.00		\$0.00	\$0.00
	Cost of En	ergy				\$	(5,846.47)	\$ (6,021.87)	\$ (6,202.52)	\$	(6,388.60)	(6,580.26)	\$	(6,777.66)		(6,980.99)	\$ (7,190.42)
	Maitainan	ce				\$	(3,000.00)	\$ (3,000.00)	\$ (3,000.00)	\$	(3,000.00)	\$ (3,000.00)	\$	(3,000.00)	\$	(3,000.00)	\$ (3,000.00)
	Repair																
EBITDA						\$	94,181.63	\$ 99,222.04	\$ 104,521.23	\$	110,092.42	\$ 115,949.49	\$	122,107.02	\$	128,580.35	\$ 135,385.59
Depreciatio	n					\$	94,971.34	\$ 162,760.54	\$ 116,238.54	\$	83,008.54	\$ 59,348.78	\$	59,282.32	\$	59,348.78	\$ 29,641.16
EBIT						\$	(789.71)	\$ (63,538.50)	\$ (11,717.31)	\$	27,083.88	\$ 56,600.71	\$	62,824.70	\$	69,231.57	\$ 105,744.43
Taxes (less						\$	197.43	\$ 15,884.63	\$ 2,929.33		(6,770.97)	\$ (14,150.18)	\$	(15,706.18)	\$		\$ (26,436.11)
NOPAT						\$	(592.28)	\$ (47,653.88)	\$ (8,787.98)	\$	20,312.91	\$ 42,450.53	\$	47,118.53	\$	51,923.68	\$ 79,308.32
Depreciatio	on (more)					\$	94,971.34	\$ 162,760.54	\$ 	\$	83,008.54	\$ 59,348.78	\$	59,282.32	\$	59,348.78	\$ 29,641.16
OCF						\$	94,379.06	\$ 115,106.66	\$ 107,450.56	\$	103,321.45	\$ 101,799.31	\$	106,400.85	\$	111,272.46	\$ 108,949.48
III. Termina		h Flows															
Salvage Va																	\$ -
Total Dispo	sal Cash F	low															\$ -
IV. Net Cas	h Flow																
				Ş	(664,600.00)	\$	94,379.06	\$ 115,106.66	\$ 107,450.56	\$	103,321.45	\$ 101,799.31	\$	106,400.85	\$	111,272.46	\$ 108,949.48
V. Results																	
					NPV =	Ş	(7,623.25)	IRR =	5.7%		MIRR =	5.7%	Pay	back Period =		6.35	years

Sensitivity	Analysis										
•	Will reduce of	cost of	water by 259	%.50%.75	%. and 100	%	1				
•	Will reduce of										
•	Will increase										
•	Complete fai										
-	complete fai		cooming to w	u							
								NPV	Rate		
Water Red		NPV		IRR	PP						
	25%		,088,682.12	38%		years		\$79,063.90	3%		
	50%		947,321.77	35%		years		(\$7,623.25)	6%		
	75%	T	805,961.43	31%		years		(\$79,809.84)	9%		
	100%		664,601.08	27%		years		(\$140,420.30)	12%		
Sewer Red		NPV		IRR	PP			(\$191,709.73)	15%		
	25%	-	920,626.04	34%		years		(\$315,229.18)	25%		
	50%		611,209.61	25%		years		(\$421,407.32)	40%		
	75%		301,793.18	16%		years		(\$464,765.42)	50%		
	100%	\$	(7,626.25)	6%	6.35	years		(\$495,918.68)	60%		
Energy rate	a increase										
energyrad	cincrease		NPV	IDD							
2x		S	1,200,048.19								
3x			1,170,053.92	40%							
		Ý	2,270,050.52								
Complete	Breakdown										
		NPV		IRR							
EOY 8		\$	917,308.77	39%							
EOY 5		\$	857,571.63	35%							
EOY 3		\$	811,534.24	29%							
EOY 2		\$	786,423.74	26%							
EOY 1		\$	759,806.62	22%							
EOY 1&2		\$	316,187.89	12%							
EOY 1,2,3		S	(102,320.34)	4%							

APPENDIX O

Met	ter	9	5	5	4	Ħ	13		3	2	12	1	1	0	-	10		6
Code	Size	1-Jan-16	1-Jul-15	1-Jan-15	2-Jul-14	***	16-Dec-1	1-Jul-13	1-Jan-13	1-Jul-12	14-Jan-12	1-Jul-11	1-Jan-11	1-Jul-10		15-Jan-10		1-Jan-09
					Wast	ewater Fixe	d Service C	harges						Wa	stewater Fixed Se	rvice Charg	es	2.6
1	5/8"	22.74	21.60	21.60	20.87	20.87	20.16	20.16	20.16	19.57	19.57	19.00	19.00	17.76	SCWA pass-	17.76		16
2	1"	54.75	48.10	48.10	46.47	46.47	44.90	44.90	44.90	43.59	43.59	42.32	42.32	39.55	through rates	39.55		36
3	1.5"	108.11	102.63	102.63	99.16	99.16	95.81	95.81	95.81	93.02	93.02	90.31	90.31	84.40	began July 1,	84.40	4 Tiered rate structure began	7
4	2"	172.15	178.80	178.80	172.75	172.75	166.91	166.91	166.91	162.05	162.05	157.33	157.33	147.04	2010	147.04	Jan 15, 2010	13
5	3"	321.56	396.66	396.66	383.25	383.25	370.29	370.29	370.29	359.5	359.50	349.03	349.03	326.20	**No change to	326.20	1	30
6	4"	535.00	701.61	701.61	677.88	677.88	654.96	654.96	654.96	635.88	635.88	617.36	617.36	576.97	wastewater	576.97	4	53
7	6"	1068.60	1572.94	1572.94	1519.75	1519.75 astewater	1468.36	1468.36	1468.36	1425.59	1425.59	1384.07	1384.07	1293.52	rates** Wastewater Usag	1,293.52		1,20
	_	-	<u></u>		v	astewater	Usage chan	ges			<u> </u>	r				e charges		r
Jsage C per 1, Gallo	000	13.08	13.24	13.24	12.79	12.79	12.36	12.36	12.36	12.00	12.00	11.65	11.65	10.89	SCWA pass- through rates began July 1, 2010 **No change to wastewater rates**	10.89	4 Tiered rate structure began Jan 15, 2010	
		1			w	ater Fixed S	ervice Char	ges				a. 2	5		Water Fixed Servi	ce Charges		
1	5/8"	10.78	12.52	12.52	11.92	11.92	11.35	11.35	11.35	9.85	9.85	8.35	8.35	7.73	SCWA pass-	7.73		
2	1"	24.18	22.80	22.80	21.71	21.71	20.68	20.68	20.68	17.95	17.95	15.21	15.21	14.08	through rates	14.08		1
3	1.5"	46.51	43.58	43.58	41.50	41.50	39.52	39.52	39.52	34.30	34.30	29.07	29.07	26.92	began July 1,	26.92	4 Tiered rate structure began	2
4	2"	73.31	73.23	73.23	69.74	69.74	66.42	66.42	66.42	57.65	57.65	48.86	48.86	45.24	2010	45.24	Jan 15, 2010	4
5	3"	135.83	171.26	171.26	163.10	163.10	155.33	155.33	155.33	134.84	134.84	114.27	114.27	105.81	**No change to	105.81		9
6	4"	225.16	291.34	291.34	277.47	277.47	264.26	264.26	264.26	229.39	229.39	194.40	194.40	180	fixed water	180		16
7	6"	448.46	637.82	637.82	607.45	607.45	578.52	578.52	578.52	502.18	502.18	425.58	425.58	394.06	rates**	394.06	1	36
					· · · · ·	Water Usa	age Charges					r			Water Usage C	harges		-
		5.25	4.95	4.86	4.86	4.79	4.79	4.79	4.70	4.65	4.55	4.50	4.41	4.09		3.98	Tier 1: Up to sewer cap	3.8
Jsage C per 1,	•	6.14	5.7	5.59	5.59	5.51	5.51	5.51	5.41	5.36	5.24	5.19	5.08	4.71	SCWA pass- through rates	4.58	Tier 2: Water use above sewer cap up to 8,000k	4.7
Gallo	ons	N/A	7.11	6.98	6.98	6.88	6.88	6.88	6.75	6.68	6.53	6.47	6.34	5.89	began July 1, 2010	5.73	Tier 3: Water use 8,001k to 30,000k above sewer cap	7.1
		N/A	10.68	10.48	10.48	10.33	10.33	10.33	10.14	10.04	9.81	9.71	9.51	8.83		8.59	Tier 4: Water use over 30,000k above sewer cap	
		-		Z = Y,	Multi-Unit I	Residential	and Comme	ercial Water	Rates			-	Z = Y	, Multi-Uni	t Residential and	Commercia	l Water Rates	-
Z=	<u>8</u>	5.25	4.95	4.86	4.86	4.79	4.79	4.79	4.70	4.65	4.55	4.5	4.41	4.09	SCWA pass-	3.98	All use billed at Tier 1 rate	3.8
Multi-	10000	5.59	5.46	5.36	5.36	5.28	5.28	5.28	5.18	5.13	5.01	4.96	4.86	4.51	through rates began July 1,	4.39	All use billed at commodity rate	4.0
Re					1			2			5	S	2	3	2010	8	All use billed at commodity	

APPENDIX P

California Polytechnic State University		06/01/2016		
BioResource and Agricultural Engineering Department		DeGiorgio, Nicolo		
ASM Senior Project Contract		007551319	ASM	
Project Title Kettle Cooling and Sustainability Project				
How Project Meets Requirements for the ASM Major				
ASM Project Requirements - The ASM senior project must include a problem solving experience that incorporates the application of technology and the organizational skills of business and management, and quantitative, analytical problem solving.				
Application of agricultural technology	The project will involve the study of curre systems for food process.	ent cooking and cooling		
Application of business and/or management skills	Using engineering economics, selected technologies can then be analyzed for their return on investments by working with utility companies to discuss rebate potential. Additionally, the interaction with the customer puts my soft-skills to the test in a professional environment conducting a sale.			
Quantitative, analytical problem solving	The technology involved will have param designed for to meet financial, energy-wa production parameters.			
Capstone Project Experience - The ASM senior project must incorporate knowledge and skills acquired in earlier coursework (Major, Support and/or GE courses).				
Management major must the application of tech skills. Agricultural system analytical processes for management problems	projects for students in the Agricult st include a problem solving experie nology and the application of busin ms management involves the applic developing solutions to technologic associated with agricultural produ gricultural products and support ser	nce that incorp pess or manage ation of quantitical, business or ction, process	ement tative, sing,	

or related industries. A systems approach, interdisciplinary experience and

agricultural training in **specialized areas** are common features of this type of problem solving. "

incorporates knowledge/ skills from these key courses	AGB 310 Agribusiness Credit and Finance (time-value of money, discount rate, depreciation, capital budget analysis, pro forma income statements)
	BRAE 203 Agricultural Systems Analysis (engineering economics, flow network diagrams, project cost-estimation)
	BRAE 301 Hydraulic and Mechanical Power Systems (selection, application, and use of hydraulic components and mechanical power transmission equipment)
	BRAE 324 Principles of Agricultural Electrification (basic power and circuits calculations, power factor improvement, reading circuit diagrams, basic power distribution design)
	BRAE 342 Agricultural Materials (stress, strain, mat'l selection, etc.)
	BRAE 432 Agricultural Buildings (principles of building heat loss/rejection, food storage selection, environmental factors consideration)
	BRAE 532 Pumps and Wells (pump curve familiarity, well and sump pump design, pump station maintenance, efficiency improvements)
	Statistical Methods for Engineers
	General Chemistry for Engineers I (section on Heat Transfer)
	Physics I & II (section on Thermodynamics)
	Technical Writing
	Thermodynamics I