

A METHOD FOR EVALUATING AIRCRAFT ELECTRIC POWER SYSTEM

SIZING AND FAILURE RESILIENCY

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Cory Kenneth Kross

January 2017

ii

© 2017
Cory Kenneth Kross

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: A Method for Evaluating Aircraft Electric Power

System Sizing and Failure Resiliency

AUTHOR: Cory Kenneth Kross

DATE SUBMITTED: January 2017

COMMITTEE CHAIR: Dale Dolan, Ph.D.

 Associate Professor of Electrical Engineering

COMMITTEE MEMBER: Vladimir Prodanov, Ph.D.

 Associate Professor of Electrical Engineering

COMMITTEE MEMBER: Ahmad Nafisi, Ph.D.

 Professor of Electrical Engineering

iv

ABSTRACT

A Method for Evaluating Aircraft Electric Power System Sizing

and Failure Resiliency

Cory Kenneth Kross

 With the More Electric Aircraft paradigm, commercial commuter aircraft

are increasing the size and complexity of electrical power systems by increasing

the number of electrical loads. With this increase in complexity comes a need to

analyze electrical power systems using new tools. The Hybrid Power System

Optimizer (HyPSO) developed by Airbus SAS is a simulator designed to analyze

new aircraft power systems. This thesis project will first provide a method to

assess the reliability of complex aircraft electrical power systems before and after

failure and reconfiguration events. Next, an add-on to HyPSO is developed to

integrate the previously developed reliability calculations. Proof-of-concepts

including new data visualizations are performed and provided.

Keywords: Commercial, Aircraft, Hybrid, Electrical, Power, System, Optimization,

Reliability, Failure, Reconfiguration, Markov, Fault Tree Analysis, Dependency

Diagram

v

ACKNOWLEDGMENTS

 Thank you to Airbus SAS for sponsoring this project and providing

financial support for my travel to France. To Dale Dolan and Vladimir Prodanov:

thank you for your consistent support and advice throughout, and for your

persistence and patience. A big thank-you to Cesar Antequera-Albiac for your

guidance and technical support, and for hosting me during my visit to Toulouse.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES ...ix

LIST OF FIGURES ... x

CHAPTER

I. INTRODUCTION ... 1

SPONSORSHIP AND SIMULATOR OVERVIEW ... 2

STATEMENT OF PROBLEM .. 3

OBJECTIVE .. 5

II. BACKGROUND AND RESEARCH .. 7

AIRCRAFT POWER SYSTEMS ... 7

ELECTRIC POWER GENERATION ... 9

ELECTRIC POWER DISTRIBUTION AND MANAGEMENT 11

AIRCRAFT CERTIFICATION .. 14

III. SYSTEM RELIABILITY ANALYSIS ... 17

DEPENDENCY DIAGRAMING AND FAULT TREE ANALYSIS 18

MARKOV ANALYSIS .. 28

IV. SIMULATIONS .. 38

HyPSO SETUP ... 38

vii

RECONFIGURATION EVENT .. 43

HyPSO ADD-ON DESCRIPTION ... 48

1. GENERATE STATE SPACE ... 49

2. DISPLAY IN MATLAB DATA STRUCTURE .. 50

3. IDENTIFY TRIVIAL AND COLLAPSIBLE STATES 50

4. COLLAPSE STATE SPACE BY SUMMING PROBABILITIES 50

5. DETERMINE AVAILABLE POWER AND LOAD AVAILABILITY 51

6. GENERATE DATA VISUALIZATIONS .. 51

V. EXAMPLE ANALYTICAL APPROACH .. 52

SMALL TEST ARCHITECTURE ... 52

FULL TEST ARCHITECTURE .. 60

VI. CONCLUSION .. 67

FURTHER RESEARCH .. 69

REFERENCES ... 71

BIBLIOGRAPHY ... 73

APPENDICES

APPENDIX A - SMALL TEST ARCHITECTURE .. 77

A.1 - HyPSO NUMBERING ... 77

APPENDIX B - LARGE TEST ARCHITECTURE .. 78

B.1 - MINIMAL HyPSO NUMBERING ... 78

viii

B.2 - FULL HyPSO NUMBERING ... 79

APPENDIX C – HONEYWELL HVAC EPS [15] .. 80

APPENDIX D – HONEYWELL HVDC EPS [16] .. 81

APPENDIX E – MATLAB CODE ... 82

E.1 – “main.m” ... 82

E.2 – “buildSys.m” ... 84

E.3 – “stProb.m” .. 86

E.4 – “checksum.m” .. 87

E.5 – “elimTrivial.m” .. 88

E.6 – “aggregate.m” .. 90

E.7 – “getPwrAvail.m” .. 91

E.8 – “statusize.m” .. 94

E.9 – “nom_prob_vs_time.m” .. 95

E.10 – “precentServiced.m” ... 96

E.11 – “bar_3d.m” ... 96

E.12 – “bar_2d_avail_2fail.m” .. 98

E.13 – “bar_2d_avail.m” .. 100

E.14 – “bar_1d.m” ... 101

APPENDIX F – TRU DATASHEET [17] .. 103

APPENDIX G – CAFTA FTA, SMALL TEST ARCHITECTURE 105

ix

LIST OF TABLES

Table Page

Table 1: Summary of Airbus A380 Electric Power System 12

Table 2: Failure Condition Severity as Related to Probability Objectives [9] 16

Table 3: Summary of Event Probability Classification .. 16

Table 4: Failure Rates for Small Test Architecture Test # 1 52

Table 5: Failure Rates for Small Test Architecture Test # 2 59

x

LIST OF FIGURES

Figure Page

Figure 1: Fatal Accidents per Year in Civil Aircraft with 19 or More Passengers...2

Figure 2: Breakdown of Engine Power Generation[1] ... 8

Figure 3: Electrical Power Generation Techniques [7] .. 10

Figure 4: Sample Electrical Load Profile Over Time [3] 11

Figure 5: Physical View of Aircraft Electric Power Systems [2]........................... 13

Figure 6: Abstracted View of Boeing 787 Power Distribution [2]......................... 14

Figure 7: Fault Tree to Dependency Diagram Correspondence 19

Figure 8: Small Test Architecture in Nominal State with Labels 22

Figure 9: Dependency Diagram for AC Load 1 Failure 24

Figure 10: Dependency Diagram for AC Load 2 Failure 25

Figure 11: Dependency Diagram for DC Load Failure .. 26

Figure 12: Dependency Diagram for Any Load Failure 27

Figure 13: CAFTA Output ... 28

Figure 14: Example State Space with State Transition Rates 29

Figure 15: State Space for Small Test Architecture up to Two Failures 33

Figure 16: Example State Aggregation ... 35

Figure 17: Example of Trivial Failure States ... 36

Figure 18: Full Test Architecture with Component Labels 39

Figure 19: Test Architecture Machines Tab .. 41

Figure 20: Enable "Determine Available Power" in "Routing Node" Tab 43

xi

Figure 21: Machine Power and Efficiency .. 45

Figure 22: Available Power at Routing Nodes .. 47

Figure 23: Engine Performance .. 48

Figure 24: Aggregated State Space for Small Test Architecture (10 flt hours) ... 53

Figure 25: At Least One Unserviced Load in Small Test Architecture 54

Figure 26: Small Test Architecture, No Fails and Generator Fails 55

Figure 27: Load Availability and Available Power for Small Test Architecture 56

Figure 28: Single and Double Failures, Load Availability and Available Power .. 58

Figure 29: Aggregated State Space #2 .. 60

Figure 30: Aggregated State Space for Test Architecture 61

Figure 31: Load Availability and Available Power for Full Test Architecture 62

Figure 32: At Least One Unserviced Load in Full Test Architecture 63

Figure 33: Modified Full Test Architecture .. 65

Figure 34: Available Loads and Power for Modified Full Test Architecture 66

1

I. INTRODUCTION

 Over the past century, air travel has matured into the safest mode of

transportation per mile. The design of aircraft, especially those for commercial

commuter purposes, are heavily scrutinized by regulatory agencies. Rightly so –

a critical system failure at any point in the flight could have devastating

consequences, including significant loss of life, if there are not sufficient recovery

capabilities built into the aircraft. Recent technological advancements have

made aircraft safer and more reliable than ever. Aircraft have become so safe

that 70% of aircraft accidents leading to passenger or crew injury or death are

caused by pilot error, not by system failure [1]. The odds of loss of life due to

accident on any given flight, including general (non-commercial) aviation, are 1 in

4.7 million [2]. Only considering commercial aviation, that number drops to 1 in

45 million [3]. The 2013 calendar year had the fewest aviation related fatalities

on record since World War II at 459 worldwide [3]. By comparison, there are

forty thousand deaths per year in the United States alone related to motor vehicle

accidents [4]. Figure 1 shows the downward trend in fatal accidents over time.

Nevertheless, with new technologies comes increasing system complexity, and

with increases in complexity come increased risk. To mitigate the risk of

catastrophic failure in complex systems, the reliability of the system must be

evaluated with methods that accommodate current and future technologies.

2

Figure 1: Fatal Accidents per Year in Civil Aircraft with 19 or More Passengers [2]

SPONSORSHIP AND SIMULATOR OVERVIEW

 Airbus SAS, a leading commercial aircraft manufacturer, has sponsored

this project to further research in the area of aircraft failure and reconfiguration.

Airbus SAS, hereby known as the Sponsor, has provided a proprietary software

simulator called Hybrid Power System Optimizer, hereafter known as HyPSO or

“the Tool” for short. HyPSO performs steady-state analysis of aircraft power

systems, taking into consideration mechanical power, electrical power, thermal

flows and other parameters to optimize the system for minimal fuel consumption.

It is a highly flexible tool, able to simulate any mission (flight plan) in varying

levels of detail as required by the user. Inputs to the system include “Engine

Decks” (a highly detailed, proprietary description of the fuel burn characteristics

3

of the aircraft engine), detailed load and machine profiles, airframe and drag

characteristics, mission profiles, and atmospheric conditions. Finally, HyPSO

has the capabilities to simulate failures in the aircraft, and to reconfigure the

power system to recover from these failures. Simulated failures and power

system reconfiguration will be the main function of the Tool exercised in this

project. Most other simulation types require the Engine Deck, but this data is

heavily guarded by the industry. The Sponsor is a division of Airbus Group SE, a

European aerospace and defense corporation, whose primary competitors are

United States aerospace corporations, including Boeing in the civil aircraft space.

As the author of this project is a United States citizen, the Sponsor could only

provide limited resources as per company policy. Those resources excluded

Engine Decks, thereby limiting the scope of this project.

STATEMENT OF PROBLEM

 The leading cost driver in commercial airliners is fuel. A medium haul

aircraft (3-6 hours of flight time) will achieve a fuel efficiency anywhere from

70-100 miles per gallon per seat. A Boeing 737-400 will burn approximately

12,000 kg of fuel on a 2000 nautical mile flight – the distance from Los Angeles

to New York. Fuel burn is very closely related to the mass of the aircraft. A

reduction of one kilogram of mass in the aircraft will save $4,500 in a short or

medium haul aircraft over twenty years of operation [5]. In a competitive

commercial airliner market, there is a strong motivation to reduce operating

costs, in part by reducing the weight of the aircraft. By reducing the weight of the

4

aircraft, the Sponsor could achieve a competitive advantage in the marketplace.

In the electrical power system, weight is tied to power handling. Increasing the

power consumed by the aircraft will increase the weight of the systems needed to

generate and manage the power. Thus, system optimization is needed to

minimize the electrical power consumption in order to reduce the weight of the

power system.

 Recently, the aerospace industry has been influenced by the “More

Electric Aircraft” paradigm, which is driving the reduction of pneumatic,

mechanical, and hydraulic power systems in favor of electrical systems.

Pneumatic, mechanical, and hydraulic systems are generally mature

technologies that have been in operation for many decades. Industry-wide

acceptance and knowledge of these technologies contributes to widespread

ability to maintain these systems. Moving to new technologies requires

maintenance crews to undergo additional training, and the risk of making

mistakes during maintenance increases when crews are unfamiliar with the new

systems. There must be sufficient competitive advantage in new technologies for

airlines to forgo mature technologies and purchase new, cutting-edge aircraft. It

is difficult to say that replacing other power systems with electrical systems will

reduce operating costs by increasing the overall maintainability of the aircraft;

therefore, at universities and in industry, research is ongoing to determine the

benefits of More Electric Aircraft with respect to fuel burn. If more research is

performed on the viability and benefits of electrical systems, then the industry

5

may be able to develop More Electric Aircraft that better serve their customers

and increase sales.

Legacy systems are mature, and there is a significant amount flight

heritage and data backing up their reliability. With the move to more electrical

systems, designers are relying on analytical tools such as HyPSO to show that

these newer systems will be as safe and those they are replacing while

improving overall system performance in terms of fuel burn. Proving that

electrical systems are superior to other power types is out of the scope of this

project. Instead, the objective is to add to the growing pool of research

describing how a More Electric Aircraft will operate. Specifically, this project will

provide a method by which the reliability of aircraft electrical power systems can

be assessed using HyPSO. Using this method, the Sponsor may use the Tool to

simulate the reliability of future More Electric Aircraft power systems.

OBJECTIVE

 During flight, system failures may occur in the electric power system which

reduces the amount of electrical power available to the system. At the system

level, simulators are used to show that the electrical architecture will be able to

handle all loads, even in a state of reduced power availability. Redundancy is

built into electrical power distribution networks to prevent loss of power to

electrical loads after system failures, thereby increasing the reliability of the

electric power system. However, redundancy increases the mass of the aircraft,

6

thereby operating costs through increased fuel burn. There is a trade-off

between increased reliability through redundancy and aircraft mass. The

objective of this project is to provide a methodology and framework that aircraft

electrical power systems designers may use to optimize the reliability and mass

of the aircraft. The first phase of this project was the development of a MATLAB

add-on to HyPSO to assist in failure simulations in conjunction with the Tool’s

existing capabilities. The add-on performs analysis of the large amounts of data

generated by the Tool. A data structure is provided to store the simulation data,

and data visualizations were built to increase the usefulness of data structure by

simplifying data comprehension.

 Sizing the engines and generators is a complicated problem that

requires significant amounts of data such as electrical load profiles; therefore,

sizing is out of the scope of the project. In the first phase of the project, a

general optimization framework was built in the MATLAB add-on to assist

designers in power system sizing. The second phase of the project is a

proof-of-concept of the add-on, the objective of which is to increase the available

power at the generators while maintaining at least the same amount of reliability

in the electrical network. If the available power is increased, then either the

electrical networked may be downsized to decrease weight thereby reducing

operating cost, or more electrical loads may be added to improve the customer

experience and allow customers to gain a competitive edge in the market.

7

II. BACKGROUND AND RESEARCH

AIRCRAFT POWER SYSTEMS

 During normal flight operations, engines generate all power consumed

throughout the aircraft. Engines burn jet fuel to generate power. Traditionally,

the engine generates five types of power: thrust, electrical, pneumatic, hydraulic,

and mechanical. Power plants are built into the engine to generate electrical

power. A general quantitative breakdown of power generation for a conventional

aircraft is shown in Figure 2. Most of the useful power extracted from the jet fuel

is converted into propulsion thrust, but about 5% goes towards the other forms of

power [5]. Only about 0.2% of the total engine power is consumed by electrical

systems [6]. With More Electric Aircraft, the proportion of total power consumed

by electrical systems is expected to increase.

8

Figure 2: Breakdown of Engine Power Generation[1]

 Due to the minor contribution of electrical power generation to fuel burn,

electrical efficiency does not contribute significantly to fuel efficiency. However,

improved electrical power efficiency does reduce waste heat generation, which is

an important consideration in a closed environment such as an aircraft. Thermal

management is a large topic in aircraft design, and one that HyPSO explores in

detail. Reducing heat production through increased electrical efficiency will

reduce the amount of weight needed for thermal management, providing another

way that improved electrical systems can reduce operating costs.

 Pneumatic power is high pressure air that is bled from the engine and

used for wing de-icing and air conditioning, among other uses. This form of

power is in the process of being phased out – the Boeing 787, Boeing’s latest

9

commercial airliner, uses electrical heaters and compressors for de-icing and

environmental control[15].

Mechanical power, used for fuel pumps and flight control surface actuation

is also being phased out. Previously gearbox-driven mechanical pumps are now

powered by electric motors.

Hydraulic power is generated by hydraulic pumps attached to the gearbox

of the engine. Its main uses are for actuation of flight control surfaces, landing

gear extension and retraction, and ground steering and braking. Engine shaft-

driven hydraulic pumps are being replaced with electric pumps.

These are just a few examples of how power systems and loads are

changing within the More Electric Aircraft paradigm, and the reason why power

system research with respect to reliability and mass is currently in demand.

ELECTRIC POWER GENERATION

 There are several common electrical power generation topologies:

constant speed drive, variable speed constant frequency, and variable frequency

systems, as seen in Figure 3. Conventional aircraft use one of the topologies

that generate a constant 400Hz AC voltage. Due to the increase of variable

frequency tolerant loads, the variable frequency technique is becoming more

common. Variable frequency requires the least amount of front end mechanical

structures and power electronics[8]. Two commuter aircraft that have recently

reached the market, the Boeing 787 and the Airbus A380, both use this

technique. The Boeing 787 has four 150kVA generators supplying four main

10

230V 380-800Hz distribution bus bars. Many of the architectures researched

have four main electrical generators. In Appendices C and D, two Honeywell

architectures are given that employ two engines with two generators per engine.

The four generator topology will be the main architecture used for this project.

Figure 3: Electrical Power Generation Techniques [7]

 When the aircraft manufacturer collaborates with an engine manufacturer,

electrical power generation is of less importance than the key design point

characteristics – take-off weight, cruising altitude, and thrust. Thus, the

generator is bound by design decisions already made for the engine design, such

as torque output and rotations per minute. Generators are designed or selected

based on key parameters such as efficiency, power output during normal use,

maximum power output (usually occurring in emergency situations), and time

allowable at maximum power output. Data about the specific engine in use and

11

the load profile of the aircraft would be needed to size a generator. In particular,

the engine data is highly confidential and depends greatly on the specific

application. Secondly, load profiles, such as in Figure 4, require thorough testing

and statistical models to describe them. Choosing a specific generator is a

significant sizing and optimization problem that requires a computer simulator

such as HyPSO. Generators are sized to accommodate generator failure, which

is a key point that this project will explore.

Figure 4: Sample Electrical Load Profile Over Time [3]

ELECTRIC POWER DISTRIBUTION AND MANAGEMENT

 Since the electrical power generation is self-contained, the power

management must also be self-contained. There are several different types of

electrical loads that require different voltage types and magnitudes. For

example, wing ice protection is essentially a heater, so it may utilize variable

frequency AC input. Cockpit avionics are computers, so they require clean,

regulated DC voltage. All of this power management occurs within electrical

12

panels throughout the aircraft. The Primary Electrical Power Distribution Center

(PEPDC) houses the main power distribution, management, and protection

devices. It is split into its redundant sections: side 1 and side 2. The PEPDC

supplies the Secondary Electrical Power Distribution Centers (SEPDCs) and

Secondary Power Distribution Boxes (SPDBs), which contain protective devices

such as circuit breakers, contactors, and, more recently, solid state power

controllers (SSPC). On the Airbus A380, there are two such SEPDCs and eight

SPDBs. The Airbus A380, which first flew in 2005, has some features of the

MEA trend, while retaining some conventional systems. A summary of the power

distribution and management systems in the A380 is given in Table 1.

Table 1: Summary of Airbus A380 Electric Power System

4 Turbofan engines

4 150kVA, 360-800Hz AC generators

2 120kVA, 400Hz Auxiliary Power Unit (APU)

4 External Power Connections (400 Hz) for ground power

1 70kVA Ram Air Turbine

3 300A Battery charge regulator units (BCRU) (regulated Transformer Rectifier
Units)

1 300A Transformer Rectifier Unit (TRU)

3 50Ah Batteries

1 Static Inverter

1 300A APU TRU (for APU starting)

1 50Ah TRU Battery (for APU starting)

 The Boeing 787, first flying in 2009, is a good example of a More Electric

Aircraft. The physical layout for the Boeing 787 is given in Figure 5. The PEPDC

corresponds to the forward E/E bay, the SEPDC corresponds to the aft E/E bay,

and the SPDBs are the remote power distribution units. It has four 250kVA

13

variable frequency generators. The Environmental Control System is the largest

electrical load, consuming about 500kVA. Hydraulic motor pumps draw about

400kVA, and the wing ice protection system draws 100kVA[15]. A view of

Boeing 787 power distribution is provided in Figure 6: Abstracted View of Boeing

787 Power Distribution [2].

Figure 5: Physical View of Aircraft Electric Power Systems [2]

14

Figure 6: Abstracted View of Boeing 787 Power Distribution [2]

AIRCRAFT CERTIFICATION

 The United States and the European Union have entered into the Bilateral

Aviation Safety Agreement that governs civil aircraft airworthiness certification.

The US is governed by the Federal Aviation Administration (FAA), and the EU by

the European Aviation Safety Agency (EASA). This agreement allows simplified

15

certification processes in one region after the other region has already certified

the aircraft. Aircraft airworthiness certification is an incredibly lengthy and

rigorous process, and the aircraft design processes are developed to meet the

requirements of certification. One major component to this certification is Safety

Assessment [9].

 Safety Assessment is performed throughout the aircraft development

cycle and involves lengthy system risk and hazard assessment. Part of this

assessment is the Failure Modes and Effects Analysis (FMEA), where specific

failure mechanisms are identified in each system, subsystem, and component.

Oftentimes FMEA involves a quantitative analysis of the failure rate of the

component under examination. For the purposes of this project, it will be

assumed that quantitative FMEA has been performed on each of the systems

under examination. These analyses are out of the scope of this project, and the

data from testing and actual system failure analysis performed in industry is

unavailable due to the restrictions discussed in the Sponsorship and Simulator

Overview section.

 The FAA and the EASA (shown as JAA in Table 2) have defined allowable

event occurrence rates for different levels of failure severities. Table 2 details the

allowable failure rates per flight hours for a given failure effect. For example, a

catastrophic failure, one which “prevents safe flight and landing,” must be

extremely improbable or occur at a rate less than 1E-9 per flight hour, a 1 in a

billion chance of occurring over one hour of flight. Failures that occur frequently,

or more than once in 1000 flight hours, must have a minor severity classification,

16

meaning that its effect causes a “slight reduction in safety margin” or “some

inconvenience to occupants.” The EASA probability classifications shall be used

in this project, as summarized in Table 3.

Table 2: Failure Condition Severity as Related to Probability Objectives [9]

Table 3: Summary of Event Probability Classification

Probability
(Qualitative)

> 1E-3 1E-3 to 1E-5 1E-5 to 1E-7 1E-7 to 1E-9 < 1E-9

Rate of
Occurance

Frequent Reasonably
Probable

Remote Extremely
Remote

Extremely
Improbable

Classification Minor Major Hazardous Catastrophic

17

III. SYSTEM RELIABILITY ANALYSIS

 Reliability may be defined as the probability that no failure will occur over

a given time period. Depending on the context, reliability could have different

meanings for aircraft power systems. In the context of safety, a reliable aircraft is

one that will not experience catastrophic system failure. Catastrophic system

failures are incredibly rare, so for the purposes of this project the definition

should be narrowed.

Airlines are service companies that depend on customer satisfaction to

retain their business. If the customer has a bad experience on an aircraft, they

will choose a different airline for their next flight, and the airline may choose a

different aircraft manufacturer to improve customer experience. A bad

experience could result from the failure of a non-safety related electrical load,

such as the in-flight entertainment system. For a commercial aircraft, all loads

are considered essential for the customer experience.

In this context, a reliable electrical power system is one that supplies all

electrical loads with power during the entire flight. The reliability 𝑅 of the power

distribution system is calculated from 𝑃, the probability any electrical load will not

be serviced with power:

𝑅 = 1 − 𝑃

Aircraft designers must maintain sufficient redundancy in the electrical network

such that if any particular component fails during the flight, its redundant system

may accommodate the failed component and continue to supply loads with

18

power. Redundancy increases the reliability of the system by decreasing the

probability that a load will not be serviced.

DEPENDENCY DIAGRAMING AND FAULT TREE ANALYSIS

 Two common methods of quantitative reliability analysis are dependency

diagraming and fault tree analysis. These methods are used to determine the

reliability of complex systems using the component failure rates determined

through FMEA as previously described. The parameter of interest is the

probability that any particular electrical load will be without power. The

probability of failure of aircraft systems are generally given in units of flight hours;

for example, the chance that a given load will be without power in any flight hour

is the probability 𝑃.

 A fault tree is a graphical structure that contains all of the failure modes of

the system and the interrelationships of failure modes. A fault tree describes the

many ways that a system can fail. This method uses traditional logic gates to

structure probabilistic events. An “OR” gate is equivalent to systems in series: if

one of the systems fail then the entire series chain of systems fails. For

example, if an AC/DC converter fails, each load supplied by the converter also

fails because it is without power. An “AND” gate is equivalent to redundant

systems in parallel: all of the parallel components must fail for the system to fail.

For example, if a load is supplied by two AC/DC converters, both converters

must fail for the load to be without power.

19

A dependency diagram is a block diagram representation of a system,

where the blocks are components within the system. An unbroken chain from

beginning to end represents an operational system. The components have a

probability of failure 𝑃, and if their failures cause the chain to be broken, then the

system as a whole will fail. Figure 7 shows the correlation between a fault tree

gate and the corresponding dependency diagram segment. If failure event 1

(described by P1) occurs, then the series system represented by an OR gate will

fail, but the parallel system described by the AND gate will remain functional.

The parallel system described by the AND gate will fail if both failure event 1 and

failure event 2 (P2) occurs.

Figure 7: Fault Tree to Dependency Diagram Correspondence

 This is the essence behind redundancy. By adding components in

parallel, there is a backup component in case one of the components fails. By

identifying and anticipating component failures, system designers can add

components in parallel to increase the reliability of the system as a whole.

20

From the equations given next, it is apparent that adding more

components in series will increase the probability that the system will fail. Adding

redudant components in parallel decreases the probability that the system will

fail.

𝑃𝑠𝑒𝑟𝑖𝑒𝑠 = 1 − ∏(1 − 𝑃𝑖)

𝑃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = ∏ 𝑃𝑖

 These concepts are demonstrated with a small test architecture given in

Figure 8: Small Test Architecture in Nominal State with Labels. This diagram

was built in yEd, a graphing tool, using a custom palette built by Airbus. Using

this software, diagrams of the electrical power systems are built as inputs to

HyPSO. HyPSO reads the components and interconnections in the graph and

creates a description of the power system within the simulator. From there, the

user inputs data describing each component. This simple test architecture will be

used throughout this project as a proof of concept. There are two turbofan

engines that each drive a generator. The generator supplies an AC bus, and

each AC bus supplies an AC load. In reality, a bus bar supplies many loads, but

for the purposes of this project the loads will be combined and represented by a

single consumer of power. The AC buses also supply Transformer Rectifier

Units (TRUs), which rectify the voltage to supply DC buses. Each DC bus, in

turn, supplies a DC load (also a combined representation of many loads).

 The small test architecture in Figure 8 is in a nominal state, meaning that it

is operating normally with no failures in the system. The power paths,

21

represented by solid arrows, show the direction of power flow through the

system. Brown arrows are mechanical power, e.g. the shaft of the engine driving

an electrical generator. Green arrows are flows of electrical power. Dashed

green arrows are reconfigurable power paths. In reality, a reconfigurable path is

a contactor – a large switch that enables or disables a power path. In nominal

states, the contactors in the reconfigurable paths are open and power is not

flowing on that path. When failures occur, the contactors can close to allow

power to flow along the reconfigurable path.

22

Figure 8: Small Test Architecture in Nominal State with Labels

 This is a conventional, although simplified, representation of an aircraft

power system. It is also within the capabilities of HyPSO to interpret the

components in this architecture in various ways. The generators could be

interpreted as DC generators supplying DC buses. The TRUs could be

23

interpreted as DC-DC converters supplying lower voltage buses, or inverters

supplying AC buses. The Tool is flexible and generic in that it does not require a

specification of the voltage types or magnitudes for the buses, so the user may

represent them however they wish. For example, the TRU does not actually

perform any voltage rectification within the Tool. A TRU simply represents the

efficiency loss a TRU would have on the power system. It would also generate

heat, which is not represented in Figure 8 but would be analyzed by aircraft

designers using the Tool. The manufacturer of the TRU would provide the

aircraft designers data for the Tool that describes the efficiency of the TRU under

varying amounts of load. The output power of the TRU is less than the input

power, depending on the power draw. This property applies to any voltage

converter, AC-DC, DC-DC, or otherwise, thus this TRU block can represent any

such converter.

 Fault tree analysis and dependency diagramming were performed on this

simple architecture to validate the process. For this project three modes of

failure will be analyzed, but this method can and should be extended to include

other failure modes. The three components set to fail are the generators, TRUs,

and bus bars.

Assume the following probabilities of failure for one hour of flight (these

values will be used throughout the project):

𝑃𝐵 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑏𝑢𝑠 𝑏𝑎𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 ∗ 10−6

𝑃𝐺 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 7 ∗ 10−4

𝑃𝑇 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇𝑅𝑈 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 8 ∗ 10−5

24

 In other words, the probability of a bus bar failing in a given flight hour is 1

in 1,000,000. The probability of a generator failing is 7 in 10,000 per flight hour.

The probability of a TRU failing is 8 in 100,000 per flight hour.

 Note for that the TRU may be treated as an electrical load of the AC bus

bar. Just like the other loads attached to the bus bar, the TRU only has one input

power path such that it may only be supplied by the AC bus bar. The probability

that a load will fail, or not be supplied with power from the bus bar, is represented

by the dependency diagram in Figure 9.

Figure 9: Dependency Diagram for AC Load 1 Failure

For AC Load 1 to fail to be supplied with power, AC Bus 1 must fail, OR

Generator 1 AND Generator 2 OR AC Bus 2 must fail. If AC Bus 1 fails, there is

no possible way power can reach AC Load 1, so it will fail regardless of the state

of Generator 1, Generator 2, and AC Bus 2. However, if Generator 1 fails, AC

Bus 1 can still be supplied with power by Generator 2. For this to occur, the

contactor on Reconfigurable Path 1 will close, thereby supplying AC Bus 1 via

AC Bus 2. In this failure state, if a second failure occurs in Generator 2 or Bus

bar 2, no power available is from either of the two redundant paths, and AC Load

1 fails.

25

PAC_Load1 in Figure 9 is represented by the equations below. There is a 2

in a billion chance that a failure will occur in a given flight hour leading to the loss

of power to AC Load 1.

𝑃𝐴𝐶_𝐿𝑜𝑎𝑑1 = 1 − (1 − 𝑃𝐵𝐴𝐶1)(1 − 𝑃𝐺1[1 − (1 − 𝑃𝐵𝐴𝐶2)(1 − 𝑃𝐺2)])

𝑃𝐴𝐶_𝐿𝑜𝑎𝑑1 = 1 − (1 − 2 ∗ 10−9)(1 − 1 ∗ 10−9[1 − (1 − 2 ∗ 10−9)(1 − 1 ∗ 10−9)])

= 2 ∗ 10−9

The dependency diagram in Figure 9 and the equations above also apply

to AC Load 2 in a mirrored fashion by swapping first side components for second

side. This scenario is shown in Figure 10. Assuming that the components in

both of the redundant paths have equal probabilities of failing (e.g., PBAC1 =

PBAC2), the probability that AC Load 2 will not be powered is equal to the

probability that AC Load 1 will not be powered. This parallelism between the two

sides of the aircraft will be leveraged in the system reliability analysis.

Figure 10: Dependency Diagram for AC Load 2 Failure

The probability that DC Load 1 will not be powered is described by the

dependency diagram in Figure 11.

26

Figure 11: Dependency Diagram for DC Load Failure

This structure is slightly more complicated because there are more paths

through which DC Load 1 can be supplied with power, since the load is

“downstream” from both reconfigurable paths. Now both contactors may be used

to route power to the load. Note that the probability of AC Load 1 and AC Load 2

being without power are included in this dependency diagram. The calculation

for PLoad_AC1 represents the probability that power cannot flow from AC Bus 1 to a

load on the bus, either through normal means or through Reconfigurable Path 1.

As previously mentioned, the TRU may be seen as a load of the AC bus;

therefore PAC_Load1 also represents the probability that power is not supplied to

TRU 1. The probability that DC Load 1 is without power is given below:

𝑃𝐷𝐶_𝐿𝑜𝑎𝑑1 = 1 − (1 − 𝑃𝐵𝐷𝐶1)(1

− [1 − (1 − 𝑃𝑇𝑅𝑈1)(1 − 𝑃𝐴𝐶_𝐿𝑜𝑎𝑑1)][1

− (1 − 𝑃𝐵𝐷𝐶2)(1 − 𝑃𝑇𝑅𝑈2)(1 − 𝑃𝐴𝐶2)]

𝑃𝐷𝐶_𝐿𝑜𝑎𝑑1 = 1 − (1 − 2 ∗ 10−9)(1

− [1 − (1 − 3 ∗ 10−9)(1 − 2 ∗ 10−9)][1

− (1 − 2 ∗ 10−9)(1 − 2 ∗ 10−9)(1 − 2 ∗ 10−9)])

𝑃𝐷𝐶_𝐿𝑜𝑎𝑑1 = 2 ∗ 10−9

27

The probability that any load will be without power is represented by the

dependency diagram in Figure 12 and calculated below:

𝑃 = 1 − (1 − 𝑃𝐴𝐶_𝐿𝑜𝑎𝑑)
2

(1 − 𝑃𝐷𝐶_𝐿𝑜𝑎𝑑)
2

𝑃 = 1 − (1 − 2 ∗ 10−9)2(1 − 2 ∗ 10−9)2

𝑃 = 8 ∗ 10−9

Figure 12: Dependency Diagram for Any Load Failure

Therefore, the reliability of the system is:

𝑅 = 1 − 𝑃 = 1 − 8 ∗ 10−9

 This result was confirmed with fault tree analysis, using the analogous

representation in Figure 7. For the fault tree constructed to represent the small

test architecture, refer to Appendix G. The calculation was performed in a tool

developed by the Electric Power Research Institute. The tool, Computer Aided

Fault Tree Analysis (CAFTA), is able to model large, complex systems with many

different modes of failure. By evaluating the ANYLOAD node at the top of the

fault tree in Appendix G, the tool’s results match that of the calculation. The

output is given in Figure 13. The probability that any load will be without power is

given by the ANYLOAD output. The individual load failures are given by nodes

G005 (PACLoad1), G011 (PACLoad2), G017 (PDCLoad1), and G023 (PDCLoad2) (see

Appendix G) which each have a probability of 2*10^-9. This result matches the

dependency diagrams and associated calculations.

28

Figure 13: CAFTA Output

MARKOV ANALYSIS

 The main disadvantage to using dependency diagramming or fault tree

analysis to analyze a complex system such as an aircraft power system is that

these methods can only evaluate a single event. For the previous example, only

the probability of any load becoming unavailable was found. This method cannot

describe the multitude of ways in which the distribution network can supply all

loads. If an electrical generator fails, it is still possible to reconfigure the network

and supply all loads with power. For highly reconfigurable aircraft power

systems, a different method is needed to describe the many different

configurations of the architecture, even those which have all loads supplied with

power. Markov analysis is a methodology that is used to describe highly

reconfigurable systems with many system states.

 In Markov analysis, the system is described by “states,” which each

unique state denoting a particular configuration of the system. The “state space”

describes all possible states, or configurations, of a system. The state space is

defined as all possible states the system can be in. Figure 14 shows an example

of a Markov state space. If Figure 14 is considered a complete description of the

system, then the state space S = {1 2 3 4 5}. For any given time t, the system

29

must be in one of the states in the state space. Thus, the probability that the

system will be in one of the states in S at time t is 1, or guaranteed. The property

is represented by the equation below:

∑ 𝑃𝑛(𝑡)

𝑆

𝑛=1

= 1

Transitions between states occur at a particular “rate of transition.” There

are five states in this state space, identified as 1 through 5, and the transition

rates between states are given by . Note that any given state may have

multiple inputs and multiple outputs.

Figure 14: Example State Space with State Transition Rates

In Figure 14, the rate of transition between state 1 and state 3 is given

by a. Rates are given in terms of flight hours: event “a” will occur a times per

flight hour. A feasible value would be a = 10^-4 events per flight hour. Given

this rate, it is probable that event “a” will occur once every 1/a flight hours, or

once every 10,000 flight hours. If event “a” does occur, the system in Figure 14

will transition from state 1 to state 3. From state 3, events “c” or “d” could occur,

transitioning the system to states 4 or 5, respectively.

30

 In general, 𝑃𝑛(𝑡) is the probability that the system will be in state 𝑛 at

time 𝑡. For the system in Figure 14, the probabilities of being in each of the

states are given by the differential equations below [4]. The rates of exiting a

state are factored in as negatives, and the rates of entering the states are

positive.

𝑑𝑃1(𝑡)

𝑑𝑡
= −𝑎𝑃1(𝑡)

𝑑𝑃2(𝑡)

𝑑𝑡
= −𝑏𝑃2(𝑡)

𝑑𝑃3(𝑡)

𝑑𝑡
= 𝑎𝑃1(𝑡) + 𝑏𝑃2(𝑡) − (𝑐 + 𝑑)𝑃3(𝑡)

𝑑𝑃4(𝑡)

𝑑𝑡
= 𝑐𝑃3(𝑡)

𝑑𝑃5(𝑡)

𝑑𝑡
= 𝑑𝑃3(𝑡)

 By solving this system of ordinary differential equations, the probability of

being in any particular state may be determined. The solution to these equations

is too length to be included here. Clearly, this problem becomes highly

complicated even for small state spaces. Each state has an associated ordinary

differential equation, and the equations are interrelated. MATLAB is employed to

solve the set of equations. The function stProb.m in Appendix E.3 was built to

solve ordinary differential equations for this analysis.

 In the context of aircraft electrical power systems, a state is a particular

configuration of the contactors of the system. The Nominal state has the main

path contactors closed, the reconfigurable path contactors open, and all

31

components functioning normally. The Small Test Architecture of Figure 8 is in

its nominal state: all components of the system are operational, and

Reconfigurable Path 1 and 2 are both open (not conducting). Markov analysis of

architectures will always begin in the Nominal state. In other words, the initial

condition of the system is Nominal: at time t=0 the probability of being in the

nominal state is 1, or guaranteed.

𝑃𝑛𝑜𝑚(𝑡)|𝑡=0 = 1

 From Nominal, the state space is traversed over time as failure events

occur. These failure events occur at the rates given by the transition rates.

 For the analysis in this project, the state space will be considered to up to

two failures; therefore, two state transitions can occur. It is possible that three

random failures could occur, and this analysis could easily be extended to

include these cases, but the probability of three random failures occurring is so

low that these events may be ignored. This brings up an important consideration

regarding this analysis: a failure will be considered as independent to all other

failures – meaning that a failure will not increase or decrease the chance of

another failure occurring. In reality, it is feasible that a failure could propagate

from one system to another, causing a second system to fail, or at least causing

the rate of failure for the second system to increase dramatically.

 Figure 15 shows the complete state space for up to two failures when

considering the small test architecture in Figure 8. For this analysis, we will

consider failures for three types of systems: generators, transformer rectifier

units, and buses. In practice, this analysis should be extended to other systems

32

that may fail such as wiring, contactors, engines, loads, etc. Obviously, the more

components that are considered, the larger the state space will be. Larger state

spaces are more difficult to comprehend and manage during analysis. For a

large, complex power system with many different failure modes and

configurations, there could be thousands of possible states. This system of

ordinary differential equations is too complicated to solve by hand. An

automated tool is needed, and MATLAB is chosen to perform the calculations. In

addition, this analysis will consider only the most important, top-level failure

cases without regard of the actual mode of failure. A generator has many failure

modes, but they will be abstracted out and one failure rate will be assigned to the

generator.

33

Figure 15: State Space for Small Test Architecture up to Two Failures

34

 For the small test architecture of Figure 8, eight systems total can fail: 2

generators, 2 TRUs, and 4 buses. The state space for up to two failures is 65

states, as shown in Figure 15. Each of these states describes a configuration of

the system. Each state in its particular configuration can be described in reality

as having certain power flow through each component, certain power generation

levels by each of the generators, and certain load availability. This is a large

amount of information to store for each state. However, this information is not

always unique. One state may have the same characteristics and configuration

as another state. Among these 65 states, there are redundancies that allow for

the state space to be simplified.

Figure 16 shows the procedure by which states may be aggregated. This

example shows a case in which effectively the same state is reached by two

different series of transitions. If both generators 1 and 2 fail, the order of the

failures does not affect the outcome – the configuration and the power flow of the

resultant state is the same whether generator 1 or 2 fails first. However, the

failure rates for generator 1 and generator 2 may be different. One generator

may be older than the other, or just recently undergone maintenance. The

calculations below show that due to the different failure rates, P1 and P2 are

different. This means that to combine identical states, each path to that state

must be considered, and the probabilities must be summed together. It is not

sufficient to simply multiply a state probability by the number of times an identical

state occurs. In summary, the order in which systems fail DOES affect the

35

probability of a state occurring. However, the state configuration and parameters

(available power, load availability) DO NOT depend on failure order.

Figure 16: Example State Aggregation

Another instance in which states may be aggregated are trivial cases.

Trivial cases are identified by this rule: if a bus fails, the configuration of the

Reconfigurable Paths stays the same if a machine supplying, or supplied by, the

bus also fails. Figure 17 illustrates this point. In this example, AC Bus 1 has

failed and is removed from the architecture. There is no longer a path for

Generator 1 to send power to, and no path for TRU 1 to receive power from.

Therefore, if Generator 1 or TRU 1 fails, there will be no appreciable change to

36

the architecture configuration or parameters. In the same manner as the

previous example of Figure 16, the two cases may be added to the single failure

(AC Bus1) state: the case in which AC Bus1 fails then Generator 1 fails, and the

case in which AC Bus 1 fails then TRU 1 fails.

Figure 17: Example of Trivial Failure States

37

 This is only one example of state aggregation due to trivial states. An

aircraft designer performing Markov analysis could identify other rules that

denote trivial states, further simplifying the state space.

38

IV. SIMULATIONS

The Hybrid Power System Optimizer (HyPSO) tool is a complex simulator

that is capable steady-state calculations of power system parameters, including

mechanical and electrical power flows, thermal generation and dissipation, and

thrust. Components within the systems, such as engines, generators, and

transformers, can be described to great detail using efficiency curves, thermal

characteristics, minimum and maximum output power, and other parameters that

are determined through testing or provided by the component manufacturers.

HyPSO SETUP

The architecture of the power system is first built in the yEd tool using a

custom palette. A HyPSO setup is performed for the Full Test Architecture in

Figure 18. This is a more realistic architecture than the Small Test Architecture

of Figure 8. The Full Test Architecture is based on the Airbus A380. For this

project, the components used will be mainly electrical power generators,

distributors, converters, and consumer, but there are other types of systems

available in the palette such as mechanical (e.g. gearboxes) and thermal (e.g.

heatsinks). This architecture includes Essential buses and Sheddable buses,

which are a common feature of aircraft electrical power systems. Essential

buses must always be powered – if they are not, it could lead to a catastrophic

failure of the aircraft. Sheddable buses are the opposite – in the event of an

emergency, they are the first bus to be shed if there is not enough power

39

available to power other loads. For this analysis, we will assume that power

cannot be routed through Essential and Sheddable buses to other buses.

Figure 18: Full Test Architecture with Component Labels

The architecture in Figure 18 is labeled for human comprehension. The

various electrical machines that will be analyzed are labeled, and electrical paths

are shown in green. Reconfigurable electrical paths, or paths with a contactor

that is normally open, are dashed green lines. The Tool requires that the

machines, bus bars, and paths be numbered so that the Tool may interpret them

40

and parse them into the various tabs of the simulator. The architecture as

numbered for HyPSO is provided as a reference in Appendix B.

 For a very detailed system simulation, a lot of sensitive data is required.

This data includes machine efficiency curves and load profiles. This data is not

publicly available, so it could not be incorporated into the simulations performed

for this project. Appendix F shows an example of a publicly available product

sheet for a TRU – it does not include the data required to perform system

simulations. Figure 19 shows the input to the Tool to represent the machines,

without this sensitive data. Machines are either generators or TRU. In this

example, Machines 1 through 4 are generators, and Machine 5 through 8 are

TRUs. Generators are assumed to have a 100% efficiency, because the

parameter of interest, available power at generators, is not affected by efficiency

loss. TRUs are assumed to have a 90% efficiency. These values are

represented by the Efficiency Vector. In reality, this Efficiency Vector would be

variable over load. In other words, the efficiency of the machine changes with the

electrical load on the machine. The other parameters, Path Out Thermal,

Minimum Power, Continuous Power, Max Power, Time at Max Power, and Heat

to Environment, are all parameters involved in sizing of the electrical network. As

previously discussed, sizing is out of the scope of this project. In addition, these

parameters were unavailable for this project.

41

Figure 19: Test Architecture Machines Tab

 Since engine failures are not being considered for this method, the

efficiency curve of the generator is of no concern. In reality, the generator will

achieve peak efficiency at a particular output, but this data is not readily available

to the public. For this project, it is assumed that the engine is able to supply to

the generator as much power as it needs, so the engine may be abstracted out of

the problem. For all architectures under test, the generator will be able to supply

a maximum of 100kW of power, with an efficiency of 100% over its entire output

range. Hypothetically, if the generator was considered to have 80% efficiency

while maintaining 100kW output that would simply mean that the engine would

have to supply 125kW to the generator, which is possible in this scenario. The

main parameter of interest, the available power at the output of the generator, is

not affected by the efficiency of the generator.

 When considering how to reconfigure the network after a failure, the

efficiency of the TRU comes into consideration. It becomes a load balancing

problem, where the efficiency could be maximized after a reconfiguration event

by choosing to supply more power through one TRU than through another. This

optimization problem is out of the scope of this project. It would be necessary to

42

have data on the efficiency curves of TRUs used in aircraft. Instead, TRUs will

be considered to have a 90% efficiency over the entire output range.

 The main parameters of interest in the HyPSO simulation are the available

generator power and load availability. Available generator power is determined

at the output routing node (bus bar) of the generator and is defined by the total

power able to be supplied to the bus, minus the power consumed by loads

attached to the bus, or downstream of the bus:

𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑃𝑚𝑎𝑥 𝑠𝑢𝑝𝑝𝑙𝑖𝑎𝑏𝑙𝑒 − 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

For example, in the small test architecture of Figure 8, if Generator 1 is

capable of producing a maximum of 100kW of power, AC Load 1 and DC Load 1

are each consuming 10kW of power, and the efficiency of TRU 1 is 90%, then

the available power at AC Bus 1 is calculated as follows:

𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝐴𝐶 𝐵𝑈𝑆 1) = 100𝑘𝑊 − (10𝑘𝑊 +
10𝑘𝑊

90%
) = 78.9𝑘𝑊

This means that at AC Bus1, there is 78.9kW of power that can be used to

supply an increase in load demand. If Generator 2 fails, then the network can be

reconfigured such that some of the 78.9kW of available power is directed to the

loads on the second side that need it.

 In the HyPSO tool, to determine the power available at a routing node

(bus bar), “Determine Available Power” must be enabled in the “Routing Nodes”

tab, as shown in Figure 20. Available power will be determined for the routing

nodes at the output of each generator, such that the available power for each

generator will be obtained.

43

Figure 20: Enable "Determine Available Power" in "Routing Node" Tab

RECONFIGURATION EVENT

 A reconfiguration event is demonstrated using the large test architecture.

Generator 2 is set to fail at a simulation time of 200 seconds. The failure can be

seen in the Machine Power and Efficiency curve of Figure 21: Machine 2

(generator) drops to an output power of 0kW at 200s.

 A reconfiguration event also occurs at 200s. The contactor of

Reconfigurable Path 20 closes and current begins to flow from Routing Node 3 to

Routing Node 4. Thus, Generator 1 is supplying the loads that Generator 2 can

no longer supply. We can see from the graph that, indeed, Generator 2 is now

supplying double its original load since each side of the network has identical

loads.

 Finally, at 400s the second possible reconfiguration configuration is

demonstrated. Reconfiguration Path 20 opens so that Generator 1 is no longer

supplying power to the second path, and Reconfiguration Path 13 closes such

44

that Generator 4 is now supplying power to the second path. This is a significant

change because now Engine 2 is supplying electrical power to three paths and

Engine 1 is supplying one path, whereas from 0-400s both engines were

supplying two paths each. From the graph we can see that now Machine 4,

(Generator 4) is supplying double the output power.

 Perhaps a more significant graph is the Available Power at the routing

nodes. The available power is determined by the different of the power being

generated upstream to that of the power drawn by loads downstream. So for

Routing Node 3, the available power is the difference between the power being

generated by Generator 1, and the power being consumed by Load 1 and

Machine 5 (TRU 5).

45

Figure 21: Machine Power and Efficiency

 The tool has several outputs, of which these graphs are just a few. An

aircraft designer may be most interested in parameters such as Fuel Flow in

0 100 200 300 400 500 600
0

20

40

60

80

100

Time, s

O
u
tp

u
t
P

o
w

e
r,

 k
W

mach 1 (gen)

mach 2 (gen)

mach 3 (gen)

mach 4 (gen)

mach 5 (tr)

mach 6 (tr)

mach 7 (tr)

mach 8 (tr)

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Time, s

E
ff
ic

ie
n
c
y

46

Figure 23 or Available Power in Figure 22. The analysis performed hereafter will

mostly be concerned with Available Power. As previously discussed, analyzing

available power will assist aircraft designers in sizing problems. Markov analysis

is first used to determine which states are most likely to occur. The Tool can

then be used to simulate a reconfiguration event to reach that state. In that state,

data on the available power may be collected. Using the state with the worst

case available power, the generator can be downsized to minimize the excess

Available Power.

47

Figure 22: Available Power at Routing Nodes

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

900

1000

Time, s

P
o
w

e
r

A
v
a
ila

b
le

,
k
W

route 1

route 2

route 3

route 4

route 6

route 7

48

Figure 23: Engine Performance

HyPSO ADD-ON DESCRIPTION

Before Markov analysis may be performed on the system, the system

needs to be built and described in HyPSO. It begins in yEd, with the custom

palette previously described. See Appendix A and Appendix B for the yEd

0 100 200 300 400 500 600
0

50

100

150

Time, s

O
u
tp

u
t
P

o
w

e
r,

 k
W

eng 1 (tf)

eng 2 (tf)

Total

0 100 200 300 400 500 600
4000

4500

5000

5500

Time, s

F
u
e
l F

lo
w

,
lb

m
/h

r

0 100 200 300 400 500 600
0

100

200

300

400

Time, s

F
u
e
l C

o
n
s
u
m

e
d
,
k
g

49

architectures with HyPSO numbering used for the analysis in this project. These

architectures are imported into HyPSO, and the Tool automatically parses and

creates the simulation environment. The only manual input required is the

machine efficiency curves and the enabling of Available Power calculations

discussed in the HyPSO Setup section.

The procedure for performing Markov analysis will be performed in the

following steps:

1. Generate state space with state probabilities

2. Display in MATLAB data structure

3. Identify trivial and collapsible states

4. Collapse state space by summing state probabilities

5. Determine available power and load availability and attach to collapsed

states

6. Generate data visualizations

These steps will now be discussed in detail:

1. GENERATE STATE SPACE

Using the Symbolic Math Toolbox provided by MATLAB, the system of

differential equations may be solved. This is achieved in the stProb.m function

(see Appendix E.3). Given the system state space structure and the number of

flight hours to simulate over, this function will computer the probability of each

state being reached over the number of flight hours. Flight hours can also be

50

input as an array (a MATLAB row vector) to simulate over several ranges of flight

hours at the same time.

2. DISPLAY IN MATLAB DATA STRUCTURE

 Next, in MATLAB, a data structure is used to store and organize the

system description. The data structure is built in buildSys.m (see Appendix E.2).

The data structure is formatted as a tree. The top level of the tree is the nominal

system state with no failures. It contains the probability that no failures will occur

over the flight hours The next level of the tree is the state of the system after a

single failure. Each of these states contains an equation representing the

probability that the state will occur after a number of flight hours. The three level

of the tree is the state of the system after three failures. At the moment, this data

structure only contains three levels. However, it would be genericized to include

more levels, each new level representing a new failure.

3. IDENTIFY TRIVIAL AND COLLAPSIBLE STATES

 The rules for collapsing states are discussed in the Markov Analysis

section. A MATLAB script is written to execute these rules in elimTrivial.m seen

in Appendix E.5.

4. COLLAPSE STATE SPACE BY SUMMING PROBABILITIES

 The collapsible states identified in step 3 are then combined in the

MATLAB data structure. To combine the states, the probabilities of being in the

51

collapsible states are summed. The MATLAB script that performs this summing

is aggregate.m seen in Appendix E.6.

5. DETERMINE AVAILABLE POWER AND LOAD AVAILABILITY

 The next step is to extract the Available Power and load availability data

from the HyPSO simulation and attach it to the data structure. First, the HyPSO

simulation should be run to generate the required data. The failure and

reconfiguration events are auto-populated in the Tool using the statusize.m script

in Appendix E.8. Next, the output of the simulator is parsed and attached to the

data structure built in steps 1-4. This action is performed by getPwrAvail.m seen

in Appendix E.7. Since HyPSO is also developed in MATLAB, it is a simple task

to extract the output of the simulator and attach it to the data structure such that

the relationship between the state space and available power may be

determined.

6. GENERATE DATA VISUALIZATIONS

 Now that the data structure has been built by creating the state space,

collapsing the sate space, running a HyPSO simulation, and parsing the output

data, we need a method to view the data in a comprehendible way. MATLAB

has strong graphing tools that were employed for this purpose. Several data

visualizations were developed and shall be discussed in the next section. The

data visualization MATLAB code is seen in Appendix E.9 through Appendix E.14.

52

V. EXAMPLE ANALYTICAL APPROACH

SMALL TEST ARCHITECTURE

 This method was tested on the small test architecture of Figure 8. The

test was performed with the failure rates given in Table 4:

Table 4: Failure Rates for Small Test Architecture Test # 1

Type
MACH1
MACH2

MACH3
MACH4

BUS1
BUS2

BUS3
BUS4

Name
GEN1
GEN2

TRU1
TRU2

AC1
AC2

DC1
DC2

Fail
Rate

7E-4 8E-5 1E-6 1E-6

 After aggregation but before eliminating trivial states, a diagram of the

state space is generated, as in Figure 24. This figure shows the probabilities that

each state in the state space will occur after 10 flight hours. It is color coded by

rate of occurrence. Note that the “Probability of Failure” axis is on a logarithmic

scale. From this diagram it is clear that if a particular aircraft has a 10 hour route,

either Machine 1 or Machine 2 (Generators 1 or 2) will fail frequently. In a

slightly more frightening case, it is reasonably probable that both Machines 1 and

2 will fail at the same time. It is also reasonably probable that either TRU 1 or

TRU 2 (Machines 3 or 4) will fail. All other states are remote or for all practical

purposes will never occur. This diagram is useful for seeing which states should

be focused on and planned for. If designers know that it is reasonably probable

that Generators 1 and 2 can fail at the same time, then a mitigation plan can be

developed.

53

Figure 24: Aggregated State Space for Small Test Architecture (10 flight hours)

 In Figure 25, the probability of at least one load not being serviced with

power is shown over time. After 10 flight hours, there is a 9*10^-5 chance, or

about 1 in 11,000 chance that an electrical load will be without power. For a 10

hour route, if the failure rates remain constant than at least one flight in 11,000

will see a load failure.

54

Figure 25: At Least One Unserviced Load in Small Test Architecture

 Figure 26 displays probabilities over a much longer time period. This view

could be useful for scheduling maintenance on the aircraft generators. Since

Figure 24 showed that we will frequently encounter generator failures, we can

see exactly how much time it will take to almost guarantee a generator failure.

Note that the Probability axis is on a logarithmic scale. The probability that there

will be absolutely no failure on the aircraft decreases logarithmically. At about

500 flight hours is a critical point: this is when there is a higher probability that

there will be at least 1 generator failure becomes greater than no failure

occurring at all. Perhaps at this point generator maintenance should be

scheduled. Also notice how the chance of only one generator failure actually

decreases in time after an inflection point at about 1000 flight hours. This is

because it is becoming more likely that there will be additional failures, so the

single failure state would transition to a multiple failure state.

55

Figure 26: Small Test Architecture, No Fails and Generator Fails

 Figure 27 takes into consideration both the load availability and the

Available Power at each of the generators for each of the single failure states.

For the small test architecture, the only way a single failure can cause a load

outage is if the bus bar that the load is attached to fails. According to this

hypothetical system, bus bars are resilient systems that don’t fail as often as the

machines. The low probability of the load outage occurring makes it less

significant of a consideration when designing redundancy into the network.

56

Figure 27: Load Availability and Available Power

for Small Test Architecture (10 hours)

57

 In the second subplot, the available power for each of the generators is

displayed. This chart shows the difference from nominal. For example, if

Generator 1 usually has 80 kW of available power and it fails, there is now 80kW

less available power than the nominal case. Thus, -80kW available for

Generator 1, and -20kW available for Generator 2 because it now has to

compensate for the loads the Generator 1 used to be supplying. In this example,

Generator 1 had a maximum output power of 100kW. After it fails there is a total

of 100kW less power available in the network, which is why the available power

of Generator 1 and Generator 2 add up to -100kW.

 From Figure 27 it is apparent that either Generator 1 or 2 failing causes

the highest deficit of available power. When considering just one failure, this

would be the “sizing case.” The sizing case means that the generators would be

sized based on how much available power there was in the network after one of

the generators has failed.

 It is also important to consider positive available power. This means that

there is more available power at the generator now than before the failure. For

the DC bus bar failure case, there is about 10kW more available power than

before. It can be inferred from this data that the 10kW load attached to the DC

bus bar is no longer being serviced with power.

58

Figure 28: Single and Double Failures,

Load Availability and Available Power (10 hours)

 The plot in Figure 28 expands the plot from Figure 27 to include double

failure states. Here there is a full view of the architecture. This plot will begin to

get cluttered, however, as larger state spaces are considered.

59

 The state space shown in Figure 24 has a symmetric feel to it only

because the failure rates provided for the systems are simple examples.

Hypothetically, after a round of testing and FMEA, designers could find that DC

Bus 2 (Bus 4) is particularly susceptible to failure and has a higher rate than

other buses. The state space is regenerated in Figure 29 using the values of

Table 5 to provide a more realistic view of what a state space make look like in

practice. The advantage of viewing these plots in MATLAB is the ability to rotate

the graph and get a full view of the system.

Table 5: Failure Rates for Small Test Architecture Test # 2

Type
MACH1
MACH2

MACH3
MACH4

BUS1
BUS2

BUS3
BUS4

Name
GEN1
GEN2

TRU1
TRU2

AC1
AC2

DC1
DC2

Fail
Rate

7E-4
5E-4

1.2E-4
8E-5

6E-6
3E-6

1E-6
1E-3

60

Figure 29: Aggregated State Space #2

FULL TEST ARCHITECTURE

Figure 30 displays the state space for the full test architecture, previously

shown in Figure 18. The failure rates used for this run are the same as those

used for the small test architecture in Table 4.

61

Figure 30: Aggregated State Space for Test Architecture

62

Figure 31: Load Availability and Available Power for Full Test Architecture

 In Figure 31, the available power is now divided amongst the four

generators, as opposed to 2 in the previous example. There are too many states

for the single and double failure plot (analogous to Figure 28) to be useful in this

case.

63

 Compared to the smaller architecture, the full test architecture has a

higher chance of having at least one load unserviced, as seen in Figure 32. At

the end of 10 flight hours, there is a 1.2E-4 probability, or about 1 in 8300, that a

load will fail, compared to 1 in 11000 for the smaller architecture. This is due to

the fact that there are more ways in which a load can be unserviced. For

example, there are now 12 buses instead of 4, any if any one of the buses fail

then a load is unserviced. If all of the buses on both architectures are said to fail

at the same rate, then the architecture with 3 times as many buses will have a 3

times higher chance of a load failing due to a bus failure.

Figure 32: At Least One Unserviced Load in Full Test Architecture

 These data visualization tools are useful for comparing two similar

architectures to see which one is more advantageous. They can be used as a

64

rating method to objectively determine which architecture is cheaper, safer, or

both.

 Electric power architecture designers must strike a balance between

operating costs and safety/reliability. Sufficient redundancy must be built into the

network to ensure passenger safety. However, too much redundancy will

unnecessarily add excess weight to the aircraft, significantly increasing operating

costs. Contactors in particular are significant sources of weight. If a contactor

could be eliminated from the network without a significant increase in risk, then

the aircraft manufacturer could increase its competitiveness in the marketplace

by lowering operating costs.

 To see if contactors can be eliminated safely, the test architecture of

Figure 18 will be modified to remove Reconfigurable Paths 5 and 8. This is

equivalent to removing two contactors from the network. The modified

architecture is given in Figure 33. The HyPSO numbering matches the reference

given in Appendix B.

 For this analysis, only the states in which Reconfigurable Paths 5 and 8

are closed are needed. All other data will remain the same. The probability of

reaching a state in which these paths would be closed remains the same, since

the system components and failure rates do not change. The main variable that

will change is the available power. Figure 34 can be directly compared to Figure

31. By running multiple simulations on slightly modified architectures, designers

can determine which architecture is superior.

65

Figure 33: Modified Full Test Architecture

66

Figure 34: Available Loads and Power for Modified Full Test Architecture

67

VI. CONCLUSION

 As more research and development is performed in the aerospace

industry in the field of More Electric Aircraft, better tools are needed to analyze

increasingly complex aircraft electric power systems. Airbus developed the

HyPSO tool to simulate hybrid power systems. There are many outputs to the

Tool,, one of which is the Available Power at bus bars. Available power is an

important parameter in the sizing of electric power systems. The Tool is capable

of simulating failures in various power systems, and reconfiguring the power

system as would be done in an actual failure scenario. This feature was

employed heavily in the analysis performed in this project.

 To predict which types of failures would be most common, and thus of

most concern and deserving of the most attention, Markov analysis was

performed. A state space was created assuming a few failure modes.

Transitioning between states occurs when a failure occurs. The probability of

being in each state was calculated. An add-on to the HyPSO tool was created in

MATLAB to perform the calculations involved in Markov analysis. The add-on is

structured around a tree data structure which contains each of the states in the

state space. MATLAB solves the system of ordinary differential equations – one

equation representing each state in the state space. The solution to the set of

equations is the probability that a state will be reached in a certain amount of

time. The data structure stores the equation associated with each state with

respect to time t, so several time values may be input, generating probability over

time. The add-on generates failure and reconfiguration events and

68

auto-populates the events into HyPSO. Once a HyPSO simulation is run, data

associated with each failure and reconfiguration event is parsed and stored in the

data structure in the state associated with the event.

 In an actual analysis of a real aircraft power system, the architecture input

into HyPSO is likely to be much more complex than the architectures analyzed in

this project. In addition, several more failure modes may be programmed into the

add-on. In this case, there may be massive amounts of data generated and

stored into the data structure. To assist in data analysis, several data

visualizations were created in MATLAB. These data visualizations help the user

to draw connections between probable failure states and the Available Power in

these states. Two use cases were performed, where the data visualizations

were employed to analyze a small and a full test architecture. The data

visualizations were helpful in predicting when a critical failure would occur, or

when an electrical load would be without power. They can also be used for other

purposes, such as scheduling generator maintenance. Finally, plots of Available

Power were developed to be used for power system sizing.

Available Power is the primary parameter involved in sizing of aircraft

power systems. Using the data structure created as an add-on to HyPSO tool,

aircraft designers can determine which failure states are most likely to occur.

Using the existing output of HyPSO, which is parsed into the data structure by

the add-on, designers may determine the Available Power at the generator in

these likely-to-occur states. They may then size the generators appropriately so

that as many electrical loads as possible are serviced during a failure. If a

69

generator may be down-sized, weight is saved in the aircraft, thereby reducing

the amount of fuel during flight. When fuel is saved, operating costs are

decreased, and the aircraft manufacturer can gain a competitive advantage in the

marketplace.

FURTHER RESEARCH

 HyPSO could benefit from several changes and additions to the software.

First, a better mechanism to cause the failure of bus bars (routing nodes) should

be implemented. For this project, the main input power path was disconnected

(set to zero) in order to fail the routing nodes. This method could cause errors if

the routing node is connected to another source of power, especially another

routing node. The automatic failure feature built in this add-on does not check for

other input power paths to the routing node. In reality, if a bus bar fails, nothing

can supply or be supplied by the bus bar. It is not sufficient to say that the input

power path is failed.

 Secondly, the Tool could benefit from a “load availability” feature. Instead

of just declaring that the simulation constraints have been violated, report the

number of loads that are unable to be supplied with power, or the magnitude of

the power shortage. It appears that there is no correlation to the values in

opt.constrVio and the amount of the actual power shortage. Thus, only a binary

output can be inferred: if there is a constraint violation, then there must be at

least one load that is not properly supplied with power, and if there is no

constraint violation, all loads are supplied with power.

70

 The add-on developed in this project could be expanded to extend its

functionality. The simplest and most effective expansion would be the addition of

new data visualizations. The user may be interested in different results other

than those presented here. With the provided data structure, simple

manipulations can assist the user in better understanding the system under test.

The add-on may be expanded to include three or more failure states.

 The Markov chain presented here is non-recoverable. When a state is

entered, it is not possible to return to the original state. In reality, systems are

repairable. There is a chance that the system can return to a previous state.

This return is described by a transition rate, same as the progression transition

rates used in this analysis. Repairable systems as described in ARP4761 [9]

could be implemented in this add-on. Since HyPSO mostly centers around

mission-based simulations, e.g. a single flight at a time, this project did not cover

repairable systems, which is more of an aircraft lifecycle or up-time concern.

 This method could be useful if built on the MATLAB Simulink platform. A

Simulink block could describe a state, then connections between the blocks

would be described by transition rates. In this way, a state space could be built

in as a block diagram, with the back-end code hidden to the user. This would

greatly assist in the usability of the add-on and in the comprehension of the

complex state space of the system.

71

REFERENCES

[1] Shappell, S., Detwiler, C., Holcomb, K., Hackworth, C., Boquet, A. and

Wiegmann, D. (2007). Human Error and Commercial Aviation Accidents:

An Analysis Using the Human Factors Analysis and Classification System.

Human Factors, 49: 227-242.

[2] “Accident Statistics.” www.planecrashinfo.com. Accessed 03 June 2015.

[3] Mouawad, Jad; Drew, Christopher, “Airline Industry at Its Safest Since the

Dawn of the Jet Age.” The New York Times, 11 February 2013. Accessed

09 September 2015. http://nyti.ms/18oXqeS

[4] “Death Rate per Year.” The Bureau of Aircraft Accidents Archives. Geneva,

Switzerland. www.baaa-acro.com/

[5] “Motor Vehicle Accidents—Number and Deaths: 1990 to 2009.” U.S. National

Highway Traffic Safety Administration, Traffic Safety Facts, annual; and

unpublished data.

http://www.census.gov/compendia/statab/2012/tables/12s1103.pdf

[6] Brombach, J.; Schroter, T.; Lucken, A.; Schulz, D., "Optimized cabin power

supply with a +/− 270 V DC grid on a modern aircraft," Compatibility and

Power Electronics (CPE), 2011 7th International Conference-Workshop ,

vol., no., pp.425,428, 1-3 June 2011.

[7] Wheeler, Pat. “The More Electric Aircraft: Why Aerospace Needs Power

Electronics.” University of Nottingham, Nottingham, UK

[8] Ahmed Abdel-Hafez (2012). Power Generation and Distribution System for a

More Electric Aircraft - A Review, Recent Advances in Aircraft

72

Technology, Dr. Ramesh Agarwal (Ed.), ISBN: 978-953-51-0150-5,

InTech, Available from: http://www.intechopen.com/books/recent-

advances-in-aircraft-technology/more-electric-aircraft

[9] Sinnet, Mike. “787 No-Bleed Systems: Saving Fuel and enhancing operational

efficiencies,” Boeing. Aero Quarterly, 4th quarter 2007.

[10] Rafal, K., et al. "Hybridization of an aircraft emergency electrical network:

Experimentation and benefits validation." Vehicle Power and Propulsion

Conference (VPPC), 2010 IEEE. IEEE, 2010.

[11] ARP4761 “Guidelines and Methods for Conducting the Safety Assessment

Process on Civil Airborne Systems and Equipment” Aerospace

Recommended Practice, Society of Automotive Engineers. Issued Dec 01

1996, S-18, Aircraft And Sys Dev And Safety Assessment Committee.

[12] Michalko, Rodney G. "Electrical starting, generation, conversion and

distribution system architecture for a more electric vehicle." U.S. Patent

No. 7,439,634. 21 Oct. 2008.

[13] Yue, Edwin, Jean-Luc Derouineau, Wayne Y. Pearson. “Paralleled HVDC

bus electrical power system architecture.” U.S. Patent No. 7,936,086. 3

May 2011.

[14] PS462 Datasheet “200 Amp Transformer/Rectifier Unit” L-3

Communications, Marine & Power Systems. http://www.l-

3mps.com/products/products-details.aspx?id=220

[15] Moir Ian, Seabridge Allan. Aircraft Systems: Mechanical, Electrical and

Avionics Subsystems Integration 3rd, 2008; 9780470059968

73

BIBLIOGRAPHY

Boudjit, K. ; Korzet, W. ; Nacer, A. ; Moulai, H. ; Larbes, C. “DSP use in

distribution power grids - A new approach for high impedance ARC faults

detection” Electrical Systems for Aircraft, Railway and Ship Propulsion

(ESARS), 2012

Brombach, J.; Jordan, M.; Grumm, F.; Schulz, D. "Converter topology analysis

for aircraft application", Power Electronics, Electrical Drives, Automation

and Motion (SPEEDAM), 2012 International Symposium on, On page(s):

446 – 451

Brombach, J.; Lücken, A.; Nya, B.; Johannsen, M.; Schulz, D. "Comparison of

different electrical HVDC-architectures for aircraft application", Electrical

Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012, On

page(s): 1 – 6

Brombach, J; Schröter, T.; Lücken, A.; Schulz, D. "Optimizing the Weight of an

Aircraft Power Supply System through a +/-270 VDC Main Voltage", in

PRZEGLA̧D ELEKTROTECHNICZNY (Electrical Review), PL ISSN 0033-

2097, R. 88 NR 1a/2012, pp. 47-50

Dolan, Dale, Taufik. “Advanced Power Electronics” EE411 Course Booklet, 2011.

Dolan, Dale, Taufik. “Introduction to Power Electronics” EE410 Course Booklet,

2011.

Eisenhauer, Mark Paul, and Gary Bowman. "Redundant electrical DC power

system for aircraft." U.S. Patent No. 6,344,700. 5 Feb. 2002.

74

La, Jae-Du, et al. "An adaptive control of the bidirectional DC/DC converter with

the capacitive energy storage in the more and all-electric aircraft

systems."Electrical Machines and Systems (ICEMS), 2010 International

Conference on. IEEE, 2010.

Maldonado, Miguel A., and George J. Korba. "Power management and

distribution system for a more-electric aircraft (MADMEL)." Aerospace and

Electronic Systems Magazine, IEEE 14.12 (1999): 3-8.

Michalko, Rodney G. "Electrical starting, generation, conversion and distribution

system architecture for a more electric vehicle." U.S. Patent No.

7,439,634. 21 Oct. 2008.

Montgomery, R. and Galloway, S., "An Optimisation Based Design Approach for

Aircraft Electrical Power Systems," SAE Int. J. Aerosp. 7(1):44-52, 2014,

doi:10.4271/2014-01-2121.

Norman, P. J., S. J. Galloway, and J. R. McDonald. "Simulating electrical faults

within future aircraft networks." Aerospace and Electronic Systems, IEEE

Transactions on 44.1 (2008): 99-110.

Phatiphat Thounthong, Stephane Raël, Bernard Davat, Energy management of

fuel cell/battery/supercapacitor hybrid power source for vehicle

applications, Journal of Power Sources, Volume 193, Issue 1, 1 August

2009, Pages 376-385, ISSN 0378-7753,

http://www.sciencedirect.com/science/article/pii/S0378775308024981.

Rakhra, P., et al. "Toward optimising energy storage response during network

faulted conditions within an aircraft electrical power system." Electrical

http://www.sciencedirect.com/science/article/pii/S0378775308024981

75

Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012. IEEE,

2012.

Reddy, V. V. K., and M. Sydulu. "A heuristic-expert based approach for

reconfiguration of distribution systems." Power Engineering Society

General Meeting, 2007. IEEE. IEEE, 2007.

Roboam, Xavier. "New trends and challenges of electrical networks embedded in

“more electrical aircraft”." Industrial Electronics (ISIE), 2011 IEEE

International Symposium on. IEEE, 2011.

Rosero, J. A., et al. "Moving towards a more electric aircraft." Aerospace and

Electronic Systems Magazine, IEEE 22.3 (2007): 3-9.

Taliaferro, James Bryan. "Power distribution expert system." U.S. Patent No.

7,369,921. 6 May 2008.

Terörde, M.; Lücken, A; Schulz, D. “Weight saving in the electrical distribution

systems of aircraft using innovative concepts” International Journal of

Energy Research, Volume 38, Issue 8, pages 1075–1082, 25 June 2014

Volp, Jeffrey A. "Fault-tolerant power distribution system." U.S. Patent No.

4,659,942. 21 Apr. 1987.

Wu, Jian Jun, Wei Wan, and Peng Wu. "Design of Aircraft Electrical Load

Management Center." Advanced Materials Research 268 (2011): 546-551.

Xu, Huan. “Design, Specification, and Synthesis of Aircraft Electric Power

Systems Control Logic.” Dissertation, California Institute of Technology.

Pasadena, California, May 31, 2013.

76

Yang Shanshui; Lexuan Meng; Ligang Ruan; Jian Zhao; Li Wang, "Modeling and

simulation of aircraft automatic power distribution system," Electrical

Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012 , vol.,

no., pp.1,4, 16-18 Oct. 2012

Yu, Helen. EE513 Modern Control Systems course materials.

77

APPENDICES

APPENDIX A - SMALL TEST ARCHITECTURE

A.1 - HyPSO NUMBERING

78

APPENDIX B - LARGE TEST ARCHITECTURE

B.1 - MINIMAL HyPSO NUMBERING

79

B.2 - FULL HyPSO NUMBERING

80

APPENDIX C – HONEYWELL HVAC EPS [15]

81

APPENDIX D – HONEYWELL HVDC EPS [16]

82

APPENDIX E – MATLAB CODE

E.1 – “main.m”

% Set up workspace

clear

%load('small_test_arch_workspace_full.mat');

%load('test_arch_workspace.mat')

load('small_test_woeng_workspace.mat');

%close the GUI when it opens after opening the workspace

close force all

% USER INPUT VALUE - integer or row vector

% Number of flight hours over which to generate the state

% probabilities. This value may also be obtained from the Mission tab

% in the HyPSO tool.

% Example:

% simFlightHours = sum(H.f2tMISStable.Data(:,7))/360;

% Calculates the state probabilities for the same length as the

% current HyPSO mission.

% If a Row vector is input, state probabilities will be generated for

% multiple time values.

% Example:

% simFlightHours = 1:100;

% Generates a row vector with 100 time steps incrementing by 1.

simFlightHours = 1:10;

% USER INPUT VALUES - logical true/false

% User decided whether to include engines, machines, and buses in the

% failure simulations. If the system is included, it MUST have a

% corresponding FailRate column vector. If includeBuses is true, the

% busTypes and busInputPaths below must be declared for each bus for

% which failures are to be simulated.

includeEngines = false;

includeMachines = true;

includeBuses = true;

% USER INPUT VALUE - logical true/false

83

% When reporting the available power, take the difference from nominal

% available power.

takePwrDiffFromNom = true;

% USER INPUT VALUE - column vectors

% Since buses are abstracted to routing nodes in HyPSO, we can declare

% bus names individually for clarity. Input as column cell array. User

% must declare the bus's main power input path in busInputPath. This

% is the path that will be turned to 0 when the bus is supposed to

% fail.

%

% ASSUMPTIONS

% 1 Routing nodes are numbered in the same sequence as they are

% declared below!

% 2 busInputPath is a column vector containing path numbers that are

% in corresponding order with busTypes

busTypes = {'AC'; 'AC'; 'DC'; 'DC'};

busInputPath = [3; 4; 9; 10];

% busTypes = {'AC';'AC';'AC';'AC';'DC';'DC';'DC';'DC';...

% 'ACESS';'ACSHED';'DCESS';'DCSHED'};

% busInputPath = [7; 8; 9; 10; 29; 30; 32; 33; 19; 26; 37; 41];

% USER INPUT VALUE - column vectors

% This variable can be added to the Engine tab in HyPSO

% Each component set to fail needs a specific fail rates

% Input fail rates in the same order as the components are numbers

%engFailRates = [1E-7; 1E-7];

% machFailRates = [linspace(7E-4,10E-4,length(simFlightHours));...

% linspace(7E-4,10E-4,length(simFlightHours));...

% linspace(8E-5,12E-5,length(simFlightHours));...

% linspace(8E-5,12E-5,length(simFlightHours))];

% busFailRates = [linspace(1E-6,1E-6,length(simFlightHours));...

% linspace(1E-6,1E-6,length(simFlightHours));...

% linspace(1E-6,1E-6,length(simFlightHours));...

% linspace(1E-6,1E-6,length(simFlightHours))];

machFailRates = [7E-4;7E-4;8E-5;8E-5];

busFailRates = [1E-6;1E-6;1E-6;1E-6];

% engFailRates = [1E-7;1E-7];

% machFailRates = [8E-4;5E-4;6E-4;7E-4;1E-5;9E-5;3E-5;8E-5];

% busFailRates = [1E-7;7E-7;1E-6;4E-7;1E-6;...

84

% 9E-7;3E-6;4E-7;1E-8;1E-7;2E-8;3E-7];

% Build the sys struct that describes the architecture

buildSys;

% Construct state probability data structure

states = stProb_rev4 (sys, simFlightHours);

% Add together redundant states

states = aggregate(states);

% Eliminate trivial 2fail states

states = elimTrivial(states,'Generator','AC','Transformer');

% Correct status numbers on each of the states

[states,H.f2tSTATgARCHtable.Data] = statusize(states, busInputPath,...

 numEng, numMach, H.f2tSTATgARCHtable.Data);

% Attach available power from HyPSO simulation to the states struct

states = getPwrAvail(states, route, path, takePwrDiffFromNom);

% Clean up interface and workspace

clear busInputPath sys simFlightHours

clear numEng numMach takePwrDiffFromNom

E.2 – “buildSys.m”

%---------------------------------

% This script builds a system struct that contains all of the

% pertinent information about the system architecture that is needed

% to create the state space. This information is taken directly from

% the HyPSO tool GUI - the tables in the H struct. Data describing the

% engines and machines are taken from H.f2tENGtable.Data and

% H.f2tMACHtable.Data respectively.

%

% User must choose to include engines, machines, and buses in the

% failure state space in main.m by setting includeEng, includeMach,

% and include.Bus.

%

% ASSSUMPTIONS

% A HyPSO simulation has already been run with the model under test so

% that the workspace is populated with the H struct.

85

%---------------------------------

% Build system architecture struct

sys = struct('sub',[],'subnum',[],'type',[],'num',[],'rate',[]);

% Create vectors for counting the unique subsystem types

sysType = unique([H.f2tMACHtable.Data(:,9); ...

 H.f2tENGtable.Data(:,2); busTypes]);

sysCount = ones(size(sysType,1),1);

% Build engine section

numEng = size(H.f2tENGtable.Data,1);

if includeEng

 for x = 1:numEng

 sys(x).sub = 'ENG';

 sys(x).subnum = x;

 sys(x).type = H.f2tENGtable.Data(x,2);

 sys(x).rate = engFailRates(x,:);

 % Keep a running tally of the number of engine types

 %(i.e. 'Turbofan')

 [~,y] = ismember(sys(x).type,sysType);

 sys(x).num = sysCount(y);

 sysCount(y) = sysCount(y) + 1;

 end

end

% Build machine section

numMach = size(H.f2tMACHtable.Data,1);

if includeMach

 for x = 1:numMach

 sys(x+numEng).sub = 'MACH';

 sys(x+numEng).subnum = x;

 sys(x+numEng).type = H.f2tMACHtable.Data(x,9);

 sys(x+numEng).rate = machFailRates(x,:);

 % Keep a running tally of the number of machine types

 % (i.e. 'Generator', 'Transformer')

 [~,y] = ismember(sys(x+numEng).type,sysType);

 sys(x+numEng).num = sysCount(y);

 sysCount(y) = sysCount(y) + 1;

 end

86

end

% Build bus section

if includeBus

 for x = 1:size(busTypes,1)

 sys(x+numEng+numMach).sub = 'BUS';

 sys(x+numEng+numMach).subnum = x;

 sys(x+numEng+numMach).type = busTypes(x);

 sys(x+numEng+numMach).rate = busFailRates(x,:);

 % Keep a running tally of the number of bus types

 % (i.e. 'AC', 'DC', 'HVDC', 'ACESS')

 [~,y] = ismember(sys(x+numEng+numMach).type,sysType);

 sys(x+numEng+numMach).num = sysCount(y);

 sysCount(y) = sysCount(y) + 1;

 end

end

%clean up the workspace

clear x y sysType sysCount busTypes

clear engFailRates machFailRates busFailRates

clear includeEng includeMach includeBus

%-------------------------------

E.3 – “stProb.m”

function [states] = stProb_rev4(sys, flightHours)

% stProb This function builds and solves the differential equations to

% find the state probability of each of the possible states in the

% system. Using the system description built in buildSys.m,

rates = repmat([sys(:).rate]',1,size(sys,2)+1);

rates((size(sys,2)+1):(size(sys,2)+1): end) = 0;

count = size(sys,2);

states =

struct('type','NOM','P',[],'tsimhrs',flightHours,'status',1,'avail',[],

'f1',[]);

87

syms P(t) double

states.P = dsolve(diff(P) == 0 - sum(rates(:,1))*P, P(0) == 1);

states.f1 = deal(sys);

for x = 1:count

 states.f1(x).P = dsolve(diff(P) == sum(rates(x,1) .* states.P) -

sum(rates(:,x+1))*P, P(0) == 0);

 states.f1(x).f2 = deal(sys);

 for y = 1:count

 states.f1(x).f2(y).P = dsolve(diff(P) == sum(rates(y,x+1) .*

states.f1(x).P), P(0) == 0);

 end

end

nEval = length(flightHours);

for x = 0:nEval-1

 states.P(nEval-x) = subs(states.P(1), t, flightHours(nEval-x));

end

states.P = eval(states.P);

for x = 1:count

 for y = 0:nEval-1

 states.f1(x).P(nEval-y) = subs(states.f1(x).P(1), t,

flightHours(nEval-y));

 end

 states.f1(x).P = eval(states.f1(x).P);

 for y = 1:count

 for z = 0:nEval-1

 states.f1(x).f2(y).P(nEval-z) = subs(states.f1(x).f2(y).P(1),

t, flightHours(nEval-z));

 end

 states.f1(x).f2(y).P = eval(states.f1(x).f2(y).P);

 end

end

end

E.4 – “checksum.m”

function [] = checksum(states)

%checksum Checks the sum of all the state probabilities in the system

88

% state data structure to ensure they add up to one. Due to precision

% error in double floating point arithmatic, the error may be

% non-zero. Typical errors are less than 1E-14, a negligible amount.

% Enter eps(1) for the smallest incremental value after 1 for a double

% floating point number.

%

% INPUTS

% states The system state probability data structure

% Subtract the nominal state probability

error = ones(1,length(states.P)) - states.P;

% Subtract 1f and 2f state probabilities

for x = 1:size(states.f1,2);

 error = error - states.f1(x).P;

 for y = 1:size(states.f1(x).f2,2)

 error = error - states.f1(x).f2(y).P;

 end

end

% Throw an error message if error = |sum(P) - 1| is greater than a

% negligable amount of 1E-14

for x = 1:length(error)

 assert(abs(error(x))<1E-14,...

 'Sum of state prob error from 1 greater than |1E-14|: P(%d)=%e'...

 , x, error(x))

end

end

E.5 – “elimTrivial.m”

function [states] = elimTrivial(states, inMach, bus, outMach)

%elimTrivial elimiates trivial architecture states from the state

% space. A trivial state is one that the same load availability,

% available power, and configuration as a previous state. This occurs

% when a machine fails that was supplying, or supplied by, an already

% failed bus.

89

%

% Example: A state where AC1 bus fails has the same configuration,

% available power, and load availability as:

%

% 1) A state where AC1 bus and GEN1 fails

% 2) A state where AC1 bus and TRU1 fails

%

% INPUTS

% state The architecture state space data structure

% inMach A string containing the name of the input machine

% bus A string containing the name of the intermediary bus

% outMach A string containing the name of the output machine

% Example

% inMach = 'Generator'

% bus = 'AC'

% outMach = 'Transformer'

%

% OUTPUTS

% state The updated architecture state space data structure with

% eliminated trivial states

%

% ASSUMPTIONS

% The inMach supplying power to the bus, and the outMach supplied by

% the bus have the same num

% Check each single fail state, looking for the inMach or outMach

for x = 1:size(states.f1,2)

 if strcmp(states.f1(x).type, inMach) ||...

 strcmp(states.f1(x).type, outMach)

 % Store the number of the inMach or outMach

 num = states.f1(x).num;

 % Find the struct index of the 1 bus fail state. The bus has

 % the same num as the inMach/outMach

 y = find(strcmp([states.f1(:).type], bus) &...

 [states.f1(:).num] == num);

 % Find the struct index of the trivial 2fail state

 z = find(strcmp([states.f1(x).f2(:).type], bus) &...

 [states.f1(x).f2(:).num] == num);

 % Add the 2fail state probability to the 1fail state

 states.f1(y).P = states.f1(y).P + states.f1(x).f2(z).P;

90

 % Delete the 2fail state

 states.f1(x).f2(z) = [];

 end

end

checksum(states);

end

E.6 – “aggregate.m”

function [states] = aggregate(states)

%aggregate This function combines obvious identical system states. For

% example - it combines the state where GEN1 fails, then GEN2 fails

% with the state where GEN2 fails, then GEN1 fails. It doesn't matter

% which path the systemt took to reach the state - it will have the

% same system configuration and characteristics. Therefore, we can

% combine the states by adding their probabilities.

count = size(states.f1,2);

% Add the probabilities of the identical 2 fail states together

for x = 1:count

 for y = x+1:count

 states.f1(x).f2(y).P = states.f1(x).f2(y).P +...

 states.f1(y).f2(x).P;

 end

end

% Delete the entry of the duplicate 2 fail state.

for x = 1:count

 for y = 1:x

 states.f1(x).f2(1) = [];

 end

end

checksum(states);

end

91

E.7 – “getPwrAvail.m”

function [states] = getPwrAvail(states, route, path, takeDiff)

%getPwrAvail parses the available power from the HyPSO simulation and

%attaches it to the states data structure.

%

%

% INPUTS

% states The architecture state space data structure

% route The route data structure generated by the HyPSO simulation

% path The path data structure generated by the HyPSO simulation

% takeDiff Logical integer choosing whether to take the difference

% from nominal before attaching the available power

%

% OUTPUTS

% state The updated architecture state space data structure with

% attached available power

%---

% This section identifies when two routing nodes are connected

% together. Only checks routing nodes that have report available power

% enabled (route.checkPwr). This corrects the error where both routing

% nodes will report the same available power when they are connected

% together. In reality, only one node should have that available

% power, and the other node is just drawing from the first

%initialize variables

outPaths = [];

inPaths = [];

for x = 1:route.n

 %Only check routing nodes with report available power enabled

 if route.checkPwr(x)

 %Create an array of all input and output paths

 outPaths = [outPaths,route.pathOut(1,x)];

 inPaths = [inPaths,route.pathIn(1,x)];

 end

end

92

% This loop finds the input and output paths between routing nodes

% with check available power enabled

for x = 1:route.n

 %Only check routing nodes that have report available power enabled

 if route.checkPwr(x)

 % Check if an output or input path corresponds to another node

 % with available power enabled.

 in(x) = {intersect(cell2mat(route.pathIn(1,x)),...

 cell2mat(outPaths))};

 out(x) = {intersect(cell2mat(route.pathOut(1,x)),...

 cell2mat(inPaths))};

 else

 % If checkPwr not true, leave an empty cell in the array

 in(x) = {[]};

 out(x) = {[]};

 end

end

% Convert from a cell array to a matrix

in = ~cellfun(@isempty,in);

out = ~cellfun(@isempty,out);

%--

%Create a copy of the available power table

availDiff = route.pwrAvail;

%

for x = 1:size(states.f1,2)

 temp = states.f1(x).status;

 for y = 1:size(availDiff,2)

 if in(y) && path.status(temp, in(y)) == 1 ||...

 out(y) && path.status(temp, out(y)) == -1

 availDiff(temp,y) = 0;

 end

 end

 for z = 1:size(states.f1(x).f2,2)

 temp = states.f1(x).f2(z).status;

93

 for y = 1:size(availDiff,2)

 if in(y) && path.status(temp, in(y)) == 1 ||...

 out(y) && path.status(temp, out(y)) == -1

 availDiff(temp,y) = 0;

 end

 end

 end

end

% Delete cells that have Not A Number (NaN) in them

availDiff = availDiff(:, ~isnan(availDiff(1,:)));

availDiff = availDiff(~isnan(availDiff(:,1)), :);

% Take the difference between the nominal available power and each

% state. Each state will now contain the difference from nominal.

% Nominal remains unchanged. User Enabled

if takeDiff

 for col = 1:size(availDiff,2)

 availDiff(2:end, col) = availDiff(2:end, col) -...

 availDiff(1,col);

 end

end

% Assign nominal available power to states data structure

states.avail = availDiff(1,:);

% Assign available power to all other states in data structure

for x = 1:size(states.f1,2)

 states.f1(x).avail = availDiff(states.f1(x).status, :);

 for y = 1:size(states.f1(x).f2, 2)

 states.f1(x).f2(y).avail = ...

 availDiff(states.f1(x).f2(y).status, :);

 end

end

end

94

E.8 – “statusize.m”

function [states,atable,etable] = statusize(states,paths,numEng,...

 numMach,atable,etable)

%statusize This function builds the architecture states on the status tab.

% It assigns each state in the architecture states data structure a

% "status" that denotes the corresponding architecture status in the HyPSO

% tool. It sets the appropriate components to fail, depending on the

% architecture state. In order to fail bus bars, this function sets the

% main power input path to fail. The user must choose which input path is

% the main input path that will fail the bus bar.

%

% Inputs

% states The architecture states data structureW

% paths The main power input paths that will fail in order to cause a bus

% bar failure. The paths MUST be in the same order as the subnum

% numbering for the BUS sub.

% numEng The number of engines

% numMach The number of machines

% atable The HyPSO GUI status arch table H.f2tSTATgARCHtable.Data

% etable The HyPSO GUI status event table H.f2tSTATgEVNTtable1.Data

count = size(states.f1,2);

status = 2;

for x = 1:count

 states.f1(x).status = status;

 atable{status,1} = strcat(states.f1(x).sub, num2str(states.f1(x).subnum));

 if strcmp(states.f1(x).sub,'ENG')

 atable{status,states.f1(x).subnum + 1} = 0;

 elseif strcmp(states.f1(x).sub,'MACH')

 atable{status,states.f1(x).subnum + numEng + 1} = 0;

 else

 atable{status,paths(states.f1(x).subnum) + numEng + numMach + 3} = 0;

 end

 status = status + 1;

end

for x = 1:count

 for y = 1:size(states.f1(x).f2,2)

 if strcmp(states.f1(x).sub,'ENG')

 atable{status,states.f1(x).subnum + 1} = 0;

 elseif strcmp(states.f1(x).sub,'MACH')

 atable{status,states.f1(x).subnum + numEng + 1} = 0;

 else

 atable{status,paths(states.f1(x).subnum) + numEng + numMach + 3} = 0;

 end

 states.f1(x).f2(y).status = status;

 atable{status,1} = strcat(states.f1(x).sub, num2str(states.f1(x).subnum),

states.f1(x).f2(y).sub, num2str(states.f1(x).f2(y).subnum));

95

 if strcmp(states.f1(x).f2(y).sub,'ENG')

 atable{status,states.f1(x).f2(y).subnum + 1} = 0;

 elseif strcmp(states.f1(x).f2(y).sub,'MACH')

 atable{status,states.f1(x).f2(y).subnum + numEng + 1} = 0;

 else

 atable{status,paths(states.f1(x).f2(y).subnum) + numEng + numMach + 3} = 0;

 end

 status = status + 1;

 end

end

status = status - 1;

[etable(1,1:status)] = deal(num2cell(linspace(0,(status-1)*100,status)));

[etable(2,1:status)] = deal(num2cell(linspace(1,status,status)));

checksum(states);

end

E.9 – “nom_prob_vs_time.m”

function clear

load('states_plot_test.mat');

y = states.P;

x = states.tsimhrs;

plot(x,y,'r');

hold on

plot(states.tsimhrs,states.f1(1).P,'g')

%barColorMap = hot(8);

%set(h,'FaceColor', barColorMap(1,:));

plot(states.tsimhrs,states.f1(1).P + sum(vertcat(states.f1(1).f2(:).P)),'b');

title('Probability of No Failures Over Time');

ax = gca;

ax.YScale = 'log';

ax.XLim = [0 10000];

ax.YLim = [0 1];

h.BarWidth = 0.2;

ax.XTickMode = 'auto';

%ax.XTick = [1 10 100 1000];

ax.YTickMode = 'auto';

%ax.YTick = 0:0.1:1;

%ax.XTickLabel = num2str(states.tsimhrs);

ax.YGrid = 'on';

96

ax.YMinorGrid = 'on';

ax.XGrid = 'on';

ylabel('State Probability');

xlabel('Flight Time (hours)');

E.10 – “precentServiced.m”

Pserv = states.P;
Punserv = zeros(1,length(states.P));

for x = 1:size(states.f1,2)
 if opt.constrVio(states.f1(x).status) > 0.1
 Punserv = Punserv + states.f1(x).P;
 else
 Pserv = Pserv + states.f1(x).P;
 end
 for y = 1:size(states.f1(x).f2,2)
 if opt.constrVio(states.f1(x).f2(y).status) > 0.1
 Punserv = Punserv + states.f1(x).f2(y).P;
 else
 Pserv = Pserv + states.f1(x).f2(y).P;
 end
 end
end
figure
plot(1:length(Punserv),Punserv);
title('Probability of At Least One Load Unserviced');
ylabel('Probability');
xlabel('Flight Hours');

set(gca,'YGrid','on',...
 'YMinorGrid','on',...
 'XGrid','on');

clear Pserv Punserv x y

E.11 – “bar_3d.m”

Pf = vertcat(states.f1(:).P);
Pf(:,1:9) = [];
min = min(Pf);
%P2f = zeros(size(states.f1,2));
for x = 1:size(states.f1,2)
 for y = 1:size(states.f1(x).f2,2)
 Pf(y,x+1) = states.f1(x).f2(y).P(10);
 if Pf(y,x+1) < min
 min = Pf(y,x+1);
 end
 end
end
Pf = Pf';
figure
h1 = bar3(nan(size(Pf)));
set(h1,'FaceColor',[1 0 0]);
hold on
h2 = bar3(nan(size(Pf)));
set(h2,'FaceColor',[1 0.8 0.2]);
hold on
h3 = bar3(nan(size(Pf)));
set(h3,'FaceColor',[1 1 0]);

97

hold on
h4 = bar3(nan(size(Pf)));
set(h4,'FaceColor',[0 1 0]);
hold on
h5 = bar3(nan(size(Pf)));
set(h5,'FaceColor',[0 0 1]);
hold on
l = {'P>1E-3 frequent',...
 '1E-3>P>1E-5 reasonably probable',...
 '1E-5>P>1E-7 remote',...
 '1E-7>P>1E-9 extremely remote',...
 'P<1E-9 extremely improbable'};
legend([h1(1) h2(1) h3(1) h4(1) h5(1)],l,'Position',[0.685 0.772 0.258 0.155]);

h = bar3(Pf);

%---------------------
%This segment of code by Matt Fig posted to MATLAB support forums.
%Allows access to individual bars to change facecolor.
%http://www.mathworks.com/matlabcentral/
% answers/5424-how-to-colorize-individual-bar-in-bar3
%
cm = get(gcf,'colormap'); % Use the current colormap.
cnt = 0;
for jj = 1:length(h)
 xd = get(h(jj),'xdata');
 yd = get(h(jj),'ydata');
 zd = get(h(jj),'zdata');
 delete(h(jj))
 idx = [0;find(all(isnan(xd),2))];
 if jj == 1
 S = zeros(length(h)*(length(idx)-1),1);
 dv = floor(size(cm,1)/length(S));
 end
 for ii = 1:length(idx)-1
 cnt = cnt + 1;
 S(cnt) = surface(xd(idx(ii)+1:idx(ii+1)-1,:),...
 yd(idx(ii)+1:idx(ii+1)-1,:),...
 zd(idx(ii)+1:idx(ii+1)-1,:),...
 'facecolor',cm((cnt-1)*dv+1,:));
 end
end
%---------------------

for x = 1:size(Pf,1)
 for y = 1:size(Pf,2)
 color = [0 0 1];
 if Pf(y,x) > 1E-3
 color = [1 0 0];
 elseif Pf(y,x) > 1E-5
 color = [1 0.8 0.2];
 elseif Pf(y,x) > 1E-7
 color = [1 1 0];
 elseif Pf(y,x) > 1E-9
 color = [0 1 0];
 elseif Pf(y,x) == 0
 color = [1 1 1];
 set(S((x-1)*size(Pf,2)+y),'edgecolor',[1 1 1]);
 end
 set(S((x-1)*size(Pf,2)+y),'facecolor',color);
 end
end

title('Probability of Single and Double Failures');
xlabel('First Failure');
ylabel('Second Failure');
zlabel('Probability of Failure');

%---------------------
%This segment of code from Mathworks Support for correcting ZScale log
%error on bar3 plots posted to MATLAB support forums
%http://www.mathworks.com/matlabcentral/answers/100500-how-can-i-set-
% the-zscale-of-a-bar3-plot-to-logarithmic-in-matlab
%
b = get(gca,'Children');
for i = 1:length(b)

98

 ZData = get(b(i), 'ZData');
 ZData(ZData==0) = min/10;
 set(b(i), 'ZData', ZData);
end
%--------------------

for x = 1:size(Pf,2)
 xl{x} = strcat(states.f1(x).sub,num2str(states.f1(x).subnum));
end
yl = xl;
yl{1} = 'Only one failure';
set(gca,'ZScale','log',...
 'ZLim',[min/10 1],...
 'ZTick',[1E-9 1E-7 1E-5 1E-3 1],...
 'XTick',1:size(Pf,2),...
 'YTick',1:size(Pf,2),...
 'YTickLabel',yl,...
 'XTickLabel',xl,...
 'YTickLabelRotation',35,...
 'XTickLabelRotation',325,...
 'Xdir','reverse',...
 'Ydir','reverse'...
);
set(gcf,'Position',[200 200 750 600]);
clear h1 h2 h3 h4 h5 i idx ii jj cm cnt color dv b h x y min l
clear xd yd zd ZData xl yl S Pf

E.12 – “bar_2d_avail_2fail.m”

clear ndx x y ndx2 barColorMap xl st av
count = size(states.f1,2);
totalFails = states.f1(count-1).f2.status - 1;
x = (1:totalFails)';

for ndx = 1:count
 xl{ndx} = strcat(states.f1(ndx).sub, num2str(states.f1(ndx).subnum));
end

for ndx = 1:count
 for ndx2 = 1:size(states.f1(ndx).f2,2)
 xl{end+1} = strcat(states.f1(ndx).sub,...
 num2str(states.f1(ndx).subnum),...
 states.f1(ndx).f2(ndx2).sub,...
 num2str(states.f1(ndx).f2(ndx2).subnum));
 end
end

for ndx = 1:count
 y(ndx) = states.f1(ndx).P(10);
 if opt.constrVio(states.f1(ndx).status) > 0.1
 barColorMap(ndx,:) = [1,0,0];
 else
 barColorMap(ndx,:) = [0,1,0];
% diff = sum(states.avail) - abs(sum(states.f1(ndx).avail));
% diff = diff/sum(states.avail);
% if sum(states.f1(ndx).avail) > 0;
% barColorMap(ndx,:) = [diff,0,0];
% else
% barColorMap(ndx,:) = [0,diff,0];
% end
 end

end

for ndx = 1:count
 for ndx2 = 1:size(states.f1(ndx).f2,2)
 y(end+1) = states.f1(ndx).f2(ndx2).P(10);
 if opt.constrVio(states.f1(ndx).f2(ndx2).status) > 0.1
 barColorMap(end+1,:) = [1,0,0];

99

 else
 barColorMap(end+1,:) = [0,1,0];
 end
 end
end

figure
subplot(2,1,1);
bar(1,nan,'g');
hold on
bar(1,nan,'r');
hold on
legend('All loads available','At least 1 load unavailable');

for ndx = 1 : totalFails
 % Plot one single bar as a separate bar series.
 h(ndx) = bar(x(ndx), y(ndx), 'BarWidth', 0.9);
 % Apply the color to this bar series.
 set(h(ndx),'FaceColor', barColorMap(ndx,:));
 % Place text atop the bar
 %barTopper = sprintf('%.1e', y(ndx));
 %text(x(ndx)-0.4, y(ndx)+0.3*y(ndx), barTopper, 'FontSize', 8);
 hold on;
end
title('Single and Double Failure States');
ylabel('State Probability');
set(gca,'YScale','log',...
 'XTickMode','manual',...
 'XTick',1:totalFails,...
 'XTickLabel','',...
 'YTickMode','auto',...
 'YGrid','on',...
 'YMinorGrid','on',...
 'XGrid','off');

numGen = length(states.avail);

xpos = zeros(totalFails,numGen);
xneg = zeros(totalFails,numGen);

for ndx = 1:count
 for ndx2 = 1:numGen
 if states.f1(ndx).avail(ndx2) > 0
 xpos(ndx,ndx2) = states.f1(ndx).avail(ndx2);
 else
 xneg(ndx,ndx2) = states.f1(ndx).avail(ndx2);
 end
 end
end

for ndx = 1:count
 for ndx2 = 1:size(states.f1(ndx).f2,2)
 st = states.f1(ndx).f2(ndx2).status - 1;
 for ndx3 = 1:numGen
 av = states.f1(ndx).f2(ndx2).avail(ndx3);
 if av > 0
 xpos(st,ndx3) = av;
 else
 xneg(st,ndx3) = av;
 end
 end
 end
end
subplot(2,1,2);
bar(1:totalFails, xpos, 0.5, 'stack');
hold on
bar(1:totalFails, xneg, 0.5, 'stack');

%title('Available Power at Each Generator');
ylabel('Available Power (kW)');
xlabel('Failed System');
set(gca,'XTickLabelMode','manual',...
 'XTickLabel',xl,...
 'XTickMode','manual',...
 'XTickLabelRotation',90,...

100

 'XTick',1:totalFails,...
 'Position',[0.13 0.25 0.775 0.25834]);

for x = 1:numGen
 ll{x} = strcat('Gen',num2str(x));
end

legend(ll,'Location','southeast');

set(gcf,'Position',[1 1 500 750]);

clear count ndx ndx2 x y barColorMap diff ll barTopper
clear ndx3 numGen totalFails av st h xl
% T = struct2table(states);
% T1 = struct2table(states.f1);
%
% for i = 1:size(states.f1,1)
% T2struct(
%
% T2 = struct2table([states.f1.f2]);

E.13 – “bar_2d_avail.m”

count = size(states.f1,2);

x = (1:count)';

for ndx = 1:count
 y(ndx) = states.f1(ndx).P(10);
 if opt.constrVio(states.f1(ndx).status) > 0.1
 barColorMap(ndx,:) = [1,0,0];
 else
 barColorMap(ndx,:) = [0,1,0];
% diff = sum(states.avail) - abs(sum(states.f1(ndx).avail));
% diff = diff/sum(states.avail);
% if sum(states.f1(ndx).avail) > 0;
% barColorMap(ndx,:) = [diff,0,0];
% else
% barColorMap(ndx,:) = [0,diff,0];
% end
 end

end

figure
subplot(2,1,1);
bar(1,nan,'g');
hold on
bar(1,nan,'r');
hold on
legend('All loads available','At least 1 load unavailable');

for ndx = 1 : count
 % Plot one single bar as a separate bar series.
 h(ndx) = bar(x(ndx), y(ndx), 'BarWidth', 0.7);
 % Apply the color to this bar series.
 set(h(ndx),'FaceColor', barColorMap(ndx,:));
 % Place text atop the bar
 barTopper = sprintf('%.1e', y(ndx));
 text(x(ndx)-0.4, y(ndx)+0.3*y(ndx), barTopper, 'FontSize', 8);
 hold on;
end
title('Single Failure States');
ylabel('State Probability');
set(gca,'YScale','log',...
 'XTickMode','manual',...
 'XTick',1:count,...
 'XTickLabel','',...
 'YTickMode','auto',...
 'YGrid','on',...

101

 'YMinorGrid','on',...
 'XGrid','off');

for ndx = 1:count
 xl(ndx) = strcat(states.f1(ndx).type, num2str(states.f1(ndx).num));
end

xpos = zeros(count,length(states.avail));
xneg = zeros(count,length(states.avail));
for ndx = 1:count
 for ndx2 = 1:length(states.avail)
 if states.f1(ndx).avail(ndx2) > 0
 xpos(ndx,ndx2) = states.f1(ndx).avail(ndx2);
 else
 xneg(ndx,ndx2) = states.f1(ndx).avail(ndx2);
 end
 end
end

subplot(2,1,2);
bar(1:count, xpos, 0.5, 'stack');
hold on
bar(1:count, xneg, 0.5, 'stack');

%title('Available Power at Each Generator');
ylabel('Available Power (kW)');
xlabel('Failed System');
set(gca,'XTickLabelMode','manual',...
 'XTickLabel',xl,...
 'XTickMode','manual',...
 'XTickLabelRotation',90,...
 'XTick',1:count,...
 'Position',[0.13 0.25 0.775 0.25834]);

for x = 1:length(states.avail)
 ll{x} = strcat('Gen',num2str(x));
end

legend(ll,'Location','southeast');

set(gcf,'Position',[1 1 500 750]);

clear count ndx ndx2 x y barColorMap xl xpos xneg diff ll barTopper

% T = struct2table(states);
% T1 = struct2table(states.f1);
%
% for i = 1:size(states.f1,1)
% T2struct(
%
% T2 = struct2table([states.f1.f2]);

E.14 – “bar_1d.m”

close all
count = size(states.f1,2);

x = (1:count)';

for ndx = 1:count
 y(ndx) = states.f1(ndx).P(10);

 if opt.constrVio(states.f1(ndx).status) > 1E-14
 barColorMap(ndx,:) = [0,0,1];
 else

102

 diff = sum(states.avail) - abs(sum(states.f1(ndx).avail))
 diff = diff/sum(states.avail)
 if sum(states.f1(ndx).avail) > 0;
 barColorMap(ndx,:) = [diff,0,0];
 else
 barColorMap(ndx,:) = [0,diff,0];
 end
 end

end
%h = bar(b,diag([states.f1(:).P]),'stacked')
%set(gca,'YScale','log')
%set(h(1),'facecolor','r');

%barColorMap = hot(count);

for ndx = 1 : count
 % Plot one single bar as a separate bar series.
 h(ndx) = bar(x(ndx), y(ndx), 'BarWidth', 0.7);
 % Apply the color to this bar series.
 set(h(ndx),'FaceColor', barColorMap(ndx,:));
 % Place text atop the bar
 barTopper = sprintf('%.1e', y(ndx));
 text(x(ndx)-0.4, y(ndx)+0.3*y(ndx), barTopper, 'FontSize', 8);

 hold on;
 grid on;
end

title('Single Failure States');
ax = gca;
ax.YScale = 'log';
ylabel('State Probability');
xlabel('Failed System');

ax.XTickMode = 'manual';
ax.XTick = 1:count;
ax.YTickMode = 'auto';
%ax.YTick = 0:0.1:1;

for ndx = 1:count
 xl(ndx) = strcat(states.f1(ndx).type, num2str(states.f1(ndx).num));
end
ax.XTickLabelMode = 'manual';
ax.XTickLabel = xl;

ax.XTickLabelRotation = 90;

ax.YGrid = 'on';
ax.YMinorGrid = 'on';
ax.XGrid = 'off';

% T = struct2table(states);
% T1 = struct2table(states.f1);
%
% for i = 1:size(states.f1,1)
% T2struct(
%
% T2 = struct2table([states.f1.f2]);

103

APPENDIX F – TRU DATASHEET [17]

104

105

APPENDIX G – CAFTA FTA, SMALL TEST ARCHITECTURE

