

SILENT COMMUNICATION DEVICE

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Christopher W. Schutter

March 2017

ii

© 2017

Christopher W. Schutter

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Silent Communication Device

AUTHOR: Christopher W. Schutter

DATE SUBMITTED: March 2017

COMMITTEE CHAIR: Jane Zhang, Ph.D.

Professor of Electrical Engineering, Associate Dept. Chair, Graduate

Coordinator

COMMITTEE MEMBER: Tina Smilkstein, Ph.D.

 Associate Professor of Electrical Engineering

COMMITTEE MEMBER: Jeffery Gerfen, M.S.

 Lecturer of Electrical Engineering

iv

ABSTRACT

Silent Communication Device

Christopher W. Schutter

Oral communication has constituted as a necessary aspect of how people interact with

one another, but there are always situations where this form of communication can create

distractions, irritation, or even danger. Take for example, a student in a laboratory who needs to

communicate effectively with a lab partner without creating a distraction to those trying to work

around said student or a soldier on a battlefield who needs to relay information effectively to his

or her comrades without revealing his or her position to the enemy. It becomes apparent that

people need a more exclusive form of communication in order to ensure not only the safety of

soldiers, but efficiency in the workplace as well.

This project focuses on solving these problems by developing a small, concealable, and

non-invasive, electronic device capable of transmitting communication silently by linking to a

phone, computer, or radio channel. This device ensures completely silent communication

between only those who use communicating devices and only requires that the user apply nodes

to his or her throat when thinking of what he or she wishes to communicate with another for

proper operation. Unlike other devices which rely on EEG and thus involve cumbersome

headwear, this device performs as easily removable, concealable, hands free, conveniently

pocket-sized, compatible with other devices used for communication, and able to have a user

input versus device output accuracy of at least 70%.

Using wavelet analysis and a MSP432 microcontroller, subvocal signals originating from

the throat can be classified to an overall accuracy of at least 70% within a project budget of $50.

v

ACKNOWLEDGMENTS

 I would like to thank the committee for giving me the opportunity to present this thesis. I

would like to thank Jane Zhang for the support and advice she gave me throughout this project,

Tina Smilkstein for the advice and materials for this project, and Jeffrey Gerfen for the support

as well. I would also like to thank Travis Harper for the plate capacitors.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

1. INTRODUCTION ...1

1.1 Statement of Problem ...1

1.2 Related Work ...3

1.3 Initial Design and Block Diagrams ..5

2. CUSTOMER NEEDS, REQUIREMENTS, AND SPECIFICATIONS..............................9

2.1 Customer Needs Assessment ...9

2.2 Requirements and Specifications ...9

3. DESIGN METHODS INCORPORATED, DESIGNS CONSIDERED, AND

REDESIGN ..13

3.1 Subvocal EMG Signals ..13

3.2 Amplifier/Filter Design ..16

3.3 Discrete Wavelet Transform ..20

3.4 Project Scope Redesign..26

3.5 Initial Microcontroller Code Input and Output Handler ..28

3.6 Neural Network ..31

4. IMPLEMENTATION, TESTING, AND RESULTS ..40

4.1 Amplifier/Filter Prototype and Testing ..40

4.2 Microcontroller Code Implementation V1.0 (User Interface V1.0)56

4.3 Neural Network Tests with Amplifier.Filter ..65

vii

4.4 Microcontroller Code Implementation V2.0 (Input Sampling)73

4.5 Microcontroller Wavelet Transform and Reconstruction Code...................................79

4.6 Microcontroller Code Implementation V3.0 (external DAC operation)86

4.7 User Interface V2.0 and Second Amplifier/Filter Implementation

 and Performance ..100

4.8 Device Operation with Portable Battery Power ...117

4.9 Neural Network and Microcontroller Code Optimization ...124

4.10 Amplifier/Filter Optimization ..128

4.11 Final Results...137

5. CONCLUSIONS AND IDEAS FOR FUTURE WORK...153

5.1 Summary ..153

5.2 Requirements and Specifications Fulfillment ..156

5.3 Thesis Statement Fulfillment ...163

5.4 Future Works ...164

REFERENCES ..166

 APPENDICES

A. Code Composer Studio (Microcontroller) and Matlab Code171

B. Expenses Table ..255

viii

LIST OF TABLES

Table Page

1.1 Level 0 Block Diagram Description Table ..6

1.2 Level 1 Block Diagram Description Table ..8

2.1 Silent Communication Device Project Requirements and Specifications11

B.1 Component Expenses Table (Bill of Materials) ..256

ix

LIST OF FIGURES

Figure Page

1.1 Level 0 Block Diagram ..5

1.2 Level 1 Block Diagram ..7

3.1 Amplifier/filter Design LTSpice IV Simulation Circuit ..19

3.2 Amplifier/filter Design LTSpice IV Simulation at Output ..19

3.3 Wavelet transform dilations diagram: an input stream being sent through four

 dilations via discrete wavelet transform ..21

3.4 Wavelet decomposition lattice filter basic structure (6th order) as referenced from [30]23

3.5 Input and output handler for the wavelet transform code as referenced from [30]25

3.6 Final Design Choice ...27

3.7 ADC14 sync, sample, and conversion time, referenced from [32] ..30

4.1 60 Hz notch filter schematic and design ..43

4.2 First amplifier/filter schematic and circuit ...45

4.3 Output signal (blue) of both low-pass high gain filters in response to a 50 mV,

 300 Hz input signal (yellow)..46

4.4 Demonstration of noise layers (blue) on output of amplifier/filter circuit...............................47

4.5 Demonstration of clean output (blue) in response to a 15 mV, 300 Hz input signal

 (yellow) of both low-pass high gain filters after modifications on amplifier/filter47

4.6 Circuit schematic of voltage divider on input of filter/amplifier ...49

4.7 Output of filter (blue) with voltage divider to simulate EMG signal, input (yellow)

 after voltage divider. Channel properties are shown on the right ..50

4.8 Output of filter (blue) with voltage divider to simulate EMG signal, input (yellow)

 after voltage divider. Signal measurements are shown on the right ..50

4.9 Output of filter (blue) with voltage divider to simulate EMG signal and potentiometer

 added to low-pass filter (in parallel with 27K resistor, resulting in total resistance

 of 910 ohms), input (yellow) after voltage divider. Gain increased massively

x

 (function generator attenuator turned to max). Signal measurements are shown on the right ..51

4.10 Output of filter (blue) with voltage divider to simulate EMG signal and potentiometer

 added to low-pass filter (in parallel with 27K resistor results in 910 ohms),

 input (yellow) after voltage divider. Gain increased massively (function generator

 attenuator turned to max). Channel properties shown on the right ..51

4.11 Muscles of the human throat, showing the location of the anterior belly of digastric53

4.12 First experiment: signal taken while vocally talking (“aaaaa”) ...53

4.13 First experiment: signal taken while clearing throat ..54

4.14 First experiment: signal taken while doing nothing (EMG of throat)54

4.15 First experiment: signal taken while subvocalizing “eeeeeee” ..54

4.16 First experiment: signal taken while subvocalizing “oooooo” ..55

4.17 First experiment: signal taken while subvocalizing “aaaaaa” ..55

4.18 Debouncing circuit schematic ..57

4.19 Screen capture of increase in voltage on port input P2.4 when running microcontroller.

 About 10 ms = 10E-3 s in time to increase voltage back to DC levels..................................61

4.20 2.5 V rail for amplifier/filter with voltage follower ...64

4.21 Confusion matrix when using all 24 inputs (6 features) with “patternnet”

 neural network for project design ..69

4.22 Best validation performance when all 24 inputs (6 features) with “patternnet”

 neural network for project design ..69

4.23 Confusion matrix when using 8 inputs (2 features) with “patternnet” neural network70

4.24 Best validation performance when using 8 inputs (2 features) with “patternnet” neural

 network ..70

4.25 Confusion matrix with 8 inputs (2 features) and a linear perceptron network to

 duplicate the results of the original design for comparison ...71

4.26 Best validation performance with 8 inputs (2 features) and a linear perceptron network

 to duplicate the results of the original design for comparison ...71

4.27 Decomposition (forward S transform) and reconstruction function

xi

 (reverse S transform) code referenced from [31] ..83

4.28 Square wave output from external DAC (yellow) with UCB2CLK (blue) using

 square wave code ...96

4.29 UCB2CLK (blue) and SPI data (yellow) shown as “spikes” using square wave code96

4.30 UCB2CLK (blue) and SPI data (yellow) “zoomed in” using square wave code...................97

4.31 UCB2CLK (blue) and /CS input to external DAC (yellow) using square wave code97

4.32 Wavelet transform output (blue) from external DAC and input to

 microcontroller (yellow) ..99

4.33 Reconstruction output (blue) from external DAC and input to microcontroller (yellow)99

4.34 Wavelet transformed output (yellow) and input (blue) from multiple input

 microcontroller code with input on pin P5.5 ...104

4.35 Reconstructed output (yellow) and input (blue) from multiple input microcontroller

 code with input on pin P5.5 ...104

4.36 Wavelet transformed output (yellow) and input (blue) from multiple input

 microcontroller code with input on pin P4.7 ...105

4.37 Reconstructed output (yellow) and input (blue) from multiple input microcontroller

 code with input on pin P4.7 ...105

4.38 Outputs of left (yellow) and right (blue) amplifiers/filters with 600E-6 V (before going

 through 0.010 voltage divider), 300 Hz, sinusoidal input signal (there was a second

 signal coming from the function generator for some reason) ..111

4.39 Output of left amplifier/filter (yellow) and input (blue) from function generator as a

 300 Hz, sinusoidal input signal ..111

4.40 Output of left amplifier/filter (yellow) and input (blue) from function generator as a

 3000 Hz, sinusoidal input signal ..112

4.41 Output of left amplifier/filter (yellow) and input (blue) from function generator as a

 30 kHz, sinusoidal input signal (completely filtered out from output)112

4.42 Output of left amplifier/filter (yellow) and input (blue) from function generator as a

 30 Hz, sinusoidal input signal ..113

4.43 Output of right amplifier/filter (yellow) and input (blue) from function generator as a

 300 Hz, sinusoidal input signal ...113

xii

4.44 Output of left amplifier/filter (yellow) and input (blue) from function generator as a

 3000 Hz, sinusoidal input signal ..114

4.45 Output of left amplifier/filter (yellow) and input (blue) from function generator as a

 30 kHz, sinusoidal input signal ..114

4.46 Outputs of left (yellow) and right (blue) amplifiers/filters with a 300 Hz,

 sinusoidal input signal and with coupling capacitors added on inputs

 (could take input capture when capacitors applied) ...115

4.47 Outputs of left (yellow) and right (blue) amplifiers/filters with a 3000 Hz,

 sinusoidal input signal and with coupling capacitors added on inputs

 (could take input capture when capacitors applied) ...115

4.48 Bode plot of magnitude gain of left amplifier/filter (no coupling capacitors)116

4.49 Bode plot of magnitude gain of right amplifier/filter (no coupling capacitors)116

4.50 Schematic of USB cord ..119

4.51 Outputs of left (yellow) amplifier/filter, right (blue) amplifier/filter, and wavelet

 transform output of microcontroller (purple), while batteries powered

 amplifiers/filters ...122

4.52 Outputs of left (yellow) amplifier/filter, right (blue) amplifier/filter, and

 reconstructed output of microcontroller (purple), while batteries powered

 amplifiers/filters ...122

4.53 Outputs of left (yellow) amplifier/filter, right (blue) amplifier/filter, and

 wavelet transform output of microcontroller (purple), while power supply

 powered amplifiers/filters (not powered by batteries) ...123

4.54 Outputs of left (yellow) amplifier/filter, right (blue) amplifier/filter, and

 reconstructed output of microcontroller (purple), while power supply powered

 amplifiers/filters (not powered by batteries) ..123

4.55 Electrodes attached across both sides of the larynx with the distance between both

 positive electrodes being 5 cm and the negative electrode placed behind the right ear

 for grounding [3] ..129

4.56 Image showing location of the “vagus nerve” and how they control muscles involved

 in vocal cord and throat movement ..129

4.57 Demonstration of final electrode placement: positive electrodes on both the left and

 right mylohyoid muscles with the negative electrode attached on the left side of the

 larynx (only one negative electrode over vagus nerve muscle instead of two) [13]............130

xiii

4.58 Outputs of left (yellow) and right (blue) amplifiers/filters with 15000 gain and a

 20 mV, 370 Hz, sinusoidal signal input which was passed through a 1/75 voltage

 divider after applying foil box and noise reduction rewiring. Wavelet transformed

 output from microcontroller is shown as the purple signal..133

4.59 Outputs of left (yellow) and right (blue) amplifiers/filters with 15000 gain and a

 20 mV, 370 Hz, sinusoidal signal input which was passed through a 1/75 voltage

 divider after applying foil box and noise reduction rewiring. Reconstructed output

 from microcontroller is shown as the purple signal ...133

4.60 Outputs of left (yellow) and right (blue) amplifiers/filters with 15000 gain and no

 input after applying foil box and noise reduction rewiring. Wavelet transformed

 output from microcontroller is shown as the purple signal..134

4.61 Outputs of left (yellow) and right (blue) amplifiers/filters with 15000 gain and a

 20 mV, 370 Hz, sinusoidal signal input (purple) which was passed through a

 1/75 voltage divider after applying foil box and noise reduction rewiring.

 Note: trying to capture the input signal after being passed through the voltage divider

 would inject noise into the input, causing the output to be very noisy so the input

 could only be captured before going through the voltage divider134

4.62 Outputs of left (yellow) and right (blue) amplifiers/filters when receiving inputs from

 surface electrodes without using the user as ground. Wavelet transformed output of

 microcontroller also shown (purple) ..136

4.63 Outputs of left (yellow) and right (blue) amplifiers/filters when receiving inputs from

 surface electrodes when using the user as ground with no subvocal signal input

 (user doing nothing). Wavelet transformed output of microcontroller also shown

 (purple) ...137

4.64 Final example of confusion matrix result for reconstructed subvocal signals at

 18600 gain within the first 3 to 5 tests of newly applied surface electrodes142

4.65 Final example of confusion matrix result for wavelet transformed subvocal signals at

 18600 gain within the first 3 to 5 tests of newly applied surface electrodes143

4.66 Final outputs of left (yellow) and right (blue) amplifiers/filters when receiving inputs

 from surface electrodes with the “AAAA” subvocal signal input “spike” at the

 beginning of muscle contraction. Wavelet transformed output of microcontroller

 also shown (purple) ..143

4.67 Final outputs of left (yellow) and right (blue) amplifiers/filters when receiving inputs

 from surface electrodes with consistent “AAAA” subvocal signal input after initial

 “spike”. Wavelet transformed output of microcontroller also shown (purple)144

xiv

4.68 Final outputs of left (yellow) and right (blue) amplifiers/filters when receiving inputs

 from surface electrodes with consistent “EEEE” subvocal signal input after initial

 “spike”. Wavelet transformed output of microcontroller also shown (purple)144

4.69 Final outputs of left (yellow) and right (blue) amplifiers/filters when receiving inputs

 from surface electrodes with consistent “IIIII” subvocal signal input after initial

 “spike”. Wavelet transformed output of microcontroller also shown (purple)145

4.70 Final outputs of left (yellow) and right (blue) amplifiers/filters when receiving inputs

 from surface electrodes with consistent “OOOO” subvocal signal input after initial

 “spike”. Wavelet transformed output of microcontroller also shown (purple)145

4.71 Final outputs of left (yellow) and right (blue) amplifiers/filters when receiving inputs

 from surface electrodes with consistent “UUUU” subvocal signal input after initial

 “spike”. Wavelet transformed output of microcontroller also shown (purple)146

4.72 Final schematic of project ..150

4.73 Picture of final product ..151

4.74 Flowchart for final version of code ..152

A.1 Initial design for microcontroller code..179

A.2 LED toggle test code for MSP432P401R microcontroller ...180

A.3 “System_pre_init” code that freezes the watchdog timer before the program initializes181

A.4 State of microcontroller code after button interrupt routine adjustments193

A.5 Neural network code in Matlab (no wavelet transform) ...213

A.6 Microcontroller code input and output test program progress ..218

A.7 Microcontroller code input and output test program progress after changing from

 TIMERA interrupt routine to ADC14 interrupt routine ...221

A.8 Microcontroller code progress after decomposition and reconstruction rework229

A.9 Microcontroller program written in “MSP432DriverLib” designed to output a

 square wave to an external DAC ..232

A.10 Microcontroller code used for creating a square waveform from an external DAC235

A.11 Code for outputting wavelet transform or reconstructed signal with working

 external DAC ..245

xv

A.12 Final version of microcontroller code ...254

1

1. INTRODUCTION

 This chapter covers the problem that the thesis is trying to address, the motivation

behind its creation, and the initial design of thesis’ project.

1.1 Statement of problem

Distractions in the workplace act as a rampant problem that affect productivity

and the focus of workers. On average, office workers get interrupted every three minutes,

many of these distractions coming from “loud colleagues” in which getting back on task

after said interruptions takes 23 minutes [14]. With the increase in use of mobile phones

in the workplace, these distractions only get worse and increase in number.

In order to solve these problems and increase work productivity, a type of vocal

communication needs to exist that does not make any audible noise. Fortunately, aspects

of the human body exist that allow people to communication without having to speak or

make any significantly audible noise. One of such aspects involves a phenomenon of the

human body known as subvocalization or subvocal speech. Subvocal speech is a

phenomenon in which, when a person thinks of words or phrases, his or her human vocal

cords create small vibrations that emit these as sound back into the brain for the person to

hear as his or her own thoughts [6].

 Organizations such as NASA (NASA release 04-093) [13] and various colleges

such as the Fed. Univ. of Maranhao [3] have made attempts at making vocal

communication silent by making use of subvocal speech by using EEG medical

electrodes and small vibration detectors to detect and read such signals. Unfortunately,

most of the solutions are large, expensive, and uncomfortable for the user. To fully make

2

use of silent communication to efficiently reduce the significant amount of loss of

production in the workplace due to distractions, a device that provides such

communication needs to be made that is convenient and affordable enough to be mass

produced.

This is where the Silent Communication Device Project comes in play. By

making use of subvocal speech, this device provides the ability to communicate silently

through attaching electrode nodes to the user’s throat in which the user simply has to

think of what he or she wishes to say to communicate silently without the need for

surgery in order to attach nodes inside the user’s body [3]. The user’s voice is then sent to

an electronic device of the user such as a cellphone, computer, or radio transmitter, which

can then be sent to an electronic device of the intended recipient. The device

accomplishes this function while being affordable, small enough to be carried in the

user’s pocket, and comfortable.

The use of this device not only reduces distractions in the workplace and thus

increases productivity, but also provide a means for soldiers in the military to have a

method of communication that nearby enemies cannot overhear. In addition, it allows

people to communicate confidential information without having to waste time finding a

place in which others cannot hear them, thus saving production efficiency, time, and even

lives.

 Similar devices have been made as shown in projects such as [23] and [33] in

which said projects employ wavelet analysis (explained in much greater detail later in

chapter 3) in order to effectively process subvocal speech to allow said subvocal speech

to be more easily classified as its intended speech for the final output. The wavelet

3

analysis allows these devices to classify subvocal speech up to accuracies between 70%

and 80%, but only through the use of expensive and not pocket-sized equipment. While

these devices use Matlab programming on laptops to perform their wavelet analysis and

classification, recent technology such as the MPS432P401R microcontroller show the

potential to perform said wavelet analysis and classification through much cheaper and

dimensionally smaller means. Thus, in order to prove that it can compete with these

devices with similar performance under a much more constrained budget and smaller

dimensions, the Silent Communication Device should, in theory, be able to classify

subvocal speech with similar accuracy through use of the MSP432P401R microcontroller

and wavelet analysis (it should be noted that some projects such as [3] use more

advanced processing methods such as independent component analysis to gain

classification accuracy up to 95%, but are too complex in terms of processing power for a

microcontroller to handle). Therefore, through the creation of the Silent Communication

Device, this thesis aims to not only create a device that addresses the aforementioned

problems of the workplace, but also prove that subvocal speech originating from the

throat can be classified to an overall accuracy of at least 70% within a project budget of

$50.

1.2 Related Work

 As previously mentioned, the motivation before this project was inspired papers

such as “Electro-myographic patterns of sub-vocal Speech: Records and classification,”

by L. E. Mendoza, J. P. Rodríguez, and J. L. R. Valencia [23] and “Sub-vocal Phoneme-

Based EMG Pattern Recognition and its application in Diagnosis,” by M. Jahan and M.

4

Khan [33] which feature the extraction of EMG subvocal signals from the throat,

amplification and filtering of said signals to allow them to be large enough in amplitude

to be accurately sampled without noise, wavelet analysis to extract features from the

EMG signals, and classification using a neural network in order to classify the signals to

accuracies between 70% to 80%, showing a relatively simple way of translating subvocal

speech into a range of words, vowels, or phonemes with decent performance. In addition,

the paper “MSP430 Implementation of Wavelet Transform for Purposes of Physiological

Signals Processing,” by R. Stojanović and S. Knežević [31] demonstrates an example of a

microcontroller being used to employ wavelet analysis on signals extracted from the

human body, showing that wavelet analysis through use of a microcontroller is possible,

while the paper “Subvocal Speech Recognition Based on EMG Signal Using

Independent Component Analysis and Neural Network MLP,” by J.A.G. Mendes [3]

demonstrates a way of amplifying and filtering subvocal speech taken from the throat that

could easily be reproduced as a cheap prototype breadboard circuit. Although other

means of extracting features from subvocal signals exist such as using Independent

Component Analysis instead of wavelet analysis [3] that give much more accurate

classification results, these methods are much more complex than that of wavelet analysis

and thus would require much more complex programs to implement them, which

microcontrollers are unlikely to be able to process without at least very slow or even poor

performance, while [31] has proven that wavelet analysis works with microcontrollers

effectively. Combining the wavelet analysis through use of a microcontroller [31] (using

the more advanced microcontroller MSP432P401R instead of a MSP430

microcontroller), the amplification and filtering circuit of [3], and the subvocal speech

5

translation methods of [23] and [33], the Silent Communication Device could be brought

to fruition.

1.3 Initial Design and Block Diagrams

 The initial design of the Silent Communication Device first needs to have its

inputs and outputs defined. The device takes its inputs from the user’s vocal cords as a

subvocal signal, power from a battery, and user control to allow the user to change

settings for the device such as the volume of the output, the type of output given (e.g. an

output with or without wavelet analysis), and the ability to control when the device takes

its input. The device’s output is the user’s voice, translated from the subvocal signals

coming from the user’s throat, which is tramsitted into an attached electronic device (e.g.

cellphone). Figure 1.1 below shows the level 0 block diagram.

Figure 1.1: Level 0 Block Diagram

6

Table 1.1: Level 0 Block Diagram Description Table

Table 1.1 below describes the inputs, outputs, and functionality of the level 0 block

diagram.

Type Name Description

Input Signal from Vocal Cords Input received from the

vibration of the user’s

vocal cords [6].

Input Power Power received from

battery.

Input User control Input from user for

desired settings for the

device.

Output User’s Voice User’s voice transmitted

electronically to cell

phone, computer, etc.

Overall functionality The silent communication device uses signals produced

from the vibration of the user’s vocal cords to output

the user’s voice electronically to an attached device.

The battery powers the device in which the device

operates according to the user’s determined settings.

 After having its basic inputs and outputs, a more detailed block diagram of the

Silent Communciation Device can be created. The Silent Communication Device uses

surface EMG electrodes to extract the input subvocal waveform, an amplifier/filter to

obtain, amplify, and filter the input EMG waveform (10 Hz to 450 Hz), a wavelet

transform function to deal with sources of noise (discussed in greater detail in chapter 3),

a neutral network classification system to properly identify and classify each input from

the wavelet transform function to its proper output (example: classifies each signal by the

letter or vowel it is supposed to represent), and finally a data USB interface to translate

the resulting output data to a proper USB format in order to interact with a laptop or

7

smart phone. The design is made to take into account the many different types of noise

that an EMG signal experiences as well as the level of classification needed to properly

correlate and match each and every English letter uttered by the human vocal cords to its

appropriate output. Figure 1.2. below shows the level 1 block diagram.

Figure 1.2: Level 1 Block Diagram

8

Table 1.2: Level 1 Block Diagram Description Table

Table 1.2 below describes the inputs, outputs, and functionality of the modules of the

level 1 block diagram.

Module Amplfier/

filter

ADC Wavelet

Transform

Neural

Network

Classification

5V

Battery

Data USB

interface

Inputs -Subvocal

EMG input

signal [6]

-5V DC

voltage

-Filtered and

amplified

waveform: 5 Hz

to 450 Hz [22]

-5V DC voltage

-Digital audio

signal: (1 V to

2.5 V peak)

-5V DC voltage

-Data

compressed

signal (noise

removed) (1

V to 2.5 V

peak).

-5 V DC

voltage.

-5 V from

charger

(computer,

wall

charger,

etc.)

-Classified digital

signal

- 5 V DC voltage

Outputs Filtered

audio signal:

5 Hz to 450

Hz (micro

volts in

amplitude)

[33].

Digital Audio

signal: 1 V to

2.5 V peak, 5

Hz to 450 Hz

[26].

Data

compressed

signal (noise

removed) (1 V

to 2.5 V peak).

Classified

digital signal.

5 V DC

voltage.

-Audio signal

(user’s voice)

Functionality Filter input

so that only

signals with

frequencies

of 5 Hz to

450 Hz are

given a large

voltage gain

to

compensate

for the small

amplitude

voltage.

Input

resistance >

1 MΩ and

output

resistance <

100 Ω.

ADC built into

microcontroller.

Converts the

analog and

filtered input

signal into a

digital signal in

order to be

usable to the

microcontroller.

Deconstruction

and reconstruct

of the digital

signal using a

discrete wavelet

transform in

order to

compress the

data into a more

general form.

This allows for

unwanted details

created by noise

to be removed,

thus making the

signal easier to

classify.

Compare

input signals

to previously

used signals

matching

English

vowels and

constants

(neural

network

“training”

signals) and

appropriately

match and

classify

according to

these

“training”

signals.

Provide

power to

the rest of

the device

and its

modules.

Converts the

classified signals

into a proper audio

signal that can be

inputed into a

computer or cell

phone.

9

2. CUSTOMER NEEDS, REQUIREMENTS, AND SPECIFICATIONS

This chapter covers the customer needs that the Silent Communcation Device

addresses and the requirements and specifications of the said device.

2.1 Customer Needs Assessment

 Customer needs were determined by interviewing students about noise

distractions in the workplace and considering what design for the device would be the

most convenient for the user. Many of the replies consisted of grievances about too much

talking in the workplace. When asked about how a device that allowed people to

communicate silently could be convenient for them, many of the replies involved wanting

compatibility with a cellphone and for it to not be too expensive. Thus, it became evident

that customer needs involved not just allowing the device to make speech silent, but also

compatibility (both in terms of outputting to a cellphone and staying powered as long as a

cellphone stays powered) and a cost able to discourage potential customers from buying

existing alternatives. As a result, the marketing requirements were created from these

customer needs. These include being pocket-sized, having long-lasting power, being

affordable, having the right size of audio jack to connect with other electronic devices,

having control over the volume of their transmitted voice, and, of course, allowing silent

speech.

2.2 Requirements and Specifications

The requirements and specifications for this device were determined by

considering what was most efficient for creating a device that allows for silent speech as

well as what was most convenient for the user. For example, the first requirement takes

10

into consideration how much the public might view the worth of this product, how

expensive it should be in order for it to be mass produced for soldiers in the military, and

what kind of parts for it to operate properly. Anything beyond $50 would be considered

too expensive for what would be considered a peripheral device in which consumers

might still consider keyboard and pads a better alternative. The requirements for the 3” ×

4” × 1” dimensions were determined by the fact that, since this device needs to be used in

conjunction with another electronic device which would most likely be a cellphone,

dimensions that allow the user to carry the device with a cellphone, while still not being

too small to hold enough circuitry to operate properly are necessary. The dimensions

must also be large enough to include a microcontroller (3” x 4”) and be expected to have

integrated circuitry stacked on top of each other to prevent the device from being too long

to fit in a pocket (1”). The requirements for the 5V battery to power the device and the

need for an audio jack with industry standard dimensions [24] were determined from

considering device’s compatibility with the device it outputs the user’s voice to. For

instance, 3.5 mm audio jack dimensions are the standard audio jack dimensions for most

cellphones and other electronic devices [24], allowing the device to connect to these

devices easily. The battery ensures that the device uses enough power to last at least as

long as the cellphone would last, while providing a common enough voltage of 5V to

power its components properly. Other requirements include requiring the audio amplifier

portion of the device to provide enough gain to amplify and use the very small subvocal

input signal, not having any exposed wiring and conductive devices exposed to the user

to keep the user safe and comfortable, and allowing volume control for the output of the

device up to 85 dB (loudest possible before it becomes hazardous) [15]. Finally, the third

11

requirement allows the device to achieve its main purpose, allowing completely silent

speech. Making any noise heard by unintended recipients that is louder than 25 dB (a

quite conversation) [15] would make whispering a better alternative to using this device.

The engineering specifications and marketing requirements are shown in table 2.1 below.

Table 2.1: Silent Communication Device Project Requirements and Specifications

Marketing

Requirements

Engineering

Specifications
Justification

1 The device must cost the customer at

most $50.

Based on the price range of most pocket-

sized devices that are used by the public,

this price makes the device affordable as

well as provide a good profit for the

producer.

2 The device’s dimensions must not

exceed 3” × 4” × 1” (inches) (previously

2” x 4” x 0.4”, but made larger to fit the

microcontroller)

The rectangular shape and thinness

makes the device easily able to fit in a

person’s pocket, while still providing

enough room for plenty of circuitry for

efficient operation.

5 The device must prevent unintended

recipients at least 10 feet away from the

user from hearing at most 25 dB of the

user’s subvocal speech [6].

In order for the device to achieve its

primary purpose, making speech

completely silent, others who are not the

indented recipients of the communication

must not be able to hear the user when he

or she is using the device. 25 dB is the

sound of a quiet conversation in which

anything higher would be too loud and

whispering would be a better alternative

[15].

4 The device’s circuitry must be powered

by a battery able to output 5V for 24

hours.

A value of 5V is a small enough voltage

to ensure that the device stays powered

for a fairly long period of time before

recharging is required. 5V is also a

common voltage needed for powering

common components in low-power

circuitry.

3 The device must be able to output to any

audio jack with industry standard

dimensions [24].

Since the device needs to be able to

connect to common electronic devices, an

audio jack with industry standard

dimensions such as having a (3.5mm)

diameter outer conductor are needed [24].

6 The device is non-invasive (no part of

the device is required to enter the human

body for proper operation).

The device would have a lot less appeal

and be a lot less comfortable to customers

if a surgery was required to use it.

12

Marketing

Requirements

Engineering

Specifications
Justification

5 The device must be able to provide a

gain of at least 10 [3] to a maximum of

18700 to amplify subvocal input signals

[23].

In order to successfully allow completely

silent speech, the device needs to provide

a sufficient amount of gain to amplify the

subvocal input signal as the signal with

has very small amplitude or else said

input is unable to provide a proper output

(user’s voice) [23].

8 The acoustic sensor must not cause

electrical shocks or physical injury to the

user.

Customers are not comfortable or safe if

the device risks electrically shocking

them through exposed conducting

material.

7 The user control for the device must

have a range of volume from 0 dB to 85

dB for the output (user’s voice).

Any volume above 85 dB is considered

hazardous to health and too loud [15].

Marketing Requirements

1. The device should be relatively low cost and affordable for the general public.

2. The device should be pocket-sized and easily carried.

3. The device should be compatible with other devices used for communication such as

cellphones, computers, and audio jacks.

4. The device should have long-lasting power.

5. The device should allow completely silent speech.

6. The device should be comfortable for the user.

7. The device should allow the user to control its output’s volume.

8. The device should be safe for the user.

13

3. DESIGN METHODS INCORPORATED, DESIGNS CONSIDERED, AND

 REDESIGN.

This chapter covers the intial designs of the project, the redesigns to the project

itself, and the research behind them.

3.1 Subvocal EMG Signals

 The properties of the subvocal signal and the types of noise that it experiences

must first be considered to design a project focused on obtaining subvocal signals,

filtering them of noise, and properly classifying them.

 As previously stated in the introduction, subvocalization is a phenomenon in

which, when a person thinks of words or phrases, their human vocal cords create small

vibrations that emit these as sound back into the brain for the person to hear as their own

thoughts [6]. In order to capture and classify these small vibrations as usable data, the

small, collective electric signals controlled by the nervous system that are produced

during muscle contraction (EMG (Electromyograpy) signals) can be captured as they

pass through the muscles that vibrate the vocal cords during subvocalization [25] via

EMG electrodes attached to these muscles. The signal bandwidth in which significant

EMG activity occurs that is the most useful in terms of classification and usable data is

from 5 Hz to 450 Hz [26], while amplitudes range on average from about 0 to 600,

occasionally spiking up to about 1000 µV with Ag-AgCl surface EMG electrodes [33].

However, amplitudes have been shown to become slightly higher when using needle

electrodes such as the concentric needle electrode, which can pick up amplitudes higher

than 1000 µV [45].

14

These subvocal EMG signals experience seven different types of intrinsic noise

that must be considered in the design of the project so that they can be properly removed.

1. The first is the inherent noise in the EMG electrode which ranges from 0 Hz to

several thousand Hz. When using non-invasive electrodes, one of the most

common strategies for removal of this noise is by using electrodes made of

silver/silver chloride with the electrode dimensions of 10 x 1 mm because the

electrode size and materials give just the right amount of impedance for an

adequate signal-to-noise ratio while also being electrically very steady, although

dimensions may vary if the statistical power of the EMG signal is very high or

very small.

2. The second type of noise to consider is from the movement between the electrode

attached to the skin and the skin itself, called the movement artifact, which causes

a significant amount of noise between 0 Hz and 10 Hz. Several common methods

of removing this noise include placing a conductive gel layer between the skin

and the electrode, scratching the skin, and using an adaptive filter.

3. The third type is the what is known as electromagnetic noise, which arises usually

around 50 Hz or 60 Hz and in its harmonics (Ex: 100 Hz, 200 Hz, 300 Hz, and

400 Hz for 50 Hz noise). Common methods of removing this noise include using

notch filters to filter out a specific frequency or using adaptive notch filters for

removing not just one frequency but its harmonics as well.

4. The fourth is from picking up signals from other EMG signals that are unwanted,

also known as crosstalk, which have a wide range of signal frequencies and tend

to increase in magnitude with increasing subcutaneous fat thickness. Since

15

filtering the noise is difficult, crosstalk noise is most commonly removed by

choosing electrodes with the right amount of conductive area, interspacing, and

axis direction relative to muscle fiber direction and choosing a location of said

electrodes that avoids neighboring muscle fibers as much as possible.

5. The fifth is the internal noise produced by physical capacitive effects due to the

muscle tissue and fat. Since the strength of this type of noise depends on the depth

and location of the muscle fibers that are needed to obtain the subvocal EMG

signals, this type of noise is considered negligible since there is minimal tissue

blocking the way between the skin and muscle fibers being used. However, if

excess body fat is involved, removing the noise is commonly done through

surgical fat layer reduction or partially removing the noise by using high pass

spatial filters, the latter obviously being the more marketable option, but, for the

sake of simplicity, it is assumed that the user does not have excess body fat.

6. The sixth is the inherent stability of the EMG signal itself which a result of the

signal being quasi-random in nature and is the strongest between 0 Hz and 20 Hz.

Since the noise is a quality of the signal itself, it is impossible to remove

practically, but its behavior can be changed based on the mechanical nature of the

muscle fibers.

7. Finally, the seventh type of noise is a result of electrocardiographic ECG artifacts

which are caused by the electrical activity of the heart and usually occurs at

frequency above 100 Hz. A common method to removal this noise is through

high-pass filtering.

16

In addition, there are also non-intrinsic sources of noise that have to be considered

such as EMG artifacts from swallowing, muscle fatigue tremors, or coughs in which

using the electrodes when these EMG artifacts are not occurring is generally ideal.

3.2 Amplifier/filter Design

 Now that the type of input signal that is being dealt with has been discussed, the

design of the amplifier/filter module can be understood.

 In order to first extract the signal from the user non-invasively, two EMG

electrodes are applied to the user’s throat on the muscles near the user’s larynx to obtain

the signal, while another one is attached below the user’s right ear to act as a signal to

ground for a total of three electrodes (demonstrated in Figure 4.55). To help minimize the

effect of the inherent noise in the electrode and cross talk, silver/silver chloride

(10x1mm) electrodes [27] are used because of their high signal-to-noise ratio and

electrically stability [26] which negate a significant amount of the inherent noise in the

electrode, while the two electrodes that obtain the EMG signal (excluding the ground

electrode) are placed 5 cm from the left and right from the user’s larynx in order to obtain

a proper signal while minimizing cross talk by keeping them at least the radius of the

each electrode in distance away from each other [26].

 After extracting the signals through EMG electrodes, these inputs need to be

amplified and filtered (each of the two EMG electrodes obtaining the signal are output to

two separate but same amplifier/filters, while sharing the same ground electrode). Since it

is a differential input, the amplifier/filter needs to have an input component with a high

common-mode rejection ratio to deal with common noise from both differential inputs.

17

Taking this into consideration, the inputs are fed into an instrumentation amplifier

(INA128P is used for its high CMRR,120 dB at gain > 100, and its specialization at

dealing with EMG, ECG, and EEG signals [28]) and which provides a gain. After the

instrumentation amplifier, the signal passes through a bandpass filter designed to filter

the signal between 10 Hz and 450 Hz to obtain, as previously stated, the most usable data

across the EMG subvocal signal spectrum in which it is being low-passed at 10 Hz as

opposed to 5 Hz to remove noise created from the movement artifact. After being filtered,

the signal is then sent into the microcontroller to be further processed. It is important to

note that, since there are three electrodes with one of said electrodes acting as ground for

the other two electrodes, two identical amplifiers/filters are needed for each of the two

electrodes obtaining the signal, but the project shall be treated as needing only one

amplifier/filter for now for the sake of brevity until later in chapter 4.

 The first design of the amplifier/filter module involved using a first-order high

pass filter at 10 Hz and a unity gain sallen-key low-pass filter at 450 Hz to provide the

bandpass response, while the instrumentation amplifier provided the gain. Unfortunately,

this design did not work well as the sallen-key’s second-order low-pass response and

high Q factor resulted in a low-pass response that was too strong and ended up turning

the band-pass response into a low-pass response with a corner frequency at 3 Hz.

 The second design of the amplifier/filter focuses on spreading out the gain and

giving a weaker low-pass response. Modeling after the amplification and filtering circuit

shown in “Subvocal Speech Recognition Based on EMG Signal Using Independent

Component Analysis and Neural Network MLP” [3], the second design forms its band-

pass filter with a first-order high-pass filter at 10 Hz and first-order AC integrator Op-

18

Amp with gain at 450 Hz, allowing not only the instrumentation amplifier to provide

gain, but the integrator as well. The Op-Amp chosen is the mc33078p because it provides

a high open-loop AC gain (800 at 20 KHz) and can operate at 5V [29]. The circuit

simulation in LTSpice IV is shown below in Figure 3.1 in which the LT1167 is used to

replace the INA128P because there is not a model available to use (the circuits are very

similar, have the same gain equation, and pinout, but with the INA128P being specialized

to deal with EMG signals) and the LT1457 is used to replace the mc33078P because

there also is not a model currently available to use (both op-amps still being very similar).

104 µF and 47 pF capacitors are placed on the reference voltage of the instrumentation

amplifier to AC couple any noise waveforms both in the high and low frequency ranges.

The Op-Amp’s positive terminal is supplied with a voltage of 2.5 V via voltage divider to

raise the output signal to have a DC voltage of 2.5V. This allows the output signal to not

lose half of its waveform by having half of the waveform in the negative voltage range

(the microcontroller’s ADC does not accept negative voltages). Gain is kept around 0 dB

at band-pass until is determined whether or not it needs a higher gain.

Calculations:

High pass: fo (corner frequency) = 1/(2πRC) = 1/(2π(0.1E-6)(160000)) = 9.94718 Hz.

Low-pass: fo (corner frequency) = 1/(2πRC) = 1/(2π(120E-12)(2700000)) = 491.2189 Hz.

 DC gain: - R2/R1 = 2700000/27000 = 100.

Instrumentation amplifier gain: 1+ 50K/RG = 1 + 50K/50K = 2.

Voltage divider: R1/(R1 + R2) = 200K/(200K + 200K) = 0.5.

19

Figure 3.1: Amplifier/filter Design LTSpice IV Simulation Circuit

Figure 3.2: Amplifier/filter Design LTSpice IV Simulation at Output

 Figure 3.2 above shows that this design provides a proper band-pass response

between 10 Hz and 450 Hz.

20

3.3 Discrete Wavelet Transform

 Once the subvocal EMG signal is filtered, amplified, and converted into a digital

waveform by the microcontrollers ADC, the signal passes through a signal processing

method known as the discrete wavelet transform. The discrete wavelet transform is an

orthogonal function used for a finite group of data (in this case our subovcal EMG signal

samples) in which the data is decomposed into separate frequency bands, much like the

discrete fourier transform except it is also able to display these bands in respect to time

(locations).

 This “decomposition” works by sending and resending the data through two

filters, one low-pass and the other high-pass, as mathematically represented by the two

equations below:

Low-pass: 𝑎𝑖 =
1

2
∑ 𝑐2𝑖−𝑗+1𝑓𝑗 , 𝑖 = 1, … . , 𝑁/2𝑁

𝑗=1

High-pass: 𝑏𝑖 =
1

2
∑ (−1)𝑗+1 𝑐𝑗+2−2𝑖

𝑁
𝑗=1 𝑓𝑗 , 𝑖 = 1, … . , 𝑁/2

Where “c” refers to the coefficients that retain the qualities the each individual frequency

component, a and b are the outputs, N is the number of inputs (or input block size)

determined by N = 2D (D is the number of dilations), and f is the input function. Each

input that passes through the low-pass filter is generally called an “odd” input, while the

inputs that pass through the high-pass filter are called the “even” inputs. Figure 3.3

below, as referenced from [30], shows a representation of the decomposition process as a

group of data inputs are decomposed four times (sent through four “dilations”).

21

Figure 3.3: Wavelet transform dilations diagram: an input stream being sent through four

dilations via discrete wavelet transform.

As Figure 3.3 also shows, the even outputs and final odd output (represented by

“x”s) are the outputs of the wavelet transform after each dilation, while the odd inputs

continue to be sent through each dilation until the final output is reached. By constantly

sending each of these inputs through low-pass and high-pass filters, the wavelet

transform is able to separate each of the signal’s data samples into individual frequency

components on a time scale, thus resulting in a set of data useful for signal classification.

After being decomposed, the data can also be reconstructed by sending the data through

the reverse (coefficients on the lattice filter reversed) of the original wavelet function,

resulting in the same input data waveform with noise from lower frequencies removed,

which, in terms of the project, is useful for removing the other types of the noise the

amplifier/filter could not deal with.

22

In terms of the project at hand, the number of dilations and type of coefficients

must be chosen wisely when designing the discrete wavelet transform. Since each

dilation results in the chance for more and more input data samples to low-passed, it is

necessary to have at least a moderate amount of dilations to make sure low frequency

components of the signal get separated in which, since the amplifier/filter is sending in

signals in the bandwidth of 10 Hz to 450 Hz, having a moderate amount of dilations is

necessary. However, there is a problem considering that the discrete wavelet transform

occurs on a microcontroller as opposed to a computer, the usual environment in which a

discrete wavelet transform would usually perform, in which the amount of memory and

processing power to handle the discrete wavelet transform is limited. This means that

there must be a compromise between having enough dilations to obtain low frequency

components within the 10 Hz to 450 Hz bandwidth and not having so many dilations that

the microcontroller cannot handle it. Fortunately, using data from a similar project

involving using a microcontroller to implement wavelet transforms on biomedical signals

[31], it can be seen that 4 dilations is sufficient, resulting in an input block size of N = 24

= 16. The type of coefficients used are the Haar coefficients (c0 = 1.0, c1 = 1.0, c2,3,4,5 = 0)

for their simplicity, resulting in faster calculations and less memory space being taken up.

Using the MSP432P401R LaunchPad microcontroller for its processing power,

memory, and variety of capable mathematical functions (The MSP430 LaunchPad

microcontroller served as the first microcontroller to test the discrete wavelet transform,

but was discovered to not have the processing power or a multiplier function to properly

process the code), the discrete wavelet transform is coded in C as shown in appendix A as

Figure A.1.

23

For the initial design of the wavelet transform, the code was referenced from the

wavelet transform code in [30] and modified to take inputs from the port inputs of the

microcontroller as opposed to manually typed inputs and input files. The basic structure

of the code is a lattice filter structure modified for use as a wavelet transform filter as

shown below in Figure 3.4.

Figure 3.4: Wavelet decomposition lattice filter basic structure (6th order) as referenced

from [30].

 In this case, the 6th order lattice filter is used in which each of its three “rungs” is

associated with its γ (gamma) coefficients, the 6th order representing the six coefficients

used (the Haar coefficients: c0 = 1.0, c1 = 1.0, c2,3,4,5 = 0, β = 1/√2) in which the γ0

coefficients are the first two coefficients (1.0 and 1.0), γ1 are the next two (0 and 0), and

γ2 are the final two (0 and 0). While segmenting a continuous stream of inputs into 16

sample blocks (4 dilations for each 16 sample block) for every wavelet transform, each

even numbered input goes into the “even” input and each odd numbered input goes into

the “odd” input, resulting in the lattice filter to filter each even and odd sample to be

either an “even” (high-passed) or “odd” (low-passed) output as shown in Figure 3.3, thus

sending said samples through a wavelet transform. As each input shifts from rung to

24

rung, the delay cycles (z-1) assure that the input is held for one “shift cycle” for every z-1

delay it passes through, allowing the second and third rungs to do arithmetic with the

results of previous inputs.

 Next, a system needs to be put into place that handles the inputs, outputs, and

delay cycles of the lattice filter to make sure that all samples pass through the filter in the

appropriate order (including separating samples into even and odd orders, filtering them,

delaying them, and then organizing them in the order shown in 3.3 for the output). This is

done by creating what are called lookup tables which consist of patterns of numbers in

arrays used to organize samples to enter and exit parts of the lattice filters at the

appropriate times in order to ensure that they are inputted, filtered, and outputted in the

correct order, while also allowing the inputs to be stored for each delay cycle and then

used again after said delay cycle has ended while passing through the lattice filter.

Discussing how the number array is organized for the lookup tables in full detail would

be cumbersome and not entirely necessary since this method was not implemented in the

final version of the project and thus is not discussed. The level 1 block design for

handling the inputs, outputs, and delay cycles is shown below in Figure 3.5.

25

Figure 3.5: Input and output handler for the wavelet transform code as referenced from

[30].

 In addition to the wavelet transform or decomposition filter, a reconstruction filter

is also created to, if chosen by the user, reverse the effects of the wavelet transform or

reconstruct the signal to receive a reconstructed version of the raw signal with filtered out

noise as opposed to just outputting the wavelet transform version of the input signal. This

is done by creating a copy of the wavelet transform filter (decomposition filter) code and

modifying it so that its lattice filter has its coefficients reversed (γ2 coefficient switched

with γ0 coefficient), while its lookup tables are altered to reverse the order at which the

sample inputs from the decomposition filter are placed in the lattice filter of the

26

reconstruction filter, thus reconstructing the signal outputted from the decomposition

filter. The constant low-passing and high-passing of the wavelet transform results in the

removal of noise from the reconstructed signal.

3.4 Project Scope Redesign

The neural network and USB interface may be designed now that the

decomposition and reconstruction filters have been designed. Unfortunately, there were a

lot of problems with including these into the full design, mostly concerning the neural

network classification system. For every neural network, data is needed to “train” the

network for it to be able to recognize and classify signals according to the signals that are

used to train it. Therefore, to get accurate results, the network must be trained with

hundreds of samples for each source (or in this case, letters and words) to get an accurate

response. The amount of data, research, and time needed to collect the amount of data

needed for not only every letter of the English language as well as the amount needed to

further classify each string of letters into words, phrases, and sentences is beyond the

scope of this work (this would take years of research and testing). In addition, a

microprocessor needed to handle this level of data and processing power, in addition to

the wavelet transform and ADC functions, would be far too costly to meet the $50 max

budget design specification.

With these problems in mind, it becomes clear that the project’s scope and

purpose needs to be redefined. With the neutral classification system and data USB

interface (no letters, words, or phrases are available to be sent to a smart phone or

computer) removed, Figure 3.6 shows the current level 1 block diagram of the project in

27

which the project now focuses on taking EMG subvocal signals from the user and

translating them into usable data for analysis and classification, no longer having much

purpose for everyday communication, but certainly useful for medical and research

applications such as subvocal signal analysis. In addition, the subvocal signal is now able

to be reconstructed as well as wavelet transformed in order to provide a raw, denoised

output. An external DAC is now used as opposed to using the internal DAC of the

microcontroller because an external DAC can accommodate the micrcontroller’s 14-bit

resolution, while it’s internal DAC’s can only provide outputs in 12-bit resolution [32].

Figure 3.6: Final Design Choice.

In addition to removing the neural network and USB interface from the

microcontroller code, a new neural network designed in Matlab was decided to be created

that would receive the output of the microcontroller and classify the data in order to

prove the project’s effectiveness for subvocal signal analysis. To keep the scope of the

classification simple, the classification results with be limited to only five vowels (“a”,

28

“e”, “i”, “o”, and “u”). Since the neural network was designed and implemented much

later, details on the design of the neural network are discussed later in this chapter.

3.5 Initial Microcontroller Code Input and Output Handler

Finally, the input and output formatting for the MSP432P401R microcontroller

must be designed as well to ensure that the microcontroller can receive samples from the

amplifier/filter and output them to the neural network. When the microcontroller is first

started, a number of initialization statements are processed to setup the settings for the

multiple assets being used to allow the microcontroller to input and output signals. These

include the TIMERA timer, the DCOCLK (clock used to run other clocks such as the

SMCLK which is used to run the UCBxCLK), ADC14, SPI, and the buttons used for the

user interface of the microcontroller. After these initialization statements are processed,

the microcontroller waits in an infinite loop until a button is pressed. Next, the input is

taken by calling an interrupt routine that is triggered by pressing a button wired to the

microcontroller. This ensures that the microcontroller only takes samples when the user

wants it to (as long as the button is being pressed). Once the button is pressed, samples

are taken via the ADC (analog-to-digital converter) that is built into the microcontroller

(ADC14). The samples are taken in 16 sample blocks before being sent to the

decomposition function (wavelet transform).

In regards to determining the timing of the sample clock for each input sample,

the number of clocks cycles not only have to take into account the maximum frequency

possible to sample, but also the time it takes for the ADC of the microcontroller to sync,

sample, and convert its input. Since the desired frequency range of the input signal is 10

29

Hz to 500 Hz, the maximum frequency is 500 Hz which takes a total sampling time of

1/(20 × 500 Hz) = 100E-6 seconds. The ADC sync, sample, and conversion is determined

by referencing the MSP432P4xx family user’s guide [32] in which the sync time takes at

least one ADC14 clock cycle, sample time takes multiples of 4 × ADC14 clock cycles

(chosen 16 cycles by the ADC14SHT1x register), and the conversion times takes 16 ×

ADC14 clock cycles as shown in Figure 3.7. With an ADC14 clock source of MODCLK

(24 MHz, typical), the resulting time is no less than (1/24 MHz) × (16 + 16 + 1) =

1.375E-6 seconds. Combining this with the maximum frequency sampling time, the result

is 100E-6 + 1.375E-6 = 101.375E-6 seconds to get a sample.

Finally, since the timer that determines when an input sample is taken is a

TIMERA timer (timer built into the microcontroller that can trigger an interrupt when a

certain number of clock cycles are reached or CCR0 cycles), converting this into CCR0

clock cycles results in (1/12 MHz) = 83.33E-9 seconds (time of each SMCLK cycle),

101.375E-6/83.33E-9 = 1216 cycles (add 84 cycles to compensate for error for a total

1300 cycles).

30

Figure 3.7: ADC14 sync, sample, and conversion time, referenced from [32].

However, it must be taken into account that this is only the minimum time it takes

to get each sample as the wavelet transform must be run after each sample is taken. To

have each sample equally spaced on a time scale, the number of CCR0 clock cycles must

take into account the time it takes to run the wavelet transform as well. Further

experimentation is needed to determine the total number of CCR0 clock cycles so, for

now, a sample is taken every 1300 CCR0 clock samples.

Concerning how the microcontroller gives its output, a second button is used,

when pressed, to trigger an interrupt routine that determines whether or not the output

will be from the decomposition filter or the reconstruction filter (default is decomposition

filter and changes when button is pressed). Whether from the decomposition filter or the

reconstruction filter, the output signal is sent to the function “do_some_conversions”

which converts the value type of the output from float to int type. This is necessary

because the ADC14 takes its samples as float values automatically, but, in order to output

31

values out of the UCB0TXBUF register (register used to output register values out of the

microcontroller), the samples must be int type values. After being processed by the

“do_some_conversions” function, the output values are sent to the “Drive_DAC”

function which handles the output values of the UCB0TXBUF register and drives an

external DAC (digital-to-analog converter) that converts the digital output to an analog

signal, allowing the now analog output to be processed by the neural network. The

“Drive_DAC” function drives the external DAC by providing three signals from the

microcontroller: the SPI signal which contains the output data, the /CS signal which tells

the external DAC when it should be expecting an SPI input, and the UCBxCLK which is

the clock that runs the external DAC, thus allowing the microcontroller to effectively

output the wavelet transformed or reconstructed signal to the external DAC. Full initial

code shown below in Figure A.1, coded in Code Composer Studio 6.1.1.

3.6 Neural Network

Before designing the neural network, a literature review was conducted to obtain

ideas and sources of influence for the best possible design of the neural network for

classifying subvocal signals.

The first and most significant approach in terms of influence on the design of the

neural network was the paper “Sub-vocal Phoneme-Based EMG Pattern Recognition and

its application in Diagnosis” by Mosarrat Jahan and Munna Khan [33]. In this paper,

EMG signals were obtained using EMG electrodes on the throat sampled at 500 samples/

second. The signal was then sent into a laptop to be processed. Due to the non-stationary

nature of EMG signals (contain different components of frequency at different instants of

32

time), the EMG signals were processed with Discrete Wavelet Analysis (three levels or

coefficients using mother wavelet Daubechies ‘db4’), which decomposes a signal using

“wavelet functions” and allows each component to be analyzed in different frequency

domains. After the wavelet analysis processing, the individual frequency components had

their Mean absolute deviations (MAD) and Standard deviations (SD) calculated, which

were used as inputs into a “linear classifier” (assumed to be a perceptron). The perceptron

then used these inputs to classify each subvocal EMG signal as a particular Hindi

phoneme. The database was taken from four student subjects, each giving 10 example

trials of each of the four hindi phonemes being classified and resulting in a database size

of forty total raw samples (10 for each phoneme) for each student (160 total samples for

all four students). The resulting classification accuracy reached from about 70 to 80

percent. A very similar method was also used in the paper “Subvocal Speech Recognition

System based on EMG Signals” by Yukti Bandi, Riddhi Sangani, Aayush Shah, Amit

Pandey, and ArunVaria [34], which used almost the same extraction and processing

methods to acquire the signal (insignificant differences), but used a multilayer perceptron

neural network instead with also only a few inputs to classify the whether or not the

subvocal EMG signal was either the word “forward” or “reverse”. The resulting

classification accuracy was 74.4% for “forward” and 72.5% for “backward”. Both of

these methods have the advantage of using discrete wavelet analysis to process the EMG

signals, which allows the differences in frequency components between each EMG signal

to be analyzed much more easily than without the analysis. However, they also possess

some limitations. It should be noted that both methods use very simple classification

methods, the first using only a linear classifier, which is unable to properly classify any

33

non-linearly separable input patterns with their outputs and the second using just a

multilayer perceptron with back propagation for training (using “patternnet” would most

likely be better for the job considering it specializes in handling classification and pattern

recognition). In addition, both methods use very little inputs (features such as the root

mean square of signal) to distinguish input signals from each other. Using more inputs

and more qualified neural networks would improve classification accuracy at the expense

of processing time and memory.

 Another useful paper to mention is “The use of Artificial Neural Network in the

Classification of EMG Signals” by Md. R. Ahsan, Muhammad I. Ibrahimy, and Othman

O. Khalifa [35]. Although this paper does not use subvocal EMG signals in its

experiments, but EMG signals taken from human hands to classify hand movement from

said EMG signals instead, the method taken to classify these signals demonstrates the

advantage of using many features of the EMG signal as inputs to the classification neural

network in terms of improving accuracy. For example, the paper’s experiments on

classifying EMG signals to hand motions involve the use of 7 (not two) features as inputs

to a feed-forward neural network. The results show accuracies with an average success

rate of 88.4% (much better than 70%). However, this method is also limited for the use of

subvocal EMG signals as it does not use a wavelet transform and therefore would not be

able to classify subvocal signals as well due to the fact that subvocal signals are much

harder to distinguish from each other than that of non-subvocal signals as non-subvocal

signal have much larger magnitudes than that of subvocal signals and thus are easier to

distinguish from noise.

34

The papers “Subvocalization – Toward Hearing the Inner Thoughts of

Developers” by Chris Parnin [6]; “Random Forests Based Sub-Vocal Electromyogram

Signal Acquisition and Classification for Rehabilitative Applications” by Biswajeet

Champaty, Bibhu K. biswal, Kunal Pal, and D. N. Tibarewala [36]; and “The Application

of AR Coefficients and Burg Method in Sub-vocal EMG Pattern Recognition” by Muuna

Khan and Mosarrat Jahan [37] also contribute the design of the project’s neural network

such as providing various methods of extracting and processing subvocal EMG signals.

For instance, the first paper by Chris Parnin mentions the idea of bypassing the subvocal

signal completely and simply measuring the EMG signals from facial muscles of person

mouthing words (but not talking) instead, thus eliminating the need for complex signal

processing and allowing classification accuracy to be much easier to achieve by using the

much larger in magnitude non-subvocal signals from facial muscles while achieving

silent speech. This may sound like a feasible method and although it has the advantage

not needing complex signal processing, it has limitations such as the added

inconvenience of having mouth out words to achieve silent speech and is much more

likely to give unwanted noise signals due to stray movements in facial muscles, which

vocal muscles are much less likely to give. While one may argue that mouthing out words

provides an additional method of silent communication by allowing one to read another’s

lips, it is important to note that the silent communication device is designed to allow

silent communication through users’ electronic devices, which transmit communication

across long distances. Therefore, mouthing out words provides no advantage unless users

are directly in front of each other, making lip reading only useful under very limited

circumstances (e.g. two soldiers communicating across a battlefield should not have to

35

rely on lip reading to communicate silently). While a computer could perform lip reading,

it would have to have some way of viewing the lips, which would require an awkward

angle of viewing that would most likely require hand movement or an exposed camera

that could easily get in the user’s way. For the most convenient and reliable EMG signals,

the subvocal EMG signals from the throat perform better as a result. The second paper

(Random Forests Based Sub-Vocal Electromyogram Signal Acquisition) is significant for

offering an alternative method to using neural networks for classification by instead using

an ensemble of decision trees called Random Forests (RF) to carry out the classification,

which showed a classification accuracy of 90% while only using two features as inputs, a

significant improvement over the other mentioned methods. However, its limitations are

shown by the fact that the analysis is much more complicated, requiring two programs

(LabVIEW 2010 and Microsoft Excel) as opposed to one (Matlab) to implement in

addition to requiring more hardware to extract and process the signal as well, thus

resulting in a more expensive method requiring more processing power and memory.

Finally, the third paper by Muuna Khan and Mosarrat Jahan demonstrates another

alternative to using a neural network for classification by using an algorithm known as

the Burg Method to classify sub-vocal EMG signals. Like the Random Forests method,

however, this method of classification is also much more complicated and requires use of

expensive equipment such as a MP30 acquisition unit and BIOPAC system.

After taking into consideration the advantages and limitations of each of the

methods discussed in the literature review section, the design approaches the problem of

accurately classifying sub-vocal EMG signals by improving upon the design presented in

paper “Sub-vocal Phoneme-Based EMG Pattern Recognition and its application in

36

Diagnosis” by Mosarrat Jahan and Munna Khan. For example, the design follows the

same methods of extraction and processing of the subvocal EMG signal as that of the

design in the paper, but improves upon it by adding more features (inputs) from the

subvocal EMG signal as inputs for the classification neural network. In theory, this

allows the neural network to more easily distinguish between different subvocal EMG

signals by taking into account more properties about the subvocal EMG signals when

comparing them. In addition, another improvement added is to change the “linear

classifier” (assumed perceptron) to a neural network that can handle non-linearly

separable relationships between the inputs and outputs, thus allowing for even more

classification accuracy. Of course, despite these advantages, this approach has some

limitations as well, as the increase in the number of inputs into the neural network and the

increase in complexity of the neural network results in a much larger use of memory and

processing power, but since we are focusing on improving accuracy and are not restricted

to a computer to process and classify the subvocal EMG signals that is restricted in terms

of memory and processing power, these limitations can be ignored.

After passing the input EMG signals from the throat through the amplifiers/filters,

Matlab is then used to process and classify the subvocal EMG signals. Matlab provides

both the neural network and the wavelet transform, but this will be changed later when

the microcontroller implements the wavelet transform. For now, Matlab provides the

wavelet transform to test the performance of the project without the microcontroller. This

is done by using the function “audiorecorder” to sample the signal entering the USB port.

The user (person whom the EMG electrodes are attached to) is then sent messages to

begin emitting the subvocal “vowels” by thinking of the vowel asked for (for example,

37

“recording “AAAA” in three seconds”). The labeled data consists of five different vowels

(“A”, “E”, “I”, “O”, an “U”). Twenty samples of each vowel are then recorded (100

samples total, one second recording for each vowel sample) in which the data points

taken for each sample are organized into respective matrices for each sample. These

signals are sampled with a sampling frequency of 1000 Hz in 16 bits as a high frequency

sampling rate is not needed as the signal is already being filtered from 10 Hz to 450 Hz

and 16 bits is the minimum amount of bits needed to properly represent the signal after it

is converted from an analog signal to a digital signal without using up too much memory.

The data points of these signals are then processed using maximal overlap discrete

wavelet analysis (maximal overlap is used because Matlab only allows single levels for

the discrete wavelet transform function) down to three levels or coefficients using mother

wavelet Daubechies ‘db4’ as the wavelet function (this is removed later when the

microcontroller is implemented). This splits each of the sample data points into four

different rows (L+1-by-N matrix) of wavelet coefficients for scale 2L-1 (wavelet

coefficients d1, d2, and d3), where L is the level and N is the input signal length, with the

fourth row containing the scaling coefficients for 2Lmax (wavelet coefficient A3). With the

discrete wavelet analysis having separated the sample signals into individual frequency

components, the non-stationary nature of subvocal EMG signals can be more easily

analyzed, allowing for increased classification accuracy as a result. Next, since the neural

network must receive inputs to characterize these sample signals, six features of each

wavelet coefficient row are calculated, resulting in a total of 24 inputs to the neural

network (six features for every four rows of wavelet coefficients). These features are the

mean absolute deviation of the signal, the root mean square of the signal, the variance of

38

the signal, and the standard deviation of the signal, the number of zero-crossings of the

signal (number of times the signal reaches zero), and finally the number of slope changes

of the signal. These features are referenced from “The use of Artificial Neural Network in

the Classification of EMG Signals” by Md. R. Ahsan, Muhammad I. Ibrahimy, and

Othman O. Khalifa [35] (with the exception of the mean absolute deviation of the signal)

due to their demonstrated ability to represent statistical time and time-frequency based

features of the sample signals (for example, the number of zero-crossings gives an

indication of the number of high or low frequencies in the signal due to there being more

zero-crossings for high frequency signals). Finally, once the features have been

calculated, the neural network is declared (“declared” meaning “defined” in Matlab

coding terms). The neural network is a “patternnet” type neural network due to the fact

that these types of neural networks are specially designed by Matlab to handle

classification and pattern recognition and consist of three layers: the input layer (24

neurons for 24 inputs), the hidden layer (20 neurons to be close in number to the number

of inputs), and the output layer (5 neurons each representing a vowel output, for instance

10000 for “A”, 01000 for “E”, etc.). The activation function of the neurons in the hidden

is the hyperbolic tangent function (‘tansig’) for the purpose of handling the fact that the

relationship between the inputs and the outputs is not linearly separable, while the

activation for the output layer is a linear function (‘purelin’). The training algorithm used

is the Levenberg-Marquardt algorithm as it is one of the fastest methods for training a

moderately sized neural network and is set to train for 100 epochs, an epoch being a

single pass of the neural network through the all data used for training, with the desired

MSE being 1E-12. All the biases and weights between the input layer, hidden layer, and

39

output layer are initialized randomly. Finally, the neural network is initialized using the

“configure” function and then trained using the “train” function with the INPUT matrix

holding all the input features and the OUT matrix holding all the expected outputs of the

input features. The 70% of the data is used for training the neural network, 15% is used to

test neural network, and the final 15% is used to validate the results out of all 100

samples. Code is shown in Figure A.5 (wavelet transform code removed due to the large

size of the code and because it was not included in the final design of the project) in

appendix A.

40

4. IMPLEMENTATION, TESTING, AND RESULTS.

 This chapter covers the implementation of the designs created in chapter 3, the

testing of said designs and changes made to have them working properly, and the final

results.

4.1 Amplifier/Filter Prototype and Testing

In order to be able to obtain an EMG signal to test the wavelet filter with, it was

decided to build and test a prototype of the amplifier/filter circuit. The circuit was

constructed as shown in Figure 3.1 (shown in chapter 3) on a circuit breadboard using

components fixed in the node holes on the breadboard. A schematic was also drawn on

paper to help label connections. The circuit was initially tested by using an Agilent

33120A function generator to simulate the circuit’s response to an EMG input signal by

using small signals (about 20 mV in amplitude) at a range of frequencies as inputs to the

circuit. The output response of the circuit would be monitored using an Agilent

DSOX2014A oscilloscope in order to see if the circuit properly filters out signals with

frequencies outside the range of 10 Hz to 450 Hz and provides enough gain to amplify a

signal within the 10 Hz to 450 Hz frequency range to a 0 to 5 V amplitude range (2.5 V

being the reference voltage). The ±5 V voltage rails were given using an Agilent E3631A

power supply.

Unfortunately, the initial testing gave no results as the circuit would not produce

an output. Upon using an Agilent 34410A multimeter to probe nodes of the circuit in

order to test for any short or open circuit faults, it was discovered that all node voltages

were stuck at the 2.5 V reference rail. Suspecting that the reference rail might be the

41

problem, the 2.5 V reference rail was then removed with all of its previous connections

set to ground. Further testing proved that it was not the issue (all node voltages simply

went to zero), but it was decided to keep it removed until the rest of the circuit could

prove that it could at least operate at a ground reference voltage.

After failing to find any short or open faults, each part of the circuit was separated

into individual circuits (both INA128p instrumentation amplifier circuits, both

mc33078pc low-pass high gain filters, and both high-pass circuits: six circuits total) in

order to test which part of the entire circuit was not operating properly. At this point in

the testing process, due to a change in location, difficult testing equipment had to be used

for the testing procedure. The Agilent DSOX2014A oscilloscope was replaced by a

SainSmart DSO note II DS202 oscilloscope, the Agilent 22120A function generator

replaced by a Lab-Volt AA 777 function generator, the power supply replaced by a TP-

30003D-3 0-30V-0-3A DC power supply, and the Agilent 34410A multimeter replaced

by a Cen-tech 7-Function digital multimeter. By using the function generator to input a

signal below 450 Hz into the low-pass high gain filter, it was promptly discovered that

the filter was producing no output via a faulty mc33078p chip. Upon replacing the chip

with a new one, both low-pass high gain filters were able to function properly based on

their input signals as shown in Figure 4.3. Using the function generator to input a test

signal into the INA128p instrumentation amplifiers (differentially into Vin- and Vin+

ports), it was also discovered that the instrumentation amplifier was not producing an

output. Upon examining the schematic of the INA128p instrumentation amplifier [28], it

was discovered that the initial assumption that the reference voltage port of the

instrumentation amplifier should be put at the high rail (+5 V) would not allow for proper

42

operation. To solve this, the reference voltages on both amplifiers were connected to

ground instead to prevent the output signal from being clipped due to the reference

voltage being at the top of the rail. In addition, a load resistance of 1 KΩ was put across

the output of the amplifier to ground to allow the reference voltage to have the same

ground as that of the output voltage and to make sure that the output voltage is properly

referenced to ground. It was also realized that a mistake was made by setting the negative

rail port of the amplifier to ground. This was fixed by connecting the negative rail port to

the negative rail (-5 V), thus allowing the signal to not get clipped when having a

negative amplitude.

After adding these corrections and bringing the circuit back together (minus the

2.5 V rail), the circuit was tested once again using the function generator and was able to

produce an output. However, as shown in Figure 4.4, the output signal, even without an

input signal, was filled with many layers of noise, the strongest being a large sine-wave

like signal at 60 Hz (about 200 mV). This is due to the large gain of the circuit

amplifying the 60 Hz electromagnetic noise from surrounding electronic equipment.

Upon measuring every node of the circuit using the oscilloscope, it became clear that the

60 Hz noise was prevalent throughout the circuit in which, although it would cause a loss

of information in the output, it was decided that a notch filter at 60 Hz should be added at

the output to cancel out the noise as the noise was larger than the expected input signal

and drowned out any useful information as a result of its large size.

The design of the notch filter was designed using three resistors and three

capacitors to create a passive notch filter (an active design was avoided in order to

prevent more noise from being produced) with a mc33078p voltage follower amplifier on

43

the output on the notch to act as a buffer to keep the output impedance low as shown in

Figure 4.1. Calculations and design for the notch filter are shown as below and in Figure

4.1:

𝑓𝑐 =
1

2𝜋𝑅𝐶
= 60 𝐻𝑧 =

1

2𝜋𝑅(10000 µ𝐹)
 , 𝑅 = 265.25824 KΩ

Figure 4.1: 60 Hz notch filter schematic and design.

After implementing the 60 Hz notch filter on the output, further testing on the

output of the filter showed that the 60 Hz noise had been reduced to zero. However, other

layers of noise still remained, the next largest being a sawtooth waveform of about 200

mV in amplitude and 200 Hz in frequency on the output. This was due to inductance in

the power strips connecting the power supply and function generator to their power

sources (this was tested with multiple power strips and wall sockets to confirm that it was

not just one specific power strip or wall socket causing the problem). To remove this

noise, the power strip was removed and the power supply and function generator were

both plugged directly into a wall socket. After removing said noise, only white noise of

about 80 mV in amplitude remained, which was removed by putting more capacitors (47

44

uF) across both voltage supply nodes to ground. The circuit was tested once again using

the function generator to see if a clean signal could be acquired. The result of these tests

are shown in Figure 4.5, showing a successfully clean signal.

Now that the layers of noise that occurred without an input were removed, it was

time to try adding the EMG sensor electrodes to the circuit in order to obtain some data.

This was done by using a 3 pad sensor cable, audio jack (3.5mm), audio jack breakout

circuit, and various biomedical sensor pads. The audio jack breakout circuit was soldered

to the audio jack, while wires acting as inputs to the circuit itself were soldered into the

connections on the audio jack breakout circuit to assure connection to the circuit. The

sensor cable would then be plugged into the audio jack, allowing the EMG sensor

electrode pads to input signals into the circuit.

With the EMG sensor electrodes added to the circuit, the circuit was then tested to

see if it could successfully obtain, filter, and amplify actual EMG signals obtained using

the sensor electrodes. This was done by first attaching EMG electrode sensor pads

attached to the ends of the three sensor cables (one acting as ground for the other two

positive lead sensor pads) to a person’s throat. Then said person would speak or think in

order to see if the circuit could output a signal in response. This was tried in two

configurations only using two of the three electrodes, the first being that two EMG

electrodes would be put to the right and left of the larynx (5 cm from the larynx) on the

throat, making sure that the two positive lead electrodes are on throat muscles, while the

ground electrode would be put behind an ear in order to capture EMG signals going down

both sides of the throat. The second configuration was done by placing a single electrode

on one side of the larynx (5 cm from it), while the ground electrode would be placed on

45

the other side (5 cm from it) in order to capture an EMG signal going across the vocal

cords. Unfortunately, more layers of noise were obtained when trying to obtain a signal,

the first being a very large waveform (about 8 V in amplitude on the output) that was due

to the circuit amplifying the current signal produced by the magnetic field produced by

the wires of the three sensor cables moving relative to each other when picking up a

signal. This was solved by taping down the wires when testing so that they would not be

able to move. The second layer of noise was a layer of white noise of about 40 mV which

was a result of the voltage difference in referenced grounds for the circuit and the EMG

electrodes. This was solved by adding plate capacitors (10 uF) (not electrolyte capacitors,

they only added noise) in series between the EMG electrodes and the circuit itself in

order to DC couple out any dc voltage difference between the ground of the EMG

electrodes and the ground of the circuit. The resulting circuit is shown below in Figure

4.2.

Figure 4.2: First amplifier/filter schematic and circuit.

46

Finally, after removing these layers of noise, a signal could be obtained (about 80

mV in amplitude), but only while the user was talking, coughing, or clearing their throat

and not while using subvocalization (the second configuration of the EMG electrodes

proving to be the most successful for obtaining this signal). The circuit will have to have

its gain increased and needs further testing in order to obtain the subvocal signal.

Figure 4.3: Output signal (blue) of both low-pass high gain filters in response to a 50 mV,

300 Hz input signal (yellow).

47

Figure 4.4: Demonstration of noise layers (blue) on output of amplifier/filter circuit.

Figure 4.5: Demonstration of clean output (blue) in response to a 15 mV, 300 Hz input

signal (yellow) of both low-pass high gain filters after modifications on amplifier/filter.

48

MSP432 code:

Changes that still need to be made to code:

1) Fix loops in decomposition filter and reconstruction filter so they loop forever.

2) Set up button to allow user to choose the output from the decomposition filter or

the reconstruction filter.

3) Make sure functions are declare/called correctly.

4) Disable interrupts until outputs are made.

5) See how not performing in real time affects its performance.

6) Find out how long the code takes to carry itself out in seconds.

 In order to obtain a subvocal signal, it was decided that the gain for the amplifier

would need to be increased as signals with much larger expected magnitude were being

picked up (coughing, throat clearing, etc.). For this reason, a potentiometer was added in

parallel to the 27 KΩ resistor connected to the negative terminal of the op-amp of the

amplifier (Figure 4.2) in order to raise the gain of the second amplifier by making the

resistance on its negative terminal smaller. The amplifier/filter was tested using a voltage

divider on the input of the amplifier/filter to bring the input waveform amplitude down to

magnitudes that would more closely simulate the magnitude of a subvocal EMG signal,

while the Lab-Volt AA 777 function generator supplied a sinewave input waveform and

the TP-30003D-3 0-30V-0-3A DC power supply provided the rails to the amplifier/filter.

The voltage divider consisted of two resistors (R1 = 20000 Ω and R2 = 100 Ω) in the

configuration as shown in Figure 4.6, resulting in the voltage gain of G = R2/(R1 + R2) =

49

100/(20000 + 100) = 4.975124378E-3 for the input waveform signal from the function

generator.

Figure 4.6: Circuit schematic of voltage divider on input of filter/amplifier.

 The potentiometer was adjusted to give a variety of larger gains to the amplifier of

the circuit, but, unfortunately despite amplifying the signal, the output signals resulted in

having the harmonics of the 60 Hz noise signal amplified, resulting in large noise signals

at frequencies of 120 Hz, 180 Hz, etc. These noise signals made it difficult to analysis

any possible subvocal signals when testing using EMG electrodes and filtering them out

in addition to the already filtered out 60 Hz noise would result in a much larger loss in

possible information (useful signals at these filtered frequencies in the subvocal signals

would be lost) so it was decided to remove the potentiometer and find another way to find

the subvocal signals. The results using the voltage divider without the potentiometer are

50

shown below in Figure 4.7 and 4.8, proving that the amplifier/filter can amplify signals

around the magnitude of subvocal EMG signals up to 1.28 Volts in amplitude, while the

results with the potentiometer are shown in Figure 4.9 and 5.0 (the harmonics signals

were shown at a much lower amplitude signal the signal generator). The results were

taken using the SainSmart DSO note II DS202 oscilloscope.

Figure 4.7: Output of filter (blue) with voltage divider to simulate EMG signal, input

(yellow) after voltage divider. Channel properties are shown on the right.

Figure 4.8: Output of filter (blue) with voltage divider to simulate EMG signal, input

(yellow) after voltage divider. Signal measurements are shown on the right.

51

Figure 4.9: Output of filter (blue) with voltage divider to simulate EMG signal and

potentiometer added to low-pass filter (in parallel with 27K resistor, resulting in total

resistance of 910 ohms), input (yellow) after voltage divider. Gain increased massively

(function generator attenuator turned to max). Signal measurements are shown on the

right.

Figure 4.10: Output of filter (blue) with voltage divider to simulate EMG signal and

potentiometer added to low-pass filter (in parallel with 27K resistor results in 910 ohms),

input (yellow) after voltage divider. Gain increased massively (function generator

attenuator turned to max). Channel properties shown on the right.

52

 Now that the amplifier/filter had proven that it could successfully amplify signals

at the magnitude expected of subvocal EMG signals to a useable magnitude, the

amplifier/filter was tested under the same conditions only using actual subvocal signals

recorded using EMG electrodes on the throat as input instead of signals from a function

generator (the voltage divider was removed of course when testing for actual subvocal

EMG signals). Many different configurations of positions of the EMG electrodes on the

throat were tried, including the two configurations mentioned previously, but these

resulted in either getting no signal at all or signals that should not resemble subvocal

EMG signals (for example, DC voltage). Finally, the best results were obtained by

placing the ground EMG electrode behind the left ear, while the red sensor was placed

just underneath the chin on the left side of the face, making sure that the EMG electrode

was over the location of the left anterior belly of digastric muscle (shown in Figure 4.11).

In addition, the person used as the test subject was grounded by using a cable

strap strapped on the wrist that was clipped to a large piece of metal (metal box).

Although the anterior belly of digastric muscle is not the only muscle one can receive

these subvocal EMG signals from, it produced the clearest results as shown below in

Figures 4.12, 4.13, 4.14, 4.15, 4.16, and 4.17, which demonstrate signals taken from

vocally speaking the vowel “a”, clearing the throat, doing nothing, subvocalizing “a”,

subvocalizing “e”, and subvocalizing “o”.

53

Figure 4.11: Muscles of the human throat, showing the location of the anterior belly of

digastric.

Figure 4.12: First experiment: signal taken while vocally talking (“aaaaa”).

54

Figure 4.13: First experiment: signal taken while clearing throat.

Figure 4.14: First experiment: signal taken while doing nothing (EMG of throat).

Figure 4.15: First experiment: signal taken while subvocalizing “eeeeeee”.

55

Figure 4.16: First experiment: signal taken while subvocalizing “oooooo”.

Figure 4.17: First experiment: signal taken while subvocalizing “aaaaaa”.

Upon examining the results, it is clear to see that the these signals needed to be

further processed before any discrepancies between these signals could be found as no

significant differences can really be seen between any of the subvocal signals and the

signal retrieved from doing nothing so it is still unclear even if a subvocal signal exists

within these signals. However, vocally speaking and clearing the throat showed clear

signs of EMG signals produced from these actions as both of the signals captured after

vocally speaking and clearing the throat showed clear increases in magnitude. This

56

proved that EMG signals were being captured, but finding the discrepancies between the

subvocal signals required further processing as the subvocal signals clearly did not cause

significant changes in magnitude. Further testing was tried by removing the low-pass

capacitor to see if removing some filtering would allow for more of the subvocal signal to

be shown, but, as expected, no changes were observed between the EMG subvocal

signals taken. Thus, since it was clear that the amplitude/filter was then operational,

testing the wavelet transform code was the next step. The wavelet transform would sort

out the individual frequency components of each of the signals, allowing for further

analysis between the differences between the signals to be possible.

4.2 Microcontroller Code Implementation V1.0 (User Interface V1.0)

 For the testing of the wavelet transform code, the operation of the buttons that

controlled what kind of output would be received and when data was being taken was

done first. A debouncing circuit was designed and created on a breadboard to handle any

unwanted multiple button presses when manually pressing the buttons (buttons generally

trigger more than once when pressed, thus resulting in error) by filtering out the excess

signals created after pressing the button. Design of the debouncing circuit is referenced

from [38] in which Figure 4.18 shows the design, where the switch represents the button,

the output is between the R2 resistor and the C2 capacitor, and ground is below R1, C2,

and the voltage source (negative terminal). The button sends its signal (when it is

pressed) when the switch is closed, causing the voltage source to send voltage across the

switch and the resistors, resulting in the output signal. The RC circuit (R2 and C2 in

series) then acts as a one-pole RC low-pass filter, filtering out any of the excess signals

57

caused by the switch accidentally switching open and closed from one button press.

When the switch is finally stays open again for a long period of time (button is no longer

pressed), the pull-down resistor (R1) pulls the voltage signal to zero. Equations are as

shown:

Time constant = RC = (10000 Ω)(390000E-12 F) = 3.9E-3 seconds.

Corner frequency of low-pass circuit: fc = 1/(2πRC) = 1/(2π(10000 Ω)(390000E-12 F)) =

0.80896 Hz (rejects high frequency signals from the switch).

Figure 4.18: Debouncing circuit schematic.

 Since the MSP432P401R microcontroller takes a positive-going input threshold

voltage of 1.35 V to 2.25 V on it ports, the voltage source was set to be 2V for the

58

debouncing circuit (this voltage was increased later). The buttons were tested by using

the SainSmart DSO note II DS202 oscilloscope to capture the output of the debouncing

circuit, which showed the debouncing circuit operated properly as it produced a smooth

increase in voltage as the button was pressed (no excess waveforms). The waveform

transform code was then used to test if the outputs from the buttons would successfully

trigger interrupts and LED outputs in the program by connecting the outputs of the

debouncing circuits to input ports on the microcontroller (Ports P2.4 and P3.0).

Unfortunately, upon testing the waveform transform code and despite having no debug

errors, the program would reset constantly before any lines of code could be processed

and was thus unable to test the buttons.

 As expected, despite having no debug errors, it was clear that the waveform

transform code would need some testing to assure that it worked properly. To solve the

problem of constantly resetting, it was decided to first test to see if the microcontroller

itself was working properly. This was done by testing to see if it could handle a simple

program which would cause a LED output to flash constantly when active and was

referenced from the MSP432P401R microcontroller example program files, shown in

appendix A as Figure A.2.

 The microcontroller was able to handle this code effectively, thus showing that it

can handle a program and that it was a problem associated with wavelet transform code

in particular.

This was solved by adding the function below, which prevented the watchdog timer

(default system clock that resets the microcontroller constantly for every one of its clock

cycles) from resetting the system because it could not load the program (due its large

59

size) into the microcontroller in time before resetting the whole microcontroller. The

original line of code meant to do this, WDTCTL = WDTPW | WDTHOLD;, was not

freezing the watchdog timer because the program needed to load before it could

implement this line of code, but the code (“system_pre_init”) below freezes the watchdog

timer before the rest of the program is loaded into the microcontroller, thus preventing

the microcontroller from constantly resetting. Code is shown in appendix A as Figure

A.3.

Since the program was very large, further testing was done by individually

separating different parts of the code into a separate program, which would be added to

by other parts of the full program once the first part proved it worked properly (this was

done because it was suspected that more memory problems might occur because the

program was so large). The first part tested was the “main” program, which handled the

initialization of functions and interrupts and contained the infinite loop state that the

program would stay in when no interrupt was being called. With only one part of the

code being tested separate from the other code, the microcontroller no longer reset

constantly, showing that it was a problem involving the size of the program. The interrupt

sections were added (functions called when an interrupt is called) and tested to see if the

buttons would trigger the interrupts. Outputs to LEDs were added to the interrupt sections

to test if they were being called (LEDs would blink constantly if an interrupt was called),

but the interrupts did not work. Upon examining the user manual of the MSP432P401R,

it was clear that a mistake was made regarding how to initialize interrupts as it assumed

that the interrupt initialization process was the same of that of the MSP430

microcontroller, but, in fact, an extra step was added to account for the fact that the

60

MSP432P401R can handle multiple interrupts at once in one program. The lines

NVIC_ISER1 = 1 << ((INT_PORT3 - 16) & 31); and NVIC_ISER1 = 1 <<

((INT_PORT2 - 16) & 31); needed to be added to the main program to initialize

interrupts for the set of input ports “three” (P3.1, P3.2,…) and for the set of input ports

“two” (P2.1, P2.2, ….) as input ports in both of these sets of input ports were being used

with the buttons as interrupts, while the startup file for the program needed to be edited as

well to account for the initialization of these interrupts. As a result of this fix, the

interrupts finally became operational, but came with other problems such as interrupts

being called as soon as they were initialized and then being unable to be called again

afterward until the program was reloaded, even without the buttons being pressed.

 Testing was done to discover why the interrupts were being called immediately

after being initialized and it was suspected, upon probing the ports used as inputs with an

oscilloscope, that the initialization of the pull-up resistors for each input port was causing

an increase in voltage on the input ports (initialization of the pull-up resistor essentially

adds a resistor to the input circuit, causing a change in voltage as the resistor is added)

that would trigger the input port to call an interrupt as soon as the interrupts were

initialized as an increase in voltage on interrupt ports results in an interrupt being called.

By commenting in and out the code that initialized the pull-up resistors, it was confirmed

that the pull-up resistor was causing this increase in voltage. The increase in voltage on

port P2.4 is shown below in Figure 4.19:

61

Figure 4.19: Screen capture of increase in voltage on port input P2.4 when running

microcontroller. About 10 ms = 10E-3 s in time to increase voltage back to DC levels.

 To solve this issue, the time it took for the voltage to increase to a DC value when

the pull-up resistor was initialized in the code was recorded using the screen capture in

Figure 4.19. This time was used to find the number of clock cycles it would take for this

increase in voltage to become a DC value. The results were calculated as:

 One cycle = 1/SMCLK = 1/24 MHz = 41.66666667E-9 s

Number of cycles to delay: 10E-3 s/41.66666667E-9 s = 240E3

 These 240000 cycles were then used in the function __delay_cycles(240000);

between the line where the pull-up resistor was initialized and the line were the interrupts

were initialized, which would delay the program by the amount of time it took for the

increase in voltage to become a DC value, thus preventing the increase in voltage on the

interrupt input ports from occurring while the interrupts were being initialized.

62

Unfortunately, implementing the delay cycles did not solve the problem as the interrupts

continued to be called as soon as they were enabled even after increasing the delay cycle

to 300E8 cycles. Stopping the pull-up resistor from being initialized despite it being

needed to receive the signal to initiate the interrupt did not solve the problem either.

Thus, it was apparent that the problem had nothing to do with the pull-up resistors.

 After many different tests to try and discover the source of this problem, the

interrupt for port 2 stopped enabling immediately after initialization after commenting

out some parts of the program (parts that had nothing to do with the interrupt) and then

reprogramming the microcontroller (the interrupt for port 3 was still being enabled

immediately unfortunately). It was then decided that a memory issue was causing the

interrupts to be enabled immediately.

Upon examining the way in which testing was done, it was found that the practice of

resetting and reloading the microcontroller to reach the first line of code each time the

program reached an infinite loop implemented for testing was the cause of the memory

problems as, after turning off the microcontroller and then implementing more

conservative use of reloading the microcontroller, the port 2 interrupt more consistently

stopped being enabled as soon as it was initialized. As for the port 3 interrupt, it was

decided to use a different port for the interrupt in which P4.0 (port 4) was used. The port

4 interrupt was operational, but did not work until the voltage from button enabling it was

increased to 2.3 V (now giving enough threshold voltage), which then, like the port 2

interrupt, only would be able to be enabled once and then could not be enabled again

until the microcontroller was reloaded.

63

 With the interrupts being able to operate properly at least once, the other parts of

the code were added (deconstruction loop, reconstruction loop, conversion program, and

drive_DAC output function) to the testing program, which were individually tested by

placing infinite loops at the ends of each program to see not only if each line of code

could be processed without error, but also to see if the second interrupt function could

guide the code to reach the reconstruction loop output or deconstruction loop output

(second interrupt determines whether or not the microcontroller will output a

reconstructed output signal or discrete wavelet transform output signal). All tested parts

of the code were processed without error, but the effect of the second interrupt (changing

the type of output of the microcontroller) was not occurring despite the fact that the

interrupt was being called. The interrupts also had a tendency to behave fickly while

testing, sometimes tending to go into interrupt faults or not working at all. With the

interrupts behaving fickly, only enabling once, not carrying out their functions, and the

code responsible for initializing the interrupts working properly, testing was done by

examining the register map in the code composer for the microcontroller to examine the

individual bits in each register to see if the bits responsible for enabling and maintaining

the interrupts were actually being toggled and not changing or being edited

unintentionally. Results showed that, as the program was carried out, all bits were set as

expected (interrupt flags for ports 2 and 4 stay at zero after being set to zero, etc.).

 Despite the fact that the interrupts were behaving strangely, they were able to at

least consistently enable once per reset, allowing for testing of the amplifier/filter with

the microcontroller to be possible. In order to give an output that is in the input range of

the microcontroller, the 2.5 V rails need to be added to the amplifier/filter to give its

64

output signal a DC voltage of 2.5 V to make sure that the signal does not go negative in

amplitude. A voltage divider was then added to the amplifier/filter as shown in Figure 2

(R5 and R6 resistors). However, because the voltage divider did not give proper results

the last time it was tested with the amplifier/filter, an improvement was added as shown

in Figure 4.20. A voltage follower was added between the voltage divider and the output

to prevent too much current from being drawn from the voltage source. The 1KΩ loads

going to ground at the outputs of the instrumentation amplifiers were also removed as

these were deemed unnecessary. Upon testing the amplifier/filter with the new voltage

follower, the results showed that the output of the amplifier/filter contained a DC voltage

bias of 0.750 V (the notch filter does not have this bias yet). Further testing is required to

get this voltage to 2.5 DC volts, but, since a bias is given, it was finally possible to test it

with the microcontroller and the neural network. State of wavelet transform code after

button interrupt routine adjustment is shown in appendix A as Figure A.4.

Figure 4.20: 2.5 V rail for amplifier/filter with voltage follower.

65

4.3 Neural Network Tests with Amplifier/Filter

Before testing with the microcontroller, the amplifier/filter was first tested with

the neural network to see if the amplifier/filter could now pick up subvocal signals with

enough distinction from one another that they could be classified separately since the last

test using the EMG electrodes gave unclear results. With the neural network matlab code

having its own wavelet transform, testing it with the amplifier/filter can confirm if the

amplifier/filter can acquire EMG subvocal signals that can be classified accurately. As

previously mentioned in section 3.6, the neural network works by using features extracted

from subvocal signal samples to train itself to classify each of the subvocal signal

samples as either one of five vowels (“a”, “e”, “i”, “o”, and “u”). The neural network is a

“patternnet” type neural network due to the fact that these types of neural networks are

specially designed by Matlab to handle classification and pattern recognition and consist

of three layers: the input layer (24 neurons for 24 inputs), the hidden layer (20 neurons to

be close in number to the number of inputs), and the output layer (5 neurons each

representing a vowel output, for instance 10000 for “A”, 01000 for “E”, etc.). The

activation function of the neurons in the hidden layer is the hyperbolic tangent function

(‘tansig’) for the purpose of handling the fact that the relationship between the inputs and

the outputs is not linearly separable, while the activation for the output layer is a linear

function (‘purelin’). The training algorithm used is the Levenberg-Marquardt algorithm

as it is one of the fastest methods for training a moderately sized neural network and is

set to train for 100 epochs, an epoch being a single pass of the neural network through the

all data used for training, with the desired MSE being 1E-12. All the biases and weights

between the input layer, hidden layer, and output layer are initialized randomly.

66

The neural network was implemented through Matlab using a laptop, involving

not just the neural network but an input vector for organizing the input samples going

into the neural network for each test, a wavelet transform, and feature extraction. The

neural network would receive these input samples through use of a stereo cable and “iMic

Griffen” audio plug in which the output of the amplifier/filter would act as the input to

the stereo cable. The stereo cable would then provide the means to send the output of the

amplifier/filter into the “iMic Griffen” audio plug in which said plug would act as a USB

converter to send the output to the laptop for the Matlab program to receive and

subsequently sample into the input vector. The samples in the input vector would be

wavelet transformed and then have their features extracted to be finally used as inputs for

the neural network.

For the input vector, two different methods were employed to determine how it

would organize its input samples. The first being the recording of one long sample (100

seconds of recording) in which the user would be cued at certain points in the recording

process when to subvocalize which vowel. Said long sample would then be divided into

multiple samples and fed into the neural network according to which vowel they

corresponded to. Unfortunately, confusion matrix results showed 100% accuracy every

time, even when no input was being given and no signals were being recorded by the

Matlab program, showing that the sampling process was creating some sort of pattern in

the samples that the neural network was mistakening for disparities between each sample

type which resulted in dishonest results. The second and far more successful method of

sampling was simply taking twenty samples for each vowel (100 samples total), each one

second in recording time for 100 seconds total.

67

For testing and training the neural network, the results of three different scenarios

were compared: a “patternnet” type neural network using all 6 features (24 neural

network inputs) as designed in chapter 3, the original method as shown in “Sub-vocal

Phoneme-Based EMG Pattern Recognition and its application in Diagnosis” by Mosarrat

Jahan and Munna Khan in which only two features, mean absolute deviation and standard

deviation, are used (8 neural network inputs) and the neural network is a linear

perceptron as opposed to a “patternnet” type, and a “patternnet” type neural network

using only said two features as neural network inputs. The first scenario was tested to test

the performance of the neural network intended for use for the project, while the second

scenario was tested to see how the improvements to Mosarrat’s and Munna’s design

improved accuracy of classification, since the design created in chapter 3 was based on

their design. Finally, the third scenario was tested to see how adding more than two

features improved the accuracy of classification. Accuracy of classification would be

shown through a confusion matrix for each test (100 samples) in which 70% of the data is

used for training the neural network, 15% is used to test neural network, and the final

15% is used to validate the results out of all 100 samples, while the inputs for the

amplifier/filter were taken by placing EMG electrodes on the throat in which a single

electrode was placed on one side of the larynx of the throat (5 cm from it), while a

ground electrode was placed on the other side (5 cm from it) in order to capture an EMG

signal going across the vocal cords while the person with said throat was speaking. The

results for the first scenario are shown below in Figures 4.21 and 4.22, the results for the

third scenario in Figures 4.23 and 4.24, and the results for the second scenario in Figures

4.25 and 4.26. For the confusion matrices of Figures 4.21, 4.23, and 4.25, the green and

68

red numbers of the bottom row represent the percentage of targets (samples) that were

classified correctly (green) and incorrectly (red) to a class (vowel) out of all the targets of

said class (20 samples for each vowel), each cell of the row representing said percentages

for each class. The green and red numbers of the right-most column represent the

percentage of assignments to a class that were correct (green) and incorrect (red) out of

all the assignments to a class, likewise having each cell of the column represent said

percentages for each class. For the cells between said row and column, the green cells

represent the number and percentage out of all 100 samples of correctly classified

samples for each vowel, while the red cells represent that of the incorrectly classified

samples. Finally, the overall accuracy is determined from the total percentages of each

green cell, while the total inaccuracy is determined from the total percentages of each red

cell.

69

Figure 4.21: Confusion matrix when using all 24 inputs (6 features) with “patternnet”

neural network for project design.

Figure 4.22: Best validation performance when all 24 inputs (6 features) with

“patternnet” neural network for project design.

70

Figure 4.23: Confusion matrix when using 8 inputs (2 features) with “patternnet” neural

network.

Figure 4.24: Best validation performance when using 8 inputs (2 features) with

“patternnet” neural network.

71

Figure 4.25: Confusion matrix with 8 inputs (2 features) and a linear perceptron network

to duplicate the results of the original design for comparison.

Figure 4.26: Best validation performance with 8 inputs (2 features) and a linear

perceptron network to duplicate the results of the original design for comparison.

72

Upon analyzing the results, it was clear to see that the neural network’s

adjustments to the original experiment presented in [33] certainly resulted in an

improvement in accuracy as tripling the number of features for inputs increased the

overall accuracy from 44% to 77% as shown in the confusion matrices shown in Figures

4.21 and 4.23. The tripling of features also caused the best validation performance to

change from 0.40888 to 0.14346 (mean squared error, MSE) as shown by comparing

Figures 4.22 and 4.24. This demonstrates that the increase in the number of features

allowed the neural network to have more clues to classify one signal from another, thus

increasing the accuracy dramatically. It is also important to note that the attempted

duplication of the results of the original experiment by using the linear classifier

(perceptron) resulted in a poor overall accuracy of only 20% and validation performance

of 0.8 as shown in Figures 4.25 and 4.26 as a result of the linear classifier being unable to

classify inputs that have non-linearly separable relationships with their respective

outputs. This leaves the question of why wasn’t the result around 70 to 80% accuracy like

in the original experiment and why was the modified version (although a significant

improvement from 20% accuracy) only at 77% overall accuracy? The answer is most

likely due to the fact that the equipment and hardware used to record and extract the

subvocal EMG signals for this project is much lower in quality compared to the

equipment and hardware used in the original experiment. Although a similar design, the

filter used to extract and filter the subvocal EMG signals for the project is only a

breadboard prototype design and, due to a lack of funds, does not contain the hardware to

create more advanced filters used such as the Infinite Impulse Response band-pass filter

73

to filter out more types of noise and thus is likely to have much more noisy data than that

of the original experiment, thus resulting in data that is much harder to classify and

therefore had much more error. It also showed that the neural network was able to find

differences in each of the signals of differing vowels despite no sign of difference

between signals outputted from the amplifier/filter (monitored using oscilloscope) with

an accuracy of 77%, showing that a subvocal signal is possibly present but not appearing

on oscilloscope captures by either being too small in amplitude or drowned in noise. In

conclusion, this showed that the amplifier/filter needed improvements in terms of dealing

with noise and possibly needed more gain, but with the amplifier/filter now proven that it

can provide some sort of possible subvocal signal with a 0.750 V DC voltage, it was time

to test it with the microcontroller. Neural network code is shown in appendix A as Figure

A.5 (wavelet transform code removed due to the large size of the code and because it was

not included in the final design of the project).

4.4 Microcontroller Code Implementation V2.0 (Input Sampling)

After proving that the amplifier/filter operated with a bias voltage on the output,

the microcontroller could process the code for the wavelet transform, and that the

interrupts for the buttons could be activated, it was time to test the performance of the

wavelet transform on output signals from the amplifier/filter. Since initial testing with the

full program showed no output when receiving an input, testing whether or not the

microcontroller can receive an input and output the result was done by isolating the part

of the program that receives the input (button triggered interrupt routine) and the part that

gives the output (DRIVE_DAC function) and then placing them in their own program in

74

order to see if these parts perform their functions on their own. The microcontroller

received the usual 0.3 V sine wave input at 300 Hz, while the output pin (P1.6, SIMO,

slave in master out, output pin that outputs the SPI data) was received by the oscilloscope

to see if the microcontroller could receive and output the sinewave input. Results showed

that the microcontroller was not outputting anything out of the SPI output. After checking

over the MSP432 family user’s guide manual [32], it was apparent that the output pins

being used to send the SPI data and the clock to the external DAC (not added yet) were

not set to their “primary functions” (SIMO and SPI clock) and instead were being treated

as port inputs and outputs. This was solved by adding the instruction P1SEL0 = BIT6 +

BIT5; //set P1.6 output for SIMO and P1.5 for UCB0CLK which sets the pin P1.6 to its

SIMO function and pin P1.5 to its SPI clock function and removing the instruction

P1DIR |= BIT6; //set P1.6 output which was setting the P1.6 pin to be a just a regular port

output instead of a SPI data output. In addition, the output pin was changed from P1.4 to

P6.4 as P1.4 could not be found on the microcontroller board as a breadboard compatible

pin. Next, the external DAC was added to the microcontroller. The DAC chosen was the

mcp4921 DAC as it was the cheapest DAC with an SPI compatible input and 12-bit

resolution available at the time (a 14-bit external DAC would be added later for larger

resolution). Unfortunately even after applying the external DAC, no output was measured

from the SPI data output or the output of the DAC.

[Note: TIMERA based interrupt not used in final design, skip to next

paragraph for ADC14 based interrupt] Upon further examining the value of the

“decominput” array after ADC14MEM15 received its input (ADC14MEM15 takes a

sample from the ADC14 and puts it in the “decominput” array), it was noticed that the

75

“decominput” array was not receiving any inputs at all, showing that the way the

microcontroller handled its input needed to be changed. First, it was noticed that a

mistake was made regarding how the TIMERA timer was implemented to delay the time

between each input sample being taken. It was assumed that by adding 1300 CCR0

cycles to the TIMERA timer between each time a sample was taken, it would act as 1300

delay cycles that would delay the time between each sample by 1300 cycles, but this was

misconception concerning how the TIMERA timer worked. Adding CCR0 cycles to the

TIMERA timer only increases the times it takes to call another TIMERA interrupt and

since the TIMERA interrupt was not even being used, increasing the CCR0 cycles was

pointless. To fix this issue, the instruction to increase the number of CCR0 cycles

(TA0CCR0 += 1300;) was replaced with a “delay cycle” function for 1300 cycles. Even

after experimenting with the number of cycles, no input was being received. Considering

these results and how unreliable the button interrupts had previously shown themselves to

be, it became clear that the method of using the button interrupts to call the

microcontroller to take inputs needed to be changed. Instead of using a button interrupt

routine (INT_PORT4_Handler) to take input samples, a TIMERA

(TA0_N_ISR_HANDLER) interrupt routine was used instead. With the new TIMERA

interrupt routine, an input sample would be taken every time 1300 CCR0 clock cycles

passed as opposed to taking 16 samples every time a button was pressed. In order to

allow the user to still be able to control when microcontroller takes data, it was planned

that a new button interrupt would be added later that would simply stop the

microcontroller when pressed. After testing the new program and even experimenting

with the number of CCR0 cycles, the new interrupt routine was not being called. This

76

was solved by toggling the “TAIE” bit in the TA0CTL register which enabled the

TIMERA interrupt (only the CCR0 interrupt bit needed to be toggled when using the

MSP430 for the TIMERA interrupt to trigger, but the MSP432 apparently requires both

to be toggled). The TIMERA interrupt now was working, but no values were appearing in

the “decominput” register despite the change in the interrupt routine (no inputs taken by

the ADC14). In addition to no input being received, other problems included the

microcontroller not sending the UCB0CLK to the external DAC. Since both the

UCB0CLK and the TIMERA timer were using the SMCLK (sub-main clock), it was

assumed that these problems were a result of the SMCLK not operating properly (perhaps

the number of CCR0 cycles were not being counted properly?). To fix this, the CSSTAT

register values SMCLK_ON and DCO_ON were toggled as an initialization instruction

(Most MSP432 code examples observed involving the use the SMCLK did not toggle

these bits and still managed to work, and thus, the bits were originally not toggled as they

were thought to not be necessary), which toggle the SMCLK and DCO clocks to be in the

“active” state (the SMCLK uses the DCO clock so the DCO clock needed to be toggled

as well). In addition, other improvements were added such as the instruction TA0R = 0;

which sets the TIMERA timer CCR0 cycle counter to zero when first initialized (this is

generally assumed to be default, but was added just to make sure). The initialization

instruction for the ADC14, ADC14CTL1 = ADC14RES_3, was also added to set the

conversion resolution of the ADC14 to 14-bit as opposed to the default 8-bit to give a

larger range of input values in terms of precision, the UCB0 register names were updated

from MSP430 register names to MSP432 register names (UCB0CTLW0, this made no

difference in the end, but was added just to make sure it was not causing a problem),

77

toggling the bits DCOEN in the CSCTL0 register (enables the DCO clock) and SELS_3

in the CSCTL1 register (selects the DCO clock as the source for the SMCLK to ensure

that the SMCLK has a clock to source from), and the instruction TA0CCTL0 &= ~CAP;

was added to ensure that the TIMERA timer stayed in its default “compare” mode. It was

also noticed that a mistake was made regarding the purpose of the “VREFA” pin on the

mcp4921 external DAC as it was assumed that it was for the reference voltage of the

output voltage and thus was tied to ground. Upon looking at the mcp4921 datasheet [39],

it was noticed that this assumption was a mistake as this pin was actually the reference

voltage input for the DAC (why there were two separate pins for powering both the entire

chip and the only DAC on the chip was probably for manufacturing convenience) and

thus was tied to the 5 Volt rail instead. Unfortunately, despite these improvements and

experimenting more with the number of CCR0 cycles and Drive_DAC delay cycles

(delay cycles that ensure that the microcontroller has enough time to send out enough

UCB0CLK cycles to give an output), no input was being received from the ADC14 and

no output was coming out of the external DAC. After several more experiments, progress

was finally achieved by simply changing the input pin from A15 (P6.0) to A1 (P5.4)

(Changing ADC14MEM15 to ADC14MEM0, a mistake discovered later that should have

been ADC14MEM1 for A1, and ADC14SHT1_2 to ADCSHT0_2, appropriately), which

resulted in an input to finally be obtained. Unfortunately, despite giving the

microcontroller the 0.3 V, 300 Hz sinusoidal test signal as an input, each input value

obtained from the ADC14 remained a constant value (1938) even after experimenting

with the number of CCR0 cycles. The program at this point is shown in appendix A as

Figure A.6.

78

Due to the issues involving the input, it was decided to change the interrupt

routine for obtaining the inputs once again, this time taking influence from the msp432

ADC code example given in the files that come with Code Composer Studio 6.1.1. Like

the ADC code example, it was decided to have the interrupt routine that determined how

the input was taken would be triggered by the ADC14 interrupt instead of the TIMERA

interrupt. This would allow the input to be taken whenever the ADC14 would be

available to take an input instead of relying on a timer, but would also make it harder to

control the exact sample rate at which the inputs would be taken. Like the example code,

the sample conversion timing was put into “pulse sample mode” (ADC14SHP = 1, bit

toggled) as opposed to “extended sample mode”, allowing the ADC14SHT0_2 setting to

control the length of the sample period as opposed to the SHI signal (this was a mistake

to not include this before as it would have made the number of CCR0 cycles calculation

more accurate) and a number of delay cycles were put between each time the ADC14

would be enabled to take an input to help control the input sample rate. After

implementing these changes, the ADC14 started to accurately take inputs (no longer just

a constant value) based on comparing the inputs taken over time to the 0.3 V, 300 Hz

sinusoidal signal used as the input (Despite the mistake in choosing ADC14MEM0

instead of ADC14MEM1, inputs taken were accurate until later for some reason). When

using both the test input signal and the amplifier/filter to input a waveform, the external

DAC seemed to be outputting the input waveform as well, but at a much smaller

amplitude and included a noise waveform at 60 Hz (changing the gain value in the

“Drive_DAC” function did not increase the value of the output). Program progress at

this point shown in appendix A as Figure A.7.

79

 To remove the 60 Hz noise, the 2.5 V rail was finally added to the notch filter

and added to the rest of the amplifier/filter, resulting in the output of the amplifier/filter to

have a DC voltage of 2.0 V (an improvement from the 0.750 V DC voltage achieved

earlier). It was also noticed that microcontroller was taking inputs very slowly, which

was fixed by commenting out the “__sleep();” and “__no_operation;” instructions and

adjusting the number of delay cycles in the delay loop for enabling the ADC14 to take

samples. In addition, the initialization instructions P5SEL1 |= BIT4; and P5SEL0 |=

BIT4; were added, which configure the P5.4 input pin for the ADC14 to be set as the A1

input port for the ADC14 as opposed to just a generic input port. It was a mistake to not

include this before, but, strangely, it did not make any difference as the ADC14 seemed

to be able to operate without it.

4.5 Microcontroller Wavelet Transform and Reconstruction Code

Since the microcontroller was now successfully taking inputs and seemed (at the

time, this was later discovered not to be the case) to be reproducing the input as the

output on the external DAC and thus proving that the microcontroller could take inputs

and deliver outputs, it was decided that the wavelet transform (decomposition function)

and inverse wavelet transform (reconstruction function) needed to be added to the

program. Even though the microcontroller was able to process the decomposition

function and reconstruction function before, more problems occurred as the input to both

functions was no longer zero. When attempting to process the wavelet transform code,

the microcontroller would enter an unexpected interrupt (fault interrupt), meaning that the

microcontroller would fail to process the code. In addition, upon checking the values of

80

the lookup tables (example: array “evenintable”) using “CCS debug” mode in code

composer studio after they had been processed, the values in each register were not

matching what they were declared to be, some even being incomplete (zeros where

values should be) or having incorrect values. When checking the amount of memory used

by the microcontroller for this program, only 3% of the main memory and 4% of the

“SRAM” memory was used. Due to technical problems, the CPU load caused by the

program could not be recorded, but measuring the runtime of the program showed that

Code Composer Studio was failing to show runtimes for the wavelet transform and

reconstruction functions despite the fact that the program was clearly processing both

functions (pointer was passing through and reaching the “Drive_DAC function), showing

that these functions were most likely overwhelming the CPU load since memory was

shown to be not the issue. After testing different parts of the wavelet transform code and

still having these errors, it was concluded that the decomposition and reconstruction

functions involved too much processing power for the microcontroller and needed to be

simplified in order to work with the microcontroller.

Simplifying these functions involved considering what lattice coefficients were

being used in comparison to the rest of the filter and using said knowledge to remove any

unnecessary components of the wavelet transform code. For example, it was noted that

the wavelet transform being used was designed to be a generic lattice filter that could use

any kind of 6th order lattice coefficients, but, since the simplest of 6th order coefficients

were being used (Haar coefficients, c0 = 1.0, c1 = 1.0, c2,3,4,5 = 0, β = 1/√2 for their

simplicity and speed), it was noticed by examining the lattice filter structure shown in

Figure 3.4 that the four coefficients γ1 and γ2 (two γ1’s and two γ2’s) were zero (c2,3,4,5 =

81

0). With these four coefficients being zero, the second and third rungs of the lattice filter

no longer contribute any filtering to the inputs as they pass through the lattice filter (the

second and third rungs now only multiply the output of the first rung by one), thus also

rendering the delay cycles (z-1) pointless (no point in delaying the output of the first rung

if no further significant arithmetic is done). Thus, since the delay cycles were then no

longer needed, the lookup tables were no longer needed as well as only a simple shift

register was then needed to pass the inputs through the lattice filter. Finally, since only

one rung of the lattice filter was being used, it was much simpler to express the high-pass

and low-pass filters as simple equations, high-pass as (1/√2)[x(2n) + x(2n + 1)] and low-

pass as (1/√2)[x(2n) – x(2n + 1)], where “n” is the sample number and “x” is a input.

Coincidentally, the wavelet transform code referenced from the paper “MSP430

IMPLEMENTATION OF WAVELET TRANSFORM FOR PURPOSES OF

PHYSIOLOGICAL SIGNALS PROCESSING” [31] (the system being improved), used

this exact method with a few exceptions: the low-pass and high-pass equations were

switched, which is the result obtained if one considers the even numbered input odd and

vice versa, and, while the “beta” coefficient was decided to be spread equally among the

low-pass and high-pass results for the original method, the MSP430 implementation

method gave the low-pass filter a “beta” coefficient equal to one-half and the high-pass

filter a “beta” coefficient equal to one, most likely because one cannot use the

multiplication function with the MSP430 so the shift operator was used instead, which

divides or multiplies a binary number by two. With these equations, the lookup table was

no longer needed and much less memory would be used, but with the limitation of no

longer being able to choose different lattice coefficients other than the Haar coefficients.

82

However, since using other coefficients involve including lookup tables which have

shown to cause memory issues with the microcontroller, it was clear that the Haar

coefficients were the best choice for the microcontroller so this limitation was not going

to matter. It was decided to use the equations from the MSP430 implementation

document (low-pass as (1/2)[x(2n) + x(2n + 1)] and high-pass as (1/2)[x(2n) – x(2n + 1)],

code can be referenced in [31] and is shown below in Figure 4.27) as opposed to the

calculated equations because the document had been proven that they give accurate

results, while the calculated equations were used later for testing results.

83

Figure 4.27: Decomposition (forward S transform) and reconstruction function (reverse S

transform) code referenced from [31].

84

Now that the decomposition and reconstruction functions had been simplified, it

was time to implement them into the program. First, the decomposition function (forward

S transform function) was added to the program and operated easily without errors.

However, it was important to note that both the decomposition and reconstruction

functions used “int” (integer, no decimal places) type values for their variables when the

inputs and outputs are intended to be “float” type (able to have 6 decimal places). Using

the ability of the MSP432 to have multiplication arithmetic (MSP430 does not have), the

shift operators (<< and >>) which shift bits left or right (essentially dividing or

multiplying the value by two for a binary number system) used halve the output values of

filters for both functions were replaced by “*(1.00/2.00)”. By using the multiplication

arithmetic and adding decimal points to the numbers multiplying the filter outputs, this

allowed the calculation that creates the filter outputs to no longer have to round the filter

outputs to the nearest integer by giving the output decimal points, thus allowing the

variables of the wavelet transform functions to be float values (the shift operators were

kept for the counter variables because they have no need to be float values). This change

from integer to float values allowed the wavelet transform functions to not only receive

values of greater precision, but also output values of greater precision as well. Upon

testing the decomposition function with the rest of the program with the usual 0.3 V, 300

Hz sinusoidal input waveform, the output registers of the decomposition function showed

that the function was correctly processing the input signal, showing that the

decomposition function was operating correctly. The reconstruction function was then

added with the decomposition function sending its output to the reconstruction function’s

input and tested using the same input waveform in which the results (reading output

85

registers of the reconstruction function and comparing them to the input waveform)

showed that the reconstruction function was successfully reconstructing the output of the

decomposition function with only slight differences. These differences were expected as

the process of wavelet transforming and then reconstructing the signal would remove

high frequency noise, thus causing some differences in the output compared to the input.

Finally, an “if” function was added that would allow the user to select whether or not the

microcontroller would output from the decomposition function or the reconstruction

function (after passing through the decomposition function, of course) depending on the

value of the “change” variable.

 It should also be noted that the program, now with the simplified decomposition

and reconstruction functions restricted to only one type of wavelet coefficient, only used

2% of main memory and 2% of “SRAM” memory, while the new functions only

providing about 9.5% each of the total runtime of the program, showing that plenty of

memory and processing power remained for possible improvements. These possible

improvements included adding the neural network to the microcontroller code and using

a more complex wavelet coefficient such as Daubechies-4, which involves only one zero

as opposed to two like the Haar wavelet coefficient. However, based on the performance

of the lattice filter structure wavelet transform, the microcontroller still clearly would not

be able to handle adding the full neural network for each word and phrase of the English

language (would probably involve a hidden layer of at least 10,000 neurons which would

easily overwhelm the CPU load!). Adding the previously tested neural network would

certainly be possible now that there was plenty of memory space and processing power to

spare, but this would not be of much use and be very limited with only 5 possible outputs

86

for a device designed to provide data useful for analysis from subvocal signals so it was

not included in the microcontroller code. As for the Daubechies-4 wavelet coefficient and

for the sake of simplicity and time, it would not be included unless the Haar wavelet

coefficient would limit the project from reaching its minimal 70% overall accuracy goal.

4.6 Microcontroller Code Implementation V3.0 (external DAC operation)

Unfortunately, despite the success of the wavelet transform filter functions, the

output of the external DAC still seemed to match the input signal when the

microcontroller outputted the results of the decomposition function instead of producing

a wavelet transformed output. The declaration of the variable “DAC_Word” was moved

out of the “Drive_DAC” function in order to be able to check its value more easily when

the microcontroller was running in which reading its values showed that the

“Drive_DAC” function was successfully sending the microcontroller’s SPI data output to

the external DAC, thus showing that the problem was occurring with the external DAC.

After using the oscilloscope to measure the voltage differences between the rails provided

by the power supply and one of the rails of the microcontroller and noticing that the

external DAC would still output a constant voltage even when the power supply for the

amplifier/filter and DAC was off, it became obvious that the problem was a result of the

power supply of the microcontroller (provided via USB from a laptop) and the power

supply of the DAC and amplifier/filter conflicting with each other and causing a noisy

version of the output of the amplifier/filter (in this case, the test waveform) to appear on

the output of external DAC due to the microcontroller sending inputs to a chip (DAC)

that was supplied by a difference source voltage. In other words, the voltage difference

87

between both power supplies was appearing on the output of the DAC as a noisy version

of the input test signal. The first attempt to solve this problem was done by removing the

power supply entirely and having the entire circuit (external DAC and amplifier/filter) to

be powered by the microcontroller using its +5 V and ground pins. This failed to work

because the microcontroller was not able supply enough current to have the

amplifier/filter function properly (it was no longer amplifying or filtering the input) so,

instead, the microcontroller was used to only power the external DAC, while the power

supply would power only the amplifier/filter. Upon testing the circuit again, the external

DAC was no longer constantly outputting the input signal to the microcontroller and

noise was removed from the inputs to the external DAC. However, the external DAC

now failed to give an output at all. In addition, this change caused the microcontroller to

stop taking inputs as well which was fixed by changing the input pin form P5.4 (A1) to

P5.5 (A0), thus finally matching the input ADC14 register ADC14MEM0 with its

corresponding input pin (A0) (this mistake did not make a difference until now for an

unknown reason).

[Note: progress in paragraph barely included in final design] With the power

supply and the microcontroller no longer coming into conflict with each other, it was

time to solve the issue as to why the external DAC was not outputting anything. It was

noticed that the “Drive_DAC” function was outputting 16 blocks of output values from

the wavelet transform filter functions without any delay between each output, resulting in

the output signals from the external DAC to not accurately correspond to their input

frequencies. In order to space out the time between each output, a TIMERA interrupt

routine was added that would be called for every number of CCR0 cycles equivalent to

88

the the input sample time which would then send an output to the “Drive_DAC” function.

Each of the 16 blocks of outputs would then have the same number of delay cycles

between each individual output, thus allowing the microcontroller to output all output

samples to the external DAC at the same frequency that the ADC14 takes inputs.

Unfortunately, since the TIMERA interrupt routine called its interrupts faster than the

decomposition function could finish filtering its inputs, this resulted in the decomposition

and reconstructions functions to no longer be able produce outputs. Increasing the

number of CCR0 cycles (increasing the time between each interrupt trigger), did not fix

this problem so, instead, the TIMERA interrupt routine was removed and replaced with

delay cycles between each individual output in the “Drive_DAC” function (the same

number of cycles between each input sample taken to make sure the input sample

frequency and the output frequency match). After this change, the SPI data output was

much more visible and consistent in frequency upon measuring the SPI data output pin

with an oscilloscope, but the external DAC was still not giving an output. Other changes

in an attempt to fix the problem included changing the VREFA voltage on the external

DAC from 5 V to 3.3 V using the + 3.3 V pin on the microcontroller (experimenting with

reference voltage), changing the resolution of the ADC14 input from 14-bit to 12-bit (the

mcp4921 DAC uses 12-bit resolution), changing the variables of the “Drive_DAC”

function from “int” type to “unsigned int” in order to prevent the microcontroller from

outputting negative values (the microcontroller has no way of outputting negative values,

but this change simply changed all negative values to zero, which was fixed by adding

2000 or 2.0 V to every value to offset negative values to positive values), and changing

the “do_some_conversions” function to output “unsigned int” type values to the

89

“Drive_DAC” function. Upon checking the UCB0CLK output pin with the oscilloscope,

it was evident that no UCB0CLK clock was being sent to the external DAC. Using the

register read tool in Code Composer 6.1.1, checking the CSCTL registers (the registers

that contain the bits that control the microcontroller clock settings) while the

microcontroller was running the program showed that, despite giving initialization

instructions for these registers, the bits that were being commanded to be toggled were

not being toggled, which would cause the SMCLK clock for the for UCB0CLK to not be

enabled. The MSP432 family user’s guide [32] was observed to mention a “security”

feature added since the MSP430 which required that the value 0x695A should be written

to the CSKEY register in order to access the CSCTL registers in which this instruction

was written into the program, resulting in the CSCTL register bits to finally start

toggling. Unfortunately, the UCB0CLK was still not appearing. Since the mcp4921’s

ideal clock frequency was 20 MHz according to its datasheet [39], it was theorized that

by changing the SMCLK to be exactly 20 MHz as opposed to the set 24 MHz frequency,

the external DAC might receive the UCB0CLK (SMCLK frequency). Unlike the

MSP430, the MSP432 microcontroller was able to use any frequencies between a set of

frequencies (1.5 MHz, 3 MHz, 6 MHz, 12 MHz, 24 MHz, and 48 MHz) set by the

DCORSEL bits in the CSCTL0 register, but would require calculation of a value

according to an equation given in the user’s guide which would be placed in the

DCOTUNE bits of the CSCTL0 register with the DCORSEL bit (for example, getting 20

MHz would require selecting the DCORSEL bits that gave the set frequency of 24 MHz

and then calculating the DCOTUNE value that would be equivalent to -4 MHz, resulting

in 24 MHz – 4 MHz = 20 MHz). The equation, referenced from the application report

90

"Multi-Frequency Range and Tunable DCO on MSP432xx Microcontrollers” [40], was

NDCOTUNE = (FDCO,nom – FRSELx_CTR,nom)x(1 + KDCOCONST x (768 –

FCALCSDCOxRCAL))/(FDCO,nom x KDCOCONST), where FDCO,nom = target nominal frequency,

FRSELx_CTR,nom = calibrated nominal center frequency for DCO frequency range x,

KDCOCONST = DCO Constant (floating-point value), NDCOTUNE = DCO Tune value in

decimal, and FCALCSDCOxRCAL = DCO Frequency Calibration value for range x for

internal or external resistor modes. In order to find the values for these constants, the “h”

files for the MSP432 had to be accessed through Code Composer Studio 6.1.1 while the

microcontroller was running (some of these constants were unique to the microcontroller)

in which the following values were found: FCALCSDCOxRCAL = 0x00000184 = 388, “max

positive time for DCORSEL_0 to _4” = 0x00000600 = 1536, “max negative time for

DCORSEL_0 to _4” = 0x00001600 = 5632, and KDCOCONST = 0x3BA20147 = 0.004944.

Putting these into the equation results in [(20 – 24) x (1 + 0.004944 x (768 – 388) x

8]/(20 x 0.004944) = -92.19/98.88E-3 = -931.6245955 ≈ -932 =

0xFFFFFFFFFFFFFC5C. Since the max negative value is -5632 and -932 is larger, this

value is within the allowed range. However, when this value was added as the

DCOTUNE value, reading the registers showed that it registered as -7260 (various

forums on the topic of the accuracy of the DCOTUNE values state that this error is

common apparently) and the UCB0CLK still did not appear. Upon checking for

additional sources of error, it was noticed that the UCSLA10 and UCMM bits had been

toggled in the UCB0CTLW0 register even though they were never intended to be

toggled, which causes the “slave” (in this case, the external DAC) to be addressed with a

10-bit address (supposed to be a 16-bit SPI data address) and configures the

91

microcontroller to deal with multiple “masters” (circuits that control other circuits) when

there was only one “master” (the microcontroller). At the time, it was assumed that these

bits should not be toggled and were causing error so they were set to zero by the

instruction UCB0CTLW0 &= ~UCSLA10 + ~UCMM; (it was not released until later that

this was a huge mistake). With the UCB0CLK still not appearing, it was decided to

change the output pins going to the external DAC with new pins since changing the input

ADC14 pin had solved problems before. The pins P1.5 (UCB0CLK), P1.6 (SPI data), and

P6.4 (/CS) were changed to the P3.5 (UCB0CLK), P3.6 (SPI data), and P5.0 (/CS),

resulting in the same result, SPI data and /CS signal were appearing, but not the

UCB0CLK. Reading the CSSTAT register showed that the “SMCLK_ready” bit had

been toggled when running the microcontroller, showing that the SMCLK (being using

for the UCB0CLK) was ready to use and thus must be working (the TIMERA interrupt

routine also used SMCLK and worked fine). Keeping this evidence in mind, it was

thought that maybe the oscilloscope just was not picking up the UCB0CLK. By adjusting

the vertical voltage scale on the oscilloscope, it could be seen that there was a clock

coming out of the UCB0CLK pin where one could not be seen before, but it was very

small in voltage amplitude, had a much smaller frequency then expected (only about 29

KHz as opposed to the intended 20 MHz), and appeared as small “spikes” in voltage (not

a square waveform of clock cycles). It appeared that the UCB0CLK had been there all

along, but was still clearly not operating correctly. Also, the clock source for the ADC14

was changed from the default MODCLK to SMCLK to make sure that the sample and

output frequencies of the ADC14 and “Drive_DAC” function were the same and delay

92

cycles were experimented with in the “Drive_DAC” function, still not fixing the

UCB0CLK. Current form of code shown in appendix A as Figure A.8.

[Note: progress in paragraph barely included in final design] Considering

difficulty solving the problem with the UCB0CLK, it was decided to create another

program with the only function of outputting an artificial square wave created in the

code. This was created to separate the rest of the code from the code that functions to

output to the external DAC in order to isolate any possible mistake in the code that might

cause the UCB0CLK to not work properly. With only the “Drive_DAC” function and the

“main” function as the program, the UCB0CLK “spiked” much more frequently, but still

did not give an output for the external DAC. Experiments were tried such as shorting

delay cycles and using DCOTUNE to change the SMCLK frequency from 20 MHz to 16

MHz (example programs had shown to drive external mcp4921 DACs at this frequency),

but still no output appeared out of the external DAC. At this point, it was theorized that

the perhaps the external DAC was not working properly and a new one was ordered, but

this did not change the results. Assuming there might have been a problem with the

microcontroller itself or the program running the microcontroller (Code Composer Studio

6.1.1), the microcontroller was factory reset and had its programs reloaded, while Code

Composer Studio 6.1.1 was also updated to its most recent version (CMSIS update).

After updating the code to fit the CMSIS update standards, the results were still the same.

The “Drive_DAC” function code was replaced with a new “Drive_DAC” function code

taken from an online example [41] that had been proven to successfully drive an external

DAC, but this created no difference in the results either. At this point, also considering

that the microcontroller had been giving the error “can't run target cpu: (error -2134 @

93

0x0) unable to control device execution state.” in its console, it was decided that a new

microcontroller should be ordered to solve this problem due to possible damage to the

microcontroller (touching the microcontroller while it ran also showed that parts of board

were very hot!). Thus, a new MSP432 microcontroller was ordered in which testing

showed that the error in the console had been removed (microcontroller was also no

longer burning hot to touch), but the external DAC still did not give an output. Next, the

LDAC (needs to be set low for the external DAC to give an output) pin, originally left

open, on the external DAC was tied to ground to make sure it was not in the high state,

but did not change the result. After observing code examples involving use of the SPI

included with Code Composer Studio 6.1.1, it was noticed that all the examples (as well

as most online as well) were written in a higher level language known as

“MSP432Driverlib” for the MSP432 microcontroller. Although it did not seem to make

sense as to why a higher level language would be required to operate the MSP432’s SPI,

rewriting the SPI code with this language was worth a try considering the success rate of

the current code so far. After rewriting the code with the “MSP432Driverlib” language,

the microcontroller produced no outputs to the external DAC at all as a result of some of

the instructions not toggling bits as they were instructed (for example, the instruction to

set P3.5 as the UCB2CLK output was not registering). Due to instructions not performing

their functions, the higher level language was deemed to be not very reliable and the

previous program was once again tested. Attempted square waveform code in

“MSP432DriverLib” shown in appendix A as Figure A.9.

At this point, every system involved (microcontroller, microcontroller code, the

Code Composer 6.1.1 program running the code, the external DAC, the power source,

94

and the wiring) had been thoroughly checked for error with the exception of the

oscilloscope measuring the signals. It was originally assumed that the UCB0CLK (now

UCB2CLK because the pins were changed) was not operating properly because each

“spike” of the clock appeared too infrequently in order to drive the external DAC and

should not have been spikes but square waves instead, but, upon checking over the

oscilloscope specifications (SainSmart DSO Note II, DSO202 [42]), the maximum

analog frequency bandwidth of the oscilloscope was 1 MHz, while the UCB2CLK was

expected to be about 16 MHz, meaning that the oscilloscope would be unable to show the

UCB2CLK properly. To solve this problem, the RIGOL DS1054z oscilloscope was used

instead for its frequency bandwidth of 50 MHz. Upon analyzing the inputs into the

external DAC using the new oscilloscope, the increased bandwidth allowed the

oscilloscope to “zoom in” and see the inputs with more detail, showing that the “spikes”

that were assumed to be the clock cycles from the UCB2CLK were actually made up of

multiple square waveform cycles (each of the two “spikes” for every /CS “spike” turned

out to be eight clock cycles, resulting in 16 clock cycles for every /CS cycle, just as

intended). This closer inspection also revealed that the /CS input was out of sync with the

UCB2CLK (the /CS input was going high in the middle of the clock cycles instead of

going high after they passed) and was going high at times when it was supposed to be

low. The problem of going high or low at the wrong times was solved by setting the

output of the /CS pin to be zero by default when first initialized as the microcontroller

was setting the output to be high by default when it was expected to be low. The out of

sync problem was solved by inspecting the registers using Code Composer 6.1.1 while

the microcontroller was running, which showed that a mistake was made when

95

previously setting the UCSLA10 and UCMM bits to zero in the UCB0CTLW0 register. It

was assumed that the bits in the UCB0CTLW0 register that controlled IC2 operation

(contained the UCSLA10 and UCMM bits) and SPI operation were separate bits in the

register, but were in fact the same bits that simply changed definition depending on what

mode of operation was set (in this case, SPI mode) instead. This meant that setting the

UCSLA10 and UCMM bits to zero was setting bits needed for SPI operation to zero as

well, which is why, on closer inspection, the UCMSB bit was being set to zero even

though no statement was given to set it to zero. Thus, after removing the initialization

statement UCB0CTLW0 &= ~UCSLA10 + ~UCMM; and using the square waveform

code, the DAC finally started giving an output as shown below in Figure 4.28. In addition

the /CS input, UCB2CLK, and SPI data are shown below in Figures 4.29, 4.30, and 4.31.

The microcontroller code used for creating a square waveform from an external DAC is

shown in appendix A as Figure A.10.

96

Figure 4.28: Square wave output from external DAC (yellow) with UCB2CLK (blue)

using square wave code.

Figure 4.29: UCB2CLK (blue) and SPI data (yellow) shown as “spikes” using square

wave code.

97

Figure 4.30: UCB2CLK (blue) and SPI data (yellow) “zoomed in” using square wave

code.

Figure 4.31: UCB2CLK (blue) and /CS input to external DAC (yellow) using square

wave code.

98

Since the microcontroller could now successfully produce an output from the

external DAC, the microcontroller was prepped for providing the wavelet transform and

reconstruction outputs. After updating the code providing the wavelet transform to the

CMSIS update standards (the new CMSIS startup file was not used as it caused the

interrupts to fault so the old startup file was used instead) and with the improvements

from the square waveform code, the microcontroller was able to provide both a wavelet

transformed output and a reconstructed output as shown in Figures 4.32 and 4.33 below.

Upon observing the outputs, there were delays between each block of 16 output samples

as expected, showing the time it takes to process and output the output signals. The

output signals were also larger in amplitude than that of the inputs signals and lowering

gain in the “Drive_DAC” function did not seem to lower it (the fact that 2.0 V was added

to every value was a contributing factor) which was later discovered to be because the

mcp4921 DAC swings its output from ground to its reference voltage as shown in its

datasheet [39] so the output would always swing from 0 V to 5 V. The frequency also had

doubled from observing the reconstructed output. Increasing the time between samples or

increasing the number of input samples taken would, in theory, improve the accuracy of

the wavelet transform output, but, since the microcontroller could finally do its intended

function, it was time to once again focus on the user interface of the microcontroller

instead. The microcontroller code for outputting wavelet transform or reconstructed

signal with working external DAC is shown in appendix A as Figure A.11.

99

Figure 4.32: Wavelet transform output (blue) from external DAC and input to

microcontroller (yellow).

Figure 4.33: Reconstruction output (blue) from external DAC and input to

microcontroller (yellow).

100

4.7 User Interface V2.0 and Second Amplifier/Filter Implementation and

 Performance

 The user interface for the microcontroller, which consisted of a button for

stopping microcontroller operation and a button for controlling which output the

microcontroller gives, was implemented once again by adding the button interrupt

routines that previously were having trouble triggering more than once. After updating

the code to CMSIS update standards, the button interrupts were triggering more than once

(this is most likely due to the fact that the microcontroller is new and no longer

damaged), but were still behaving strangely as the P4.0 button interrupt was triggering

constantly and had a 2.2 V DC voltage on its pin, while the P2.4 button interrupt had no

such voltage, but was still operating fickly (only occasionally triggering sometimes).

After switching to a new pin (P4.0 pin to P4.1 pin), changing the power source of the

buttons from the power supply to the microcontroller, and other tests with no change in

the result, it was decided that the button interrupts routines were too unreliable and,

instead, the infinite loop in the “main” function would contain code that would constantly

check for inputs from the button pins in order to implement the user interface.

Unfortunately, the constant checking for button inputs slowed down the performance of

the microcontroller considerably and it was decided that the button interrupt routines

once again had to be used. Upon testing the voltage of the pins while modifying the

button pin settings in the code, the button P2.4 button interrupt stopped behaving fickly

after settings were added to initialize the button pin (they had not been added from the

previous button interrupt code, accidentally) and the constant voltage on the P4.1 pin

(and now P2.4 pin as well) was removed by removing the initialization of the pull-up

resistors for each button input, thus stopping the button interrupt routine from being

101

triggered constantly. However, the button interrupt routines, despite now finally

triggering as intended, were still not performing their functions as nothing would happen

upon triggering the interrupts. This was solved for the first button that controls when the

microcontroller stops operating by changing the infinite loop in the routine to break

(move out of infinite loop) only when the button input was zero (interrupt was triggered

by rise in voltage on pin in which the processor remains stuck in an infinite loop until the

voltage on the pin drops to zero), which caused the routine to, for some reason, give an

even better result as the microcontroller would not only stop operating once the button

was pressed, but would continue to stay stopped until the button was pressed a second

time instead of having to hold the button to stop the microcontroller. For the second

button (controls type of output), it was discovered upon using a counter that the button

interrupt routine was being called twice consistently every time the button was being

pressed, despite the fact that the debouncing circuit was supposed to prevent this, which

caused the output type to switch twice and thus cause nothing to happen. To fix this, the

counter was then used to only switch the output type when it was an even number to

switch the output type only once per button press, allowing both button interrupt routines

to finally perform as intended.

 Now that the entire system was capable of taking, amplifying, filtering, and

wavelet transforming or reconstructing an input, it was time to complete the second

circuit that would allow EMG signal inputs to be taken from both sides of the throat as

opposed to just one side. Since the second amplifier/filter section was already completed

and operated successfully, the second notch filter needed to be added. An exact copy of

the previous notch filter (with insignificant differences) was then built and implemented

102

on the breadboard with the rest of the amplifier/filter circuits with a second 2.5 V rail

using a voltage follower to provide 2.5 V DC on the output for the second amplifier/filter

as well. Despite being an exact copy of the first notch filter, the second notch filter did

not work at first as the output only produced a constant 4.0 V DC voltage, but, after many

tests, it was determined that something was wrong with the wiring of the notch filter in

which the notch filter was moved to a second breadboard to make the wiring more

accessible to modify (space was cramped before), allowing the notch filter to work

properly. Upon adding it to the second amplifier/filter, the notch filter’s output became

the same as that of the first amplifier/filter’s notch filter when using a 0.3 V, 300 Hz,

sinusoidal signal as input, thus showing that it worked properly, but both outputs still

contained a lot of noise and were fickle in their operation, sometimes not working until

particular wires on the circuit board was moved or pushed back and forth. These

problems would be fixed in the future.

 [Note: 32 single sample block system referenced below not used in final

design] Next, the microcontroller needed to be able to handle both inputs from both

amplifier/filters. Originally, it was decided that the microcontroller would take inputs

from each amplifier/filter and output them individually through separate external DACs

so both signals could be observed individually, but, as shown in Figures 4.32 and 4.33,

since there was already large delays between outputs due to the processing time between

taking inputs samples, transforming said samples, and then outputting them, it was

decided to instead combine inputs from each amplifier/filter into a 32 sample block (two

16 sample blocks from both amplifiers/filters) and use that as the input into the

decomposition function, resulting in only one more level of decomposition/reconstruction

103

to be added to the decomposition and reconstruction functions (32 divided by two five

times is one, as opposed to 16 divided by two four times being one). Instead of having to

run the decomposition and reconstruction functions twice for two 16 blocks of samples,

this method of combining two sample blocks into one sample block resulted in less delay

between each block of outputs compared to processing both blocks of inputs separately.

To implement this, an input pin (P4.7) was initialized for use as a second ADC14 input

and the bit ADC14_CTL0_CONSEQ_1 was toggled in the ADC14CTL0 register to set

the ADC14 for “sequence of channels” mode, which allows the ADC14 to take inputs

from more than one channel (input). After modifying the decomposition and

reconstruction functions, the resulting outputs acquired are shown below in Figures 4.34,

4.35, 4.36, and 4.37. Using the function generator, a 2.0 V, 200 Hz, sinusoidal input was

applied to each microcontroller input one at a time to test if there would be differences in

the output of the microcontroller depending on which input was used. Comparing these to

the performance of the single input microcontroller code, the delay between each block of

outputs has increased, as expected, but the performance has stayed the same for outputs

resulting from inputs into pin P4.7 (double the frequency compared to input) as shown in

Figure 4.37. Surprisingly, despite the fact that the input samples from P4.7 included noise

while those of input P5.5 did not, the reconstructed output resulting from inputs into P5.5

seemed to be less accurate in terms of capturing the input signal as the output (Figure

4.34) only shows half of the signal. Improvements to the quality of these outputs would

be added later.

104

Figure 4.34: Wavelet transformed output (yellow) and input (blue) from multiple input

microcontroller code with input on pin P5.5.

Figure 4.35: Reconstructed output (yellow) and input (blue) from multiple input

microcontroller code with input on pin P5.5.

105

Figure 4.36: Wavelet transformed output (yellow) and input (blue) from multiple input

microcontroller code with input on pin P4.7.

Figure 4.37: Reconstructed output (yellow) and input (blue) from multiple input

microcontroller code with input on pin P4.7.

106

[Note: 14-bit DAC referenced below not used in final design] Now that the

microcontroller could take both inputs and output a single output, it was time to take

advantage of the MSP432’s 14-bit ADC14 resolution (MSP430 only has 12-bit

resolution) and upgrade the external DAC from a 12-bit DAC to a 14-bit DAC. The

external DAC will then be able to take SPI data in 14-bit resolution and output 14-bit

wavelet transformed and reconstructed outputs, while the microcontroller takes inputs in

14-bit resolution, resulting in more accurate outputs. The LTC1658 chip was chosen to be

the external 14-bit DAC as it was the only 14-bit SPI compatible DAC that was

compatible with a breadboard and could be found within a reasonable price range.

Unfortunately, upon replacing the MCP4921 chip with the LTC1658 chip and rewiring it

appropriately, the total swing voltage between the lowest voltage and the highest voltage

on the outputs of the LTC1658 was only 0.3 V as opposed to the 5.0 V output swing on

the MCP4921, which caused signal-to-noise ratio to become much smaller. Changing the

gain of the SPI data and the 2000 (2.0 V DC) DC output value to 8000 (14-bit version of

2.0 V DC) did not change the swing voltage (changing the gain did change the voltage

values, but not the swing). Upon referencing the LTC1658 datasheet [43], the output

voltage of LTC1658 swings according to the equation (GND + VOS) to (VCC – VOS),

where VCC is tied to a 5.0 V pin on the microcontroller, GND is ground, and VOS is the

voltage offset error, which was the lowest code that guarantees the output will be greater

than zero, showing a large voltage offset error was most likely responsible for the small

swing. Upon testing with code output values that were very small, but larger than zero

(example: one, ten, etc.), the output swing still did not become larger than 0.3 V, while

increasing the signal input to the microcontroller did not change this swing voltage either.

107

Adding a 47 µF capacitor between the 5.0 V pin and the ground pin going to the

LTC1658 to AC couple any noise between the supply rail and ground that might be

causing voltage offset error and replacing the LTC1658 chip with a new LTC1658 chip in

case the original LTC1658 chip was damaged did not change the swing voltage either. At

this point, there seemed to be no way to fix the small voltage swing and performance of

the LTC1658 would have to be compared to the performance of the MCP4921 later to see

how much the small voltage swing inhibits said performance, but, for now, efforts were

focused on improving the reliability of the amplifiers/filters and removing their noise.

 Removing the noise from the amplifiers/filters proved to be a much more difficult

task than anticipated, especially since the gain had been changed from 500 to 5000 after

changing the 10 KΩ gain resistors on the INA128 chips to 1KΩ resistors to give a better

chance at picking up subvocal signals after the results of previous tests. Upon adding a

DC coupling capacitor to the input of the second amplifier/filter while the notch filter was

attached, it was noticed that the output of amplifier/filter would gradually increase in

noise and voltage amplitude over time even when no input was being sent into it. Upon

experimenting with the position of wires and capturing signals from different parts of the

circuit using the oscilloscope, it was clear to see that the sudden increases in noise were

due to feedback of noise between crossing wires in the circuit as a result of the magnetic

fields projecting from wires moving current in wires crossing with them in which the

large gain would cause this noise to increase exponentially over time as long as the

feedback continued. To fix this, wire lengths were shortened, wires were repositioned to

have wires that were close to each stretch across the breadboard parallel to each other as

opposed to crossing in order to follow the right-hand rule of magnetism, and the

108

10000000 pF DC coupling plate capacitors were replaced with 0.05 MF plate capacitors

to make sure both circuits were matching (there were only two 10000000 pF plate

capacitors available before, but three 0.05 MF plate capacitor were available, allowing

for symmetry). Unfortunately, these changes did not solve the problem so it was decided

to separate both amplifiers/filters from each other to help assure that the least of amount

of wires crossed each other as possible and to help prevent the amplifiers/filters from

influencing each other’s outputs with magnetic noise. First, the second notch for the

second amplifier/filter was moved to another breadboard to prevent the first breadboard

from becoming too crowded with crossing wires close to each other, while the DC

coupling capacitors were repositioned, rewired to be facing parallel to one another, and

spaced father out from each other. While this did remove some noise, the noise feedback

effect was still occurring so it was decided that a possible cause might be the fact that

both amplifiers/filters shared the same mc33078p op-amp chip, the close proximity of

each op-amp to one another and large gain causing them to infect each other with their

own signals or because the op-amp was damaged and needed to be replaced. Thus, more

mc33078p op-amps were ordered in which the old op-amp was replaced by a new one,

which did not solve the noise feedback problem and showed that the op-amp was not

damaged, but it was discovered that the leads going into the breadboard were bouncing

out of the breadboard over time, slightly popping out after extended periods of time,

resulting in noise and gradual disconnections. To solve this, the op-amp chip was moved

to the breadboard with the second notch filter as said breadboard had larger pin holes,

thus allowing the mc33078p chip to hold itself more securely into the breadboard. This

changed removed a lot of noise on the outputs of the amplifiers/filter and sudden

109

disconnections became much rarer, but the noise feedback effect still occurred. After

capturing signals from parts of the circuit using the oscilloscope and conducting more

tests, removing the DC coupling capacitors and the voltage dividers used for simulating

subvocal amplitude signals removed the noise feedback effect (DC coupling capacitors

and voltage dividers would be added back later), showing that the capacitors and voltage

dividers were creating an unstable system. Although some noise remained after this

change, the output signals of the amplifiers/filters (even without inputs) were much less

chaotic in nature as the remaining noise could be discerned as high frequency noise.

Since the amplifiers/filters were designed to bandpass between 10 Hz and 450 Hz, the

presence of this noise showed that the amplifiers/filters were not appropriately filtering

the signals in which the 120 pf capacitors of the mc33078p op-amps were replaced by

470 pf capacitors in order to change the low-pass frequencies from 491.2 Hz to 125.42

Hz (the large gain keeping the bandpass relatively between 10 Hz and 450 Hz) in order to

further low-pass high frequency signals. This resulted in the removal of high frequency

noise, but 120 Hz noise still remained due to harmonics of 60 Hz noise. To filter out this

noise, both amplifiers/filters were given their own mc33078p chips as op-amps as

opposed to sharing one and were entirely placed on the breadboard with the second notch

filter and the op-amps (circuit was no longer split between two breadboards) with both

amplifiers/filter built away from each other in a way that assured that no wires of one

amplifier/filter were crossing with that of the other, resulting in a decrease in amplitude

of the 120 Hz noise but not completely eliminating it yet. For this new configuration, the

first amplifier/filter is now referred to as “right” and the second amplifier/filter now

referred to as “left”. After adding the DC coupling capacitors once again, the

110

amplifiers/filters would become more unpredictable and failed to give outputs

occasionally, but shortening and repositioning more wires to assure less crossing and

shorter paths from chip to chip significantly decreased the number of times the

amplifiers/filters suddenly failed to give outputs. Oscilloscope captures of the inputs and

outputs of the amplifiers/filters are shown below in the Figures below (note that the

function generator was providing a lot of 120 Hz noise in its outputs as well), where

Figures 4.39, 4.40, 4.41, and 4.42 refer to the left amplifier/filter; Figures 4.43, 4.44, and

4.45 refer to the right amplifier/filter; and Figures 4.38, 4.46, and 4.47 occurred when an

input was being applied to both at the same time and show filtering take place as

increasing the frequency decreases the signals voltage amplitude, revealing the remaining

120 Hz noise. Bode plots of the magnitude gain of the amplifiers/filters are shown in

Figures 4.48 and 4.49, showing that the amplifiers/filters peak in magnitude between 100

Hz and 500 Hz (3 dB bandwidth between 100 Hz and 500 Hz). Input signals were applied

with a voltage divider on the input, effectively multiplying each input signal by 0.010

before entering the circuit to help better simulate an actual subvocal signal in amplitude.

Data was unable to be taken showing the input signal while DC coupling capacitors were

attached as the noise feedback effect would occur if an oscilloscope probe was attached

to the input of the amplifiers/filters while the DC coupling capacitors were attached,

showing that some improvements would have to be added in the future in order to

prevent this occurrence.

111

Figure 4.38: Outputs of left (yellow) and right (blue) amplifiers/filters with 600E-6 V

(before going through 0.010 voltage divider), 300 Hz, sinusoidal input signal (there was a

second signal coming from the function generator for some reason).

Figure 4.39: Output of left amplifier/filter (yellow) and input (blue) from function

generator as a 300 Hz, sinusoidal input signal.

112

Figure 4.40: Output of left amplifier/filter (yellow) and input (blue) from function

generator as a 3000 Hz, sinusoidal input signal.

Figure 4.41: Output of left amplifier/filter (yellow) and input (blue) from function

generator as a 30 kHz, sinusoidal input signal (completely filtered out from output).

113

Figure 4.42: Output of left amplifier/filter (yellow) and input (blue) from function

generator as a 30 Hz, sinusoidal input signal.

Figure 4.43: Output of right amplifier/filter (yellow) and input (blue) from function

generator as a 300 Hz, sinusoidal input signal.

114

Figure 4.44: Output of left amplifier/filter (yellow) and input (blue) from function

generator as a 3000 Hz, sinusoidal input signal.

Figure 4.45: Output of left amplifier/filter (yellow) and input (blue) from function

generator as a 30 kHz, sinusoidal input signal.

115

Figure 4.46: Outputs of left (yellow) and right (blue) amplifiers/filters with a 300 Hz,

sinusoidal input signal and with coupling capacitors added on inputs (could take input

capture when capacitors applied).

Figure 4.47: Outputs of left (yellow) and right (blue) amplifiers/filters with a 3000 Hz,

sinusoidal input signal and with coupling capacitors added on inputs (could take input

capture when capacitors applied).

116

Figure 4.48: Bode plot of magnitude gain of left amplifier/filter (no coupling capacitors).

Figure 4.49: Bode plot of magnitude gain of right amplifier/filter (no coupling

capacitors).

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000 100000

M
ag

n
it

u
d

e
(d

B
)

Frequency (Hz)

Amplifier/Filter (left) Bode Plot Magnitude (dB)

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000 100000

M
ag

n
it

u
d

e
(d

B
)

Frequency (Hz)

Amplifier/Filter (right) Bode Plot Magnitude (dB)

117

4.8 Device Operation with Portable Battery Power

[Note: the content in this section was not included in the final design] Since

the microcontroller could now successfully take two inputs at once and output their

reconstructed and wavelet transformed outputs as one signal while both amplifiers/filters

were able to output waveforms with significantly less noise than before, it was time to

focus on adding the battery system that would allow the whole circuit and

microcontroller to operate without being attached to a large power supply in order to fit

the engineering specification of being a handheld, pocket sized device able to be powered

by a 5 V battery for up to 24 hours. For the whole system to be able to operate on a

portable battery, the microcontroller required a USB compatible port that supplied 5.0 V

(the 3.3 V and 5.0 V pins on the microcontroller were already being used to power the

external DAC and the button switches, so the only way to power the microcontroller was

through the USB input), while the amplifiers/filters required a positive 5.0 V rail and a

negative 5.0 V rail with attached grounds. To fulfill these requirements, a battery was

needed that provided a USB port and two 5.0 V rails and was also small enough to fit

inside a pocket. Thus, to fit these requirements, the Model: TM10, High-Power

Automobile Mobile Power Supply, was chosen as the battery for the system as it provides

a USB 5.0 V output and two separate outputs supplying 12 V, 16 V, or 19 V DC outputs,

which, by using voltage regulators to lower both outputs (both set to 12 V) down to 5 V,

could provide negative and positive 5.0 V rails. Unfortunately, the TM10 model battery,

being 6.5’’ x 3.0’’ x 1.35’’ (inches), would be a tight fit for a pocket sized battery, but,

since no power supply or battery that fulfilled the other requirements could be found in a

smaller size, it would have to do for now as the best option. Upon testing the battery with

118

the circuit, the battery could supply the microcontroller with power, but would only last

about 6 seconds before suddenly shutting off, while the other outputs of the battery had

trouble even outputting any sort of power when trying to supply the rails to the

amplifiers/filters, showing that the circuit did not have a large enough load for the battery

to supply enough constant current to before triggering the battery to shut off. Since the

TM10 model battery was designed to be powering electronics of that of a car, it became

clear that a battery was needed that was designed to power a much smaller load and with

more compatible output ports for a breadboard circuit (TM10 model had plug outputs that

were difficult to attach wires to). Thus, the M-008(YN-010) model power bank was used

instead as it was the smallest battery designed to power smaller devices such as phones

and laptops with three outputs (three USB ports) that could be found within the $50

budget constraint, it still being about a big as the TM10 model battery. While one USB

port would power the microcontroller, the two other USB ports would provide the 5.0 V

positive and negative rails for the amplifiers/filters. The rails would be provided by

taking two USB cords, cutting off one of their ends while keeping the USB plug, using

the 5.0 V (red) and ground (black) wires to supply the rails as shown in Figure 4.50

below, and sodering breadboard compatible wires to the ends of the red and black wires.

Black and red cords would be switched for negative rail.

119

Figure 4.50: Schematic of USB cord.

 Unfortunately, after attempting to power the entire circuit, the M-008(YN-010)

power bank would not even turn on when trying to supply both rails, but would work if it

just supplied a single rail and powered the microcontroller and achieved this without

suddenly shutting off. It became clear that the battery was not designed to share grounds

with multiple USB ports or else it would not turn on, which is why it could not supply

both rails. Thus, in order to power the whole circuit, it was clear that a second battery was

needed in which the TM10 battery was used to provide the second rail for the

amplifiers/filters. In order to give the TM10 battery a large enough load to not shut off

suddenly while supplying power, a resistor was placed across one of the outputs of the

TM10 battery in order to draw enough current to act as a proper load for the battery. The

120

resistor value was calculated based on the current draw input of a radio phone that was

charged by the battery and the voltage supplied by the battery (when charging the phone,

the TM10 battery did not stop supplying power until disconnected so this was assumed to

be a large enough load), resulting in 60 Ω (12 V/ 0.2 A). Unfortunately, the resistor did

not prevent the battery from shutting off when supplying a single rail, but simply keeping

the radio phone attached did. When using both batteries to power the whole circuit (M-

008(YN-010) for microcontroller and positive rail and TM10 for negative rail with load),

the M-008(YN-010) battery refused to turn on, but operated when not supplying power to

the microcontroller and only supplying the positive rail. Both batteries could power the

amplifiers/filters, but, unfortunately, only for about 10 seconds before both shutting

down. Both batteries provided about 30 mA of current consistently until they shut off,

which was measured by placing 0.5 Ω resistors in series with the USB wires providing

the 5 V rails and the breadboard, measuring the voltage across them, and calculating the

current. They were expected to provide currents of at least 9.4 mA based on the typical

currents required to run the four mc33078p chips (4 x 2.05 mA [29]) and the two INA128

chips (2 x 700 µA [28]), not counting the current draw of the resistors and capacitors

involved so the measured 30 mA of current was to be expected. The current capacity of

the M-008(YN-010) battery was 22400 mAh, while the current capacity of the TM10

battery was 12000 mAh (both read from the back of each battery).

At this point, due to the load problems and the refusal to power more than one

device with another battery powering another part of the circuit, it became evident that, in

order to properly power the entire circuit, three batteries (one for the microcontroller,

positive rail, and negative rail) would be needed that were custom designed to handle the

121

load provided by the circuit, which was unfortunately beyond the budget constraint and

resources in possession for this project. However, it was proven that the circuit could

operate appropriately while powered by these portable batteries as shown below in

Figures 4.51 and 4.52 (amplifiers/filters powered by both batteries, while microcontroller

powered by laptop, microcontroller had already been proven to be able to operate on one

battery) for at least 10 seconds before having to manually turn on the batteries again. In

addition, upon comparing the outputs of circuit when powered by batteries and when

powered by the power supply, the amplifiers/filters produced even less noise on their

outputs when powered by batteries as opposed to being powered by the power supply as

shown by comparing Figures 4.51 and 4.52 to 4.53 and 4.54. Thus, the system could

operate on portable batteries and thus be practically portable for at least 10 seconds and,

in theory, for much longer if given the resources to create custom batteries for this

system.

122

Figure 4.51: Outputs of left (yellow) amplifier/filter, right (blue) amplifier/filter, and

wavelet transform output of microcontroller (purple), while batteries powered

amplifiers/filters.

Figure 4.52: Outputs of left (yellow) amplifier/filter, right (blue) amplifier/filter, and

reconstructed output of microcontroller (purple), while batteries powered

amplifiers/filters.

123

Figure 4.53: Outputs of left (yellow) amplifier/filter, right (blue) amplifier/filter, and

wavelet transform output of microcontroller (purple), while power supply powered

amplifiers/filters (not powered by batteries).

Figure 4.54: Outputs of left (yellow) amplifier/filter, right (blue) amplifier/filter, and

reconstructed output of microcontroller (purple), while power supply powered

amplifiers/filters (not powered by batteries).

124

4.9 Neural Network and Microcontroller Code Optimization

Next, now that the microcontroller could provide both a wavelet transformed

output and a reconstructed output, while two amplifiers/filters could operate with only a

little noise, it was time to test the microcontroller with the neural network (wavelet

transform implemented in Matlab removed because it was no longer needed) to see if the

microcontroller could provide wavelet transformed and reconstructed outputs that could

be classified accurately by the neural network and to see what were the best possible

settings for the microcontroller to give the most accurately classified results. First, the

wavelet transform section of the neural network Matlab code was removed, resulting in 6

inputs to the neural network as opposed to 24 inputs as the wavelet transform split each

of the 6 input features into 4 inputs (6 x 4 = 24) so that only the neural network itself

remained in the Matlab code (the microcontroller would now provide the wavelet

transform). Next, the microcontroller was fed sinusoidal signals from the function

generator into both of its inputs, each signal distinguished with a frequency for each

vowel: 100 Hz for “A”, 200 Hz for “E”, 300 Hz for “I”, 400 Hz for “O”, and 500 Hz for

“U”. These signals would be either wavelet transformed or reconstructed by the

microcontroller and then fed into a laptop containing the neural network Matlab code

which would attempt to classify these signals in which its accuracy would be observed

using a confusion matrix.

Since it was not clear whether or not the 14-bit or 12-bit DAC would give better

results due to the 14-bit DAC’s small voltage swing issue but larger resolution, some

experimentation was required. Using the 14-bit DAC and the 32 input block (two 16

input blocks each for both inputs), the results proved to be not very consistent, changing

125

drastically in accuracy from test to test. When changing from the 14-bit DAC to the 12-

bit DAC, the results became much more consistent with overall accuracies of about 60%

to 70% for wavelet transformed outputs and slight improvements (65% to 75%) for

reconstructed outputs, showing that the small swing output voltage and small signal-to-

noise ratio of the output of the 14-bit DAC was unfortunately making the 14-bit DAC not

very reliable. Interestingly, the wavelet transformed output managed to produce higher

accuracy than the reconstructed output when the function generator malfunctioned and

started producing multiple signals (same frequency as each other, but slightly out of

phase with each other like in Figure 4.38) into the input to the microcontroller, showing

that the wavelet transform was better suited for dealing with multiple signals than

reconstruction, but the results, unfortunately, could not be reproduced due to the function

generator no longer malfunctioning.

 In addition to external DAC resolution, the size of the input block was also

experimented with to see if increasing or decreasing its size would improve results. Since

the wavelet transform had to take its inputs in powers of two, the input block size was

increased to 64 (two 32 blocks for each input, number of decomposition/reconstruction

levels = 6). Unfortunately, this did not improve results as overall accuracies stayed

consistently around 60% to 70% for wavelet and 65% to 75% for reconstruct, but, for one

test, an important discovery was found when results improved (60% to 90% for wavelet

and around 80% for reconstruction) when one of the wires sending an input signal into

one of the inputs fell off of the microcontroller, showing that accuracy improved when

only one input was being sent into the microcontroller as opposed to two or because the

current method of taking two signals via passing both blocks through one wavelet

126

transform was removing vital parts of the signals necessary for classification. After

recoding the microcontroller code back to taking only one input (32 block for single

input), as opposed to just ignoring the second input by taking zeros (nothing), the

performance of the wavelet transform improved from between 60% to 70% overall

accuracy to between 80% to 90% accuracy, while that of reconstruction improved from

around 80% overall accuracy to between 85% to 90% overall accuracy, showing that the

current method of sampling two inputs was causing the results to be less accurate by

removing the two input sampling method while still taking only one input. In addition,

increasing the 32 single input block to a 64 input block caused performance accuracy to

drop by about 10% for both the wavelet transform and reconstruction results, while

decreasing the block size to a single 16 block input block drastically improved results

(consistently 90% to 100% overall accuracy for both wavelet transform and

reconstruction results), showing that the 16 block size was the best in terms of producing

accurate results.

Next, to hopefully retain this same accuracy while allowing the microcontroller to

take two inputs as opposed to one, the two input sampling method was changed to take

both input blocks separately and wavelet transform/reconstruct them separately as well,

outputting one after the other. With both inputs having separate wavelet

transform/reconstruction functions as opposed to using just one wavelet

transform/reconstruct for both inputs, the processing time between taking inputs and

outputting the results increased significantly, but, using a 16 block size for both inputs (8

block size was much too small to give enough detail, although was not tested), the

resulting overall accuracies stayed consistently at 90% to 100% for both wavelet

127

transform and reconstruction results which showed that this sampling method was much

more successful.

 After proving which block input size number (16), external DAC (MCP4921),

and input sampling method produced the most accurate results, it was time to test which

beta coefficients would produce the more accurate results for the wavelet transform and

reconstruction functions. When previously calculating the new equation for the simplified

lattice filter, the same equation was calculated as that of the equation used in [31] with

the exception of having beta coefficients of 1/1.414 and 1/1.414 for both the low-pass and

high-pass filters (even and odd inputs were switched as well, but this gives the same

result even if they weren’t switched), while the equation from [31] had beta coefficients

of 1 and 1/2. The equation in [31] used these coefficients as opposed to the calculated

ones presumably because the MSP430 microcontroller lacked the multiplication

arithmetic to carry out multiplying the filter outputs by 1/1.414 and used 1 and ½ (shift

command) instead. Fortunately, with the MSP432 microcontroller, the multiplication

arithmetic can now be used to implement these 1/1.414 beta coefficients to hopefully

improve accuracy. After multiple tests, the results showed no relative differences

between using the 1/1.414 beta coefficients and the 1 and ½ beta coefficients in terms of

accuracy of classification, but the 1/1.414 beta coefficients were kept for final testing

anyway since there was no difference in results. Code (final version) is shown in

appendix A as Figure A.12 and a flowchart for the final code is shown in section 4.11 in

Figure 4.74.

128

4.10 Amplifier/Filter Optimization

 Now that the microcontroller code wavelet transform and reconstruction functions

had been optimized for producing the most accurate classification results, it was finally

time to test the whole system and see if it was ready for final results. A number of

different electrode configurations on the throat were used to experiment and find the

positions that gave the most accurate results. These positions included the electrodes

being attached across both sides of the larynx (part of throat) with the distance between

both positive electrodes being 5 cm across the larynx with the negative electrode placed

behind the right ear for grounding as shown in Figure 4.55 below (this configuration was

to try and capture the subvocal signals going through the muscles around the “vagus

nerves” as shown in Figure 4.56 and referenced from [3]), the electrodes being attached

in the same configuration but with the positive electrodes lower down on the throat

(referenced from [6]), both positive electrodes placed on both the left and right anterior

belly of the digastric muscles with the negative electrode behind the right ear as ground

as done in previous tests (Figure 4.11), the positive electrodes on both the left and right

anterior belly of the digastric muscles but with the negative electrode attached on the left

side of larynx (over vagus nerve muscles), and the positive electrodes on both the left and

right mylohyoid muscles (see Figure 4.11 for location of mylohyoid muscles) with the

negative electrodes attached on the left side of the larynx (over vagus nerve muscles) as

shown in Figure 4.57 below with the exception of not having four electrodes (only one

lower electrode, referenced from [13]). In addition to the usual electrodes used [27], two

more kinds of electrodes (Meditrace and 3M red dot electrodes) were used to experiment

to see if one type gave better results than the others.

129

Figure 4.55: Electrodes attached across both sides of the larynx with the distance between

both positive electrodes being 5 cm and the negative electrode placed behind the right ear

for grounding [3].

Figure 4.56: Image showing location of the “vagus nerve” and how they control muscles

involved in vocal cord and throat movement.

130

Figure 4.57: Demonstration of final electrode placement: positive electrodes on both the

left and right mylohyoid muscles with the negative electrode attached on the left side of

the larynx (only one negative electrode over vagus nerve muscle instead of two) [13].

 In addition to using multiple different electrode configurations, as a result of

many papers on the subject of subvocalization being vague in terms of what exactly

creates subvocalization (some claiming triggering it involves just thinking, while others

mouth out speech or move throat muscles with the mouth closed as if reading something

to themselves in their thoughts), multiples methods of triggering subvocalization were

also employed. These involved just thinking of the five vowels used for testing, mouthing

out the vowels themselves but without actually speaking them, and reading them off of a

paper while keeping mouth closed, making sure that throat muscles move in the process.

 Finally, in addition to testing different electrode configurations, different

electrode types, and different methods of subvocalization, different levels of gain were

also tested with all these conditions to find a balance between amplification of the

subvocal signal and noise levels. By switching the “Rg” resistor of the INA128

131

instrumentation amplifiers with different resistors (gain calculated using equation, 1 + (50

kΩ/x), where x is the resistance of the “Rg” resistor [28]), the gain of the instrumentation

amplifier could be modified and multiplied by the gain of the op-amp (100) to produce

the total gain. Since the INA128 instrumentation amplifier can provide a maximum gain

of 1000 [28], while the mc33078p op-amp can provide a high open-loop AC gain of 800

at 20 kHz with a high-gain bandwidth product of 16 MHz [29], the amplifier/filters could,

in theory, be more than capable of providing gain within the specified 10 to 18700 range

from the combined gains of the INA128 and mc33078p. The range of gains experimented

with were 100 (1 MΩ “Rg” resistor), ≈200 (56 kΩ “Rg” resistor), 600 (10 kΩ “Rg”

resistor), 1100 (5 kΩ “Rg” resistor), 5100 (1 kΩ “Rg” resistor), ≈15000 (337 Ω “Rg”

resistor), 18600 (270 Ω “Rg” resistor), and 50000 (100 Ω “Rg” resistor). Every time there

was a change in gain between tests using electrodes, the amplifiers/filters would be tested

using the function generator by comparing the input signal amplitude to the output signal

amplitude to make sure it provided the intended gain before testing said gain with

subvocal signals.

 Upon testing the circuit with higher ranges of gain (larger than 6000), the

previously mentioned 120 Hz noise became much larger in amplitude in which it became

apparent that the amplifiers/filters needed even more noise reduction in order to prevent

the subvocal signal from being drowned in noise. At high levels of gain such as 15000,

the amplifiers/filters became so sensitive to noise that even raising a hand over them (not

even touching the circuit) caused the 120 Hz noise to increase in amplitude significantly.

In addition, the amplifiers/filters themselves became much more unstable and

unpredictable in behavior, sometimes not providing the gain expected, suddenly refusing

132

to even output a signal, or suddenly being filled with noise at random times. After

shortening even more wires, shortening paths from chip to chip, reorganizing directions

of wires to be as parallel to other wires close to them as possible and still not completely

blocking out the 120 Hz noise, it became clear that some sort of the shielding was needed

for the circuit to prevent magnetic fields from surrounding electronic equipment to affect

the amplifiers/filters. This was done by taking a small box that could enclose the circuit,

wrapping it in aluminum foil, grounding it (earth ground and grounding to the ground of

the circuit were both tried), and enclosing the amplifiers/filters inside this box. Despite

being such a cheap method for shielding a circuit, the box managed to significantly

reduce the 120 Hz noise down to being barely noticeable. Figures 4.58, 4.59, 4.60, and

4.61 below show the outputs of the amplifiers/filters, wavelet transformed and

reconstructed outputs of the microcontroller, and input applied to both amplifiers/filters

(20 mV, 370 Hz, sinusoidal signal, which was passed through a 1/75 voltage divider,

0.020/75 × 15000 = 4.0 V) after applying these changes and the box, showing that the

noise had been significantly reduced even at 15000 gain. By applying no input signal,

Figure 4.63 shows that some noise still remains but it is much smaller than before.

133

Figure 4.58: Outputs of left (yellow) and right (blue) amplifiers/filters with 15000 gain

and a 20 mV, 370 Hz, sinusoidal signal input which was passed through a 1/75 voltage

divider after applying foil box and noise reduction rewiring. Wavelet transformed output

from microcontroller is shown as the purple signal.

Figure 4.59: Outputs of left (yellow) and right (blue) amplifiers/filters with 15000 gain

and a 20 mV, 370 Hz, sinusoidal signal input which was passed through a 1/75 voltage

divider after applying foil box and noise reduction rewiring. Reconstructed output from

microcontroller is shown as the purple signal.

134

Figure 4.60: Outputs of left (yellow) and right (blue) amplifiers/filters with 15000 gain

and no input after applying foil box and noise reduction rewiring. Wavelet transformed

output from microcontroller is shown as the purple signal.

Figure 4.61: Outputs of left (yellow) and right (blue) amplifiers/filters with 15000 gain

and a 20 mV, 370 Hz, sinusoidal signal input (purple) which was passed through a 1/75

voltage divider after applying foil box and noise reduction rewiring. Note: trying to

capture the input signal after being passed through the voltage divider would inject noise

into the input, causing the output to be very noisy so the input could only be captured

before going through the voltage divider.

135

When taking inputs from the surface electrodes, the aluminum foil box proved

less effective, as noise still managed to corrupt the outputs of the amplifiers/filters,

showing that the noise was coming from the electrodes and not an outside source. This

noise was reduced by having the user ground themselves to the ground of the circuit by

wrapping an exposed (no isolation) part of a wire around the user’s finger that was

attached to the ground of the amplifiers/filters. Figures 4.62 and 4.63 show the outputs of

the amplifiers/filters when corrupted by noise and after applying the user to ground with

no subvocal input, showing that this change significantly reduced the noise.

However, this did not remove all problems, as the amplifiers/filters still

demonstrated unpredictable behavior at high levels of gain in which, it became less of

question as to whether or not the amplifiers/filters could provide high levels of gain, but

how long they could sustain it before problems would arise. When the amplifiers/filters

would start showing this behavior, getting the amplifiers/filters to behave as expected

once again would be achieved by wobbling wires of the circuit with a non-conductive

object or temporarily removing the user’s ground only to apply it again after a few

seconds, showing that the problem was most likely a cause of more isolation problems,

but at this point, after reconstructing the amplifier/filter circuit so many times to reduce

the impact of magnetic noise and still not being able to completely prevent all isolation

issues, it became apparent that the level of isolation needed to completely reduce these

problems would require the circuit to no longer be on a breadboard and be rebuilt as an

integrated circuit with a high level of isolation. Unfortunately, reconstructing the entire

amplifier/filter circuit into an integrated circuit with high levels of isolation was beyond

136

the budget constraint ($50) and resources provided for the project so these problems

would have to be endured.

Figure 4.62: Outputs of left (yellow) and right (blue) amplifiers/filters when receiving

inputs from surface electrodes without using the user as ground. Wavelet transformed

output of microcontroller also shown (purple).

137

Figure 4.63: Outputs of left (yellow) and right (blue) amplifiers/filters when receiving

inputs from surface electrodes when using the user as ground with no subvocal signal

input (user doing nothing). Wavelet transformed output of microcontroller also shown

(purple).

4.11 Final Results

Finally, after managing to remove most of the 120 Hz noise and adding all the

adjustments and improvements to the project so far within the bounds of the constraints

placed on the project, the circuit was finally declared ready to produce the final results.

Testing with all the different electrode configurations, electrode types, subvocalization

methods, and gains mentioned previously, the combination that produced the most

accurate classification results was the electrode configuration in which the positive

electrodes were placed on both the left and right mylohyoid muscles with the negative

electrode attached on the left side of the larynx (over vagus nerve muscle) as in figure

4.57 except with only three electrodes instead of four, the smallest diameter surface

electrode type [27], and subvocalizing while reading vowels off of a paper at 18600 gain,

138

producing a consistent (consistent at least for the first 3 to 5 tests, the decrease in

accuracy is explained later) overall accuracy between 69% to 71% for reconstructed

outputs and around 45% to 55% for wavelet transformed outputs (70% average accuracy

for 5 tests). The inputs for each test were given in the usual training method for the neural

network, as vowels were subvocalized as “AAAA”, “EEEE”, “IIII”, “OOOO”, and

“UUUU” for twenty one second samples (twenty samples, each being one second long in

recording) for each vowel for a total of 100 samples for the neural network for each

individual test. For the confusion matrix created from the results of each of these 100

samples (each test), 70% of the data was used for training the neural network, 15% was

used to test the neural network, and the final 15% was used to validate the results out of

all 100 samples. Examples of confusion matrix results are shown below in Figures 4.64

and 4.65. All other electrode configurations provided signals that only produced overall

accuracies of 35% to 50% for both wavelet transformed and reconstructed outputs.

Simply thinking of vowels did not produce any subvocal signals, even when attaching

electrodes across the vagus nerve muscles, while mouthing out the vowels without

actually speaking actually managed to produce signals, but created audible noise via

smacking of lips and facial movements in which the method of keeping one’s mouth shut

while “reading” vowels proved to be the best method as it produced subvocal signals

while keeping audible noise from the user to a minimum. However, it is important to note

that subvocal signals were acquired via concentrating very hard on moving throat and

tongue muscles without opening the mouth (tongue muscles moved involuntarily as

subtle movements when subvocalizing using this method). Basically, the user had to

pretend like they were reading something and repeating the vowels back inside their head

139

but to an extreme volume (practically “screaming” said words). If the user subvocalized

too “quietly” inside their head, the signals would be too small for the microcontroller to

accurately sample. As a result, actually obtaining subvocal signals became exhausting for

the user, sometimes resulting in headaches after too many tests and increasing the gain

beyond 18600 to prevent the user from having to strain themselves so hard only caused

the unstable nature of the amplifier/filter to become so prevalent that the circuit became

practically unusable. The fact that the throat and tongue muscles were so heavily

involved in producing the necessary EMG subvocal signals, however, shows why the

configuration that placed the positive electrodes on the mylohyoid muscles and the

negative electrode on the vagus nerve controlled muscles was able to produce the best

accuracy as a result of the fact that mylohyoid muscles help elevate the tongue and hyoid

[44] in which they were able to produce EMG signals that signified the subtle tongue

movements the user employed while subvocalizing, while the negative electrode

provided a ground where muscles controlled by the vagus nerves emitted EMG signals

that vibrate vocal cords inside the larynx, creating a input signal capturing features from

both the tongue movements and vocal cord vibration by taking their difference while the

other configurations focused on taking signals from muscles that had less of a role in

subvocalization. Levels of gain that were lower than 18600 did not amplify the subvocal

signals to be large enough for the microcontroller to sample, while, as stated previously,

attempting to increase the gain to be even larger than 18600 (say, 50000) caused the

unstable nature of the amplifier/filter circuit to become a lot more prevalent to the point

where the circuit was practically unusable. The other types of electrodes other than the

[27] type of electrode performed worse in terms of accuracy of classification because the

140

[27] electrode type had the smallest diameter, allowing it to pick up signals on muscles

with more precision with less chance of accidentally overlapping with other muscles

producing different signals.

 Upon analyzing the subvocal signals themselves, the signals demonstrated

specific behaviors proving that they are, in fact, subvocal signals (note: subvocal signals

were originally defined as the EMG signals causing the vocal cords to vibrate when

thinking of words and noises, but since the subtle, involuntary movements of the tongue

while subvocalizing also clearly played a role in classification accuracy, the EMG signals

going to the tongue through the mylohyoid muscles are also going to be defined as

subvocal signals). For example, Figure 4.63 above shows the outputs of both

amplifiers/filters and microcontroller (wavelet transformed output) without any

subvocalization, while Figures 4.66, 4.67, 4.68, 4.69, 4.70, and 4.71 below show the

outputs of both amplifiers/filters (blue was the electrode on the left mylohyoid muscle

and yellow was the electrode on the right mylohyoid muscle, while negative electrode

(ground) was vagus nerve muscle left of the larynx) and microcontroller (wavelet

transformed output) with subvocalization for each vowel emitted, in which, unlike in the

previous tests of Figures 4.14, 4.15, 4.16, and 4.17, there are clear distinctions between

the instances where no subvocalization is happening and where subvocalization is

happening as well as distinctions between each “vowel” of subvocalization as well,

showing that any subvocal signals that might have existed in the tests of Figures 4.14,

4.15, 4.16, and 4.17 were clearly buried in noise and had too little amplification to be

seen. In addition, when subvocalizing each vowel, the oscilloscope would show a jump in

amplitude at the beginning of each “vowel” held (“aaaaaaa” held consistently) as shown

141

in Figure 4.66 below and then lower into a constant amplitude with a somewhat repeating

sequence of frequencies, the jump in amplitude showing the mylohyoid muscles

stretching and contracting when the tongue first moves and then staying constant as the

mylohyoid muscles hold the position of the tongue until release, while the somewhat

repeating sequence of frequencies shows some sort of an organized signal as opposed to

random noise and thus showing that the signals being captured were most likely EMG

signals. It is also important to note that the gain and classification accuracy of the

subvocal signals would decrease gradually over time, usually after about 3 to 5 tests

(decreasing from the range of 69% to 71% accuracy gradually down to approximately

65% by the sixth test and then continue to decrease for each successive test), but would

return to 69% to 71% accuracy when the electrodes were replaced with new ones. Since

this decrease in classification accuracy over time did not occur when testing with the

function generator (function generator providing the input) and would restart upon

replacing the electrodes with new ones (electrodes were only one-time use), this

phenomenon was most likely the cause of the sweat building under the electrode over the

course of testing as a result of the large amount of effort the user would have to exert to

get the subvocal signals to be a large enough amplitude to be sampled by the

microcontroller. In addition, the amount of effort needed to sustain a steady subvocal

signal also made it more and more difficult over time to continue tests with the same

quality of subvocal signal unless a rest was taken for the user. This was also the reason

why only one user was used for these tests as the strain on the user to obtain a quality

subvocal signal was too much to force on someone else without due payment and because

the EMG electrodes became saturated with sweat too quickly in which it would be too

142

expensive to buy more for multiple users for multiple tests. It should also be noted that

the reason the subvocal signals from the left amplifier/filter were, in general, smaller than

the subvocal signals from the right amplifier/filter as shown in the Figures below was

most likely because of the fact that the ground (negative) electrode was placed on the

vagus nerve muscle to the left of the larynx, making an asymmetric electrode placement

because no fourth electrode was available in which both positive electrodes would be

receiving different signals of varying amplitude due to the fact that there was a larger

difference in distance across the throat between the negative electrode (ground) and the

left positive electrode compared to the distance between the same negative electrode

(ground) and the right positive electrode.

Figure 4.64: Final example of confusion matrix result for reconstructed subvocal signals

at 18600 gain within the first 3 to 5 tests of newly applied surface electrodes.

143

Figure 4.65: Final example of confusion matrix result for wavelet transformed subvocal

signals at 18600 gain within the first 3 to 5 tests of newly applied surface electrodes.

Figure 4.66: Final outputs of left (yellow) and right (blue) amplifiers/filters when

receiving inputs from surface electrodes with the “AAAA” subvocal signal input “spike”

at the beginning of muscle contraction. Wavelet transformed output of microcontroller

also shown (purple).

144

Figure 4.67: Final outputs of left (yellow) and right (blue) amplifiers/filters when

receiving inputs from surface electrodes with consistent “AAAA” subvocal signal input

after initial “spike”. Wavelet transformed output of microcontroller also shown (purple).

Figure 4.68: Final outputs of left (yellow) and right (blue) amplifiers/filters when

receiving inputs from surface electrodes with consistent “EEEE” subvocal signal input

after initial “spike”. Wavelet transformed output of microcontroller also shown (purple).

145

Figure 4.69: Final outputs of left (yellow) and right (blue) amplifiers/filters when

receiving inputs from surface electrodes with consistent “IIIII” subvocal signal input after

initial “spike”. Wavelet transformed output of microcontroller also shown (purple).

Figure 4.70: Final outputs of left (yellow) and right (blue) amplifiers/filters when

receiving inputs from surface electrodes with consistent “OOOO” subvocal signal input

after initial “spike”. Wavelet transformed output of microcontroller also shown (purple).

146

Figure 4.71: Final outputs of left (yellow) and right (blue) amplifiers/filters when

receiving inputs from surface electrodes with consistent “UUUU” subvocal signal input

after initial “spike”. Wavelet transformed output of microcontroller also shown (purple).

 Despite the success of finally finding subvocal signals that can at least somewhat

be classified, these results still leave some questions when compared to expected results

and other projects similar to this project. For example, since subvocal EMG signals tend

to be within the voltage range from 0 to 600 µV in amplitude [33], it was expected that

the gain would have to be within the range of about 1000 to 5000 to obtain a signal

within the 0 V to 5 V rail range, but, instead, it required 18600 gain to obtain them, much

larger than expected. Why did the amplifier/filter circuit need a gain of 18600 to obtain

said signals instead of 1000 to 5000? This was most likely due to the possibility that the

electrodes were different from those used in [33] and were not quite as sensitive as those

in [33] despite both being Ag-AgCl surface EMG electrodes (the electrodes used [27]

were deliberately cheap in price to not go over the 50$ budget constraint and thus were

probably not very sensitive compared to more expensive ones), thus causing the surface

147

electrodes to acquire subvocal signals at much smaller amplitudes than those acquired in

[33]. One may also argue that the gain was fluctuating due to the unpredictable behavior

mentioned previously at high levels of gain (the gain would be tested before applying

electrodes with function generator to make sure it was accurate, but sometimes it still

changed during testing with electrodes as testing again after using the surface electrodes

would sometimes show a different gain) in which, while the gain was advertised as

18600, it might have lowered during testing to be between 1000 to 5000 and then raised

back up to 18600 when applying a test with the function generator afterward, although

the possibility of the circuit lowering its gain to only 1000 to 5000 consistently only

during testing with surface electrodes seems unlikely in which the unpredictable behavior

was most likely not a reason for the large amount gain needed.

 Another question to ask would be why the reconstructed output performed better

in terms of classification accuracy than that of the wavelet transformed output when it

was expected that the wavelet transformed output would perform better than the

reconstructed output due to its ability to split the signals into separate frequency

components for analysis. This was most likely caused by the fact that the microcontroller

had delays between each block of samples taken where it would take the time to process

the data and output it, but, as a result, would not be able to sample the input signal when

processing and outputting data in which details of the subvocal signal would be missed

during these times. It was assumed that, since subvocal signals had tendencies to repeat

themselves when subvocalizing a single vowel, word, or noise, occasionally missing data

when processing in real time would not be an issue because the repeated segments of the

signal could always be sampled again later if missed initially, but the complexity of the

148

subvocal signals showed that missing details while processing data did not give the

wavelet transform function enough detail to fully decipher the subvocal signal into

individual frequency components, while simply reconstructing the signal into its original

form (with some noise sampled out, of course, due to reconstruction) clearly provided

more detail than a wavelet transform could, thus leading to a more accurate classification

when reconstructing the signal. This also explains why the wavelet transform used with

the neural network in the original Matlab program (before removing the wavelet

transform coded in Matlab) provided a much more accurate result of an overall accuracy

of 77% because the Matlab program preemptively took all samples at a constant sample

frequency without delays before training the neural network instead of having delays

between each block of samples. An attempt was made to reduce the delay between

sampling blocks of samples by simplifying the “do_some_conversions” function by

removing all of the functions that made the number rounding involved in the conversion

from a floating number type to an integer number type as precise and accurate as

possible. While this change did reduce the delay slightly, the outputs of the

“do_some_conversions” function were rounded with far less precision, resulting in the

outputs of the microcontroller to lose a lot of detail necessary for classification accuracy

in which simplifying the “do_some_conversions” function did not make a difference in

the classification accuracy (still remained around 45% to 55% for wavelet transformed

output and 69% to 71% for reconstructed output) despite the reduction in delay. One

could argue that removing the real-time processing ability of the microcontroller program

and making the microcontroller record all of its samples before processing them would

fix this issue, but not only would this inconvenience the user by making them have to

149

record what they have to subvocalize before being able to see the result but would also

require the microcontroller to be able to store a large amount of data which would

considerably slow down processing time and likely cause faults and crashes if too much

memory would be needed as demonstrated when experimenting with the first attempted

wavelet transform program (crashed the microcontroller because of too much memory

usage, thus showing that the ability to process in real-time was necessary in which these

delays between sampling blocks of samples are inevitable. Schematic of final circuit and

pictures of circuit shown below in Figures 4.72 and 4.73. Flowchart for final version of

code is shown below in Figure 4.74.

 A final question to consider would be as to why the results were not able to

achieve 100% classification accuracy. This was most likely the result of many factors

such as the microcontroller missing parts of the subvocal signals while processing data,

details of the subvocal signals being lost through analog to digital and digital to analog

conversion, the inability of the amplifiers/filters to amplify the subvocal signals to be

even larger in amplitude to allow the microcontroller to more easily sample the output

signals, and the various different kinds of noise clustering the subvocal signals that the

filters and the wavelet reconstruction processes could not filter out such as the remaining

120 Hz noise, electromagnetic noise from surrounding electronic equipment that the

aluminum foil box could not completely block, electromagnetic noise acquired from

EMG electrode leads, and various other noise sources from the human body that the filter

could not completely filter out.

150

Figure 4.72: Final schematic of project.

151

Figure 4.73: Picture of final product.

152

Figure 4.74: Flowchart for final version of code.

153

5. CONCLUSIONS AND IDEAS FOR FUTURE WORK

 This chapter covers a summary of the work accomplished, how well the final

product of the project fits the engineering specifications established in chapter 2, how

well the project answered the thesis question, and possible future improvements to the

project.

5.1 Summary

 After being redesigned from a device made to translate subvocal speech into

actual speech to a device made to translate subvocal speech into usable data valuable for

the analysis of subvocal speech due to scope constraints, a prototype of the Silent

Communication Device was built, consisting of the following components:

1. EMG electrodes that acquire subvocal signals from the user’s throat, two

amplifiers/filters that use INA128 instrumentation amplifiers and mc33078p op-

amps to amplify subvocal signals with 18600 gain and filter them with a 3 dB

bandwidth of 100 Hz to 500 Hz (low-pass at 125.42 Hz and high-pass at 10 Hz)

and a 60 Hz notch filter.

2. A MSP433P401R microcontroller that wavelet transforms the amplified and

filtered signals into either individual frequency coefficients (wavelet coefficients)

or wavelet transforms and reconstructs said signals into denoised subvocal signals

(noise removed due to the constant low-passing and high-passing of the wavelet

transform).

3. A MCP4921 DAC that converts the output from the microcontroller from digital

to analog in 12-bit resolution (14-bit resolution would have been preferred, but

154

the LTC1658 DAC provided too small of a swing voltage for the output in which

the signal-to-noise ratio was too small).

In order to test the quality of its output, a “patternnet” type neural network was

created in Matlab in which the output from the Silent Communication Device has six

features extracted, consisting of the mean absolute deviation of the signal, the root mean

square of the signal, the variance of the signal, the standard deviation of the signal, the

number of zero-crossings of the signal (number of times the signal reaches zero), and

finally the number of slope changes of the signal, which are used as inputs for the neural

network. The neural network itself consists of an input layer (six neurons for six inputs),

a hidden layer (20 neurons), and the outer layer (5 neurons for each “vowel” output) with

a hyperbolic tangent function for the hidden neurons’ activation functions, a linear

function for the output layer neurons’ activation functions, and the Levenberg-Marquardt

algorithm training algorithm for the training of the neural network. 70% of the data

received by the neural network is used for training the neural network, 15% is used to test

the neural network, and the final 15% is used to validate the results, resulting in a

confusion matrix overall accuracy percentage used to measure the classification accuracy

resulting from the output of the Silent Communication Device. The user interface of the

device consists of two buttons, one which allows the user to choose how the

microcontroller processes the input (reconstruction or wavelet transform) and one which

allows the user to control when the device takes its input and when it does not. Although

the device has proven that it can operate while being powered by portable batteries, it can

only operate for about ten seconds at most before the batteries shut off from a lack of

155

consistent current draw in which more resources and a higher budget are required for the

creation of custom batteries for the device. As a result, the Silent Communcation Device

is powered by a large power supply providing two 5 V rails, while the microcontroller is

powered by a laptop.

 The final output (most accurate result) of the Silent Communication Device was

taken from the average overall accuracies of confusion matrices resulting from 5 tests,

each test being the user subvocalizing a vowel for twenty one second samples (twenty

samples with each sample being one second long), resulting in 100 samples total (twenty

samples for each of the five vowels). Only 3 to 5 tests were taken for one user for each

test configuration due to a decrease in accuracy after 3 to 5 tests as a result of sweat

accumulating under the EMG electrodes due to the strain of subvocalization, resulting in

EMG electrodes having to be replaced after 3 to 5 tests. Since EMG electrodes are

expensive and are one-time use, only 3 to 5 tests for one user could be spared for each

test configuration. The test configuration that produced the final output (most accurate

result) was a result of using the electrode configuration in which the positive electrodes

were placed on both the left and right mylohyoid muscles with the negative electrode

attached on the left side of the larynx (over vagus nerve muscle), using the smallest

diameter surface electrode type [27], and subvocalizing while reading vowels off of a

paper at 18600 gain. The user also had to ground themselves to the amplifiers/filters’

ground as well to keep noise under control. This produced a consistent overall accuracy

between 69% to 71% (average 70%) for reconstructed outputs and around 45% to 55%

for wavelet transformed outputs for 3 to 5 tests until the EMG electrodes needed to be

replaced, just barely reaching the minimal 70% overall accuracy prediction.

156

 However, despite the success of being able to obtain and process subvocal speech

for analysis, the Silent Communication Device does not come without problems. For

example, as previously mentioned, after about 3 to 5 tests, the EMG electrodes have to be

replaced due to sweat building under the electrodes, resulting in the expense of the EMG

electrodes having to be constantly replaced. The user also has to exert a large amount of

effort to successfully subvocalize a large enough subvocal signal for the microcontroller

to sample, resulting in the possibility of headaches for the user. The amplifiers/filters are

extremely suspectible to external noise and behave erratically at the required 18600 gain,

often changing its gain almost randomly and increasing in noise over time, which is reset

only by moving wires of the amplifier/filters with a non-conductive object or removing

the user from ground for a moment only to reattach the user to ground again. Also, as

previously mentioned, the device requires custom batteries to operate without a large

power supply as more portable batteries have a tendency to shut off after about ten

seconds of applying power due to not having a large enough current draw from the

device. These problems cannot currently be solved with the current budget and resource

constraints, but can hopefully be solved in future works.

5.2 Requirements and Specifications Fulfillment

 How well did the final product fit engineering specifications? The first

engineering specification states that the final product must cost the customer at most $50.

Appendix B shows the total expenses as $221.36, but this is not an accurate

representation of how much the final product costs a customer as many of the expenses

were not at mass production levels (> 1 ku prices) or were for components that were only

needed for testing and experimentation and were not included in the final product. When

157

calculating the total price when assuming mass production levels (assuming > 1 ku

prices); counting only the components appearing in the final schematic (Figure 4.72) with

the exception of the iMic griffin (only used for interfacing with the laptop), the laptop,

and the power supply; assuming non-IEEE office prices for capacitors (one can get these

much cheaper by ordering them, assuming 0.16 each based on 10000 pF capacitor

prices); not counting the prices of both breadboards (if the final product is mass

manufactured, they would not be built on a breadboard, but on a cheap integrated circuit

board instead); and assuming only three electrodes provided (biomedical sensor pads),

the total price comes out as $48.39, just under $50! Of course, this is an underestimation

as it does not included the price of cheap integrated circuitry and the price of the custom

made batteries designed for the circuit’s load with USB outputs so, assuming the cost of

said components is larger than $1.61, the final product unfortunately goes over the $50

specification, but the total amount at which it goes over cannot be determined with the

current resources for the project, while the known amount still remains under $50.

Decreasing the price of the current components could be possible by buying cheaper

alternative instrumentation amplifiers and op-amps, but this would certainly affect the

performance as well, most likely dropping the classification accuracy below 70% in

which it becomes apparent that the current form of the project is the cheapest form

available for 70% classification accuracy. Thus, within the prices that are possible to be

known with given resources, the project fulfills this requirement.

 The second engineering specification states that the device’s dimensions must not

exceed 3” x 4” x 0.5” for the purpose of making it pocket sized. While the MSP432

microcontroller, external DAC, and button debouncing circuit certainly fit within this

158

dimension (assuming stacking them on top of each other), the amplifier/filter circuit

unfortunately does not fit within this dimension as a result of the fact that the circuit

components had to be spaced out from each other to prevent magnetic noise from causing

noise feedback issues. With better isolation and manufactured integrated circuitry, the

amplifier/filter circuit could certainly fit within the dimension requirements as the circuit

was originally built within this dimension, but had to have its components spaced after

noise feedback issues occurred. Thus, within the dimensions that still allow the project to

operate properly that are possible with given resources, the project cannot fulfill this

requirement as it is too large as a prototype breadboard circuit and making it smaller

prevents the circuit from performing properly.

 The third engineering specification states the device must prevent unintended

recipients at least 10 feet away from the user from hearing at most 25 dB of the user’s

subvocal speech for the purpose of assuring that the device is silent while operating. 25

dB is the sound volume of a quiet conversation (e.g. whispering). The final product was

able to obtain, amplify, filter, and wavelet transform or reconstruct a subvocal signal

without the user having to make any noticeable, audible noise. The user’s mouth can

remain completely shut in which the user only has to move throat and tongue muscles to

provide a subvocal signal that the device can pick up, making practically inaudible noise.

The loudest action that the user has to take when using the device is the subtle

movements of the tongue inside the user’s mouth when subvocalizing, which should not

require audio measurements to prove that these movements are quieter than whispering.

Thus, the project fulfills this requirement.

159

 The fourth engineering specification states that the device’s circuitry must be

powered by a battery able to output 5 V for 24 hours in order to ensure that the device

can operate for extended periods of time. While the device has certainly proven that it can

operate on 5 V (positive and negative 5 V rails), the previously mentioned (section 4.8)

testing with batteries showed that the device required three batteries to provide each rail

and power the microcontroller as opposed to one battery because attaching grounds

between rails on a single battery with multiple outputs caused the said battery to refuse to

provide any power. In addition, batteries used had a tendency to stop providing power

after about 10 seconds of operation unless restarted (repress “on” button) due to the fact

that the device could not provide a large enough load to get a consistent current draw

from each battery despite adding loads to the batteries that were proven to give steady

current draw, showing that custom batteries needed to be designed for the device with

loads that allowed for the batteries to not shut off after 10 seconds. Unfortunately,

designing custom batteries was outside of the resources provided and budget constraint

for making the device, but performance while being powered by batteries showed not

only proper operation, but removal of noise as well. Therefore, the project showed that it

could be powered by batteries outputting 5 V, but could not show whether or not it could

sustain this for 24 hours due to problems involving the need for a specific design of

battery that was beyond the resources and budget constraints of the project. Thus, the

project could only partially fulfill this requirement.

 The fifth engineering specification states that the device must be able to output to

any audio jack with industry standard dimensions. This engineering specification was to

make sure that the device can output to commonly used devices such cell phones or

160

laptops through audio jacks. Using a simple stereo cord with a 2.5 mm diameter audio

jack output with two alligator clips attached to the one of the stereo plugs for both the

input (taken from clipping alligator clip to wire attached to the external DAC’s output)

and ground (GND of microcontroller), this specification was easy to fulfill as the stereo

audio jack could easily plug into any laptop or cell phone, while the iMic Griffin also

allowed the device to output into a USB port as well. Thus, the project fulfills this

requirement.

 The sixth engineering specification states the device is non-invasive (no part of

the device is required to enter the human body for proper operation) for the purpose of

increasing the appeal and convenience of the device by not having to puncture or open

the body of the user (e.g. sticking a needle into the body) just to get a proper input for the

device. This specification was fulfilled by using surface EMG electrodes instead of using

more invasive means such as EMG needles to obtain subvocal signals, which obtain

signals by simply being attached to the skin over a muscle that the user wishes to record

signals from as opposed to penetrating through the skin directly into the muscle to record

signals. Thus, the project fulfills this requirement.

 The seventh engineering specification states that the device must be able to

provide a gain of at least 10 to a maximum of 18700 to amplify subvocal input signals in

order to ensure that the device has enough gain to amplify subvocal signals to amplitudes

that the microcontroller can accurately sample. The range of gain was set by [3] and [23]

as [3] had managed (somehow) to obtain subvocal signals with only about 10 gain

(12.127 on calculation) which was the lowest recorded gain seen out of all the papers

referenced that managed to amplify a subvocal signal to be large enough to get

161

classification accuracy above 70%, while [23] acquired subvocal signals at 18700 gain in

a 0 V to 100 V voltage range which was the largest recorded gain seen out of all the

papers referenced that managed to also get classification accuracy above 70%. The

source, [33], demonstrated subvocal signals to be about 0 V to 600 µV in amplitude,

leading to a theory that the gain of the amplifier/filter circuit would be somewhere in the

range of 1000 to 5000 gain, but turned out to be 18600 gain that finally provided ample

amplification to have subvocal signals become large enough in amplitude for the

microcontroller to successfully sample. The amplifier/filter circuit was also proven to be

able to provide gain between the 10 to 18700 range, but had difficulty maintaining gains

at 15000 or larger due to isolation problems that could not be fixed within the resources

and budget constraints of the project. Thus, despite the difficulty of maintaining higher

levels of gain, the device is able to provide enough gain within the 10 to 18700 range to

amplify subvocal signals to amplitudes that the microcontroller can successfully sample

and therefore fulfills the requirement.

 The eighth engineering specification states the “acoustic sensor” (general term

used for whatever would be presumed to be making contact with the user during the time

of creating the engineering specifications, later discovered to be the surface EMG

electrodes) does not cause electrical shocks or physical injury to the user. When

originally designing the device in concept, it was not clear what kind of equipment would

be sampling the subvocal signal from the user. The surface EMG electrodes were used

for their non-invasive means of sampling EMG signals from muscles underneath the skin.

Since surface electrodes do not require power to operate and do not expose any

electrically conducted metal to the user, these electrodes cannot cause electrical shock to

162

the user. However, since the device requires a lot of effort to subvocalize hard enough to

get adequate subvocal signals for the microcontroller to sample, the danger of giving the

user a headache or even a migraine is possible if the user strains themselves too hard, but

it is important to note that acquiring data for the particular neural network used required

the user to sustain a single vowel for up to twenty seconds in which tests for analyzing

subvocal speech could easily be designed to be less harsh on the user in the future (e.g.

recording single words or phrases instead of sustaining long signals such as “aaaaaaa”).

Thus, the project fulfills this requirement.

 The ninth and final engineering specification states the user control for the device

must have a range of volume from 0 dB to 85 dB for the output (user’s voice). Since the

device was originally designed to be able to not only acquire, amplify, filter, and wavelet

transform or reconstruct a subvocal signal for analysis, but also classify any subvocal

signal to its intended speech and output said signal as an actual audio signal of human

speech until the scope of the project was redefined to just analyzing subvocal signals as

detailed in section 3.4, this engineering specification was designed to ensure that the

device could give an audible range of sound for its output when communicating through,

say, a cell phone or a laptop, but now that the device has had its scope and purpose

redefined, this engineering specification no longer applies to the device. Thus, the project

does not fulfill this requirement and has no reason to.

In conclusion, based upon the constraints placed upon the project and within the

resources available for the creation and design of the project, the project was able to

successfully produce a small, inexpensive prototype device that can obtain, filter,

163

amplify, and wavelet transform or reconstruct subvocal signals for the purpose of

analyzing subvocal signals.

5.3 Thesis Statement Fulfillment

 After finally gaining the ability to acquire and classify subvocal signals as well as

proving to fit the engineering specifications to the best of its ability, the project must be

able to provide an answer to the question proposed in section 1.1. Using wavelet analysis

and a MSP432 microcontroller, can subvocal signals originating from the throat be

classified to an overall accuracy of at least 70% with a project budget of $50? The 70%

overall accuracy requirement was based on the results of similar experiments using

wavelet analysis and classified using neural networks such as [23] and [33] which both

obtained classification accuracies between 70% to 80% for their results, but obtained

these results using much more expensive and professional equipment than that of the

project. Taking advantage of more recent technologies such as the MSP432

microcontroller which provides high processing power and 14-bit resolution (could only

use 12-bit in the end) for only about $13, it was theorized that this same level of

performance could be achieved with much less expensive equipment through using a

prototype breadboard circuit and a MSP342 microcontroller with results verified by a

neural network coded in Matlab. Fortunately, the project was barely able to achieve this

goal, reaching a consistent classification accuracy of 69% to 71% (average of 70%, until

surface electrodes need to be replaced) under a known budget of $48.39 (without

batteries, that of which the price could not be determined and assuming mass production

prices) by using a prototype breadboard circuit to filter subvocal signals representing five

164

vowels within a 10 Hz to 450 Hz frequency range (peaked between 100 Hz and 500 Hz),

amplify them using 18600 gain, wavelet transform and then reconstruct them using the

MSP432 microcontroller to remove even more noise for wavelet analysis, and then

classify them using a neural network coded in Matlab as a proof of concept. Within the

context of the project being a prototype circuit (not for mass production), the budget

could be reduced even further as the mc33078p and MCP4921 chips can be obtained for

free if ordered as samples, lowering the budget to $41.3, which leaves more room for the

price of cheap, custom made batteries within the constraint of $50. Therefore, yes, when

discounting the price of custom batteries and assuming mass production prices or

prototype production prices, using wavelet analysis and a MSP432 microcontroller,

subvocal signals originating from the throat can be classified to an overall accuracy of at

least 70% within a project budget of $50.

5.4 Future Works

 Future improvements for the project, when no longer restricted by time and

budget constraints, include buying and implementing a 14-bit DAC that does not have

problems involving voltage swing in order to allow the MSP432 microcontroller the

ability to sample and output subvocal signal data in 14-bit resolution for better detail and

accuracy, improving the isolation to make the circuit behavior more predictably and

remove more noise, and increasing the range of classification from just vowels to words

and every letter of the English language as well in order to give the device practical uses

such as replacing typing with a keyboard with subvocal speech. In addition, adding a

second processor or more to the microcontroller, although no such variant for the

165

MSP432 currently exists, might allow the microcontroller to be able to have the

processing power to handle the original lattice filter structure wavelet transform, allowing

any type of wavelet coefficient to be used and thus possibly increase the overall accuracy

of the output. The increased processing power would allow the addition of the neural

network to the microcontroller code to increase functionality as well. Thus, with enough

time and money, the project may be improved upon enough to reach its original design of

being able not only acquire, amplify, filter, and wavelet transform or reconstruct a

subvocal signal for analysis, but also classify any subvocal signal to its intended speech

and output said signal as an actual audio signal of human speech or, in other words,

create an actual silent communication device.

166

REFERENCES:

[1] R. Ford and C. Coulston, Design for Electrical and Computer Engineers, McGraw-

Hill, 2007, p. 37

[2] IEEE Std 1233, 1998 Edition, p. 4 (10/36), DOI: 10.1109/IEEESTD.1998.88826

[3] J.A.G. Mendes, “Subvocal Speech Recognition Based on EMG Signal Using

Independent Component Analysis and Neural Network MLP,” IEEE Xplore Digital

Library, 2008. [Online]. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4566152. [Accessed: October

13, 2014] doi: [10.1109/CISP.2008.741]

[4] Analog Devices, “Precision, Low Power, Micropower Dual Operational Amplifier,”

OP290 datasheet, 2009. Available: http://www.analog.com/static/imported-

files/data_sheets/OP290.pdf [Accessed: October 18, 2014]

[5] C. H. Lin, “Signal processing and fabrication of a biomimetic tactile sensor array with

thermal, force and microvibration modalities,” IEEE Xplore Digital Library, 2009.

[Online]. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5420611&queryText%3D

microvibration. [Accessed: October 19, 2014] doi: [10.1109/ROBIO.2009.5420611]

[6] C. Parnin, “Subvocalization - Toward Hearing the Inner Thoughts of Developers,”

IEEE Xplore Digital Library, 2011. [Online]. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5970156&queryText%3D

subvocalization. [Accessed: October 18, 2014] doi: [10.1109/ICPC.2011.49]

[7] D. Self, “Opamps and their properties,” in Small Signal Audio Design 2e. 2nd Ed.

CRC Press, 2014, pp. 119-167.

[8] T. Furukawa, “Imaging Cells through a MultiPhoton Process,” in Biological Imaging

and Sensing. Ed. Springer Science & Business Media, 2004, pp.15-66.

[9] S. J. Scalise, A. S. Rainone, D. W. Davis, “Auscultation augmentation device,” U.S.

Patent 5 812 678, Sep 22, 1998.

[10] H. Sheikhzadeh, “Waveform-based speech recognition using hidden filter models:

parameter selection and sensitivity to power normalization,” IEEE Xplore Digital

Library, 1994. [Online]. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=260337&queryText%3Ds

peech. [Accessed: October 19, 2014] doi: [10.1109/89.260337]

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4566152
http://www.analog.com/static/imported-files/data_sheets/OP290.pdf
http://www.analog.com/static/imported-files/data_sheets/OP290.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5420611&queryText%3Dmicrovibration
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5420611&queryText%3Dmicrovibration
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5970156&queryText%3Dsubvocalization
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5970156&queryText%3Dsubvocalization
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=260337&queryText%3Dspeech
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=260337&queryText%3Dspeech

167

[11] N. Komatsu, M. Aota, S. Komatsuda, T. Toshihiro, Y. Matsumoto, “Speech

detection circuit,” U.S. Patent 5 371 800, Dec 6, 1994.

[12] R. F. Lyon, “Cost, power, and parallelism in speech signal processing,” IEEE Xplore

Digital Library, 1993. [Online]. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=590718&queryText%3Ds

peech+Signal+Processing. [Accessed: October 20, 2014] doi:

[10.1109/CICC.1993.590718]

[13] J. Bluck, M. Braukus, “NASA Develops System To Computerize Silent, "Subvocal

Speech”,” NASA News, 2004. [Online].

http://www.nasa.gov/home/hqnews/2004/mar/HQ_04093_subvocal_speech.html.

[Accessed: November 9, 2014]

[14] J. B. Smelcer, “Interruption, Distractions, and Technology,”

Fairfieldprofessionals.com, 2012. [Online]. Available:

http://fairfieldprofessionals.com/insights/145-interruptions-distractions-and-technology.

[Access: November 9, 2014]

[15] CERN – European Organization for Nuclear Research, “The Physical Work

Environment,” safetyguide.web, 2004. [Online]. Available:

http://safetyguide.web.cern.ch/SafetyGuide/Part3/25.2.html. [Accessed: November 13,

2014]

[16] R. Ford and C. Coulston, Design for Electrical and Computer Engineers, McGraw-

Hill, 2007, p. 205

[17] T. T. Ahonen, A. Moore, “The Annual Mobile Industry Numbers and Stats Blog -

Yep, this year we will hit the Mobile Moment,” Communities Dominate Brands, 2013.

[Online]. Available:

http://communities-dominate.blogs.com/brands/2013/03/the-annual-mobile-industry-

numbers-and-stats-blog-yep-this-year-we-will-hit-the-mobile-moment.html. [Accessed:

November 13, 2014]

[18] H. Lewis, “Why Recycle My Mobile Device?” Earthworksaction.org, para. 6, 2012.

[Online]. Available: http://rmcp.earthworksaction.org/why_recycle#.VGaM2MnNE4t.

[Accessed: November 13, 2014]

[19] R. Ford and C. Coulston, Design for Electrical and Computer Engineers, McGraw-

Hill, 2007, p. 216

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=590718&queryText%3Dspeech+Signal+Processing
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=590718&queryText%3Dspeech+Signal+Processing
http://www.nasa.gov/home/hqnews/2004/mar/HQ_04093_subvocal_speech.html
http://fairfieldprofessionals.com/insights/145-interruptions-distractions-and-technology
http://safetyguide.web.cern.ch/SafetyGuide/Part3/25.2.html
http://communities-dominate.blogs.com/brands/2013/03/the-annual-mobile-industry-numbers-and-stats-blog-yep-this-year-we-will-hit-the-mobile-moment.html
http://communities-dominate.blogs.com/brands/2013/03/the-annual-mobile-industry-numbers-and-stats-blog-yep-this-year-we-will-hit-the-mobile-moment.html
http://rmcp.earthworksaction.org/why_recycle#.VGaM2MnNE4t

168

[20] T. C. Mazor, “Information Technology,” Santa Clara University, 2014. [Online].

Available: http://www.scu.edu/ethics/publications/iie/v6n1/homepage.html. [Accessed:

November 13, 2014]

[21] T. Schick Jr. & L. Vaughn, Doing Philosophy, McGraw Hill, 2003, p. 354-35

[22] I.R. Titze, Principles of Voice Production, Prentice Hall (currently published by

NCVS.org), 1994, p. 188

[23] L. E. Mendoza, J. P. Rodríguez, J. L. R. Valencia, “Electro-myographic patterns of

sub-vocal

Speech: Records and classification,” uelbosque.edu, November 29, 2013. [Online].

Available:

http://www.uelbosque.edu.co/sites/default/files/publicaciones/revistas/revista_tecnologia/

volumen12_numero2/3Articulo_Rev-Tec-Num-2.pdf. [Accessed: November 13, 2014]

[24] “What is the Standard Headphone Jack Size?” Reference, 2017. [Online]. Available:

https://www.reference.com/technology/standard-headphone-jack-size-f9f4b241138f2f50

[Accessed: March 25, 2017]

[25] R. H. Chowdhury, M. B. I. Reaz, M. A. B. M. Ali, A. A. A. Bakar, K. Chellappan,

and T. G. Chang, “Surface Electromyography Signal Processing and Classification

Techniques,” Sensors, 2013. [Online]. Available: www.mdpi.com/journal/sensors

[Accessed: January 15, 2015].

[26] Van Boxtel, A. (2001). Optimal signal bandwidth for the recording of surface EMG

activity of facial, jaw, oral, and neck muscles. Psychophysiology 38, 22–34.

[27] Covidien, “Arbo™ H124SG Ref. Code: 31.1245.21,” Kendall™ ECG Electrodes

Product Data Sheet, 2008. Available:

https://cdn.sparkfun.com/datasheets/Sensors/Biometric/H124SG.pdf [Accessed: January

15. 2015]

[28] Texas Instruments, “INA128, INA129,” INA12x Precision, Low Power

Instrumentation Amplifiers, 2015. Available:

http://www.ti.com/lit/ds/symlink/ina128.pdf [Accessed: January 15, 2015]

[29] Texas Instruments, “MC33078,” Dual High-Speed Low-Noise Operational

Amplifier, 2006. Available: http://www.ti.com/lit/ds/symlink/mc33078.pdf [Accessed:

January 15, 2015]

[30] T. Edwards, “Discrete Wavelet Transforms: Theory and Implementation,” Stanford

University, 1992. [No longer available online].

http://www.scu.edu/ethics/publications/iie/v6n1/homepage.html
http://www.uelbosque.edu.co/sites/default/files/publicaciones/revistas/revista_tecnologia/volumen12_numero2/3Articulo_Rev-Tec-Num-2.pdf
http://www.uelbosque.edu.co/sites/default/files/publicaciones/revistas/revista_tecnologia/volumen12_numero2/3Articulo_Rev-Tec-Num-2.pdf
https://www.reference.com/technology/standard-headphone-jack-size-f9f4b241138f2f50
http://www.mdpi.com/journal/sensors
https://cdn.sparkfun.com/datasheets/Sensors/Biometric/H124SG.pdf
http://www.ti.com/lit/ds/symlink/ina128.pdf
http://www.ti.com/lit/ds/symlink/mc33078.pdf

169

[31] R. Stojanović, S. Knežević, “MSP430 Implementation of Wavelet Transform for

Purposes of Physiological Signals Processing,” University of Montenegro, Faculty of

Electrical Engineering, Montenegro, 2012. [Online]. Available:

http://ieeexplore.ieee.org/document/6532238/?reload=true&arnumber=6532238

[Accessed: January 15, 2015]

[32] Texas Instruments, “MSP432P4xx Family,” Technical Reference Manual, 2016.

Available: http://www.ti.com/lit/ug/slau356d/slau356d.pdf [Accessed: May 15, 2015]

[33] M. Jahan, M. Khan, “Sub-vocal Phoneme-Based EMG Pattern Recognition and its

application in Diagnosis,” IEEE Xplore Digital Library, 2015. [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7443564 [Accessed: May 28,

2016]

[34] Y. Bandi, R. Sangani, A. Shah, A. Pandey, and A. Varia, “Subvocal Speech

Recognition System based on EMG Signals,” IEEE Xplore Digital Library, 2015.

[Online]. Available: http://research.ijcaonline.org/icct2015/number7/icct201592.pdf

[Accessed: May 28, 2016]

[35] Md. R. Ahsan, Muhammad I. Ibrahimy, Othman O. Khalifa, “The use of Artificial

Neural Network in the Classification of EMG Signals,” IEEE Xplore Digital Library,

2012. [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6305853/ [Accessed: May 14,

2016]

[36] B. Champaty, B. K. Biswal, K. Pal, and D. N. Tibarewala, “Random Forests Based

Sub-Vocal Electromyogram Signal Acquisition and Classification for Rehabilitative

Applications,” IEEE Xplore Digital Library, 2014. [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6808012 [Accessed: May 28,

2016]

[37] M. Khan and M. Jahan, “The Application of AR Coefficients and Burg Method in

Sub-vocal EMG Pattern Recognition,” IEEE Xplore Digital Library, 2015. [Online].

Available:

http://www.krishisanskriti.org/vol_image/07Jul201502073653%20%20%20%20%20%20

%20%20%20Mosarrat%20Jahan__________ap%20%20%20%20%20%20%20%20%20

%20%20%20%20%20813-815.pdf [Accessed: May 28, 2016]

[38] “How the capacitor works (in a debouncing circuit),” Stack Exchange, 2013.

[Online]. Available: http://electronics.stackexchange.com/questions/66764/how-the-

capacitor-works-in-a-debouncing-circuit [Accessed February 20, 2016]

http://ieeexplore.ieee.org/document/6532238/?reload=true&arnumber=6532238
http://www.ti.com/lit/ug/slau356d/slau356d.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7443564
http://research.ijcaonline.org/icct2015/number7/icct201592.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6305853/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6808012
http://www.krishisanskriti.org/vol_image/07Jul201502073653%20%20%20%20%20%20%20%20%20Mosarrat%20Jahan__________ap%20%20%20%20%20%20%20%20%20%20%20%20%20%20813-815.pdf
http://www.krishisanskriti.org/vol_image/07Jul201502073653%20%20%20%20%20%20%20%20%20Mosarrat%20Jahan__________ap%20%20%20%20%20%20%20%20%20%20%20%20%20%20813-815.pdf
http://www.krishisanskriti.org/vol_image/07Jul201502073653%20%20%20%20%20%20%20%20%20Mosarrat%20Jahan__________ap%20%20%20%20%20%20%20%20%20%20%20%20%20%20813-815.pdf
http://electronics.stackexchange.com/questions/66764/how-the-capacitor-works-in-a-debouncing-circuit
http://electronics.stackexchange.com/questions/66764/how-the-capacitor-works-in-a-debouncing-circuit

170

[39] Microchip, “MCP4921,” 12-bit DAC with SPITM Interface, 2004. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/21897a.pdf [Accessed: June 15,

2016]

[40] A. G. Kumar, “Multi-Frequency Range and Tunable DCO on MSP432P4xx

Microcontrollers,” Texas Instruments, 2016. [Online]. Available:

http://www.ti.com/lit/an/slaa658a/slaa658a.pdf [Accessed: July 24, 2016]

[41] Fduignan, “Speedier DACs with the MSP432 Launchpad,” IOPROG, July 2, 2016.

[Online]. Available: https://ioprog.com/2016/07/02/speedier-dacs-with-the-msp432-

launchpad/ [Accessed: August 1, 2016]

[42] SainSmart, “SainSmart DSO NOTE II 2016 NEW Update Version DS202 Nano

ARM Portable Mini Handheld Touch Screen Digital Storage Oscilloscope, 8MB Memory

Storage 2MHz 10Mps,” SainSmart, 2016. [Online]. Available:

http://www.sainsmart.com/sainsmart-dso-note-ii-oscilloscope.html [Accessed: August 3,

2016]

[43] Linear Technology, “LTC1658,” 14-bit Rail-to-Rail Micropower DAC in MSOP,

1998. [Online]. Available: http://cds.linear.com/docs/en/datasheet/1658f.pdf [Accessed:

August 15, 2016]

[44] Drake, Richard L.; Vogl, Wayne; Tibbitts, Adam W.M. Mitchell, Gray's anatomy for

students, Philadelphia: Elsevier/Churchill Livingstone, 2005, p. 987.

[45] Subasi, Abdulhamit; Yilmaz, Mustafa; Ozcalik, Hasan R., “Classification of EMG

signals using wavelet neural network,” Journal of Neuroscience Methods, 2006. [Online].

Available:

https://pdfs.semanticscholar.org/a4c3/d9bb6c1ad98a5557e2262480f758931a3a64.pdf

[Accessed: January 29, 2017]

http://ww1.microchip.com/downloads/en/DeviceDoc/21897a.pdf
http://www.ti.com/lit/an/slaa658a/slaa658a.pdf
https://ioprog.com/2016/07/02/speedier-dacs-with-the-msp432-launchpad/
https://ioprog.com/2016/07/02/speedier-dacs-with-the-msp432-launchpad/
http://www.sainsmart.com/sainsmart-dso-note-ii-oscilloscope.html
http://cds.linear.com/docs/en/datasheet/1658f.pdf
https://pdfs.semanticscholar.org/a4c3/d9bb6c1ad98a5557e2262480f758931a3a64.pdf

171

APPENDICES

Appendix A: Code Composer Studio (Microcontroller) and Matlab Code

//**
*
//
// MSP432 main.c template - Empty main
//
//**

#include "msp.h"
#include <math.h>

/*
 * main.c
 */

#include <stdio.h>
#define SRSIZE 49 /*size of the decomposition xform shift register */
#define BLKSIZE 16 /* input block size--must be a power of two */
#define NUMFILT 2 /* number of lattice filters required */
#define HALFORD 3 /* one half of the order of the filter */
#define SRSIZEREC 26 /*size of the resonstruction xform shift register */
#define BUTTON BIT1 //button bit P1.1

void waveletdecom(float *decominput); /*declaring decomposition filter */
void recon(float *decomout); /*declaring reconstruction filter*/
void do_some_conversions(float *reconout);
void Drive_DAC(int *b);
//int a; //evenin and oddin counter
//int evenin, oddin; //inputs to decom
float decominput[BLKSIZE]; //input to decomposition filter
float decomout[BLKSIZE]; //output of decomposition filter
float reconout[BLKSIZE]; //output of reconstruction filter
int a; //sample counter
int b[BLKSIZE]; //float to int conversion

 int main(void) {

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 // 16Mhz SMCLK
 /* if (CALBC1_16MHZ==0xFF) // If calibration constant erased
 {
 while(1); // do not load, trap CPU!!
 } */

 /*set MSP432 settings (preset calibration in MSP432?*/
 /* DCOCTL = 0; // Select lowest DCOx and MODx settings
 BCSCTL1 = CALBC1_16MHZ; // Set range
 DCOCTL = CALDCO_16MHZ; */ // Set DCO step + modulation RUN ON SMCLK FOR
a?????

172

 CSCTL0 = DCORSEL_4; //DCOCLK, SMCLK = 12 MHz

 //ADC14 uses MODCLK

 ADC14CTL0 = ADC14SHT1_2 + ADC14ON + ADC14IE15; // ADC14ON, interrupt
enabled, 16 clock samples

 ADC14MCTL0 = ADC14INCH_15; // input A15, P6.0

 // ADC10CTL1 = INCH_1; //+ SSEL_3 + CONSEQ_1 ; input A1,

 //ADC10AE0 |= 0x02; // PA.1 ADC option select MSP432 doesn't have/need
one?

 // ADC10AE0 |= INCH_1 set P1.1 for ADC input

 // SPI Setup
 // clock inactive state = low,
 // MSB first, 8-bit SPI master,
 // 4-pin active Low STE, synchronous
 //
 UCB0CTL0 |= UCCKPL + UCMSB + UCMST + UCSYNC;

 UCB0CTL1 |= UCSSEL_2; /* SMCLK (input clock?) */

 UCB0BR0 |= 0x00; //no SMCLK division

 UCB0BR1 |= 0x00;

 UCB0CTL1 &= ~UCSWRST;

 /* set inputs and outputs */

 P1DIR |= BIT0; //set LED1 output P1.0
 P2DIR |= BIT2; //set Blue_LED
 P1OUT &= ~BIT0; //turn off LED1
 P2OUT &= ~BIT2; //turn off blue LED
 // P6DIR |= 0x01; //set P6.0 output
 P1DIR |= BIT6; //set P1.6 output

 TA0CCTL0 = CCIE; // CCR0 interrupt enabled
 TA0CCR0 = 12000;
 TA0CTL = TASSEL_2 + MC_2; // SMCLK, contmode, time_A0
control

 //enable interrupts///
 P1DIR &= ~BUTTON; // button is an input
 P1OUT |= BUTTON; // pull-up resistor
 P1REN |= BUTTON; // resistor enabled
 P1IES |= BUTTON; // interrupt on low-to-high
transition
 P1IE |= BUTTON; // P1.1 interrupt enabled

 P1IFG &= ~BUTTON; // P1.1 IFG cleared

173

 __enable_interrupt(); // enable all interrupts

// while(1){ }//run continuously
// while(P1IN == 0x02){ //while button is pressed
/*for (a = 0; a < 16; a++) //takes 16 samples for wavelet transform
 { //runs continuously

 ADC14CTL0 |= ADC14ENC + ADC14SC; //enable taking samples TAKE ONLY
SIXTEEN AT A TIME!!!!!

 //__bis_SR_register(CPUOFF + GIE); // LPM0, ADC10_ISR will force
exit //

 decominput = ADC14MEM15;

 waveletdecom(decominput); // run wavelet transform (more TACCR0
cycles will be added to compensate for this)

 TA0CCR0 += 1300;
 } */
 // }
 //}
 P2OUT |= BIT2; //test blue LED
 P1OUT |= BIT1; //test LED1
 return 0;
 }

 void waveletdecom(float *decominput) {

 /* set LED outputs for each stage of code for testing */

 static const int gamma[HALFORD] = {1, 0, 0}; /*using Haar coefficients to
save memory space*/
 static float beta = 0.707;
 int i, j, k, l;
 float memory[SRSIZE]; //changed to int from double
 float evenin[NUMFILT], oddin[NUMFILT], e[NUMFILT][HALFORD], din[NUMFILT -
1][HALFORD],
 dout[NUMFILT][HALFORD], evenout[NUMFILT], oddout[NUMFILT]; //changed
to int from double

 static int evenintable[NUMFILT][BLKSIZE] = {30, 45, 43, 45, 34, 45, 39,
45, 43, 45, 41, 45, 43, 45, 41, 45,
 48, 31, 48, 31, 48, 30, 48, 27, 48, 30, 48, 28, 48, 42, 48,
48};

 static int oddintable[NUMFILT][BLKSIZE] = {31, 46, 40, 46, 33, 46, 36, 46,
35, 46, 33, 46, 33, 46, 31, 46,
 48, 32, 48, 33, 48, 16, 48, 29, 48, 29, 48, 27, 48, 32,
48, 48 };

 static int evenouttable[NUMFILT][BLKSIZE] = { 22, 48, 48, 48, 16,
35, 12, 34, 48, 33, 6, 32, 48,

174

 31, 1, 30, 48, 22, 48, 48, 48, 16, 48, 12, 48, 48, 48,
6, 48, 48, 48, 48 };

 static int oddouttable[NUMFILT][BLKSIZE] = { 45, 48, 48, 48, 35, 45, 45,
45, 48, 45, 45, 42, 48, 38, 0, 22,
 48, 41, 48, 48, 48, 33, 48, 36, 48, 48, 48, 34, 48, 48, 48, 48
};

 static int dintable[HALFORD-1][NUMFILT][BLKSIZE] = { 44, 47, 47, 41, 37,
 39, 35, 37, 47, 36, 34, 42, 47,
 43, 42, 43, 48, 43, 48, 38, 48, 36, 48,
 38, 48, 44, 48, 40, 48, 44, 48, 48, 43, 47,
 47, 40, 36, 38,
 31, 36, 47, 35, 27, 34, 47, 38, 25, 42, 48,
 42, 48, 37, 48, 35, 48, 35, 48, 33, 48, 33,
 48, 31, 48, 48 };

 static int douttable[HALFORD-1][NUMFILT][BLKSIZE] = { 44, 43, 39, 41, 37,
 39, 39, 38, 45, 44, 41, 45, 45,
 45, 48, 45, 48, 48, 48, 38, 48, 36, 48,
 48, 48, 35, 48, 48, 48, 43, 48, 48, 43, 42,
 38, 40, 36, 38,
 36, 37, 34, 36, 34, 40, 32, 44, 48, 44,
 48, 48, 48, 37, 48, 32, 48, 48, 48, 28, 48,
 48, 48, 26, 48, 48 };

 // printf (" Circular wavelet decomposition program\n");
 // printf ("\n Output wavelet data:\n");

 /* initialize shift register memory and counter */
 for (j = 0; j < SRSIZE; j++) memory[j] = 0.0;
 i = 0;

 /* input placement */

 while (memory[SRSIZE - 3] = decominput[i])/* (scanf ("%f", &memory[SRSIZE
- 3]) <= EOF) */ { //WHAT CAUSES THIS WHILE LOOP TO END???

 /* loop over all filters */

 for (k = 0; k < NUMFILT; k++) {

 /* resolve all inputs (input schedulers) */

 evenin[k] = memory[evenintable[k][i]];
 oddin[k] = memory[oddintable[k][i]];
 for (l = 0; l < HALFORD - 1; l++)
 din[k][l] = memory[dintable[l][k][i]];

 /* N-stage lattice filters */
 for (l = 0; l < HALFORD; l++) {
 if (l == 0) { /*first rung (normal) */
 dout[k][0] = evenin[k] + gamma[0] * oddin[k];
 e[k][0] = evenin[k] * gamma[0] - oddin[k];
 }

175

 else if ((l & 1) == 0) {

 dout[k][l] = e[k][l - 1] + gamma[l] * din[k][l - 1];
 e[k][l] = e[k][l - 1] * gamma[l] - din[k][l - 1];
 }
 else { /* inverted rung */

 dout[k][l] = e[k][l - 1] * gamma[l] + din[k][l - 1];
 e[k][l] = e[k][l - 1] - gamma[l] * din[k][l - 1];

 }
 }
 evenout[k] = beta * e[k][HALFORD - 1];
 oddout[k] = beta * dout[k][HALFORD - 1];
 }

 /* resolve all outputs (output schedulers) */

 for (k = 0; k < NUMFILT; k++) {
 memory[evenouttable[k][i]] = evenout[k];
 memory[oddouttable[k][i]] = oddout[k];
 for (l = 0; 1 < HALFORD - 1; l++)
 memory[douttable[l][k][i]] = dout[k][l];

 }

 /* output "placement* */

 /*print ("%7.4f ", memory[0]); */
 //if ((i % 8) == 7) printf("\n");

 //P1OUT = 0x01; //LED1 output test

 decomout[i] = memory[0]; //output value to reconstruction filter
 if ((i % 8) == 7) decomout[i] = 0; //if i = 15, no output????

 /* shift the register contents */

 for (j = 1; j < SRSIZE; j++) memory[j - 1] = memory[j];
 memory[SRSIZE - 2] = 0.0;

 i++; /*i is a continual loop from 0 to BLKSIZE - 1. */
 i &= (BLKSIZE - 1);

 }

 /* reverse transform */
 //DRIVE_DAC(decomout); //decomposition output HAVE BUTTON ACTIVATE WHICH
OUTPUT????
 recon(decomout); //send through reconstruction DECLARED CORRECTLY????

 return ;
}

176

 void recon(float *decomout) {

 static const int gamma[HALFORD] = {1, 0, 0}; /*using Haar coefficients
to save memory space*/
 static float beta = 0.707;
 int i, j, k, l;
 float memory[SRSIZEREC]; //changed to int from double, 26
 float evenin[NUMFILT], oddin[NUMFILT], e[NUMFILT][HALFORD],
din[NUMFILT - 1][HALFORD],
 dout[NUMFILT][HALFORD], evenout[NUMFILT], oddout[NUMFILT];
//changed to int from double

 static int evenintable[NUMFILT][BLKSIZE] = {21, 20, 19, 19, 17, 17,
17, 15, 16, 12, 13, 17, 9, 12, 12, 22,
 6, 10, 25, 25, 25, 16, 25, 25, 21, 21, 21, 25, 25, 25,
25, 21 };

 static int oddintable[NUMFILT][BLKSIZE] = {22, 21, 21, 21, 19, 19,
20, 20, 20, 16, 16, 21, 21, 21, 21, 23,
 13, 13, 25, 25, 25, 20, 25, 25, 21, 21, 21, 25, 25, 25, 25,
21};

 static int evenouttable[NUMFILT][BLKSIZE] = {25, 21, 25, 25, 19,
19, 25, 20, 20, 16, 21, 2, 3, 4, 5, 25,
 7, 8, 25, 25, 25, 25, 25, 25, 25, 25, 1, 25, 25, 25, 25, 6
};

 static int oddouttable[NUMFILT][BLKSIZE] = {25, 20, 25, 25, 17, 17,
25, 15, 16, 12, 16, 1, 2, 3, 4, 25,
 6, 7, 25, 25, 25, 25, 25, 25, 25, 25, 0, 25, 25, 25, 25, 6
};

 static int dintable[HALFORD-1][NUMFILT][BLKSIZE] = {20, 19, 24, 17,
16, 15, 14, 13, 12, 11, 10, 13, 20, 20, 20, 24,
 18, 17, 25, 25, 25, 24, 25, 25, 24, 9, 8, 25, 25, 25, 25,
20, 19, 18, 24, 16, 15, 14, 13, 12, 11, 10, 9,
 12, 16, 19, 19, 24, 17, 16, 25, 25, 25, 24, 25, 25, 24, 8,
7, 25, 25, 25, 25, 19};

 static int douttable[HALFORD-1][NUMFILT][BLKSIZE] = {20, 25, 18,
17, 16, 25, 14, 13, 12, 11, 25, 21, 21, 21, 21, 21,
 18, 25, 25, 25, 25, 15, 25, 25, 10, 9, 14, 25, 25, 25, 25,
19, 19, 25, 17, 16, 15, 25, 13, 12, 11, 10, 25,
 17, 20, 20, 20, 20, 17, 25, 25, 25, 25, 14, 25, 25, 9, 8,
13, 25, 25, 25, 25, 18 };

 // printf (" Circular wavelet decomposition program\n");
 // printf ("\n Output wavelet data:\n");

 /* initialize shift register memory and coutner */
 for (j = 0; j < SRSIZEREC; j++) memory[j] = 0.0;
 i = 0;

 /* input placement */

177

 while (memory[SRSIZEREC - 3] = decomout[(BLKSIZE - 1) - i])
/*(scanf ("%f", &memory[SRSIZE - 3]) <= EOF)*/ { //send in input from decom in
reverse order??????
 /* loop over all filters */

 for (k = 0; k < NUMFILT; k++) {

 /* resolve all inputs (input schedulers) */

 evenin[k] = memory[evenintable[k][i]];
 oddin[k] = memory[oddintable[k][i]];
 for (l = 0; l < HALFORD - 1; l++)
 din[k][l] = memory[dintable[l][k][i]];

 /* N-stage lattice filters */
 for (l = HALFORD; l > 0; l--) { /* gamma
coefficients have been reversed */
 if (l == HALFORD) { /*first rung (normal) */
 dout[k][0] = evenin[k] + gamma[2] * oddin[k];
 e[k][0] = evenin[k] * gamma[2] - oddin[k];
 }
 else if ((l & 2) == 0) {

 dout[k][l] = e[k][l - 1] + gamma[l - 1] *
din[k][l - 1];
 e[k][l] = e[k][l - 1] * gamma[l - 1] -
din[k][l - 1];
 }
 else { /* inverted rung */
 dout[k][l] = e[k][l - 1] * gamma[l - 1] + din[k][l -
1];
 e[k][l] = e[k][l - 1] - gamma[l - 1] * din[k][l - 1];

 }
 }
 evenout[k] = beta * e[k][HALFORD - 1];
 oddout[k] = beta * dout[k][HALFORD - 1];
 }

 /* resolve all outputs (output schedulers) */

 for (k = 0; k < NUMFILT; k++) {
 memory[evenouttable[k][i]] = evenout[k];
 memory[oddouttable[k][i]] = oddout[k];
 for (l = 0; 1 < HALFORD - 1; l++)
 memory[douttable[l][k][i]] = dout[k][l];

 }

 /* output "placement* */

 /*print ("%7.4f ", memory[0]); */
 // if ((i % 8) == 7) printf("\n");

178

 reconout[i] = memory[0]; //final output value
 if ((i % 8) == 7) reconout[i] = 0; //if i = 15, no output????
 // do_some_conversions(reconout); //convert float to int
 // Drive_DAC(b); //send output to DAC

 /* shift the register contents */

 for (j = 1; j < SRSIZEREC; j++) memory[j - 1] = memory[j];
 memory[SRSIZEREC - 2] = 0.0;

 i++; /*i is a continual loop from 0 to BLKSIZE - 1. */
 i &= (BLKSIZE - 1);

 }

 /* convert and output final output to DAC */
 do_some_conversions(reconout); //convert float to int
 Drive_DAC(b); //send output to DAC

 return ; //back to while(1) loop HAVE THIS LOOP BACK TO WHILE
(1) to RECEIVE MORE INPUTS!!!!!
 }

 void Drive_DAC(int *b){
 unsigned int DAC_Word = 0;
 int d; //counter

 for (d = 0; d < BLKSIZE; d++) {
 DAC_Word = (0x1000) | (b[d] & 0x0FFF);
 // 0x1000 sets DAC for Write
 // to DAC, Gain = 2, /SHDN = 1
 // and put 12-bit level value
 // in low 12 bits.
 P1OUT &= ~BIT4;
 // Clear P1.4 (drive /CS low on DAC)
 // Using a port output to do this for now
 UCB0TXBUF = (DAC_Word >> 8);
 // Shift upper byte of DAC_Word
 // 8-bits to right
 while
 (!(UCB0IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 UCB0TXBUF = (unsigned char) //output at P1.6 ???? UCB0SIMO
 (DAC_Word & 0x00FF);
 // Transmit lower byte to DAC
 while
 (!(UCB0IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 __delay_cycles(150);
 // Delay 150 12 MHz SMCLK periods
 // (12.5 us) to allow SIMO to complete
 P1OUT |= BIT4;
 // Set P1.4 (drive /CS high on DAC)
 }

179

 return
 ;
 }

 void do_some_conversions(float *reconout)
 {
 int c; //conversion counter

 for (c = 0; c < BLKSIZE; c++) {
 b[c] = (int)floorf(reconout[c]);
 b[c] = (int)ceilf(reconout[c]);
 b[c] = (int)roundf(reconout[c]);
 b[c] = (int)truncf(reconout[c]);
 b[c] = (int)rintf(reconout[c]);
 b[c] = (int)nearbyintf(reconout[c]);
 b[c] = (int)reconout[c];
 b[c] = reconout[c];
 }
 }

//#pragma vector=PORT1_VECTOR
__interrupt void Port_1(void)
{

 for (a = 0; a < 16; a++) //takes 16 samples for wavelet transform
 { //runs continuously

 ADC14CTL0 |= ADC14ENC + ADC14SC; //enable taking samples
TAKE ONLY SIXTEEN AT A TIME!!!!!

 //__bis_SR_register(CPUOFF + GIE); // LPM0, ADC10_ISR will
force exit //

 decominput[a] = ADC14MEM15;

 //waveletdecom(decominput); // run wavelet transform
(more TACCR0 cycles will be added to compensate for this)

 TA0CCR0 += 1300;
 //P1OUT |= BIT1; //test LED1
 }

 waveletdecom(decominput); // run wavelet transform (more TACCR0 cycles
will be added to compensate for this)

//P1OUT ^= (LED0 + LED1); // P1.0 = toggle
P1IFG &= ~BUTTON; // P1.1 IFG cleared
P1IES ^= BUTTON; // toggle the interrupt edge,
// the interrupt vector will be called
// when P1.1 goes from HitoLow as well as
// LowtoHigh
}

Figure A.1: Initial design for microcontroller code.

180

//**
*
//
// MSP432 main.c template - P1.0 port toggle
//
//**

#include "msp.h"

void main(void)
{
 volatile uint32_t i;

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 // The following code toggles P1.0 port
 P1DIR |= BIT0; // Configure P1.0 as output

 while(1)
 {
 P1OUT ^= BIT0; // Toggle P1.0
 for(i=10000; i>0; i--); // Delay
 }
}

Figure A.2: LED toggle test code for MSP432P401R microcontroller.

181

int _system_pre_init(void)

 {

 WDTCTL = WDTPW | WDTHOLD;

 return 1;

 }

Figure A.3: “System_pre_init” code that freezes the watchdog timer before the program

initializes.

182

//**
*
//
// MSP432 main.c template - Empty main
//
//**

#include "msp.h"
#include <math.h>

/*
 * main.c
 */
#include <stdio.h>
#define SRSIZE 49 /*size of the decomposition xform shift register */
#define BLKSIZE 16 /* input block size--must be a power of two */
#define NUMFILT 2 /* number of lattice filters required */
#define HALFORD 3 /* one half of the order of the filter */
#define SRSIZEREC 26 /*size of the resonstruction xform shift register */
#define BUTTON1 BIT4 //button bit P2.4
#define BUTTON2 BIT0 //button bit P3.0? P4.0 now

void waveletdecom(float *decominput); /*declaring decomposition filter */
void recon(float *decomout); /*declaring reconstruction filter*/
void do_some_conversions(float *reconout);
void Drive_DAC(int *b);
//int a; //evenin and oddin counter
//int evenin, oddin; //inputs to decom
float decominput[BLKSIZE]; //input to decomposition filter
float decomout[BLKSIZE]; //output of decomposition filter
float reconout[BLKSIZE]; //output of reconstruction filter
int a; //sample counter
int b[BLKSIZE]; //float to int conversion
int change; //values sets where output goes
//extern void INT_PORT1_Handler(void);
extern void INT_PORT2_Handler (void);
//extern void INT_PORT3_Handler (void);
extern void INT_PORT4_Handler (void);
//extern void ADC14_ISR_Handler(void);

void main(void) {
 //volatile uint32_t i;

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 // 16Mhz SMCLK
 /* if (CALBC1_16MHZ==0xFF) // If calibration constant erased
 {
 while(1); // do not load, trap CPU!!
 } */

 /*set MSP432 settings (preset calibration in MSP432?*/
 /* DCOCTL = 0; // Select lowest DCOx and MODx settings
 BCSCTL1 = CALBC1_16MHZ; // Set range

183

 DCOCTL = CALDCO_16MHZ; */ // Set DCO step + modulation RUN ON SMCLK FOR
a?????
 CSCTL0 = DCORSEL_4; //DCOCLK, SMCLK = 24 MHz

 //ADC14 uses MODCLK?

 ADC14CTL0 = ADC14SHT1_2 + ADC14ON + ADC14IE15; // ADC14ON, interrupt
enabled, 16 clock samples

 ADC14MCTL0 = ADC14INCH_15; // input A15, P6.0

 UCB0CTL0 |= UCCKPL + UCMSB + UCMST + UCSYNC;

 UCB0CTL1 |= UCSSEL_2; /* SMCLK (input clock?) */

 UCB0BR0 |= 0x00; //no SMCLK division

 UCB0BR1 |= 0x00;

 UCB0CTL1 &= ~UCSWRST;

 /* set inputs and outputs */
 P4DIR |= BIT1; //set P4.1 to output to test button
 P4OUT ^= BIT1; //test external LED

 P1DIR |= BIT0; //set LED1 output P1.0
 P2DIR |= BIT2; //set Blue_LED
 P1OUT &= ~BIT0; //turn off LED1
 P2OUT &= ~BIT2; //turn off blue LED
 // P6DIR |= 0x01; //set P6.0 output
 P1DIR |= BIT6; //set P1.6 output

 TA0CCTL0 = CCIE; // CCR0 interrupt enabled
 TA0CCR0 = 12000;
 TA0CTL = TASSEL_2 + MC_2; // SMCLK, contmode, time_A0
control

 // __delay_cycles(3000000); //delay for a short period before enabling
interrupts, as a small signal that triggers the interrupts passes during this
time

 P4DIR &= ~BUTTON2; // button is an input
 P4OUT |= BUTTON2; // pull-up resistor
 P4REN |= BUTTON2; // resistor enabled

 // __delay_cycles(3000000); //delay for a short period before
enabling interrupts, as a small signal that triggers the interrupts passes
during this time

 P4IES &= ~BUTTON2; // interrupt on low-to-high
transition NEED CIRCUIT TO STOP FINGER FROM PRESSING BUTTON TO MUCH (BUTTON
DEBOUNCE)? WHAT AMPLITUDE DOES IT NEED TO BE TO TRIGGER THIS???
 P4IFG &= ~BUTTON2; // P2.4 IFG cleared
 P4IE |= BUTTON2; // P2.4 interrupt enabled

184

 //enable interrupts///
 //take data button//
 P2DIR &= ~BUTTON1; // button is an input
 P2OUT |= BUTTON1; // pull-up resistor
 P2REN |= BUTTON1; // resistor enabled

 // __delay_cycles(3000000); //delay for a short period before enabling
interrupts, as a small signal that triggers the interrupts passes during this
time

 P2IES &= ~BUTTON1; // interrupt on low-to-high
transition NEED CIRCUIT TO STOP FINGER FROM PRESSING BUTTON TO MUCH (BUTTON
DEBOUNCE)? WHAT AMPLITUDE DOES IT NEED TO BE TO TRIGGER THIS???
 P2IFG &= ~BUTTON1; // P2.4 IFG cleared
 P2IE |= BUTTON1; // P2.4 interrupt enabled

 // P2IFG &= ~BUTTON1; // P2.4 IFG cleared

 //change output button//
 /* P3DIR &= ~BUTTON2; // button is an input
 P3OUT |= BUTTON2; // pull-up resistor
 P3REN |= BUTTON2; // resistor enabled

 // __delay_cycles(3000000); //delay for a short period before enabling
interrupts, as a small signal that triggers the interrupts passes during this
time

 P3IES &= ~BUTTON2; // interrupt on low-to-high
transition NEED CIRCUIT TO STOP FINGER FROM PRESSING BUTTON TO MUCH (BUTTON
DEBOUNCE)? WHAT AMPLITUDE DOES IT NEED TO BE TO TRIGGER THIS???
 P3IFG &= ~BUTTON1; // P3.0 IFG cleared
 P3IE |= BUTTON2; // P3.0 interrupt enabled */

 /* P4DIR &= ~BUTTON1; // button is an input
 P4OUT |= BUTTON1; // pull-up resistor
 P4REN |= BUTTON1; // resistor enabled

 // __delay_cycles(3000000); //delay for a short period before
enabling interrupts, as a small signal that triggers the interrupts passes
during this time

 P4IES &= ~BUTTON1; // interrupt on low-to-high
transition NEED CIRCUIT TO STOP FINGER FROM PRESSING BUTTON TO MUCH (BUTTON
DEBOUNCE)? WHAT AMPLITUDE DOES IT NEED TO BE TO TRIGGER THIS???
 P4IFG &= ~BUTTON1; // P2.4 IFG cleared
 P4IE |= BUTTON1; // P2.4 interrupt enabled */

 //P3IFG &= ~BUTTON1; // P3.0 IFG cleared

185

 change = 0; //output goes to decom default

 //INTERRUPT IS BEING CALLED FOR INT_PORT3_HANDLER and INT_PORT2_HANDLER
FOR SOME REASON

 //__enable_interrupts(); // enable all interrupts

 // __delay_cycles(300000); //delay for a short period before enabling
interrupts, as a small signal that triggers the interrupts passes during this
time

 NVIC_ISER1 = 1 << ((INT_PORT4 - 16) & 31); //enable TA1_1 interrupt for
P3.0 Button (change output) SHOULD NVIC_ISER1 BE CHANGED?? MAYBE NVIC_ISER2??

 NVIC_ISER1 = 1 << ((INT_PORT2 - 16) & 31); //enable TA0_0 interrupt for
P2.4 Button (take data)

 //__delay_cycles(500);

 // NVIC_ISER1 = 1 << ((INT_PORT4 - 16) & 31); //enable TA1_1 interrupt
for P3.0 Button (change output) SHOULD NVIC_ISER1 BE CHANGED?? MAYBE
NVIC_ISER2??
 // P1DIR |= BIT0; // Configure P1.0 as output

 __enable_interrupts();

 // P4IFG &= ~BUTTON2; // P3.0 IFG cleared

 while(1){
 }

 /* while(1)
 {
 P1OUT ^= BIT0; // Toggle P1.0
 for(i=10000; i>0; i--); // Delay
 } */
}

int _system_pre_init(void)
 {
 WDTCTL = WDTPW | WDTHOLD;

 return 1;
 }

void waveletdecom(float *decominput) {

 /* set LED outputs for each stage of code for testing */

 static const int gamma[HALFORD] = {1, 0, 0}; /*using Haar coefficients to
save memory space*/
 static float beta = 0.707;

186

 int i, j, k, l;
 float memory[SRSIZE]; //changed to int from double
 float evenin[NUMFILT], oddin[NUMFILT], e[NUMFILT][HALFORD], din[NUMFILT -
1][HALFORD],
 dout[NUMFILT][HALFORD], evenout[NUMFILT], oddout[NUMFILT]; //changed
to int from double

 static int evenintable[NUMFILT][BLKSIZE] = {30, 45, 43, 45, 34, 45, 39,
45, 43, 45, 41, 45, 43, 45, 41, 45,
 48, 31, 48, 31, 48, 30, 48, 27, 48, 30, 48, 28, 48, 42, 48,
48};

 static int oddintable[NUMFILT][BLKSIZE] = {31, 46, 40, 46, 33, 46, 36, 46,
35, 46, 33, 46, 33, 46, 31, 46,
 48, 32, 48, 33, 48, 16, 48, 29, 48, 29, 48, 27, 48, 32,
48, 48 };

 static int evenouttable[NUMFILT][BLKSIZE] = { 22, 48, 48, 48, 16,
35, 12, 34, 48, 33, 6, 32, 48,
 31, 1, 30, 48, 22, 48, 48, 48, 16, 48, 12, 48, 48, 48,
6, 48, 48, 48, 48 };

 static int oddouttable[NUMFILT][BLKSIZE] = { 45, 48, 48, 48, 35, 45, 45,
45, 48, 45, 45, 42, 48, 38, 0, 22,
 48, 41, 48, 48, 48, 33, 48, 36, 48, 48, 48, 34, 48, 48, 48, 48
};

 static int dintable[HALFORD-1][NUMFILT][BLKSIZE] = { 44, 47, 47, 41, 37,
 39, 35, 37, 47, 36, 34, 42, 47,
 43, 42, 43, 48, 43, 48, 38, 48, 36, 48,
 38, 48, 44, 48, 40, 48, 44, 48, 48, 43, 47,
 47, 40, 36, 38,
 31, 36, 47, 35, 27, 34, 47, 38, 25, 42, 48,
 42, 48, 37, 48, 35, 48, 35, 48, 33, 48, 33,
 48, 31, 48, 48 };

 static int douttable[HALFORD-1][NUMFILT][BLKSIZE] = { 44, 43, 39, 41, 37,
 39, 39, 38, 45, 44, 41, 45, 45,
 45, 48, 45, 48, 48, 48, 38, 48, 36, 48,
 48, 48, 35, 48, 48, 48, 43, 48, 48, 43, 42,
 38, 40, 36, 38,
 36, 37, 34, 36, 34, 40, 32, 44, 48, 44,
 48, 48, 48, 37, 48, 32, 48, 48, 48, 28, 48,
 48, 48, 26, 48, 48 };

 // printf (" Circular wavelet decomposition program\n");
 // printf ("\n Output wavelet data:\n");

 /* initialize shift register memory and counter */
 for (j = 0; j < SRSIZE; j++) memory[j] = 0.0;
 i = 0;

 /* input placement */

187

 while (memory[SRSIZE - 3] = decominput[i])/* (scanf ("%f", &memory[SRSIZE
- 3]) <= EOF) */ { //WHAT CAUSES THIS WHILE LOOP TO END???

 /* loop over all filters */

 for (k = 0; k < NUMFILT; k++) {

 /* resolve all inputs (input schedulers) */

 evenin[k] = memory[evenintable[k][i]];
 oddin[k] = memory[oddintable[k][i]];
 for (l = 0; l < HALFORD - 1; l++)
 din[k][l] = memory[dintable[l][k][i]];

 /* N-stage lattice filters */
 for (l = 0; l < HALFORD; l++) {
 if (l == 0) { /*first rung (normal) */
 dout[k][0] = evenin[k] + gamma[0] * oddin[k];
 e[k][0] = evenin[k] * gamma[0] - oddin[k];
 }
 else if ((l & 1) == 0) {

 dout[k][l] = e[k][l - 1] + gamma[l] * din[k][l - 1];
 e[k][l] = e[k][l - 1] * gamma[l] - din[k][l - 1];
 }
 else { /* inverted rung */

 dout[k][l] = e[k][l - 1] * gamma[l] + din[k][l - 1];
 e[k][l] = e[k][l - 1] - gamma[l] * din[k][l - 1];

 }
 }
 evenout[k] = beta * e[k][HALFORD - 1];
 oddout[k] = beta * dout[k][HALFORD - 1];
 }

 /* resolve all outputs (output schedulers) */

 for (k = 0; k < NUMFILT; k++) {
 memory[evenouttable[k][i]] = evenout[k];
 memory[oddouttable[k][i]] = oddout[k];
 for (l = 0; 1 < HALFORD - 1; l++)
 memory[douttable[l][k][i]] = dout[k][l];

 }

 /* output "placement* */

 /*print ("%7.4f ", memory[0]); */
 //if ((i % 8) == 7) printf("\n");

 //P1OUT = 0x01; //LED1 output test

 decomout[i] = memory[0]; //output value to reconstruction filter

188

 if ((i % 8) == 7) decomout[i] = 0; //if i = 15, no output????

 /* shift the register contents */

 for (j = 1; j < SRSIZE; j++) memory[j - 1] = memory[j];
 memory[SRSIZE - 2] = 0.0;

 i++; /*i is a continual loop from 0 to BLKSIZE - 1. */
 i &= (BLKSIZE - 1);

 }

 /* reverse transform */
 //

// while(1) {} //test loop

 /* convert and output final output to DAC or send to reconstruction*/
 if (change == 1) {
 // recon(decomout); //test

 do_some_conversions(decomout); //convert float to int
 Drive_DAC(b); //send output to DAC
 }
 else {
 // do_some_conversions(decomout); //convert float to int
 // Drive_DAC(b); //send output to DAC

 //decomposition output HAVE BUTTON ACTIVATE WHICH OUTPUT????
 recon(decomout); //send through reconstruction DECLARED CORRECTLY????
 }
 // recon(decomout); //testing

 return ;
}

void recon(float *decomout) {

 static const int gamma[HALFORD] = {1, 0, 0}; /*using Haar coefficients
to save memory space*/
 static float beta = 0.707;
 int i, j, k, l;
 float memory[SRSIZEREC]; //changed to int from double, 26
 float evenin[NUMFILT], oddin[NUMFILT], e[NUMFILT][HALFORD],
din[NUMFILT - 1][HALFORD],
 dout[NUMFILT][HALFORD], evenout[NUMFILT], oddout[NUMFILT];
//changed to int from double

 static int evenintable[NUMFILT][BLKSIZE] = {21, 20, 19, 19, 17, 17,
17, 15, 16, 12, 13, 17, 9, 12, 12, 22,
 6, 10, 25, 25, 25, 16, 25, 25, 21, 21, 21, 25, 25, 25,
25, 21 };

 static int oddintable[NUMFILT][BLKSIZE] = {22, 21, 21, 21, 19, 19,
20, 20, 20, 16, 16, 21, 21, 21, 21, 23,

189

 13, 13, 25, 25, 25, 20, 25, 25, 21, 21, 21, 25, 25, 25, 25,
21};

 static int evenouttable[NUMFILT][BLKSIZE] = {25, 21, 25, 25, 19,
19, 25, 20, 20, 16, 21, 2, 3, 4, 5, 25,
 7, 8, 25, 25, 25, 25, 25, 25, 25, 25, 1, 25, 25, 25, 25, 6
};

 static int oddouttable[NUMFILT][BLKSIZE] = {25, 20, 25, 25, 17, 17,
25, 15, 16, 12, 16, 1, 2, 3, 4, 25,
 6, 7, 25, 25, 25, 25, 25, 25, 25, 25, 0, 25, 25, 25, 25, 6
};

 static int dintable[HALFORD-1][NUMFILT][BLKSIZE] = {20, 19, 24, 17,
16, 15, 14, 13, 12, 11, 10, 13, 20, 20, 20, 24,
 18, 17, 25, 25, 25, 24, 25, 25, 24, 9, 8, 25, 25, 25, 25,
20, 19, 18, 24, 16, 15, 14, 13, 12, 11, 10, 9,
 12, 16, 19, 19, 24, 17, 16, 25, 25, 25, 24, 25, 25, 24, 8,
7, 25, 25, 25, 25, 19};

 static int douttable[HALFORD-1][NUMFILT][BLKSIZE] = {20, 25, 18,
17, 16, 25, 14, 13, 12, 11, 25, 21, 21, 21, 21, 21,
 18, 25, 25, 25, 25, 15, 25, 25, 10, 9, 14, 25, 25, 25, 25,
19, 19, 25, 17, 16, 15, 25, 13, 12, 11, 10, 25,
 17, 20, 20, 20, 20, 17, 25, 25, 25, 25, 14, 25, 25, 9, 8,
13, 25, 25, 25, 25, 18 };

 // printf (" Circular wavelet decomposition program\n");
 // printf ("\n Output wavelet data:\n");

 /* initialize shift register memory and coutner */
 for (j = 0; j < SRSIZEREC; j++) memory[j] = 0.0;
 i = 0;

 /* input placement */

 while (memory[SRSIZEREC - 3] = decomout[(BLKSIZE - 1) - i])
/*(scanf ("%f", &memory[SRSIZE - 3]) <= EOF)*/ { //send in input from decom in
reverse order??????

 /* loop over all filters */

 for (k = 0; k < NUMFILT; k++) {

 /* resolve all inputs (input schedulers) */

 evenin[k] = memory[evenintable[k][i]];
 oddin[k] = memory[oddintable[k][i]];
 for (l = 0; l < HALFORD - 1; l++)
 din[k][l] = memory[dintable[l][k][i]];

 /* N-stage lattice filters */
 for (l = HALFORD; l > 0; l--) { /* gamma
coefficients have been reversed */

190

 if (l == HALFORD) { /*first rung (normal) */
 dout[k][0] = evenin[k] + gamma[2] * oddin[k];
 e[k][0] = evenin[k] * gamma[2] - oddin[k];
 }
 else if ((l & 2) == 0) {

 dout[k][l] = e[k][l - 1] + gamma[l - 1] *
din[k][l - 1];
 e[k][l] = e[k][l - 1] * gamma[l - 1] -
din[k][l - 1];
 }
 else { /* inverted rung */
 dout[k][l] = e[k][l - 1] * gamma[l - 1] + din[k][l -
1];
 e[k][l] = e[k][l - 1] - gamma[l - 1] * din[k][l - 1];

 }
 }
 evenout[k] = beta * e[k][HALFORD - 1];
 oddout[k] = beta * dout[k][HALFORD - 1];
 }

 /* resolve all outputs (output schedulers) */

 for (k = 0; k < NUMFILT; k++) {
 memory[evenouttable[k][i]] = evenout[k];
 memory[oddouttable[k][i]] = oddout[k];
 for (l = 0; 1 < HALFORD - 1; l++)
 memory[douttable[l][k][i]] = dout[k][l];

 }

 /* output "placement* */

 /*print ("%7.4f ", memory[0]); */
 // if ((i % 8) == 7) printf("\n");

 reconout[i] = memory[0]; //final output value
 if ((i % 8) == 7) reconout[i] = 0; //if i = 15, no output????
 // do_some_conversions(reconout); //convert float to int
 // Drive_DAC(b); //send output to DAC

 /* shift the register contents */

 for (j = 1; j < SRSIZEREC; j++) memory[j - 1] = memory[j];
 memory[SRSIZEREC - 2] = 0.0;

 i++; /*i is a continual loop from 0 to BLKSIZE - 1. */
 i &= (BLKSIZE - 1);

 }

 P1OUT ^= BIT0; //test, turn on LED

191

 __delay_cycles(30000); //test
 P1OUT ^= BIT0; //test, turn off LED

 // while(1){} //test loop

 /* convert and output final output to DAC */
 // do_some_conversions(reconout); //convert float to int
 // Drive_DAC(b); //send output to DAC *?

 return ; //back to while(1) loop HAVE THIS LOOP BACK TO WHILE
(1) to RECEIVE MORE INPUTS!!!!!
}

void Drive_DAC(int *b){
 unsigned int DAC_Word = 0;
 int d; //counter

 for (d = 0; d < BLKSIZE; d++) {
 DAC_Word = (0x1000) | (b[d] & 0x0FFF);
 // 0x1000 sets DAC for Write
 // to DAC, Gain = 2, /SHDN = 1
 // and put 12-bit level value
 // in low 12 bits.
 P1OUT &= ~BIT4;
 // Clear P1.4 (drive /CS low on DAC)
 // Using a port output to do this for now
 UCB0TXBUF = (DAC_Word >> 8);
 // Shift upper byte of DAC_Word
 // 8-bits to right
 while
 (!(UCB0IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 UCB0TXBUF = (unsigned char) //output at P1.6 ???? UCB0SIMO
 (DAC_Word & 0x00FF);
 // Transmit lower byte to DAC
 while
 (!(UCB0IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 __delay_cycles(150);
 // Delay 150 12 MHz SMCLK periods
 // (12.5 us) to allow SIMO to complete
 P1OUT |= BIT4;
 // Set P1.4 (drive /CS high on DAC)
 }

 P1OUT ^= BIT0; //test, turn on LED
 __delay_cycles(30000); //test
 P1OUT ^= BIT0; //test, turn off LED

 // while(1) {} //test loop

 return
 ;
 }

192

 void do_some_conversions(float *reconout)
 {
 int c; //conversion counter

 for (c = 0; c < BLKSIZE; c++) {
 b[c] = (int)floorf(reconout[c]);
 b[c] = (int)ceilf(reconout[c]);
 b[c] = (int)roundf(reconout[c]);
 b[c] = (int)truncf(reconout[c]);
 b[c] = (int)rintf(reconout[c]);
 b[c] = (int)nearbyintf(reconout[c]);
 b[c] = (int)reconout[c];
 b[c] = reconout[c];
 }
 }

// when button is released after being pressed, the interrupt takes effect.
Change this to make it when you first press the button

void INT_PORT2_Handler(void) //interrupt take data
{
 /*volatile uint32_t i;

 while(1)
 {
 P1OUT ^= BIT0; // Toggle P1.0
 for(i=10000; i>0; i--); // Delay
 } */

 for (a = 0; a < 16; a++) //takes 16 samples for wavelet transform
 { //runs continuously

 ADC14CTL0 |= ADC14ENC + ADC14SC; //enable taking
samples TAKE ONLY SIXTEEN AT A TIME!!!!!

 //__bis_SR_register(CPUOFF + GIE); // LPM0,
ADC10_ISR will force exit //

 decominput[a] = ADC14MEM15;

 //waveletdecom(decominput); // run wavelet
transform (more TACCR0 cycles will be added to compensate for this)

 TA0CCR0 += 1300;
 //P1OUT |= BIT1; //test LED1
 }

 P1OUT ^= BIT0; //test, turn on LED
 __delay_cycles(300000); //test
 P1OUT ^= BIT0; //test, turn off LED

 waveletdecom(decominput); // run wavelet transform (more TACCR0 cycles
will be added to compensate for this)

193

 P2IFG &= ~BUTTON1; // P2.4 IFG cleared
 // P2IES ^= BUTTON1; // toggle the interrupt edge,

 }

 void INT_PORT4_Handler (void) //interrupt change output (HOW WILL
interrupts know which void to go to????)
 {
 P4OUT |= BIT1; //test external LED
 if (change == 1){
 change = 0;
 }
 else {
 change = 1;
 }

 P1OUT ^= BIT0; //test, turn on LED

 // P3IFG &= ~BUTTON2; // P3.0 IFG cleared
 // P3IES ^= BUTTON2; // toggle the interrupt edge,

 // P4IFG &= ~BUTTON2; // P3.0 IFG cleared
 __delay_cycles(30000); //test

 P1OUT ^= BIT0; //test, turn off LED

 // while(1){} //test loop

 // P3IFG &= ~BUTTON2; // P3.0 IFG cleared
 P4IFG &= ~BUTTON2; // P3.0 IFG cleared

 }

Figure A.4: State of microcontroller code after button interrupt routine adjustments.

194

Neural network code (wavelet transform code removed due to the large size of the code):

%take data, make wav file
 rec0bjenable = audiorecorder(1000,16,2,1);

%record and audio

%red cord = channel 1, white cord = channel 2

 disp('recording "AAAA" data in three seconds');

 pause(3); % pause for three seconds
 disp('"AAAA" data recording');

 %can't use loops unfortunately for getaudiodata....

 recordblocking(rec0bjenable, 1); %record one second of data
 A1 = getaudiodata(rec0bjenable, 'double'); %get twenty "AAAAAAA"

samples

 recordblocking(rec0bjenable, 1);
 A2 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A3 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A4 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A5 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A6 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A7 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A8 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A9 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A10 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A11 = getaudiodata(rec0bjenable, 'double');

195

 recordblocking(rec0bjenable, 1);
 A12 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A13 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A14 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A15 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A16 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A17 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A18 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A19 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 A20 = getaudiodata(rec0bjenable, 'double');

 disp('recording "EEEE" data in three seconds');

 pause(3); % pause for three seconds
 disp('"EEEE" data recording');

 recordblocking(rec0bjenable, 1); %record one second of data
 E1 = getaudiodata(rec0bjenable, 'double'); %get twenty "EEEEEEE"

samples

 recordblocking(rec0bjenable, 1);
 E2 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E3 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E4 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E5 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);

196

 E6 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E7 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E8 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E9 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E10 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E11 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E12 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E13 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E14 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E15 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E16 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E17 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E18 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E19 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 E20 = getaudiodata(rec0bjenable, 'double');

 disp('recording "IIII" data in three seconds');

 pause(3); % pause for three sec
 disp('"IIII" data recording');

 recordblocking(rec0bjenable, 1); %record one second of data
 I1 = getaudiodata(rec0bjenable, 'double'); %get twenty "IIIIIII"

samples

197

 recordblocking(rec0bjenable, 1);
 I2 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I3 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I4 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I5 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I6 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I7 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I8 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I9 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I10 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I11 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I12 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I13 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I14 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I15 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I16 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I17 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I18 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);

198

 I19 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 I20 = getaudiodata(rec0bjenable, 'double');

 disp('recording "OOOO" data in three seconds');

 pause(3); % pause for five sec
 disp('"OOOO" data recording');

 recordblocking(rec0bjenable, 1); %record one second of data
 O1 = getaudiodata(rec0bjenable, 'double'); %get twenty "OOOOOOO"

samples

 recordblocking(rec0bjenable, 1);
 O2 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O3 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O4 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O5 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O6 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O7 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O8 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O9 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O10 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O11 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O12 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O13 = getaudiodata(rec0bjenable, 'double');

199

 recordblocking(rec0bjenable, 1);
 O14 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O15 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O16 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O17 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O18 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O19 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 O20 = getaudiodata(rec0bjenable, 'double');

 disp('recording "UUUU" data in three seconds');

 pause(3); % pause for five sec
 disp('"UUUU" data recording');

 recordblocking(rec0bjenable, 1); %record one second of data
 U1 = getaudiodata(rec0bjenable, 'double'); %get twenty "UUUUUUU"

samples

 recordblocking(rec0bjenable, 1);
 U2 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U3 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U4 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U5 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U6 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U7 = getaudiodata(rec0bjenable, 'double');

200

 recordblocking(rec0bjenable, 1);
 U8 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U9 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U10 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U11 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U12 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U13 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U14 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U15 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U16 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U17 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U18 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U19 = getaudiodata(rec0bjenable, 'double');

 recordblocking(rec0bjenable, 1);
 U20 = getaudiodata(rec0bjenable, 'double');

 %disp(length(y(:,2)));
 OUTA = zeros(5, 20);
 OUTE = zeros(5, 20);
 OUTI = zeros(5, 20);
 OUTO = zeros(5, 20);
 OUTU = zeros(5, 20);

 for a = 1 : 20 %for A vowel samples

 % for q = 1 : length(A1(:,2))

201

 if a == 1

 x(:) = A1(:,2);

 elseif a == 2

 x(:) = A2(:,2);

 elseif a == 3

 x(:) = A3(:,2);

 elseif a == 4

 x(:) = A4(:,2);

 elseif a == 5

 x(:) = A5(:,2);

 elseif a == 6

 x(:) = A6(:,2);

 elseif a == 7

 x(:) = A7(:,2);

 elseif a == 8

 x(:) = A8(:,2);

 elseif a == 9

 x(:) = A9(:,2);

 elseif a == 10

 x(:) = A10(:,2);

 elseif a == 11

 x(:) = A11(:,2);

 elseif a == 12

 x(:) = A12(:,2);

 elseif a == 13

202

 x(:) = A13(:,2);

 elseif a == 14

 x(:) = A14(:,2);

 elseif a == 15

 x(:) = A15(:,2);

 elseif a == 16

 x(:) = A16(:,2);

 elseif a == 17

 x(:) = A17(:,2);

 elseif a == 18

 x(:) = A18(:,2);

 elseif a == 19

 x(:) = A19(:,2);

 elseif a == 20

 x(:) = A20(:,2);

 else

 end

 INPUTa(1,a) = mad(x(:)); %mean absolute deviation of the

signal

 INPUTa(2,a) = rms(x(:)); %get root mean square of signal
%
 INPUTa(3,a) = var(x(:)); %get the variance

 INPUTa(4,a) = std(x(:)); %get the standard deviation

 INPUTa(5,a) = step(dsp.ZeroCrossingDetector, x(:)); %get

the number of zero crossings
%
 INPUTa(6,a) = length(find(abs(diff(sign(x(:))))==2)); %get

the number of slope changes

203

 OUTA(1,a) = 1;

 end

 % y = zeros(1);

 disp('test1');

 for a = 1 : 20 %for E vowel samples

 % for q = 1 : length(E1(:,2))

 if a == 1

 x(:) = E1(:,2);

 elseif a == 2

 x(:) = E2(:,2);

 elseif a == 3

 x(:) = E3(:,2);

 elseif a == 4

 x(:) = E4(:,2);

 elseif a == 5

 x(:) = E5(:,2);

 elseif a == 6

 x(:) = E6(:,2);

 elseif a == 7

 x(:) = E7(:,2);

 elseif a == 8

 x(:) = E8(:,2);

 elseif a == 9

204

 x(:) = E9(:,2);

 elseif a == 10

 x(:) = E10(:,2);

 elseif a == 11

 x(:) = E11(:,2);

 elseif a == 12

 x(:) = E12(:,2);

 elseif a == 13

 x(:) = E13(:,2);

 elseif a == 14

 x(:) = E14(:,2);

 elseif a == 15

 x(:) = E15(:,2);

 elseif a == 16

 x(:) = E16(:,2);

 elseif a == 17

 x(:) = E17(:,2);

 elseif a == 18

 x(:) = E18(:,2);

 elseif a == 19

 x(:) = E19(:,2);

 elseif a == 20

 x(:) = E20(:,2);

 else

 end

205

 INPUTe(1,a) = mad(x(:)); %moving average of signal

 INPUTe(2,a) = rms(x(:)); %get root mean square of signal
%
 INPUTe(3,a) = var(x(:)); %get the variance
%
 INPUTe(4,a) = std(x(:)); %get the standard deviation

 INPUTe(5,a) = step(dsp.ZeroCrossingDetector, x(:)); %get

the number of zero crossings
%
 INPUTe(6,a) = length(find(abs(diff(sign(x(:))))==2)); %get

the number of slope changes

 OUTE(2,a) = 1;

 end

 % z = zeros(1);

 disp('test2');

 for a = 1 : 20 %for I vowel samples

 % for q = 1 : length(I1(:,2))

 if a == 1

 x(:) = I1(:,2);

 elseif a == 2

 x(:) = I2(:,2);

 elseif a == 3

 x(:) = I3(:,2);

 elseif a == 4

 x(:) = I4(:,2);

 elseif a == 5

 x(:) = I5(:,2);

206

 elseif a == 6

 x(:) = I6(:,2);

 elseif a == 7

 x(:) = I7(:,2);

 elseif a == 8

 x(:) = I8(:,2);

 elseif a == 9

 x(:) = I9(:,2);

 elseif a == 10

 x(:) = I10(:,2);

 elseif a == 11

 x(:) = I11(:,2);

 elseif a == 12

 x(:) = I12(:,2);

 elseif a == 13

 x(:) = I13(:,2);

 elseif a == 14

 x(:) = I14(:,2);

 elseif a == 15

 x(:) = I15(:,2);

 elseif a == 16

 x(:) = I16(:,2);

 elseif a == 17

 x(:) = I17(:,2);

 elseif a == 18

 x(:) = I18(:,2);

207

 elseif a == 19

 x(:) = I19(:,2);

 elseif a == 20

 x(:) = I20(:,2);

 else

 end

 % end

 INPUTi(1,a) = mad(x(:)); %moving average of signal

 INPUTi(2,a) = rms(x(:)); %get root mean square of signal
%
 INPUTi(3,a) = var(x(:)); %get the variance

 INPUTi(4,a) = std(x(:)); %get the standard deviation

 INPUTi(5,a) = step(dsp.ZeroCrossingDetector, x(:)); %get

the number of zero crossings
%
 INPUTi(6,a) = length(find(abs(diff(sign(x(:))))==2)); %get

the number of slope changes

 OUTI(3,a) = 1;

 end

 % v = zeros(1);

 disp('test3');

 for a = 1 : 20 %for O vowel samples

 if a == 1

 x(:) = O1(:,2);

 elseif a == 2

 x(:) = O2(:,2);

208

 elseif a == 3

 x(:) = O3(:,2);

 elseif a == 4

 x(:) = O4(:,2);

 elseif a == 5

 x(:) = O5(:,2);

 elseif a == 6

 x(:) = O6(:,2);

 elseif a == 7

 x(:) = O7(:,2);

 elseif a == 8

 x(:) = O8(:,2);

 elseif a == 9

 x(:) = O9(:,2);

 elseif a == 10

 x(:) = O10(:,2);

 elseif a == 11

 x(:) = O11(:,2);

 elseif a == 12

 x(:) = O12(:,2);

 elseif a == 13

 x(:) = O13(:,2);

 elseif a == 14

 x(:) = O14(:,2);

 elseif a == 15

 x(:) = O15(:,2);

209

 elseif a == 16

 x(:) = O16(:,2);

 elseif a == 17

 x(:) = O17(:,2);

 elseif a == 18

 x(:) = O18(:,2);

 elseif a == 19

 x(:) = O19(:,2);

 elseif a == 20

 x(:) = O20(:,2);

 else

 end

 INPUTo(1,a) = mad(x(:)); %moving average of signal

 INPUTo(2,a) = rms(x(:)); %get root mean square of signal
%
 INPUTo(3,a) = var(x(:)); %get the variance
%
 INPUTo(4,a) = std(x(:)); %get the standard deviation

 INPUTo(5,a) = step(dsp.ZeroCrossingDetector, x(:)); %get

the number of zero crossings
%
 INPUTo(6,a) = length(find(abs(diff(sign(x(:))))==2)); %get

the number of slope changes

 OUTO(4,a) = 1;

 end

 %r = zeros(1);

 disp('test4');

 for a = 1 : 20 %for U vowel samples

210

 % for q = 1 : length(U1(:,2))
 if a == 1

 x(:) = U1(:,2);

 elseif a == 2

 x(:) = U2(:,2);

 elseif a == 3

 x(:) = U3(:,2);

 elseif a == 4

 x(:) = U4(:,2);

 elseif a == 5

 x(:) = U5(:,2);

 elseif a == 6

 x(:) = U6(:,2);

 elseif a == 7

 x(:) = U7(:,2);

 elseif a == 8

 x(:) = U8(:,2);

 elseif a == 9

 x(:) = U9(:,2);

 elseif a == 10

 x(:) = U10(:,2);

 elseif a == 11

 x(:) = U11(:,2);

 elseif a == 12

 x(:) = U12(:,2);

 elseif a == 13

 x(:) = U13(:,2);

211

 elseif a == 14

 x(:) = U14(:,2);

 elseif a == 15

 x(:) = U15(:,2);

 elseif a == 16

 x(:) = U16(:,2);

 elseif a == 17

 x(:) = U17(:,2);

 elseif a == 18

 x(:) = U18(:,2);

 elseif a == 19

 x(:) = U19(:,2);

 elseif a == 20

 x(:) = U20(:,2);

 else

 end

 INPUTu(1,a) = mad(x(:)); %moving average of signal

 INPUTu(2,a) = rms(x(:)); %get root mean square of signal
 %
 INPUTu(3,a) = var(x(:)); %get the variance

 INPUTu(4,a) = std(x(:)); %get the standard deviation 4,a

 INPUTu(5,a) = step(dsp.ZeroCrossingDetector, x(:)); %get

the number of zero crossings
%
 INPUTu(6,a) = length(find(abs(diff(sign(x(:))))==2)); %get

the number of slope changes

 OUTU(5,a) = 1;

212

 end

 % x = zeros(1);

 OUT = horzcat(OUTA, OUTE, OUTI, OUTO, OUTU);

 INPUT = horzcat(INPUTa, INPUTe, INPUTi, INPUTo, INPUTu);

% net = perceptron; %comment out the layer statements, random
% initialization, and "patternnet" neural network to use perception
% nueral network

 net = patternnet(20, 'trainlm'); %declare patternnet neural network

with 10 hidden nodes in the hidden layer
% using Levenberg-Marquardt algorithm

 net.layers{1}.transferFcn = 'tansig'; %declare activation function

of the neurons in hidden layer (layer 1)
% as hyperbolic tangent

 net.layers{2}.transferFcn = 'purelin'; %declare activation function

of the neuron of the output layer (layer 2) to be linear
%
 % net.numinputs = 7; %there are seven inputs to the neural network

 % net.numoutputs = 5; %there are five output nodes for the neural

network

 net.trainParam.epochs = 100; %train for 100 epochs

 net.trainParam.goal=1e-12; %set desired MSE to be 1E-12

 %initialize weights and biases randomly

 net.initFcn = 'initlay';
 net.layers{1}.initFcn = 'initwb';
 net.layers{2}.initFcn = 'initwb';
 net.inputWeights{1,1}.initFcn = 'rands';
 net.layerWeights{2,1}.initFcn = 'rands';
 net.biases{1,1}.initFcn = 'rands';
 net.biases{2,1}.initFcn = 'rands';

 disp('test5');

 net = configure(net, INPUT , OUT); %initialize weights and biases

initial_output = net(INPUT); %get output before training (final

samples)

213

net = train(net,INPUT, OUT); %train the neural network

test_output = net(INPUT); %get final outp

Figure A.5: Neural network code in Matlab (no wavelet transform).

214

//**
*
//
// MSP432 main.c template - Empty main
//
//**

#include "msp.h"
#include <math.h>

#define BLKSIZE 16 /* input block size--must be a power of two */
int a; //sample counter
//float decominput[BLKSIZE]; //input to decomposition filter
//int b[BLKSIZE]; //float to int conversion
int b;
//extern void TA0_N_ISR_HANDLER(void);
float test;

void Drive_DAC(int test){
 unsigned int DAC_Word = 0;
 // int d; //counter

 // for (d = 0; d < BLKSIZE; d++) {
 DAC_Word = (0x1000) | (test & 0x0FFF);
 // 0x1000 sets DAC for Write
 // to DAC, Gain = 2, /SHDN = 1
 // and put 12-bit level value
 // in low 12 bits.
 P6OUT &= ~BIT4;
 // Clear P1.4 (drive /CS low on DAC)
 // Using a port output to do this for now
 UCB0TXBUF = (DAC_Word >> 8);
 // Shift upper byte of DAC_Word
 // 8-bits to right
 while
 (!(UCB0IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 UCB0TXBUF = (unsigned char) //output at P1.6 ???? UCB0SIMO
 (DAC_Word & 0x00FF);
 // Transmit lower byte to DAC
 while
 (!(UCB0IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 __delay_cycles(330);
 // Delay 150 12 MHz SMCLK periods
 // (12.5 us) to allow SIMO to complete
 P6OUT |= BIT4;
 // Set P1.4 (drive /CS high on DAC)
 // }

215

 // P1OUT ^= BIT0; //test, turn on LED
 // __delay_cycles(30000); //test
 // P1OUT ^= BIT0; //test, turn off LED

 // P1OUT |= BIT6;

 // while(1) {} //test loop

 return;
 }

//void do_some_conversions(float *decominput)
// {
// int c; //conversion counter

// for (c = 0; c < BLKSIZE; c++) {
// b[c] = (int)floorf(decominput[c]);
// b[c] = (int)ceilf(decominput[c]);
// b[c] = (int)roundf(decominput[c]);
// b[c] = (int)truncf(decominput[c]);
// b[c] = (int)rintf(decominput[c]);
// b[c] = (int)nearbyintf(decominput[c]);
// b[c] = (int)decominput[c];
// b[c] = decominput[c];
// }
// }

void do_some_conversions(float test)
 {
 // int c; //conversion counter

 //for (c = 0; c < BLKSIZE; c++) {
 b = (int)floorf(test);
 b = (int)ceilf(test);
 b = (int)roundf(test);
 b = (int)truncf(test);
 b = (int)rintf(test);
 b = (int)nearbyintf(test);
 b = (int)test;
 b = test;
 //}
 }

void TA0_N_ISR_HANDLER(void)
{
 //for (a = 0; a < 16; a++) //takes 16 samples for wavelet transform
 // { //runs continuously

 ADC14CTL0 |= ADC14ENC + ADC14SC;
//enable taking samples TAKE ONLY SIXTEEN AT A TIME!!!!!

 //__bis_SR_register(CPUOFF + GIE); //
LPM0, ADC10_ISR will force exit //

216

 test = ADC14MEM0;

 // decominput[a] = ADC14MEM15;

 //waveletdecom(decominput); // run
wavelet transform (more TACCR0 cycles will be added to compensate for this)

 // TA0CCR0 += 1300;
 //P1OUT |= BIT1; //test LED1
 // }
 // a = a + 1;

 // while(1) {} //test loop

 // if (a == BLKSIZE){
 // do_some_conversions(decominput);
 do_some_conversions(test);
 Drive_DAC(b); //send output to DAC *?

 // a = 1;
 // }
 // else {

 // }
 //do_some_conversions(decominput)
 //Drive_DAC(b); //send output to DAC *?
 TA0CCR0 += 50000;
 TA0CCTL0 &= ~CCIFG;
}

/////////////see what ADC interrupt doesss?????????????????

void main(void)
{

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 CSCTL0 |= DCOEN + DCORSEL_4; //activate DCOCLK, SMCLK = 24 MHz

 //ADC14 uses MODCLK?

 CSCTL1 |= SELS_3 + DIVS_0; //select SMCLK, no division

 CSSTAT |= SMCLK_ON + DCO_ON; //activate SMCLK and DCO clock (status)

 ADC14CTL0 = ADC14SHT0_2 + ADC14ON; //+ ADC14IE15; // ADC14ON, interrupt
enabled, 16 clock samples

 ADC14CTL1 = ADC14RES_3; //sampling resolution, 14-bit conversion.

 ADC14MCTL0 = ADC14INCH_1; // input A1, P5.4

217

 P1SEL0 = BIT6 + BIT5; //set P1.6 output for SIMO and P1.5 for UCB0CLK

 UCB0CTLW0 |= UCSWRST; //put state machine in reset momentarily

 UCB0CTLW0 |= UCCKPL + UCMSB + UCMST + UCSYNC;

 UCB0CTLW0 |= UCSSEL_2; /* SMCLK (input clock?) */

 UCB0BR0 |= 0x00; //no SMCLK division

 UCB0BR1 |= 0x00;

 UCB0CTL1 &= ~UCSWRST; //initialize USCI state machine

 P6DIR |= BIT4; //set P6.4 for /CS for external DAC

 // P1DIR |= BIT6; //set P1.6 output

 // P1SEL0 = BIT6 + BIT5; //set P1.6 output for SIMO and P1.5 for UCB0CLK

 // TA0CCTL0 = CCIE; // CCR0 interrupt
enabled
 // TA0CCR0 = 12000;
 // TA0CTL = TASSEL_2 + MC_2; // SMCLK, contmode,
time_A0 control
 // _BIS_SR(LPM0_bits + GIE);

 __enable_interrupt(); // enable all interrupts

 NVIC_ISER0 = 1 << ((INT_TA0_N - 16) & 31); //NVIC interrupt declaration

 TA0CCTL0 = CCIE + CCIS_0; // CCR0
interrupt enabled, CCIxA input signal for TAxCCR0
 TA0CCR0 = 50000;
 TA0CTL = TASSEL_2 + MC_2 + TAIE; // SMCLK,
contmode, time_A0 control, timer_A0 interrupt enabled

 TA0CCTL0 &= ~CAP; //compare mode

 TA0R = 0; ///timer counter set to zero

 a = 1;

 while(1) {} //test loop

 // for (a = 0; a < 16; a++) //takes 16 samples for wavelet
transform
 // { //runs continuously

 // ADC14CTL0 |= ADC14ENC + ADC14SC; //enable
taking samples TAKE ONLY SIXTEEN AT A TIME!!!!!

218

 //__bis_SR_register(CPUOFF + GIE); // LPM0,
ADC10_ISR will force exit //

 // decominput[a] = ADC14MEM15;

 //waveletdecom(decominput); // run wavelet
transform (more TACCR0 cycles will be added to compensate for this)

 // TA0CCR0 += 1300;
 //P1OUT |= BIT1; //test LED1
 // }

 // do_some_conversions(decominput);
 // Drive_DAC(b); //send output to DAC *?
 // return 0;
}

Figure A.6: Microcontroller code input and output test program progress.

219

#include "msp.h"
#include <math.h>
#include <stdio.h>

//#define BLKSIZE 16 /* input block size--must be a power of two */
int a; //sample counter
//float decominput[BLKSIZE]; //input to decomposition filter
//int b[BLKSIZE]; //float to int conversion
int b;
//extern void TA0_N_ISR_HANDLER(void);
float test;

void Drive_DAC(int b){
 unsigned int DAC_Word = 0;
 // int d; //counter

 // for (d = 0; d < BLKSIZE; d++) {
 DAC_Word = (0x9000) | (b & 0x0FFF); //CHANGED FROM X1000 TO X3000
 // 0x1000 sets DAC for Write
 // to DAC, Gain = 2, /SHDN = 1
 // and put 12-bit level value
 // in low 12 bits.
 P6OUT &= ~BIT4;
 // Clear P1.4 (drive /CS low on DAC)
 // Using a port output to do this for now
 UCB0TXBUF = (DAC_Word >> 8);
 // Shift upper byte of DAC_Word
 // 8-bits to right
 while
 (!(UCB0IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 UCB0TXBUF = (unsigned char) //output at P1.6 ???? UCB0SIMO
 (DAC_Word & 0x00FF);
 // Transmit lower byte to DAC
 while
 (!(UCB0IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 __delay_cycles(30);
 // Delay 150 12 MHz SMCLK periods
 // (12.5 us) to allow SIMO to complete
 P6OUT |= BIT4;
 // Set P1.4 (drive /CS high on DAC)
 // }

 // P1OUT ^= BIT0; //test, turn on LED
 // __delay_cycles(30000); //test
 // P1OUT ^= BIT0; //test, turn off LED

 // P1OUT |= BIT6;

 // while(1) {} //test loop

 return;
 }

220

void do_some_conversions(float test)
 {
 // int c; //conversion counter

 //for (c = 0; c < BLKSIZE; c++) {
 b = (int)floorf(test);
 b = (int)ceilf(test);
 b = (int)roundf(test);
 b = (int)truncf(test);
 b = (int)rintf(test);
 b = (int)nearbyintf(test);
 b = (int)test;
 b = test;
 //}
 }

void main(void)
{

 // WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 volatile unsigned int i;

 CSCTL0 |= DCOEN + DCORSEL_4; //activate DCOCLK, SMCLK = 24 MHz

 //ADC14 uses MODCLK?

 CSCTL1 |= SELS_3 + DIVS_0; //select SMCLK, no division

 CSSTAT |= SMCLK_ON + DCO_ON; //activate SMCLK and DCO clock (status)

 ADC14CTL0 = ADC14SHT0_2 + ADC14ON + ADC14SHP; //+ ADC14IE15; // ADC14ON,
interrupt enabled, 16 clock samples

 ADC14CTL1 = ADC14RES_3; //sampling resolution, 14-bit conversion.

 ADC14MCTL0 = ADC14INCH_1; // input A1, P5.4

 ADC14IER0 |= ADC14IE0; // Enable ADC conv complete
interrupt

 SCB_SCR &= ~SCB_SCR_SLEEPONEXIT; // Wake up on exit from
ISR

 P1SEL0 = BIT6 + BIT5; //set P1.6 output for SIMO and P1.5 for UCB0CLK

 UCB0CTLW0 |= UCSWRST; //put state machine in reset momentarily

 UCB0CTLW0 |= UCCKPL + UCMSB + UCMST + UCSYNC;

 UCB0CTLW0 |= UCSSEL_2; /* SMCLK (input clock?) */

 UCB0BR0 |= 0x00; //no SMCLK division

221

 UCB0BR1 |= 0x00;

 UCB0CTL1 &= ~UCSWRST; //initialize USCI state machine

 P6DIR |= BIT4; //set P6.4 for /CS for external DAC

 // P1DIR |= BIT6; //set P1.6 output

 // P1SEL0 = BIT6 + BIT5; //set P1.6 output for SIMO and P1.5 for UCB0CLK

 // TA0CCTL0 = CCIE; // CCR0 interrupt
enabled
 // TA0CCR0 = 12000;
 // TA0CTL = TASSEL_2 + MC_2; // SMCLK, contmode,
time_A0 control
 // _BIS_SR(LPM0_bits + GIE);
 // a = 0;

 __enable_interrupt(); // enable all interrupts

 NVIC_ISER0 = 1 << ((INT_ADC14 - 16) & 31); // Enable ADC
interrupt in NVIC module

 while (1)
 {
 for (i = 20000; i > 0; i--); // Delay
 ADC14CTL0 |= ADC14ENC | ADC14SC; // Start
sampling/conversion

 __sleep();

 // __bis_SR_register(LPM0_bits | GIE); // LPM0, ADC14_ISR will
force exit
 __no_operation(); // For debugger
 }

}

void ADC14IsrHandler(void) {

 //DISABLE INTERRUPT?????? UNTIL driVE_dac IS DONE???

 test = ADC14MEM0; //added for testing
 // decominput[a] = ADC14MEM0; //take samples

 // a++;
 do_some_conversions(test);
 Drive_DAC(b); //send output to DAC *?
}

Figure A.7: Microcontroller code input and output test program progress after changing

from TIMERA interrupt routine to ADC14 interrupt routine.

222

#include "msp.h"
#include <math.h>
#include <stdio.h>
//#include "driverlib.h"

//#define BLKSIZE 16 /* input block size--must be a power of two */
int a; //sample counter
//float decominput[BLKSIZE]; //input to decomposition filter
//int b[BLKSIZE]; //float to int conversion
//int b;
//extern void TA0_N_ISR_HANDLER(void);
float test;

#define SRSIZE 49 /*size of the decomposition xform shift register */
#define BLKSIZE 16 /* input block size--must be a power of two */ //or
16??????
#define NUMFILT 2 /* number of lattice filters required */
#define HALFORD 3 /* one half of the order of the filter */
#define SRSIZEREC 26 /*size of the resonstruction xform shift register */
#define BUTTON1 BIT4 //button bit P2.4
#define BUTTON2 BIT0 //button bit P3.0? P4.0 now

float decominput[BLKSIZE]; //input to decomposition filter
float decomout[BLKSIZE]; //output of decomposition filter
float reconout[BLKSIZE]; //output of reconstruction filter
unsigned int b[BLKSIZE]; //float to int conversion
float FST_signal[BLKSIZE];
float RST_signal[BLKSIZE];

//#define number_of_decomposition_levels 4;
//#define number_of_samples 16;
int number_of_samples, level, q, number_of_decomposition_levels, e,
total_number_of_samples;
int number_of_reconstruction_levels;
unsigned int DAC_Word;
int change;
int j;

void waveletdecom(float *decominput); /*declaring decomposition filter */
void recon(float *decomout); /*declaring reconstruction filter */

//int _system_pre_init(void)
// {
 // WDTCTL = WDTPW | WDTHOLD;

 // return 1;
 // }

void Drive_DAC(unsigned int *b) {
 // unsigned int DAC_Word = 0;
 DAC_Word = 0;

 int i;

 int d; //counter

223

 for (d = 0; d < BLKSIZE; d++) {
 DAC_Word = (0x3000) | (b[d] & 0x0FFF); //CHANGED FROM X1000 TO X3000
 // 0x1000 sets DAC for Write
 // to DAC, Gain = 2, /SHDN = 1
 // and put 12-bit level value
 // in low 12 bits.
 P5OUT &= ~BIT0;
 // Clear P1.4 (drive /CS low on DAC)
 // Using a port output to do this for now
 UCB2TXBUF = (DAC_Word >> 8);
 // Shift upper byte of DAC_Word
 // 8-bits to right
 while
 (!(UCB2IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 UCB2TXBUF = (unsigned char) //output at P1.6 ???? UCB0SIMO
 (DAC_Word & 0x00FF);
 // Transmit lower byte to DAC
 while
 (!(UCB2IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 __delay_cycles(150);
 // Delay 150 12 MHz SMCLK periods
 // (12.5 us) to allow SIMO to complete
 P5OUT |= BIT0;
 // Set P1.4 (drive /CS high on DAC)
 // return;

 // while(1) {} //test loop

 for (i = 200; i > 0; i--); // Delay

 }

 // P1OUT ^= BIT0; //test, turn on LED
 // __delay_cycles(30000); //test
 // P1OUT ^= BIT0; //test, turn off LED

 // P1OUT |= BIT6;

 // while(1) {} //test loop

 return;
 }

void do_some_conversions(float *decomout)
 {
 int c; //conversion counter

 for (c = 0; c < BLKSIZE; c++) {
 b[c] = (int)floorf(decomout[c]);
 b[c] = (int)ceilf(decomout[c]);

224

 b[c] = (int)roundf(decomout[c]);
 b[c] = (int)truncf(decomout[c]);
 b[c] = (int)rintf(decomout[c]);
 b[c] = (int)nearbyintf(decomout[c]);
 b[c] = (int)decomout[c];

 b[c] = (unsigned int)decomout[c]; //make it unsigned

 b[c] = decomout[c];
 }
 }

void main(void)
{

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 volatile unsigned int i;

 CSKEY = 0x695A; // unlock CS module for register access

 CSCTL0 = 0; // reset DCO settings

 CSCTL0 |= DCOEN + DCORSEL_3; ///+ 0xFFFFFFFFFFFFFC5C;// +
DCOTUNE(0xFFFFFFFFFFFFFC5C); //activate DCOCLK, SMCLK = 24 MHz

 // CS_setFrequency(20000000);

 // __I uint32_t rDCOIR_FCAL_RSEL04; /* DCO IR mode: Frequency calibration
for DCORSEL 0 to 4 */
 // __I uint32_t rDCOIR_FCAL_RSEL5; /* DCO IR mode: Frequency calibration
for DCORSEL 5 */
 // __I uint32_t rDCOIR_MAXPOSTUNE_RSEL04; /* DCO IR mode: Max Positive
Tune for DCORSEL 0 to 4 */
 // __I uint32_t rDCOIR_MAXNEGTUNE_RSEL04; /* DCO IR mode: Max Negative
Tune for DCORSEL 0 to 4 */
 // __I uint32_t rDCOIR_MAXPOSTUNE_RSEL5; /* DCO IR mode: Max Positive Tune
for DCORSEL 5 */
 // __I uint32_t rDCOIR_MAXNEGTUNE_RSEL5; /* DCO IR mode: Max Negative Tune
for DCORSEL 5 */
 // __I uint32_t rDCOIR_CONSTK_RSEL04; /* DCO IR mode: DCO Constant (K) for
DCORSEL 0 to 4 */
 // __I uint32_t rDCOIR_CONSTK_RSEL5; /* DCO IR mode: DCO Constant (K) for
DCORSEL 5 */
 // FFFFFFFFFFFFFC5C

 // 0000001110100100
 //ADC14 uses MODCLK?

 CSCTL1 |= SELA_2 | SELS_3 | SELM_3; //SELS_3 + DIVS_0; //select SMCLK, no
division

225

 CSSTAT |= SMCLK_ON + DCO_ON; //activate SMCLK and DCO clock (status)

 // while(1) {} //test loop

 CSKEY = 0;

 P5SEL1 |= BIT5; // Configure P5.4 for ADC (A1 to
A0!)
 P5SEL0 |= BIT5;

 ADC14CTL0 = ADC14SHT0_2 + ADC14ON + ADC14SHP + ADC14SSEL_4; //+
ADC14IE15; // ADC14ON, interrupt enabled, 16 clock samples

 ADC14CTL1 = ADC14RES_2; //sampling resolution, 14-bit conversion. (now
12-bit!)

 ADC14MCTL0 = ADC14INCH_0; // input A1, P5.4 (P5.5 now!)

 ADC14IER0 |= ADC14IE0; // Enable ADC conv complete
interrupt

 SCB_SCR &= ~SCB_SCR_SLEEPONEXIT; // Wake up on exit from
ISR

 // P3SEL0 |= BIT6 + BIT5; //set P3.6 output for SIMO and P3.5 for UCB0CLK

 UCB2CTLW0 |= UCSWRST; //put state machine in reset momentarily

 UCB2CTLW0 |= UCCKPL + UCMSB + UCMST + UCSYNC;

 UCB2CTLW0 &= ~UCSLA10 + ~UCMM; //no multi-master mode, address slave
with 7-bit address

 UCB2CTLW0 |= UCSSEL_2; /* SMCLK (input clock?) */

 UCB2BR0 |= 0x00; //no SMCLK division

 UCB2BR1 |= 0x00;

 P3SEL0 |= BIT6 + BIT5; //set P3.6 output for SIMO and P3.5 for UCB0CLK

 UCB2CTLW0 &= ~UCSWRST; //initialize USCI state machine

 P5DIR |= BIT0; //set P5.0 for /CS for external DAC

 // P3DIR |= BIT5; //set P3.5, output

 // P1SEL0 = BIT6 + BIT5; //set P1.6 output for SIMO and P1.5 for UCB0CLK

 // TA0CCTL0 = CCIE; // CCR0 interrupt
enabled

226

 // TA0CCR0 = 12000;
 // TA0CTL = TASSEL_2 + MC_2; // SMCLK, contmode,
time_A0 control
 // _BIS_SR(LPM0_bits + GIE);

 // NVIC_ISER0 = 1 << ((INT_TA0_N - 16) & 31); //NVIC interrupt
declaration

 /* TA0CCTL0 = CCIE + CCIS_0; // CCR0
interrupt enabled, CCIxA input signal for TAxCCR0
 TA0CCR0 = 100;
 TA0CTL = TASSEL_2 + MC_2; //+ TAIE; // SMCLK,
contmode, time_A0 control, timer_A0 interrupt enabled

 TA0CCTL0 &= ~CAP; //compare mode

 TA0R = 0; ///timer counter set to zero */

 a = 0;

 change = 1;

 __enable_interrupt(); // enable all interrupts

 NVIC_ISER0 = 1 << ((INT_ADC14 - 16) & 31); // Enable ADC
interrupt in NVIC module

 // NVIC_ISER0 = 1 << ((INT_TA0_N - 16) & 31); //NVIC interrupt
declaration for TIMERA interrupt

 while (1)
 {
 // for (i = 200; i > 0; i--); // Delay
 ADC14CTL0 |= ADC14ENC | ADC14SC; // Start
sampling/conversion

 if (a == 16){ // if all 16 samples are
taken, wavelet transform them.

 if (change == 0){ //deconstruct and
reconstruct the signal if change = 0

 waveletdecom(decominput);
 recon(decomout);
 do_some_conversions(reconout); //convert float to
int
 Drive_DAC(b); //send output to DAC

 }
 else { // if change isn't one,
take the wavelet transform

 waveletdecom(decominput);
 do_some_conversions(decomout); //convert float to
int

227

 Drive_DAC(b); //send output to DAC

 }

 a = 0;

 }
 else {

 }

 // __sleep();

 // __bis_SR_register(LPM0_bits | GIE); // LPM0, ADC14_ISR will
force exit
 // __no_operation(); // For debugger
 }

}

void waveletdecom(float *decominput) {

 //int number_of_samples, level, q, number_of_decomposition_levels, e;

 number_of_samples = 16;
 number_of_decomposition_levels = 4;
// float FST_signal[number_of_samples];
// float Signal[number_of_samples];
// float decomout[number_of_samples];

// while(1) {} //test loop

 //e = 0;

 //while(1) {} //test loop

 for (level = 1; level <= number_of_decomposition_levels; level++){
 number_of_samples = number_of_samples >> 1; //downsampling by 2

 for (q = 0; q < number_of_samples; q++){
 FST_signal[q] = ((decominput[q << 1] + decominput[(q << 1)
+ 1])); //approximation coefficients, A
 FST_signal[q] = FST_signal[q]*(1.00/2.00);
 FST_signal[q + number_of_samples] = (decominput[q << 1] -
decominput[(q << 1) + 1]); // detail coefficients, D

 // for (f = 0; f <= e; e++){
 // decomout[q + e] = FST_signal[q + number_of_samples]; //add
detail coefficients in order into output
 // }

228

 }

 //e = e + (number_of_samples >> 1); //counter for decomout

 for (q = 0; q < number_of_samples; q++){
 decominput[q] = FST_signal[q]; //A from current level are input
signal for the next level
 }

 // while(1) {} //test loop

 }

 // decomout[number_of_samples] = FST_signal[0]; //add final appr0ximation
coefficient, output is done
 for (q = 0; q < BLKSIZE; q++){ //get output
 decomout[q] = FST_signal[q];
 }

 // do_some_conversions(decomout); //convert float to int
 // Drive_DAC(b); //send output to DAC

 return ;
}

void recon(float *decomout){

 total_number_of_samples = 16;
 number_of_samples = 16;
 number_of_reconstruction_levels = 4;

 number_of_samples = total_number_of_samples >>
number_of_reconstruction_levels;

 for (q = 0; q < total_number_of_samples; q++){
 RST_signal[q] = decomout[q];
 }

 for (level = 1; level <= number_of_reconstruction_levels; level++){

 for (q = 0; q < number_of_samples; q++){ //reconstruction of
coefficients

 RST_signal[q << 1] = decomout[q] + ((decomout[q +
number_of_samples] + 1)*(1.00/2.00));
 RST_signal[(q << 1) + 1] = decomout[q] - ((decomout[q +
number_of_samples])*(1.00/2.00));

 }

 for(q = 0; q < number_of_samples << 1; q++){ // coefficients from
current level are input signal for next level

229

 decomout[q] = RST_signal[q];
 }

 number_of_samples = number_of_samples << 1; //upsampling by a
factor of 2

 }

 for (q = 0; q < BLKSIZE; q++){
 reconout[q] = RST_signal[q];
 }

 return;
}

void ADC14IsrHandler(void) {

 int i;

 //DISABLE INTERRUPT?????? UNTIL driVE_dac IS DONE???

 //test = ADC14MEM0; //added for testing
 decominput[a] = ADC14MEM0; //take samples

 a++;

 for (i = 200; i > 0; i--); // Delay

// do_some_conversions(test);
// Drive_DAC(b); //send output to DAC *?
}

/* void TA0_N_ISR_HANDLER(void){ //output delay timer interrupt, each
output is within the same number of cycles

 int i;

 for (j = 0; j < BLKSIZE; j++) {

 Drive_DAC(b[j]); //send output to DAC
 for (i = 200; i > 0; i--); // Delay
 }

 TA0CCR0 += 100000;
 TA0CCTL0 &= ~CCIFG;
} */

Figure A.8: Microcontroller code progress after decomposition and reconstruction

rework.

230

/* DriverLib Includes */
#include "driverlib.h"

/* Standard Includes */
#include <stdint.h>

#include <stdbool.h>

#include <SPI.h>

volatile uint8_t TXData = 1;
//volatile uint8_t RXData = 0;

/* UART Configuration Parameter. These are the configuration parameters to
 * make the eUSCI A UART module to operate with a 115200 baud rate. These
 * values were calculated using the online calculator that TI provides
 * at:
 * http://software-
dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430BaudRateConverter/index.htm
l
 */

int b;
int c;

/* SPI Master Configuration Parameter */
const eUSCI_SPI_MasterConfig spiMasterConfig =
{
 EUSCI_B_SPI_CLOCKSOURCE_SMCLK, // SMCLK Clock Source
 12000000, // SMCLK = DCO = 12MHZ
 16000000, // SPICLK = 16MHZ
 EUSCI_B_SPI_MSB_FIRST, // MSB First
 EUSCI_B_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT, // Phase
 EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH, // High polarity
 EUSCI_B_SPI_3PIN // 3Wire SPI Mode

 //__delay_cycles(30000);

 // while(1) {}
};

 void Drive_DAC(unsigned int /* * */ Value) {
 /* Polling to see if the TX buffer is ready */

 // Value=Value & 0xfff;
 // Value = Value | 0xc000; // Write DAC A
 // P5OUT &= ~BIT0; // Drive CS low
 //digitalWrite(SS_PIN,LOW); // Drive CS low
 // UCB2TXBUF=((Value >> 8) & 0xff); // write high byte
 // while(UCB2STATW & BIT0); // wait while SPI busy
 // UCB2TXBUF= (Value & 0xff); // write low byte
 // while(UCB2STATW & BIT0); // wait while SPI busy
 //digitalWrite(SS_PIN,HIGH); // Drive CS High
 // P5OUT |= BIT0; // Drive CS High

231

 P5OUT &= ~BIT0; // Drive CS low
 while
(!(SPI_getInterruptStatus(EUSCI_B2_BASE,EUSCI_B_SPI_TRANSMIT_INTERRUPT)));
 // Transmitting data to slave
 SPI_transmitData(EUSCI_B2_BASE, TXData);
 P5OUT |= BIT0; // Drive CS High

 return;
 }

int main(void)
{
 volatile uint32_t ii;

 /* Halting WDT */
 WDT_A_holdTimer();

 P5DIR |= BIT0; //set P5.0 for /CS for external DAC

 /* Selecting P3.5 P3.6 in SPI mode */
 GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P3,
 GPIO_PIN5 | GPIO_PIN6, GPIO_PRIMARY_MODULE_FUNCTION);

 /* Configuring SPI in 3wire master mode */
 SPI_initMaster(EUSCI_B2_BASE, &spiMasterConfig);

 /* Enable SPI module */
 SPI_enableModule(EUSCI_B2_BASE);

 /* Enabling interrupts */
 /* SPI_enableInterrupt(EUSCI_B2_BASE, EUSCI_B_SPI_RECEIVE_INTERRUPT);
 Interrupt_enableInterrupt(INT_EUSCIB2);
 Interrupt_enableSleepOnIsrExit(); */
 TXData = 0x01;

 c = 0 ;

 while(1) {

 for (b = 0; b < 100; b++) {

 Drive_DAC(c); //send output to DAC *

 if (b < 50) {

 TXData = 0x05;

 }

 else if (b >= 50) {

 TXData = 0x10;

232

 }

 else {

 }

 }

 }

 PCM_gotoLPM0();
 __no_operation();

}

Figure A.9: Microcontroller program written in “MSP432DriverLib” designed to output a

square wave to an external DAC.

233

#include "msp.h"
//#include "driverlib.h"

int b;
int c;
unsigned int DAC_Word;

void Drive_DAC(unsigned int /* * */ b) {
 // unsigned int DAC_Word = 0;
 DAC_Word = 0;

 int i;

 // int d; //counter

 // for (d = 0; d < BLKSIZE; d++) {
 DAC_Word = (0x1000) | (b /*[d] */ & 0x0FFF); //CHANGED FROM X1000 TO
X3000
 // 0x1000 sets DAC for Write
 // to DAC, Gain = 2, /SHDN = 1
 // and put 12-bit level value
 // in low 12 bits.
 //P5OUT |= BIT0;
 P5OUT &= ~BIT0;
 // Clear P1.4 (drive /CS low on DAC)
 // Using a port output to do this for now
 // __delay_cycles(1500);
 // for (i = 50; i > 0; i--); // Delay

 UCB2TXBUF = (DAC_Word >> 8);
 // Shift upper byte of DAC_Word
 // 8-bits to right
 while
 (!(UCB2IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 UCB2TXBUF = (unsigned char) //output at P1.6 ???? UCB0SIMO
 (DAC_Word & 0x00FF);
 // Transmit lower byte to DAC
 while
 (!(UCB2IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 for (i = 30; i > 0; i--); // Delay
 // __delay_cycles(1500);
 // Delay 150 12 MHz SMCLK periods
 // (12.5 us) to allow SIMO to complete
 P5OUT |= BIT0;
 // P5OUT &= ~BIT0;
 // Set P1.4 (drive /CS high on DAC)
 // return;

 // while(1) {} //test loop

 // for (i = 200; i > 0; i--); // Delay

234

 // }

 return;
 }

void main(void)
{

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 volatile unsigned int i;

 CS->KEY = 0x695A; // unlock CS module for register access

 CS->CTL0 = 0; // reset DCO settings

 CS->CTL0 |= CS_CTL0_DCOEN + CS_CTL0_DCORSEL_3 + 0x00000600;// +
DCOTUNE(0xFFFFFFFFFFFFFC5C); //activate DCOCLK, SMCLK = 24 MHz

 CS->CTL1 |= CS_CTL1_SELA_2 | CS_CTL1_SELS_3 | CS_CTL1_SELM_3; //SELS_3
+ DIVS_0; //select SMCLK, no division

 //CS->STAT |= CS_STAT_SMCLK_ON + CS_STAT_DCO_ON; //activate SMCLK and
DCO clock (status)

 CS->KEY = 0;

 UCB2CTLW0 |= UCSWRST; //put state machine in reset momentarily

 UCB2CTLW0 |= UCCKPL + UCMST + UCSYNC;

 UCB2CTLW0 &= ~UCMSB;

 UCB2CTLW0 |= UCMSB;

 // UCB2CTLW0 &= ~UCSLA10 + ~UCMM; //no multi-master mode, address
slave with 7-bit address

 UCB2CTLW0 |= UCSSEL_2; /* SMCLK (input clock?) */

 UCB2BR0 |= 0x00; //no SMCLK division

 UCB2BR1 |= 0x00;

 P3SEL0 |= BIT6 + BIT5; //set P3.6 output for SIMO and P3.5 for UCB0CLK

 UCB2CTLW0 &= ~UCSWRST; //initialize USCI state machine

 P5DIR |= BIT0; //set P5.0 for /CS for external DAC

235

 P5OUT &= ~BIT0; //start at zero

 c = 0 ;

 while(1) {

 for (b = 0; b < 1000; b++) {

 Drive_DAC(c); //send output to DAC *

 if (b < 500) {

 c = 4000;

 }

 else if (b >= 500) {

 c = 1000;

 }

 else {

 }

 }

 }

}

Figure A.10: Microcontroller code used for creating a square waveform from an external

DAC.

236

#include "msp.h"
#include <math.h>
#include <stdio.h>

//#include "msp.h"
//#include "driverlib.h"
int a;
//int b;
int c;
//unsigned int DAC_Word;

#define SRSIZE 49 /*size of the decomposition xform shift register */
#define BLKSIZE 16 /* input block size--must be a power of two */ //or
16??????
#define NUMFILT 2 /* number of lattice filters required */
#define HALFORD 3 /* one half of the order of the filter */
#define SRSIZEREC 26 /*size of the resonstruction xform shift register */
#define BUTTON1 BIT4 //button bit P2.4
#define BUTTON2 BIT1 //button bit P3.0? P4.0, now P4.1

float decominput[BLKSIZE]; //input to decomposition filter
float decomout[BLKSIZE]; //output of decomposition filter
float reconout[BLKSIZE]; //output of reconstruction filter
 int b[BLKSIZE]; //float to int conversion

float FST_signal[BLKSIZE];
float RST_signal[BLKSIZE];

//#define number_of_decomposition_levels 4;
//#define number_of_samples 16;
int number_of_samples, level, q, number_of_decomposition_levels, e,
total_number_of_samples;
int number_of_reconstruction_levels;
 int DAC_Word;
int change;
int j;

void Drive_DAC(int * b) {
 // unsigned int DAC_Word = 0;
 DAC_Word = 0;

 int i;

 int d; //counter

 for (d = 0; d < BLKSIZE; d++) {
 DAC_Word = (0x1000) | (b[d] & 0x0FFF); //CHANGED FROM X1000 TO X3000
 // 0x1000 sets DAC for Write
 // to DAC, Gain = 2, /SHDN = 1
 // and put 12-bit level value
 // in low 12 bits.
 //P5OUT |= BIT0;
 P5OUT &= ~BIT0;
 // Clear P1.4 (drive /CS low on DAC)
 // Using a port output to do this for now

237

 // __delay_cycles(1500);
 // for (i = 50; i > 0; i--); // Delay

 UCB2TXBUF = (DAC_Word >> 8);
 // Shift upper byte of DAC_Word
 // 8-bits to right
 while
 (!(UCB2IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 UCB2TXBUF = (unsigned char) //output at P1.6 ???? UCB0SIMO
 (DAC_Word & 0x00FF);
 // Transmit lower byte to DAC
 while
 (!(UCB2IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 for (i = 5; i > 0; i--); // Delay
 // __delay_cycles(1500);
 // Delay 150 12 MHz SMCLK periods
 // (12.5 us) to allow SIMO to complete
 P5OUT |= BIT0;
 // P5OUT &= ~BIT0;
 // Set P1.4 (drive /CS high on DAC)
 // return;

 // while(1) {} //test loop

 for (i = 50; i > 0; i--); // Delay

 }

 return;
 }

void do_some_conversions(float *decomout)
 {
 int c; //conversion counter

 for (c = 0; c < BLKSIZE; c++) {
 b[c] = (int)floorf(decomout[c]);
 b[c] = (int)ceilf(decomout[c]);
 b[c] = (int)roundf(decomout[c]);
 b[c] = (int)truncf(decomout[c]);
 b[c] = (int)rintf(decomout[c]);
 b[c] = (int)nearbyintf(decomout[c]);
 b[c] = (int)decomout[c];

 b[c] = b[c] + 3000; //add about 2.5 V to keep numbers from negative

 // b[c] = (unsigned int)decomout[c]; //make it unsigned

 b[c] = decomout[c];
 }
 }

238

void waveletdecom(float *decominput) {

 //int number_of_samples, level, q, number_of_decomposition_levels, e;

 number_of_samples = 16;
 number_of_decomposition_levels = 4;
// float FST_signal[number_of_samples];
// float Signal[number_of_samples];
// float decomout[number_of_samples];

// while(1) {} //test loop

 //e = 0;

 //while(1) {} //test loop

 for (level = 1; level <= number_of_decomposition_levels; level++){
 number_of_samples = number_of_samples >> 1; //downsampling by 2

 for (q = 0; q < number_of_samples; q++){
 FST_signal[q] = ((decominput[q << 1] + decominput[(q << 1)
+ 1])); //approximation coefficients, A
 FST_signal[q] = FST_signal[q]*(1.00/2.00);
 FST_signal[q + number_of_samples] = (decominput[q << 1] -
decominput[(q << 1) + 1]); // detail coefficients, D

 // for (f = 0; f <= e; e++){
 // decomout[q + e] = FST_signal[q + number_of_samples]; //add
detail coefficients in order into output
 // }

 }

 //e = e + (number_of_samples >> 1); //counter for decomout

 for (q = 0; q < number_of_samples; q++){
 decominput[q] = FST_signal[q]; //A from current level are input
signal for the next level
 }

 // while(1) {} //test loop

 }

 // decomout[number_of_samples] = FST_signal[0]; //add final appr0ximation
coefficient, output is done
 for (q = 0; q < BLKSIZE; q++){ //get output
 decomout[q] = FST_signal[q];
 }

239

 // do_some_conversions(decomout); //convert float to int
 // Drive_DAC(b); //send output to DAC

 return ;
}

void recon(float *decomout){

 total_number_of_samples = 16;
 number_of_samples = 16;
 number_of_reconstruction_levels = 4;

 number_of_samples = total_number_of_samples >>
number_of_reconstruction_levels;

 for (q = 0; q < total_number_of_samples; q++){
 RST_signal[q] = decomout[q];
 }

 for (level = 1; level <= number_of_reconstruction_levels; level++){

 for (q = 0; q < number_of_samples; q++){ //reconstruction of
coefficients

 RST_signal[q << 1] = decomout[q] + ((decomout[q +
number_of_samples] + 1)*(1.00/2.00));
 RST_signal[(q << 1) + 1] = decomout[q] - ((decomout[q +
number_of_samples])*(1.00/2.00));

 }

 for(q = 0; q < number_of_samples << 1; q++){ // coefficients from
current level are input signal for next level
 decomout[q] = RST_signal[q];
 }

 number_of_samples = number_of_samples << 1; //upsampling by a
factor of 2

 }

 for (q = 0; q < BLKSIZE; q++){
 reconout[q] = RST_signal[q];
 }

 return;
}

void main(void)
{

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

240

 volatile unsigned int i;

 CS->KEY = 0x695A; // unlock CS module for register access

 CS->CTL0 = 0; // reset DCO settings

 CS->CTL0 |= CS_CTL0_DCOEN + CS_CTL0_DCORSEL_3 + 0x00000600;// +
DCOTUNE(0xFFFFFFFFFFFFFC5C); //activate DCOCLK, SMCLK = 24 MHz

 CS->CTL1 |= CS_CTL1_SELA_2 | CS_CTL1_SELS_3 | CS_CTL1_SELM_3; //SELS_3
+ DIVS_0; //select SMCLK, no division

 //CS->STAT |= CS_STAT_SMCLK_ON + CS_STAT_DCO_ON; //activate SMCLK and
DCO clock (status)

 CS->KEY = 0;

 UCB2CTLW0 |= UCSWRST; //put state machine in reset momentarily

 UCB2CTLW0 |= UCCKPL + UCMST + UCSYNC;

 UCB2CTLW0 &= ~UCMSB;

 UCB2CTLW0 |= UCMSB;

 // UCB2CTLW0 &= ~UCSLA10 + ~UCMM; //no multi-master mode, address
slave with 7-bit address

 UCB2CTLW0 |= UCSSEL_2; /* SMCLK (input clock?) */

 UCB2BR0 |= 0x00; //no SMCLK division

 UCB2BR1 |= 0x00;

 P3SEL0 |= BIT6 + BIT5; //set P3.6 output for SIMO and P3.5 for UCB0CLK

 UCB2CTLW0 &= ~UCSWRST; //initialize USCI state machine

 P5DIR |= BIT0; //set P5.0 for /CS for external DAC

 P5OUT &= ~BIT0; //start at zero

 c = 0 ;

 P5SEL1 |= BIT5; // Configure P5.4 for ADC
(A1 to A0!)
 P5SEL0 |= BIT5;

 ADC14->CTL0 = ADC14_CTL0_SHT0_2 + ADC14_CTL0_ON + ADC14_CTL0_SHP +
ADC14_CTL0_SSEL_4; //+ ADC14IE15; // ADC14ON, interrupt enabled, 16 clock
samples

241

 ADC14->CTL1 = ADC14_CTL1_RES_2; //sampling resolution, 14-bit
conversion. (now 12-bit!)

 ADC14->MCTL[0] = ADC14_MCTLN_INCH_0; // input A1, P5.4 (P5.5 now!)

 ADC14->IER0 |= ADC14_IER0_IE0; // Enable ADC conv
complete interrupt

 SCB->SCR &= ~SCB_SCR_SLEEPONEXIT_Msk; // Wake up on exit
from ISR

 P4DIR &= ~BUTTON2; // button is an input
 P4OUT |= BUTTON2; // pull-up resistor
 P4REN |= BUTTON2; // resistor enabled

 P4IES &= ~BUTTON2; // interrupt on low-to-high
transition NEED CIRCUIT TO STOP FINGER FROM PRESSING BUTTON TO MUCH (BUTTON
DEBOUNCE)? WHAT AMPLITUDE DOES IT NEED TO BE TO TRIGGER THIS???
 P4IFG &= ~BUTTON2; // P2.4 IFG cleared
 P4IE |= BUTTON2; // P2.4 interrupt enabled

 __enable_interrupt(); // enable all interrupts

 NVIC->ISER[0] = 1 << ((ADC14_IRQn) & 31); // Enable ADC
interrupt in NVIC module

 // NVIC->ISER[1] = 1 << ((PORT4_IRQn) & 31);

 NVIC->ISER[1] = 1 << ((PORT2_IRQn) & 31);

 change = 0;

 while(1) {

 ADC14->CTL0 |= ADC14_CTL0_ENC | ADC14_CTL0_SC; // Start
sampling/conversion

 /* while(1){ // stop operation until button is
pushed again

 if(P2IN == BUTTON1){

 //for (i = 1000; i > 0; i--); //
Delay

 break;
 }
 else{

 }

242

 } */
 // P4IFG &= ~BUTTON2; // P3.0 IFG cleared

 // while(1){

 /* if(P2IN == BUTTON1){ //change output if button (P2.4) is
pressed

 if (change == 1){
 change = 0;
 }
 else{
 change = 1;
 }

 for (i = 1000; i > 0; i--); // Delay

 }
 else {

 } */

 if (a == 16){ // if all 16 samples are
taken, wavelet transform them.

 if (change == 0){
//deconstruct and reconstruct the signal if change = 0

 waveletdecom(decominput);
 recon(decomout);
 do_some_conversions(reconout);
//convert float to int
 Drive_DAC(b); //send output to DAC

 }
 else { // if change
isn't one, take the wavelet transform

 waveletdecom(decominput);
 do_some_conversions(decomout);
//convert float to int
 Drive_DAC(b); //send output to DAC

 }

 a = 0;

 }
 else {

 }

243

 /* if (a == 16){ // if all
16 samples are taken, wavelet transform them.

 // waveletdecom(decominput);

 do_some_conversions(decominput);
//convert float to int
 Drive_DAC(b); //send output to DAC
 a = 0;

 }
 else {

 } */

 }

}
 // ADC14_IRQHandler

void ADC14IsrHandler(void) {

 int i;

 //DISABLE INTERRUPT?????? UNTIL driVE_dac IS DONE???

 //test = ADC14MEM0; //added for testing
 decominput[a] = ADC14->MEM[0]; //take samples

 a++;

 for (i = 50; i > 0; i--); // Delay

 // do_some_conversions(test);
 // Drive_DAC(b); //send output to DAC *?
}

//void INT_PORT2_HANDLER(void){

//}
/*
void INT_PORT4_Handler(void){

 //while(1){ }

 int i;

244

 for (i = 5000; i > 0; i--); // Delay

 // while(1){ // stop operation until button is pushed
again

 // if(P4IN == BUTTON2){
 // break;
 // }
 // else{

 // }

 //
// P4IFG &= ~BUTTON2; // P3.0 IFG cleared

 //if(P4IN == BUTTON2){ //change output if button (P2.4) is pressed

 if (change == 1){
 change = 0;
 }
 else{
 change = 1;
 }

 for (i = 1000; i > 0; i--); //
Delay

 //}
 //else {

 // }

 P4IFG &= ~BUTTON2; // P4.0 IFG cleared

}
 */
void INT_PORT2_Handler(void) {

 while(1){ }
 int i;

 while(1){ // stop operation until button is pushed
again

 for (i = 10000000; i > 0; i--); // Delay

 if(P2IN == BUTTON1){

 //for (i = 1000; i > 0; i--);
// Delay

 break;
 }

245

 else{

 }

 }
 P2IFG &= ~BUTTON1; // P2.4 IFG cleared

}

Figure A.11: Code for outputting wavelet transform or reconstructed signal with working

external DAC.

246

#include "msp.h"
#include <math.h>
#include <stdio.h>

//#include "msp.h"
//#include "driverlib.h"
int a;
//int b;
int c;
//unsigned int DAC_Word;

#define SRSIZE 49 /*size of the decomposition xform shift register */
#define BLKSIZE 16 /* input block size--must be a power of two */ //or
16??????
#define NUMFILT 2 /* number of lattice filters required */
#define HALFORD 3 /* one half of the order of the filter */
#define SRSIZEREC 26 /*size of the resonstruction xform shift register */
#define BUTTON1 BIT7 //button bit P2.4, P2.7 now
#define BUTTON2 BIT1 //button bit P3.0? P4.0, now P4.1, P4.2

float decominput1[BLKSIZE]; //input to decomposition filter
float decominput2[BLKSIZE];
float decominput[BLKSIZE];

float decomout[BLKSIZE]; //output of decomposition filter
float reconout[BLKSIZE]; //output of reconstruction filter
 int b[BLKSIZE]; //float to int conversion

float FST_signal[BLKSIZE];
float RST_signal[BLKSIZE];

//#define number_of_decomposition_levels 4;
//#define number_of_samples 16;
int number_of_samples, level, q, number_of_decomposition_levels, e,
total_number_of_samples;
int number_of_reconstruction_levels;
 int DAC_Word;
int change;
int j;

int k;

void Drive_DAC(int * b) {
 // unsigned int DAC_Word = 0;
 DAC_Word = 0;

 int i;

 int d; //counter

 for (d = 0; d < BLKSIZE; d++) {
 DAC_Word = (0x1000) | (b[d] & 0x0FFF); //CHANGED FROM X1000 TO X3000
 // 0x1000 sets DAC for Write
 // to DAC, Gain = 2, /SHDN = 1
 // and put 12-bit level value

247

 // in low 12 bits.
 //P5OUT |= BIT0;
 P5OUT &= ~BIT0;
 // Clear P1.4 (drive /CS low on DAC)
 // Using a port output to do this for now
 // __delay_cycles(1500);
 // for (i = 50; i > 0; i--); // Delay

 UCB2TXBUF = (DAC_Word >> 8);
 // Shift upper byte of DAC_Word
 // 8-bits to right
 while
 (!(UCB2IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 UCB2TXBUF = (unsigned char) //output at P1.6 ???? UCB0SIMO
 (DAC_Word & 0x00FF);
 // Transmit lower byte to DAC
 while
 (!(UCB2IFG & UCTXIFG));
 // USCI_A0 TX buffer ready?
 for (i = 5; i > 0; i--); // Delay
 // __delay_cycles(1500);
 // Delay 150 12 MHz SMCLK periods
 // (12.5 us) to allow SIMO to complete
 P5OUT |= BIT0;
 // P5OUT &= ~BIT0;
 // Set P1.4 (drive /CS high on DAC)
 // return;

 // while(1) {} //test loop

 for (i = 50; i > 0; i--); // Delay

 }

 return;
 }

void do_some_conversions(float *decomout)
 {
 int c; //conversion counter

 for (c = 0; c < BLKSIZE; c++) {
 b[c] = (int)floorf(decomout[c]);
 b[c] = (int)ceilf(decomout[c]);
 b[c] = (int)roundf(decomout[c]);
 b[c] = (int)truncf(decomout[c]);
 b[c] = (int)rintf(decomout[c]);
 b[c] = (int)nearbyintf(decomout[c]);
 b[c] = (int)decomout[c];

 b[c] = b[c] + 2000; //add about 2.5 V to keep numbers from negative

 // b[c] = (unsigned int)decomout[c]; //make it unsigned

248

 b[c] = decomout[c];
 }
 }

void waveletdecom(float *decominput) {

 //int number_of_samples, level, q, number_of_decomposition_levels, e;

 number_of_samples = 16;
 number_of_decomposition_levels = 4;
// float FST_signal[number_of_samples];
// float Signal[number_of_samples];
// float decomout[number_of_samples];

// while(1) {} //test loop

 //e = 0;

 //while(1) {} //test loop

 for (level = 1; level <= number_of_decomposition_levels; level++){
 number_of_samples = number_of_samples >> 1; //downsampling by 2

 for (q = 0; q < number_of_samples; q++){
 FST_signal[q] = ((decominput[q << 1] + decominput[(q << 1)
+ 1]))*(1.000/1.414); //approximation coefficients, A
 //FST_signal[q] = FST_signal[q]*(1.00/2.00);
 FST_signal[q + number_of_samples] = (decominput[q << 1] -
decominput[(q << 1) + 1])*(1.000/1.414); // detail coefficients, D

 // for (f = 0; f <= e; e++){
 // decomout[q + e] = FST_signal[q + number_of_samples]; //add
detail coefficients in order into output
 // }

 }

 //e = e + (number_of_samples >> 1); //counter for decomout

 for (q = 0; q < number_of_samples; q++){
 decominput[q] = FST_signal[q]; //A from current level are input
signal for the next level
 }

 // while(1) {} //test loop

 }

249

 // decomout[number_of_samples] = FST_signal[0]; //add final appr0ximation
coefficient, output is done
 for (q = 0; q < BLKSIZE; q++){ //get output
 decomout[q] = FST_signal[q];
 }

 // do_some_conversions(decomout); //convert float to int
 // Drive_DAC(b); //send output to DAC

 return ;
}

void recon(float *decomout){

 total_number_of_samples = 16;
 number_of_samples = 16;
 number_of_reconstruction_levels = 4;

 number_of_samples = total_number_of_samples >>
number_of_reconstruction_levels;

 for (q = 0; q < total_number_of_samples; q++){
 RST_signal[q] = decomout[q];
 }

 for (level = 1; level <= number_of_reconstruction_levels; level++){

 for (q = 0; q < number_of_samples; q++){ //reconstruction of
coefficients

 RST_signal[q << 1] = decomout[q]*(1.000/1.414) +
((decomout[q + number_of_samples] + 1)*(1.000/1.414));
 RST_signal[(q << 1) + 1] = decomout[q]*(1.000/1.414) -
((decomout[q + number_of_samples])*(1.000/1.414));

 }

 for(q = 0; q < number_of_samples << 1; q++){ // coefficients from
current level are input signal for next level
 decomout[q] = RST_signal[q];
 }

 number_of_samples = number_of_samples << 1; //upsampling by a
factor of 2

 }

 for (q = 0; q < BLKSIZE; q++){
 reconout[q] = RST_signal[q];
 }

 return;
}

250

void main(void)
{

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 volatile unsigned int i;

 CS->KEY = 0x695A; // unlock CS module for register access

 CS->CTL0 = 0; // reset DCO settings

 CS->CTL0 |= CS_CTL0_DCOEN + CS_CTL0_DCORSEL_3 + 0x00000600;// +
DCOTUNE(0xFFFFFFFFFFFFFC5C); //activate DCOCLK, SMCLK = 24 MHz

 CS->CTL1 |= CS_CTL1_SELA_2 | CS_CTL1_SELS_3 | CS_CTL1_SELM_3; //SELS_3
+ DIVS_0; //select SMCLK, no division

 //CS->STAT |= CS_STAT_SMCLK_ON + CS_STAT_DCO_ON; //activate SMCLK and
DCO clock (status)

 CS->KEY = 0;

 UCB2CTLW0 |= UCSWRST; //put state machine in reset momentarily

 UCB2CTLW0 |= UCCKPL + UCMST + UCSYNC;

 UCB2CTLW0 &= ~UCMSB;

 UCB2CTLW0 |= UCMSB;

 // UCB2CTLW0 &= ~UCSLA10 + ~UCMM; //no multi-master mode, address
slave with 7-bit address

 UCB2CTLW0 |= UCSSEL_2; /* SMCLK (input clock?) */

 UCB2BR0 |= 0x00; //no SMCLK division

 UCB2BR1 |= 0x00;

 P3SEL0 |= BIT6 + BIT5; //set P3.6 output for SIMO and P3.5 for UCB0CLK

 UCB2CTLW0 &= ~UCSWRST; //initialize USCI state machine

 P5DIR |= BIT0; //set P5.0 for /CS for external DAC

 P5OUT &= ~BIT0; //start at zero

 c = 0 ;

 k = 0;

251

 P5SEL1 |= BIT5; // Configure P5.4 for ADC
(A1 to A0!)
 P5SEL0 |= BIT5;

 P4SEL1 |= BIT7; // Configure P4.7 for ADC
 P4SEL0 |= BIT7;

 ADC14->CTL0 = ADC14_CTL0_SHT0_2 + ADC14_CTL0_ON + ADC14_CTL0_SHP +
ADC14_CTL0_SSEL_4 + ADC14_CTL0_CONSEQ_1; //+ ADC14IE15; // ADC14ON, interrupt
enabled, 16 clock samples, sequence of channels mode for two ADC inputs

 ADC14->CTL1 = ADC14_CTL1_RES_2; //sampling resolution, 14-bit
conversion. (now 12-bit!)

 ADC14->MCTL[0] = ADC14_MCTLN_INCH_0; // input A1, P5.4 (P5.5 now!)

 ADC14->MCTL[6] = ADC14_MCTLN_INCH_6; // second input A15, P6.0, P6.1
now!, P4.7 now

 ADC14->IER0 |= ADC14_IER0_IE0; // Enable ADC conv
complete interrupt

 SCB->SCR &= ~SCB_SCR_SLEEPONEXIT_Msk; // Wake up on exit
from ISR

 P4DIR &= ~BUTTON2; // button is an input
 // P4OUT |= BUTTON2; // pull-up resistor
 // P4REN |= BUTTON2; // resistor enabled

 P4IES &= ~BUTTON2; // interrupt on low-to-high
transition NEED CIRCUIT TO STOP FINGER FROM PRESSING BUTTON TO MUCH (BUTTON
DEBOUNCE)? WHAT AMPLITUDE DOES IT NEED TO BE TO TRIGGER THIS???
 P4IFG &= ~BUTTON2; // P4.1 IFG cleared
 P4IE |= BUTTON2; // P4.1 interrupt enabled

 P2DIR &= ~BUTTON1; // button is an input
 // P2OUT |= BUTTON1; // pull-up resistor
 // P2REN |= BUTTON1; // resistor enabled

 P2IES &= ~BUTTON1; // interrupt on low-to-high
transition NEED CIRCUIT TO STOP FINGER FROM PRESSING BUTTON TO MUCH (BUTTON
DEBOUNCE)? WHAT AMPLITUDE DOES IT NEED TO BE TO TRIGGER THIS???
 P2IFG &= ~BUTTON1; // P2.4 IFG cleared
 P2IE |= BUTTON1; // P2.4 interrupt enabled

 __enable_interrupt(); // enable all interrupts

 NVIC->ISER[0] = 1 << ((ADC14_IRQn) & 31); // Enable ADC
interrupt in NVIC module

 NVIC->ISER[1] = 1 << ((PORT4_IRQn) & 31); // Enable port
interrupt for button

252

 NVIC->ISER[1] = 1 << ((PORT2_IRQn) & 31); // Enable port
interrupt for button

 change = 1;

 while(1) {

 ADC14->CTL0 |= ADC14_CTL0_ENC | ADC14_CTL0_SC; // Start
sampling/conversion

 if (a == 16){ // if all 16 samples are
taken, wavelet transform them.

 if (change == 0){
//deconstruct and reconstruct the signal if change = 0

 waveletdecom(decominput1);
 recon(decomout);
 do_some_conversions(reconout);
//convert float to int
 Drive_DAC(b); //send output to DAC

 waveletdecom(decominput2);
 recon(decomout);
 do_some_conversions(reconout);
//convert float to int
 Drive_DAC(b); //send output to DAC

 }
 else { // if change
isn't one, take the wavelet transform

 waveletdecom(decominput1);
 do_some_conversions(decomout);
//convert float to int
 Drive_DAC(b); //send output to DAC

 waveletdecom(decominput2);
 do_some_conversions(decomout);
//convert float to int
 Drive_DAC(b); //send output to DAC

 }

 a = 0;

 }
 else {

 }

253

 }

}
 // ADC14_IRQHandler

void ADC14IsrHandler(void) {

 int i;

 //DISABLE INTERRUPT?????? UNTIL driVE_dac IS DONE???

 //test = ADC14MEM0; //added for testing

 decominput1[a] = ADC14->MEM[0]; //take samples
 decominput2[a] = ADC14->MEM[6]; //take second samples
 // decominput2[a] = ADC14->MEM[6]; //take second samples

 // decominput[a] = decominput1[a];
 // decominput[a + 32] = decominput2[a];

 a++;

 for (i = 50; i > 0; i--); // Delay

 // do_some_conversions(test);
 // Drive_DAC(b); //send output to DAC *?
}

//void INT_PORT2_HANDLER(void){

//}

void INT_PORT4_Handler(void){

 //while(1){ }

 int i;

 //int u;

 //u = 0;

 //u++;

 k++;

// while(1) {

254

 if (change == 1 && (k % 2) == 0){ //check if k counter is even
(interrupt is trigger twice every button press)
 change = 0;
 }

 else if ((k % 2) == 0) {
 change = 1;
 }
 else {

 }

// }
 for (i = 1000000; i > 0; i--); // Delay

 P4IFG &= ~BUTTON2; // P4.0 IFG cleared

}

void INT_PORT2_Handler(void) {

 //while(1){ }
 int i;

 for (i = 1000000; i > 0; i--); // Delay

 while(1){ // stop operation until button is pushed
again

 // for (i = 100000; i > 0; i--); // Delay

 if(P2IN &= ~BUTTON1){ // exit interrupt
routine when the button is no longer being pushed

 // for (i = 1000000; i > 0; i--);
// Delay

 break;
 }
 else{

 }

 }
 P2IFG &= ~BUTTON1; // P2.4 IFG cleared

}

Figure A.12: Final version of microcontroller code

255

Appendix B: Expenses Table

Table B.1 below shows the individual prices of each component used in the

production and testing of the project. The total price of each component is shown at the

bottom of the table as $221.36 and datasheets are shown for certain components.

The component prices are justified by the fact that, even though the design

specifications state that the price of the device must be under $50, it is important to note

that more components must be purchased than necessary to create only one silent

communication device as failures, modifications, and multiple design approaches are

likely. Therefore, much more components must be purchased to account for multiple

circuits being built.

256

Table B.1: Component Expenses Table (Bill of Materials)

Component Expenses

Item Cost per

unit

(dollars)

Quantity Total

Cost

(dollars)

Datasheet

Breadboard 7.99 2 15.98 Acquired from calpoly IEEE office

Wire leads 0.09 50 4.50 Acquired from calpoly IEEE office

Mc33078p op-amp 0.88

(0.26 for

1 ku)

4 3.52

(1.04 for

1 ku)

http://www.mouser.com/ds/2/405/

mc33078-405489.pdf

http://www.ti.com/product/MC330

78/samplebuy

INA128P 11.57

(6.05 for

1 ku)

2 23.14

(12.10

for 1 ku)

http://www.ti.com/lit/ds/symlink/in

a128.pdf

http://www.ti.com/product/INA128

/samplebuy

100 resistor 0.03 2 0.06 Acquired from calpoly IEEE office

270 resistor 0.03 2 0.06 Acquired from calpoly IEEE office

337 resistor 0.03 2 0.06 Acquired from calpoly IEEE office

1K resistor 0.03 4 0.12 Acquired from calpoly IEEE office

5K resistor 0.03 2 0.06 Acquired from calpoly IEEE office

10K resistor 0.03 5 0.15 Acquired from calpoly IEEE office

 50K resistor 0.03 2 0.06 Acquired from calpoly IEEE office

 200K resistor 0.03 4 0.12 Acquired from calpoly IEEE office

 27K resistor 0.03 4 0.12 Acquired from calpoly IEEE office

56K resistor 0.03 2 0.06 Acquired from calpoly IEEE office

270K resistor 0.03 4 0.12 Acquired from calpoly IEEE office

http://www.mouser.com/ds/2/405/mc33078-405489.pdf
http://www.mouser.com/ds/2/405/mc33078-405489.pdf
http://www.ti.com/product/MC33078/samplebuy
http://www.ti.com/product/MC33078/samplebuy
http://www.ti.com/lit/ds/symlink/ina128.pdf
http://www.ti.com/lit/ds/symlink/ina128.pdf
http://www.ti.com/product/INA128/samplebuy
http://www.ti.com/product/INA128/samplebuy

257

Item Cost per

unit

(dollars)

Quantity Total

Cost

(dollars)

Datasheet

 2700K resistor 0.03 2 0.06 Acquired from calpoly IEEE office

135K resistor 0.03 2 0.06 Acquired from calpoly IEEE office

 160K resistor 0.03 2 0.06 Acquired from calpoly IEEE office

1M resistor 0.03 1 0.03 Acquired from calpoly IEEE office

 4.7uF capacitor 1.07 2 2.14 Acquired from calpoly IEEE office

 0.1uF capacitor 1.07 2 2.14 Acquired from calpoly IEEE office

 22pF capacitor 1.07 2 2.14 Acquired from calpoly IEEE office

 100pF capacitor 1.07 2 2.14 Acquired from calpoly IEEE office

10000pF capacitor 0.16 30 5.00 https://www.amazon.com/uxcell-0-

1uF-Voltage-Ceramic-

Capacitors/dp/B008DFCUFW/ref=

pd_lpo_328_bs_img_2?ie=UTF8&

psc=1&refRID=NH30R8S1DDQW

8SNRZCG3

470pF capacitor 1.07 2 2.14 Acquired from calpoly IEEE office

0.05MF capacitor 1.07 3 3.24 Acquired from calpoly IEEE office

390pF capacitor 1.07 2 2.14 Acquired from calpoly IEEE office

Sensor cable – Electrode

Pads (3 connector)

4.95 1 4.95 https://www.sparkfun.com/products

/12970

Audio Jack 3.5mm 1.50 1 1.50 https://www.sparkfun.com/datashee

ts/Prototyping/Audio-3.5mm.pdf

https://www.amazon.com/uxcell-0-1uF-Voltage-Ceramic-Capacitors/dp/B008DFCUFW/ref=pd_lpo_328_bs_img_2?ie=UTF8&psc=1&refRID=NH30R8S1DDQW8SNRZCG3
https://www.amazon.com/uxcell-0-1uF-Voltage-Ceramic-Capacitors/dp/B008DFCUFW/ref=pd_lpo_328_bs_img_2?ie=UTF8&psc=1&refRID=NH30R8S1DDQW8SNRZCG3
https://www.amazon.com/uxcell-0-1uF-Voltage-Ceramic-Capacitors/dp/B008DFCUFW/ref=pd_lpo_328_bs_img_2?ie=UTF8&psc=1&refRID=NH30R8S1DDQW8SNRZCG3
https://www.amazon.com/uxcell-0-1uF-Voltage-Ceramic-Capacitors/dp/B008DFCUFW/ref=pd_lpo_328_bs_img_2?ie=UTF8&psc=1&refRID=NH30R8S1DDQW8SNRZCG3
https://www.amazon.com/uxcell-0-1uF-Voltage-Ceramic-Capacitors/dp/B008DFCUFW/ref=pd_lpo_328_bs_img_2?ie=UTF8&psc=1&refRID=NH30R8S1DDQW8SNRZCG3
https://www.amazon.com/uxcell-0-1uF-Voltage-Ceramic-Capacitors/dp/B008DFCUFW/ref=pd_lpo_328_bs_img_2?ie=UTF8&psc=1&refRID=NH30R8S1DDQW8SNRZCG3

258

Item Cost per

unit

(dollars)

Quantity Total

Cost

(dollars)

Datasheet

MSP432P401R LaunchPad
12.99 2 25.98 http://www.ti.com/lit/ug/slau597/sl

au597.pdf

MSP-EXP430G2:

MSP430 LaunchPad Value

Line Development kit

9.99 1 9.99 http://www.ti.com/lit/pdf/slau318

Breadbroad buttons (4Pin

DIP Micro PCB tactile)

0.53 10 5.30 https://www.amazon.com/6x6x6m

m-Momentary-Push-Button-

Switch/dp/B01GN79QF8/ref=sr_1_

8?s=industrial&ie=UTF8&qid=147

9592532&sr=1-

8&keywords=button

MCP4921 1.97

(1.44 for

1 ku)

2 3.94

(2.88 for

1 ku)

http://ww1.microchip.com/downloa

ds/en/devicedoc/21897b.pdf

Item Cost per

unit

(dollars)

Quantity Total

Cost

(dollars)

Datasheet

LTC1658 5.70

(5.15 for

0.1 ku)

2 11.4

(10.3 for

0.1 ku)

http://cds.linear.com/docs/en/datash

eet/1658f.pdf

iMic Griffin 36.99

(sale)

1 36.99 https://www.amazon.com/Griffin-

Technology-iMic-original-

Adapter/dp/B003Y5D776/ref=sr_1

_1?ie=UTF8&qid=1479592838&sr

=8-1&keywords=imic+griffin

Meditrace electrodes 0.00 10 0.00 Given by professor

259

Item Cost per

unit

(dollars)

Quantity Total

Cost

(dollars)

Datasheet

3M Red Dot electrodes 0.00 10 0.00 Given by professor

Model M-008(YN-010)

Power Bank

22.99 1 22.99 https://www.amazon.com/INNORI-

Portable-External-22400mAh-

Capacity/dp/B00N1GREF4

Model TM10 High-power

Automobile Emergency

Mobile Power Supply

20 (sale) 1 20 http://www.lelong.com.my/high-

power-automobile-emergency-

mobile-power-supply-demac-

170677468-2016-01-Sale-P.htm

Stereo cord 0.00 1 0.00 Given by professor

Audio Jack Breakout 0.95 1 0.95 https://www.sparkfun.com/products

/10588

Biomedical Sensor Pad (10

pack)

7.95 1 7.95 https://cdn.sparkfun.com/datasheets

/Sensors/Biometric/H124SG.pdf

Total Cost (dollars): 221.36

