
CORGI: COMPUTE ORIENTED RECUMBENT GENERATION

INFRASTRUCTURE

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Christopher Hunt

March 2017

c� 2017

Christopher Hunt

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: CORGI: Compute Oriented Recumbent

Generation Infrastructure

AUTHOR: Christopher Hunt

DATE SUBMITTED: March 2017

COMMITTEE CHAIR: Professor Christopher Lupo, Ph.D.

Department of Computer Science

COMMITTEE MEMBER: Professor Alexander Dekhtyar, Ph.D.

Department of Computer Science

COMMITTEE MEMBER: Professor Andrew Davol, Ph.D.

Department of Mechanical Engineering

iii

ABSTRACT

CORGI: Compute Oriented Recumbent Generation Infrastructure

Christopher Hunt

Creating a bicycle with a rideable geometry is more complicated than it may appear,

with todays mainstay designs having evolved through years of iteration. This slow

evolution coupled with the bicycles intricate mechanical system has lead most builders

to base their new geometries o↵ of previous work rather than expand into new design

spaces. This crutch can lead to slow bicycle iteration rates, often causing bicycles to all

look about the same. To combat this, several bicycle design models have been created

over the years, with each attempting to define a bicycles handling characteristics given

its physical geometry. However, these models often analyze a single bicycle at a time,

and as such, using them in an iterative design process can be cumbersome. This work

seeks to improve an existing model used by the Cal Poly Mechanical Engineering

department such that it can be used in a proactive, iterative fashion (as opposed to the

reactive, single-design paradigm that it currently supports). This is accomplished by

expanding the models inputs to include more bicycle components as well as di↵erently

sized riders. This augmented model is then incorporated into several search platforms

ranging from a brute-force implementation to several variants using genetic algorithm

concepts. These models allow the designer to specify a bicycle design search space as

well as a set of riders upfront, from which the algorithms search out and find strong

candidate designs to return to the user. This in turn reduces the overhead on the

designer while also potentially discovering new bicycle designs which had not been

considered previously viable. Finally, a front-end was created to make it easier for

the user to access these algorithms and their results.

iv

ACKNOWLEDGMENTS

Thanks to:

• My wife and family for supporting me through the project.

• My advisers for their valuable feedback along the way.

• My puppies for the thesis title inspiration.

• Bicycles for being such a cool topic to explore.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1 Introduction . 1

2 Background . 5

2.1 Bicycle History . 5

2.2 Bicycle Models . 6

2.2.1 Whipple Model . 6

2.2.2 Patterson Control Model . 8

2.3 Human Body Models . 14

2.4 Genetic Algorithms . 17

2.4.1 Selection . 18

2.4.2 Cross-Over . 18

2.4.3 Mutation . 19

2.4.4 Fitness . 19

2.5 Tuning Genetic Algorithms . 20

2.5.1 Types of Genetic Algorithm Tuners 21

2.6 Data Partitioning . 24

2.6.1 Centroid Based Clustering . 25

2.6.2 Density Based Clustering . 26

2.6.3 Hierarchical Clustering . 27

2.6.4 ClusPro . 28

2.7 Parallel-Coordinate Graphing . 28

3 Design . 31

3.1 Modified Patterson Control Model . 31

3.1.1 Model Modifications . 32

3.1.2 Modeling the Frame . 36

3.1.3 Modeling the Rider . 38

vi

3.1.4 Fitting a Rider to a Frame . 41

3.1.5 Modeling Constraints . 43

3.2 Establishing a Fitness Function . 44

3.3 Defining a Search Space . 46

3.3.1 Bicycle Configuration Files . 47

3.3.2 Rider Configuration Files . 47

3.3.3 Genetic Algorithm Configuration Files 48

3.3.4 Partitioning Configuration Files 50

3.4 Brute Force Search Platform . 50

3.5 Genetic Algorithm Search Platform 52

3.5.1 Unpartitioned Genetic Search 52

3.5.2 Partitioned Genetic Search . 56

3.6 Genetic Algorithm Tuner Design . 58

3.7 R-Partition . 61

3.7.1 Why Partition At All? . 61

3.7.2 R-Partition Design . 62

3.7.3 Comparison to Other Algorithms 65

3.7.4 Algorithm Characteristics . 66

3.7.5 Extensibility . 67

4 Implementation . 68

4.1 Implementation Architecture . 68

4.2 User Interface . 71

4.2.1 Bike Plotter Notebook . 72

4.2.2 Bike Search Notebook . 74

5 Validation . 77

5.1 Bicycle Model Validation . 77

5.2 Body Model Validation . 79

5.3 Design of Experiments . 79

5.3.1 Overview . 79

5.3.2 Experimental Setup . 82

5.4 Brute Force Experiments . 82

5.4.1 Experiment Objectives . 82

vii

5.4.2 Process Variables . 83

5.4.3 Experimental Design . 83

5.4.4 Experimental Results . 84

5.5 Unpartitioned Genetic Algorithm Experiments 85

5.5.1 Experiment Objectives . 85

5.5.2 Process Variables . 86

5.5.3 Experimental Design . 87

5.5.4 Experimental Results . 88

5.5.5 Recumbent Full Factorial Tuner Results 89

5.5.6 Recumbent Sampling Tuner Search Results 93

5.5.7 Safety Bike Full Factorial Results 95

5.5.8 Experiment Conclusions . 99

5.6 Partitioned Genetic Algorithm Experiments 100

5.6.1 Experiment Objectives . 100

5.6.2 Process Variables . 101

5.6.3 Experimental Design . 101

5.6.4 Experimental Results . 103

5.6.5 Recumbent Full Factorial Results 104

5.6.6 Safety Bike Full Factorial Results 106

5.6.7 Experiment Conclusions . 106

6 Conclusions . 112

7 Future Work . 114

BIBLIOGRAPHY . 116

APPENDICES

Appendix A Configuration File Templates . 120

A.1 Bicycle Configuration Template . 120

A.2 Rider Configuration Template . 121

A.3 Double Rider Configuration File . 122

A.4 Genetic Algorithm Configuration Template 122

A.5 Partitioning Configuration Template 124

Appendix B Bike Configurations . 125

B.1 Cal Poly’s Gemini Bicycle Frame Parameters 125

viii

B.2 Cervelo R3 Team Bicycle Frame Parameters 125

B.3 Parameter Space for Brute Force Search – Gemini Bike Frame 126

B.4 Parameter Space for Recumbent Genetic Search 126

B.5 Parameter Space for Safety Bike Genetic Search 127

Appendix C Rider Configuration Trials . 128

C.1 Chris Hunt’s Rider Parameters . 128

Appendix D Genetic Operator Configurations 129

D.1 Base Genetic Search Configuration 129

Appendix E Control Sensitivity Trials . 130

E.1 Control Sensitivity Values for Chris Hunt Riding Cal Poly’s Gemini
Frame . 130

E.2 Control Sensitivity Values for Chris Hunt Riding Cervelo’s 2012 55cm
R3 Team Frame . 130

Appendix F Computing the Rider’s Geometry 133

F.1 Accommodating Rider Body Thickness 133

F.2 Locating the Rider’s Head . 134

F.3 Locating the Rider’s Torso . 136

F.4 Locating the Rider’s Legs . 136

F.5 Locating the Rider’s Arms . 137

Appendix G Rider Inertia Equations . 139

G.1 Computing the Inertia of a Body about an Axis 139

G.2 Computing the Inertia of the Rider’s Head 142

G.3 Computing the Inertia of the Rider’s Torso 143

G.4 Computing the Inertia of the Rider’s Leg 144

G.5 Computing the Inertia of the Rider’s Arm 146

G.6 Computing the Overall Radius of Gyration 148

Appendix H Computing the Frame . 149

H.1 Computing Seat Stay Location . 149

H.2 Computing the Chain Stay Location 150

H.3 Computing the Fork Location . 150

H.4 Computing the Top Tube Location 153

H.5 Computing the Down Tube Location 153

ix

Appendix I Bloopers . 155

x

LIST OF TABLES

Table Page

2.1 Patterson Control Model parameter inputs 11

3.1 Modified Patterson Control Model parameter inputs. 32

3.2 Body Segment Mass as Percentage of Overall Body Mass for 95th
Percentile Men [29] . 39

3.3 Rider Parameter Inputs . 41

3.4 Bicycle Configuration File Parameter Names and Value Ranges. . . 48

3.5 Rider Configuration File Parameter Names and Value Ranges. . . . 49

3.6 Genetic Algorithm Configuration File Parameter Names and Value
Ranges. 49

3.7 Partitioning Configuration File Parameter Names and Value Ranges. 51

3.8 Partitioning Algorithm Comparisons 65

5.1 Genetic Algorithm Parameter Space 88

5.2 Optimum Genetic Algorithm Recumbent Parameters 89

5.3 Optimum Genetic Algorithm Safety Bike Parameters 96

5.4 Optimum Genetic Algorithm Parameters For Entire Bicycle Space . 100

5.5 List of bicycle attributes to combine while tuning the partitioned
genetic search platform. 103

5.6 Runtime and error results for the optimum recumbent partitioning
vectors. 104

5.7 Runtime and error results for the optimum safety bike partitioning
vectors. 106

E.1 Control Sensitivity for Chris Hunt on Cal Poly’s Gemini Frame. . . 131

E.2 Control Sensitivity for Chris Hunt on Cal Poly’s Gemini Frame. . . 132

E.3 Control Sensitivity for Chris Hunt on Cervelo’s 2012 R3 Team Frame.132

xi

LIST OF FIGURES

Figure Page

1.1 An example recumbent bicycle (Cal Poly’s Gemini frame) 2

2.1 Milestone designs in bicycle evolution 6

2.2 Whipple bicycle model . 7

2.3 Example Patterson Control Model curves for the Cal Poly HPV
team’s 2012 Gemini frame . 10

2.4 Diagram of Patterson Control Model parameter inputs 11

2.5 Handlebar types showing examples of a) regular handlebars and b)
tiller handlebars. 13

2.6 Control Sensitivity for the 2007 Cal Poly Athena frame 14

2.7 Moore’s simple geometric representation of a bicycle rider [25]. . . . 16

2.8 4 Parameter Set Graeco-Latin Square 22

2.9 An example response landscape . 24

2.10 An example of a parallel-coordinate graph with multiple data points
(each being described by a single line) 29

3.1 Modified Patterson Control Model parameter mappings. 33

3.2 Dependency graph showing how the variables in the original Pat-
terson Control Model map to the expanded parameter set in the
Modified Patterson Control Model 34

3.3 Commonplace bicycle tubes and connection points. 36

3.4 Steps for constructing a recumbent frame. 37

3.5 Steps for constructing a safety bike frame. 37

3.6 Human body model using geometric primitives. 40

3.7 Visualization of the 4 steps of fitting a rider to a bicycle frame. . . 43

3.8 Figure a) shows the rider’s center-line without the seat, and b) in-
cludes the seat to show that the rider’s body thickness is taken into
account by the model. 43

3.9 Depiction of the three di↵erent Graeco-Latin squares used in the
sampling tuner. Example a) shows the square when 3 input param-
eters are present, b) for when 4 are present and c) for when 5 are
present. 59

xii

3.10 Example output graphs from the sampling stage of a sampling tuner
[26]. 60

4.1 Overview of the project package architecture. 69

4.2 Example of the Jupyter interface and how to run code embedded in
a notebook cell. 72

4.3 Example output from the Jupyter Bike Plotter notebook. 74

4.4 Button used to select between the three search algorithms. 75

4.5 Example output from the Jupyter Bike Search notebook. 76

5.1 Example output from the bicycle plotter with the left plot showing
the bicycle and rider configuration and the right plot showing the
resulting handling curve graphed alongside a target handling curve.
The 0.0 error value shows that this bicycle design had the expected
handling characteristics. 78

5.2 SolidWorks model of a rider along with its inertial properties. . . . 80

5.3 Resulting bicycle design generated by Brute Force search with Chris
and Gemini as the datums. 85

5.4 The top 1000 designs from the full factorial experiments over the
recumbent design space. 91

5.5 The top designs per segment for the full factorial experiments over
the recumbent design space. 92

5.6 Sampling tuner error values for each parameter vector. 94

5.7 The top 1000 designs from the full factorial experiments over the
safety bike design space. 97

5.8 The top designs per segment for the full factorial experiments over
the safety bike design space. 98

5.9 All recumbent tuning results with a radius value of a) 1.0 b) 2.0 c)
3.0 d) 4.0 e) 5.0. 105

5.10 Top recumbent tuning results with a radius value of a) 1.0 b) 2.0 c)
3.0 d) 4.0 e) 5.0. 108

5.11 All safety bike tuning results with a radius value of a) 1.0 b) 2.0 c)
3.0 d) 4.0 e) 5.0. 109

5.12 Top safety bike tuning results with a radius value of a) 1.0 b) 2.0 c)
3.0 d) 4.0 e) 5.0. 110

5.13 Partition radii versus top errors for the recumbent and safety bike
design spaces. 111

xiii

F.1 Calculating the rider’s hip center. 134

F.2 Calculating the seat angle while compensating for rider body thickness.135

F.3 Calculating the location of the rider’s head’s center of gravity. . . . 135

F.4 Calculating the location of the rider’s torso’s center of gravity. . . . 136

F.5 Calculating the location of the rider’s leg’s center of gravity. 137

F.6 Calculating the location of the rider’s arm’s center of gravity. . . . 138

G.1 Unit vectors for each of the rider’s body segments. 142

H.1 Calculating the location of the frame’s seat stay center of gravity. . 149

H.2 Calculating the location of the frame’s chain stay center of gravity. 150

H.3 Calculating the location of the frame’s fork center of gravity. 151

H.4 Calculating the location of the frame’s top tube center of gravity. . 153

H.5 Calculating the location of the frame’s down tube center of gravity. 154

I.1 A sampling of generated bicycle designs. 156

xiv

Chapter 1

INTRODUCTION

The predominate bicycle design of today, known as the ”safety bike”, is the result

of over a century of incremental iteration. This trial and error approach to bicycle

improvement was born out of the lack of scientific understanding of the bicycle as

a mechanical system, and even today our knowledge of bicycle physics is still in its

infancy compared to other mechanical control fields [31]. However, this is not to

say that scientists and engineers have not been working on modeling the bicycle –

in fact, over 200 individual models have been described in the literature as of 2007

[24]. Typically, these dynamic models take as input the physical characteristics of a

bicycle/rider combination and output graphs of their stability over a range of speeds.

By examining the output of these models, a designer can choose to modify certain

bicycle parameters and rerun the simulation, eventually iterating to a final solution.

The notable part of this design loop is that it is focused on a single bike/rider

configuration at a time. This is primarily due to the large influence that the rider’s

mass has on the overall bicycle’s handling sensitivity, and as a result, a change in the

rider can cause a significant change in the handling characteristics of the final bicycle.

Because of this variability in design from rider to rider, many designers choose to stick

closely to proven bicycle geometries in order to reduce the risk of building something

that handles poorly for a given subset of enthusiasts.

However, the prototypical safety bicycle is not the only plausible design that exists

for the bicycle builder. An orthogonal design, known as the recumbent bicycle (as

shown in Figure 1.1), provides similar handling to the safety bicycle but can often

reach higher speeds due to its lower profile and improved aerodynamics.

1

Figure 1.1: An example recumbent bicycle (Cal Poly’s Gemini frame)

These recumbent bicycles have their rider in a more reclined position and keep the

pedals in front of the rider’s hips, and as a result are forced to use more unconven-

tional wheel sizes and odd frame geometry. Unfortunately, due to the limited body

of knowledge regarding the design and handling characteristics of these recumbent

bicycles, many designers still shy away from these geometries.

This work seeks to try and reduce the burden on the bicycle designer by automat-

ing the search of an optimum bicycle geometry given a set of design parameter ranges

and a set of riders. The intent is that the designer can specify an approximate range

for each of the desired design parameters as well as a target bicycle handling curve

and the model will return the optimum result in a reasonable amount of time. This

work uses as its testbed the Patterson Control Model [28] to model the handling of

each bicycle/rider combination. This model has been used for over 20 years by the Cal

Poly Human Powered Vehicle (HPV) team to design their recumbent racing bicycles.

The Patterson Control Model has 9 parameters as inputs, and as such, large searches

2

of the design space can take a prohibitively long time to complete. To expedite the

search, this work seeks to optimize the process through the application of Genetic

Algorithms (GA’s). This paper contributes the following to the field:

• A modified version of the Patterson Control Model to ease user input and search

space iteration.

• A brute force implementation of the bicycle optimization search.

• A study of the application of Genetic Algorithms over the bicycle design field,

including experiments and conclusions regarding the optimum Genetic Algo-

rithm operator values for:

– Population Size

– Generation Count

– Selection Percentage

– Cross Over Percentage

– Mutation Percentage

• A genetic algorithm implementation of the bicycle optimization search.

• A partitioning algorithm to categorize/improve the genetic algorithm’s results.

• A front-end for accessing the modified bicycle control model as well as the saerch

platforms.

Myriad tests were conducted in an attempt to find the optimum values for each of

the above mentioned genetic operators. These tests were conducted on two di↵erent

bicycle design spaces: the safety bicycle design space and the recumbent bicycle

design space. The results of these experiments were then analyzed and conclusions

were drawn regarding the applicability of overall optimum genetic operator values for

the whole of the Patterson Control Model design space. Additionally, the solution

qualities and overall run-time performance of the brute force solution as well as the

3

genetic implementations were compared. Ultimately it was found that the genetic

implementations produced near optimal solutions in a fraction of the brute force

algorithm’s runtime, making them a viable and useful tool for future bicycle designers.

Finally, a visualization component was created using Jupyter Notebooks to allow

users to easily interface with both the Modified Patterson Control Model as well as

the bicycle design search algorithms.

4

Chapter 2

BACKGROUND

2.1 Bicycle History

The first recorded bicycle-like device was invented in Germany in 1817 and was

dubbed the running machine or hobby horse because it consisted of two wheels and

a seat, and required the rider to provide locomotion by pushing o↵ the ground with

their feet. Due to its cumbersome nature, this device gained little traction and faded

out several years later. These running machines laid dormant for the following 50

years until a French tinkerer added a crank and pedals to the front wheel, creating a

more practical machine which could be ridden for several miles. These new bicycles,

known as Ordinary’s or Penny Farthings, had higher speeds than their predecessors

and could actually be used as a viable mode of transportation. However, this in-

creased top speed came at the cost of rider safety; the Ordinary, being a single speed

front-wheel-drive bicycle, required that the front wheel be incredibly large (by today’s

standards) in order to reach appreciable top speeds. This forced the rider to sit high

up on the bicycle, making crashes (known as headers) catastrophic. It was not until

the late 1870’s that the modern safety bike was developed. This bicycle had the rider

seated between two equally sized wheels and used a chain to drive the rear wheel.

Since its inception, the safety bike has seen overwhelming acceptance by the general

public and little has changed in its design over the past century [4].

It is worth noting that the safety bike’s persistence does not mean that it is the

pinnacle of bicycle design. For instance, one appreciable problem with the safety bike

is its sizable frontal area (due mainly to the rider’s upright body), which causes a

large amount of wind resistance and throttles the top speed of the bicycle. Another

5

Figure 2.1: Milestone designs in bicycle evolution

radically di↵erent bicycle design, known as the recumbent bicycle was born out of

bicycle racing and places the rider low between the wheels with the crank in front of

the front wheel. This lowered position coupled with the more reclined nature of the

rider’s seat greatly reduces the frontal area of the bicycle, allowing for its rider to

reach higher top speeds. The e↵ects of these designs were noticed immediately in the

professional community during the 1932 racing season where amateur cyclist Charles

Mochet out-rode the best professional riders primarily due to his recumbent being

more aerodynamic than their safety bikes. Unfortunately, the governing body of bicy-

cle racing, known as the Union Cycliste Internationale (UCI), thought the recumbent

was unfair and banned it from the racing circuit in 1934 [5]. Many speculate that

this banning is the predominant reason that recumbents are not a widespread bicycle

design today and while recumbents have been making a comeback in other areas of

bicycle racing and recreation, the number of recumbents being developed each year

is still quite small, leaving most of that area of bicycle design unexplored.

2.2 Bicycle Models

2.2.1 Whipple Model

The design of safety bikes over the past century followed in the footsteps of the Ordi-

nary with design guidelines and general rules being developed predominately through

6

trial and error. However, there were some academics who tried to model the behav-

ior of the bicycle using mathematics and engineering concepts. The first landmark

bicycle model was introduced at the end of the 19th century by both mathematician

Emmanuel Carvallo (1897) and Cambridge undergraduate Francis Whipple (1899)

[18]. While Carvallo and Whipple developed their work independently, they both

made similar assumptions which lead to similar models. However, Whipple’s model

had more detail due to its larger number of bicycle parameter inputs (25 in total)

and is still used today by many to design bicycles [5]. Whipple’s model idealizes a

bicycle as 4 rigid bodies: the front fork assembly, the rear frame assembly and the

front and rear wheels (as shown in Figure 2.2).

Figure 2.2: Whipple bicycle model

This model includes the rider as a single-point mass and attempts to characterize

a bicycle design’s stability by determining if it is self-stabilizing without rider input.

Another way of saying this is that a bicycle is considered stable if it will return to

an upright position from a turn without the rider having to compensate (through

7

handlebar input or body lean). While this model has been criticized for greatly

simplifying the rider (and thus loosing fidelity), it has still been used to great success

by the scientific and bicycle design communities. Examples include work done at

UC Davis comparing instrumented bicycles to the model [22] as well as recumbent

bicycle design performed by Delft University [5]. However, a good bike design does

not necessarily have to be self-stabilizing because there is always a rider who can

accommodate and correct for some inherent stability issues within the design (if those

issues are not egregious).

2.2.2 Patterson Control Model

Other researchers agreed that the Whipple definition of stability was too strict and

instead developed di↵erent models that focused on predicting how rideable a bicycle

design was using various other metrics. One such model, known as the Patterson

Control Model, was developed by Bill Patterson and the Mechanical Engineering

Department at California Polytechnic State University, San Luis Obispo [28]. This

model characterizes a bicycle’s handling characteristics as a function of Control Spring

and Control Sensitivity. Control Spring is an abstraction surrounding how likely

it is that the front wheel of a bicycle will want to stay running in line with the

motion of the bicycle. At low speeds, many bicycles with small amounts of trail

(the distance between the front wheel’s contact patch with the ground and where the

fork’s center line intersects the ground plane as shown in Figure 2.4) will experience

fork flop, where the front wheel wants to over-rotate and flip around backwards.

This unstable behavior tends to dissipate as the bicycle’s speed increases due to the

increased frictional force felt by the tire at its contact patch with the ground. This

frictional force creates a moment about the steering axis which tends to correct the

wheel to run true with the bicycle, and thus prevents it from flipping around on the

rider. In general, the torque felt by the user about the bicycle’s steering axis is similar

8

in nature to a torsional spring, with a larger deflection of the handlebars causing a

larger control spring force felt by the user in their handlebar grips. Additionally,

it is worth noting that a positive control spring value signifies that the bicycle is

unstable, while a negative control spring value signifies that the bicycle will naturally

right itself once it begins to fall. Control Sensitivity on the other hand, is an attempt

to model the roll rate of a bicycle design due to a rider’s input at the handlebars.

An example of this is when a rider notices that they are falling to their left side. In

order to compensate for this fall, they turn left into the fall which causes them to

begin moving in a circle. This circular motion produces a centrifugal force on the

bicycle and rider which pushes them upright and stops the fall [21]. The rate of

this roll is what is being modeled as Control Sensitivity. A good bicycle design can

have a range of control sensitivities, and it is not uncommon for designers to want

higher sensitivities at low speed ranges while still desiring lower sensitivities at high

speeds to avoid a crash due to instability. The Patterson Control Model computes a

Control Spring and Control Sensitivity value for a single bicycle speed, and as such,

it is common to compute these values for a range of speeds and plot them as shown

in Figure 2.3.

Of note, the Control Spring for this bicycle design starts positive before quickly

becoming negative; as mentioned above this is a common feature of many bicycles and

is not deemed detrimental as long as the value crosses zero under 5 miles per hour.

Additionally, the Control Sensitivity of this design peaks at a value of 27 around 13

miles per hour and then gradually becomes lower as the bike’s speed increases.

Cal Poly has a team of students who build a recumbent each year and race it

against other colleges from around the world. This team, known as the Human

Powered Vehicle (HPV) team, has used the Patterson Control Model for over a decade

to help guide the design of their recumbent bicycles, and the curves in Figure 2.3

describe the team’s 2012 Gemini frame. Interpreting what a good sensitivity curve

9

Figure 2.3: Example Patterson Control Model curves for the Cal Poly
HPV team’s 2012 Gemini frame

looks like is generally up to the experience of the team both from a building and

a riding perspective. For example, Bill Patterson noted that an average safety bike

has a max sensitivity of around 15 but the Gemini frame tops out around 27, and

some cyclists who were unfamiliar with riding recumbents found the Gemini frame to

be somewhat unstable. However, the team also found that this increased sensitivity

allowed for the bike to be more maneuverable during low speed cornering which gave

them an edge while racing. This trade-o↵ shows that the notion of Control Sensitivity

is subjective in nature, but also that once a rider knows what sensitivities they are

looking for, they can produce a design with specific handling properties over di↵erent

speed ranges. In order to allow for quicker iteration, the Patterson Control Model

requires only 9 separate parameters to characterize the bicycle as outlined in Table

2.1 and Figure 2.4.

The wheelbase is the distance between the front and rear wheels of the bicycle,

10

Table 2.1: Patterson Control Model parameter inputs

Parameter Symbol Units

Wheelbase A meters

Fork O↵set e meters

Headtube Angle � degrees

Center of Mass X-O↵set B meters

Center of Mass Z-O↵set h meters

Radius of Gyration K
xx

meters

Handlebar Radius R
h

meters

Front Wheel Radius R
f

meters

Bike Mass R
r

kilograms

Figure 2.4: Diagram of Patterson Control Model parameter inputs

and as the wheelbase decreases the sensitivity of the bicycle tends to increase. The

fork offset is the perpendicular distance between the fork axis and the point where

11

the fork connects to the wheel hub. This distance causes the wheel to intersect the

ground behind the steering axis, and this distance is known as positive trail. Trail is

also a↵ected by the Headtube Angle, which is the angle of the steering axis relative to

the vertical. Trail is considered crucial by many to the stability of a bicycle design [21].

The Center of Mass X and Z-Offsets are required to locate the center of gravity

of the bicycle and rider, and is usually dominated by the rider’s mass. Shifting the

center of mass upwards or backwards will tend to lower the bicycle’s roll rate. The

magnitude and location of the bicycle’s center of mass greatly influence the overall

design’s Radius of Gyration, which is a measure of the tendency of the body to

rotate about a given axis. In the Patterson Control Model, this is the primary way

to represent the rotational inertia of the system about the ground plane. A good

analogy to this rotational inertia is the linear inertia that a simple block has. As the

inertia of the block is increased, it becomes increasingly hard to start (or stop) the

block. The Radius of Gyration is a similar measure of how hard it is to start (or stop)

the bicycle and rider from rolling from side to side. The Handlebar Radius specifies

the distance between the handlebars grip and the head tube, and can be extended to

represent normal handlebars (which stick out to the side) or tiller handlebars (which

stick backwards towards the rider) as shown in Figure 2.5. Finally the Front Wheel

Radius is simply the distance between the front wheel hub and the outside tire tread

and the Bike Mass is the combined mass of the bicycle and its rider.

Ultimately, the bike designer has these 9 parameters to tweak and modify in

order to change the handling response of their final design. Also, it is important

to note that many bikes are not made for the same sized person, and while the

underlying bicycle geometry may remain fixed, the mass and location of the center

of gravity of the bicycle will change from rider to rider. Thus, the designer must

take into consideration several di↵erent riders when creating a frame in order to

avoid making a bicycle which is only controllable by a subset of the target riders.

12

Figure 2.5: Handlebar types showing examples of a) regular handlebars
and b) tiller handlebars.

Unfortunately, the base Patterson Control Model does not take into account the

shape or physical dimensions of a bicycle’s rider, and instead puts the burden on

the designer to compute the appropriate center-of-mass and radius of gyration values

for each bicycle/rider configuration (which can be time consuming and error prone).

However, for designing a versatile bike that achieves the desired stability for multiple

riders this is often necessary to avoid problematic bicycle handling corner cases. A

good example of this is Cal Poly’s 2007 Athena frame. As shown in Figure 2.6, while

the sensitivity for the male rider peaks at around 27, the sensitivity for the female

rider continues to climb until it reaches a value of 35 around 40 mph. The result of

this was a bike that was essentially unrideable at speeds above 20 mph for the female

riders due to their lower radius of gyration values.

As such, for the Patterson Control Model to produce worthwhile results, the rider

must be adequately modeled first, and given the complexities of modeling the human

body this is a non-trivial task. Fortunately, several decades of work have been put

into creating mathematical human body models which can be leveraged during this

13

Figure 2.6: Control Sensitivity for the 2007 Cal Poly Athena frame

stage of the design process.

2.3 Human Body Models

The mass distribution of the human body is complex and di�cult to analyze and

model accurately, and as such there have been many studies attempting to charac-

terize its features. These studies date back to the early 1860’s with simple body

measurements, and have evolved into everything from measuring the human body

through use of balancing apparatuses, photo-measurement, x-ray measurement and

geometric modeling, among others [14]. Many initial measurements were conducted

on cadavers in an attempt to isolate the inertial properties of each segment of the

14

human body, and while expensive and inherently inaccurate, studies along these lines

formed a large basis of body measurements moving forward since the early 1900’s.

Other researchers have attempted to use the data from previous studies to draw sta-

tistical conclusions and create mathematical models of the human body – however

these models are often only for the 50th and 95th percentile population, and as such

their applicability is still somewhat limited. Regardless of these limitations, these

models have still been used to great e↵ect in modeling humans in space-craft and

car-crash simulations [23].

Since a bicycle rider usually makes up the majority of the bicycle system’s mass,

it is important to adequately model the rider’s body in order to ensure that the e↵ects

of their mass and inertia are properly included in the system’s handling analysis. As

such, several contemporary mathematical body models were investigated including

those developed by Yeadon [33], and Moore [25]. Yeadon modeled the human body

as a set of 39 stadiums and a single ellipsoid, which required upwards of 95 mea-

surements to characterize. While this high level of detail provided a more accurate

mass distribution than prior models, Yeadon’s design does have some shortcomings;

specifically, it can have problems modeling limbs at the extremes of their travel and

it often puts too much computational e↵ort into calculating the smaller portions of

the human body (such as the hands which contribute little to the overall inertia of

the system). Regardless, Yeadon’s model has seen a large amount of use in the mod-

eling community, including being used in a study by Moore to model bicycle/rider

interactions [19]. However, it is also noted that the model is somewhat unwieldy due

to the number of components and that simpler models exists which can also model a

rider in a usable fashion.

One such model was developed by Moore during his work with the Whipple Bi-

cycle model. Moore’s initial model represented the human body as a series of simple

geometric shapes (10 in total), each with constant density as shown in Figure 2.7

15

[25]. This model required the measurement of a few key body dimensions, and as-

sumed that the mass distribution of a person followed the findings of Dempster who

cataloged the mass of each body segment as a percentage of the person’s overall mass

[11]. A similar type of body model to Moore’s was also used in [29] to model a human

user transferring from one position to another. In [29], the authors showed that their

body representation was roughly 95% accurate when compared to more complex solid

models of the human body, and as such this form of model is likely suitable for many

engineering applications. Additionally, the simplicity and flexibility of Moore’s body

model enables it to be paired well with the aforementioned Patterson Control Model

to give a more holistic tool for designers to design bikes through. However, this tool

could easily become unwieldy due to the large number of possible parameter combi-

nations, and as such search algorithms would be needed to prune the design space

for the designer. One such search concept, known as genetic algorithms, is adept at

finding solutions to problems with high-dimensionality through iterative refinement

as outlined in Section 2.4.

Figure 2.7: Moore’s simple geometric representation of a bicycle rider [25].

16

2.4 Genetic Algorithms

Genetic Algorithms (GA’s) are a family of search heuristics which try to discover

near optimal designs by mimicking the process of evolution and natural selection.

The general belief is that these natural processes have allowed the organisms of this

world to slowly iterate to near optimal configurations for their given environment (if

left generally undisturbed), and that there is some implicit e�ciency in the process of

evolution which has been refined by nature over millennia [8]. Many problem spaces

have been explored and optimized by GA techniques including the development of

F1 cars [32] and the design of aircraft wing airfoils [30]. However, GA methods are

not general purpose and cannot be applied to all problem domains.

In order for a GA approach to be applied to a problem, that problem must be able

to be modeled in the context of evolution. The core element of any GA is the concept

of an individual, which is a single solution to the problem being solved. These

individuals are then grouped into populations, where each individual is usually

created in a stochastic way. These populations are meant to mirror populations of

organisms in the real world, with each solution in the GA population being akin to a

given organism in the real world population. The GA approach extends this metaphor

further by requiring that each individual be composed of discrete parameters (known

as genes, chromosomes, or attributes) which can be manipulated to produce new

solutions (known as offspring). The manipulation of an individual’s genes can

be done in a variety of ways, with each way being called a genetic operator or

operator. These fundamental operators include:

• Selection • Cross-Over • Mutation

with each working in concert to try and mimic real-world evolutionary practices.

Once specified, the set of genetic operators are applied to a given population of fixed

17

sized over a series of generations, with each generation ideally improving based on

the findings of those that came before it. Ultimately, genetic algorithms reduce down

to being optimization problems with the goal of finding the best configuration of

selection, cross-over and mutation rates combined with the appropriate size popula-

tion and number of generations to uncover an individual solution that maximizes or

minimizes whatever goal the researcher is focusing on.

2.4.1 Selection

Selection is the process of determining which individuals to combine (known as

breeding) to create the next generation’s o↵spring. This can be done in a variety of

ways including choosing a random set of individuals from the population (known as

roulette selection) to selecting the ”top” individuals by percentage (known as elitism

selection). The driving idea behind this is that the o↵spring of the best individuals

will have a good chance of being better than their parents. However, not all o↵spring

must come from the previous generation’s breeding; some have found it beneficial to

include randomly created individuals to keep some variety in the population. The

reason this variety is important is because it can help prevent the GA from converging

to a local optimum individual [27].

2.4.2 Cross-Over

Cross-Over plays a crucial role in determining how to combine two parent individuals

to produce a child. The term comes from the field of genetics where individual genes

would be combined from each parent to produce the resulting child. In general, the

parameters that define each parent are arranged in an array. In single-point cross-

over, an index is chosen in the array and the child receives all genes to the left of that

index from parent A and the rest of its genes from parent B. In two-point cross-over,

18

a second index is chosen and parent A supplies the genes that do not fall within the

two indexes (while parent B supplies the remainder). This multi-point cross-over can

be expanded up to n-point cross-over, where each gene can come from either parent.

The determination of where to put these indexes can be done in a variety of ways,

starting at defining the index in a pseudo-random way all the way to defining the

indexes using heuristics which change as the GA runs [17].

2.4.3 Mutation

Mutation is the final primary operator at the GA’s disposal, and it is responsible for

randomly altering genes in a new o↵spring to be a value which might not necessarily be

that of either parent. In theory, mutation is the only operator which ensures that all

possible parts of the design space can be iterated over because it can create individuals

that have genes not present in the current population. This is important because it

allows the GA to be generalized and gives the GA implementer the reassurance that

their algorithm is not going to naturally exclude a portion of the design space which

may eventually end up being optimal. However, mutation can be a tricky operator

to tune: too little mutation and the algorithm will be slow to expand its search past

the current local optimum but too much mutation and the algorithm devolves into

random search [17].

2.4.4 Fitness

All of the above GA mechanics, from making a population of individuals to selecting

a subset of them to produce the next generation, as well as the way all of the GA

operators are combined hinge on a single final attribute of all GA models, and that

is that there must be some way of comparing each individual in the population to

rank them. In many cases, individual solutions are assigned a score via a fitness

19

function, which is an objective function defined by the implementer. Fitness func-

tions are usually heavily dependent on the problem space that is being analyzed and

as such, good fitness functions often require the aid of domain experts to isolate the

important metrics to optimize around. However, in general a good fitness function

generates a wide enough spread in its rankings so there is enough resolution in the

fitness values of each individual to allow the GA to make meaningful decisions from

generation to generation. With all of these parameters defined, the GA will then try

to find an individual with the maximal or minimal score (as specified by the designer).

2.5 Tuning Genetic Algorithms

The next step after configuring a problem to work within the bounds of the genetic

algorithm paradigm is to specify the values of the various genetic operators, since

selection of the appropriate values can vastly improve run-time performance and the

algorithm’s final solution. Unfortunately, there is currently no set of genetic operator

values that will work for all genetic algorithm applications. This is mainly due to

the high variety of problem spaces that these algorithms can be applied to, with

each having its own specific set of factors, responses and sensitivities. However, there

are many di↵erent approaches to determining what a possible optimal parameter set

could be, and these all revolve around exploring the responses of the genetic algorithm

through iterative tuning.

Iterative tuning is a straightforward concept where a set of inputs is developed

and then run through the genetic algorithm and the outputs are analyzed to see if any

general trends occur. If trends are present, the tuner can then leverage them to create

a more informed set of inputs to run through the genetic algorithm, thus honing its

results. Ideally, this process will eventually converge to a set of parameter solutions

which provide optimal (or near optimal) performance for the genetic algorithm over

20

the specified problem space [12].

2.5.1 Types of Genetic Algorithm Tuners

There are a variety of tuners in the literature, each with its benefits and shortcomings,

but in general they are all trying to find an optimal set of genetic algorithm parameters

with as little computation as possible. The following tuners are some of the mainstays

in use today by researchers:

Factorial Tuners are the most basic and also likely the most informative of

the tuner implementations. A factorial tuner determines what the optimal genetic

operator vectors are by exhaustively searching the design space, and by trying each of

the possible parameter combinations it allows trends to be analyzed without having

to generalize or fill in gaps in the search space. However, the downside to this method

is that it can be incredibly computationally expensive, especially if a large parameter

space is to be investigated.

Sampling Tuners try and reduce the total run-time required to explore the de-

sign space by breaking their search into two main components. The first component,

known as the sampling stage, takes a uniform random sample of parameter combina-

tions from the design space and runs each through the genetic algorithm to see how

these combinations perform. Parameter selection can be performed through a variety

of methods, with one of the most common being the use of the Graeco-Latin Square.

Graeco-Latin Squares are a way of combining a set of parameters such that no

two combinations are the same. They derive their name from the way that they are

commonly written, with one parameter space being described using letters from the

Greek alphabet and the other parameter space being specified via letters from the

Latin alphabet. For example, assume we had 4 parameter vectors we were looking to

21

sample:

PopulationSize = [A,B,C,D,E]

GenerationCount = [I, II, III, IV, V]

SelectionPercentage = [a, b, c, d, e]

CrossOverPercentage = [↵, �, �, �, ✏]

An example of the resulting Graeco-Latin Square is shown in Figure 2.8, with

each cell being a combination of the parameters that is completely unique from the

others in the set. Example configurations which would be sampled from this square

include: AIa↵, AIIB�, AIIIc�, AIV d� and AV e✏ (going down the A column).

Additionally, this 5x5 matrix has 25 possible combinations which must be tested to

sample the design space, a number which is vastly smaller than the 54 = 625 possible

combinations which would have to be tested if using a Factorial Tuner.

Figure 2.8: 4 Parameter Set Graeco-Latin Square

Graeco-Latin squares are useful for determining general trends of variables across

a wide range of values, and for isolating the response of variables from one another.

That is to say, the results of a Graeco-Latin square analysis by default do not take

into account the general interactions of one variable with regards to another, but

rather just sample the design space in a way that limits other factor’s influences on

22

the final results. While this may not seem an appropriate sampling method for use in

tuning a genetic algorithm due to the large amount of interaction between all of the

genetic operators, studies have shown that they can provide an informative overview

of the parameter space for some problem domains [26].

These results are then analyzed and the most promising of them are recorded.

The design space is then reduced by a factor and hopefully begins to tighten around

the most promising solutions. This process repeats until a stopping condition is

met (either number of iterations or the space is no longer changing significantly), at

which point a full factorial tuner is run over the remaining design spaces. While this

factorial analysis can still be time-consuming, it is ideally run over a much smaller

design space than what the algorithm began with, and as such tends to produce

near optimal solutions in a much shorter time than a full factorial search would

require (if the sampling methods honed in on the appropriate parameter ranges)

[12]. Common examples of iterative sampling methods include CALIBRA [6] and the

methods outlined in Emperical Modeling of Genetic Algorithms [26].

Model Based Tuners try to extend the simplicity of sampling based tuning meth-

ods by creating a model of the genetic algorithm’s response landscape. A response

landscape is a multi-dimensional surface which shows how di↵erent parameters inter-

act with one another and thus what trends exist in the data, an example of which is

shown in Figure 2.9. This example landscape shows that as population size and gen-

eration count are increased, the error in the final solution decreases (and visa versa).

Additionally, it shows that while increasing either of the two factors independently

will reduce the error to a degree, it appears that there exists a strong coupling between

the two inputs with the error drastically reducing as both are increased together.

Once a mathematical model of the genetic algorithm’s parameter response space

has been created from the initial samples, promising parameter subspaces are deter-

23

Figure 2.9: An example response landscape

mined and then iteratively explored. This iterative exploration continues to sample

the new subspaces, further refining the model until a stopping condition is met (num-

ber of iterations or the solution is no longer improving). Common examples of Model

Based Tuners include Coy’s Procedure [10].

2.6 Data Partitioning

Alongside developing tuning methods for genetic algorithms, many implementations

also include a clustering/partitioning step in order to try and gain more insight into

the trends each population might be exhibiting. This concept is used in data science

to group data points together with the objective of creating collections of points with

high similarity. This idea of similarity is not fixed, and many clustering algorithms use

their own similarity metrics to judge how alike two data points are to one another.

Additionally, the idea of clustering has many di↵erent implementations, each with

their own strengths and weaknesses. With that in mind, it is important to realize

that there is not a single correct clustering scheme that applies to all problem domains,

but rather there are myriad choices that exist and it is up to the researcher to pick

the algorithm which best fits their data. As such, a general overview of the major

24

clustering algorithms is presented below to provide perspective to the reader.

2.6.1 Centroid Based Clustering

Centroid Based Clustering is a widely used clustering concept that aims to parti-

tion a data set of N elements into K clusters such that the mean squared distance

between each point and its cluster center is minimized. This process of finding

the cluster configuration with the minimal mean squared distance is known to be

NP-Hard, and as such only approximations of centroid based clustering are used in

practice. The K-Means clustering algorithm is one of the more widely used imple-

mentations and requires the user to specify the number of clusters at run-time. Since

the algorithm is only an approximation, the clusters it produces from run to run may

not have the global minimum mean squared distance. As such, it is common to run

several iterations of the algorithm (as time allows) with di↵erent data point orderings

in order to try and find the optimum cluster configuration [15].

Due to the nature of their objective function, K-Means and its variants tend

to produce clusters which are of roughly equal size and shape – properties which

may or may not be indicative of the underlying data being analyzed. Additionally,

the requirement that the user specify the number of clusters at run-time can be

cumbersome in some situations (especially when the researcher is not familiar with the

domain/data set). If the user can run several iterations of the algorithm with di↵erent

cluster counts then it is often possible to determine the ideal number of clusters

(knowledge which may be applicable to future data sets from the same domain),

however, this process can become tedious and time-consuming, making centroid based

clustering a poor choice for some problem domains.

25

2.6.2 Density Based Clustering

Density Based Clustering is a clustering variant which groups points that are

closely packed together into clusters, with the idea that point density is the most

important factor in point similarity. The most common implementation of density

based clustering is known as DBScan. DBScan characterizes point density by analyz-

ing the number of points within a specified radius from each point in the data set.

If Point B falls within the circle inscribed by Point A’s radius, then B is said to be

reachable by A. If A can reach above a set threshold number of points, then A is said

to be a Core Point. Core Points form the interior of each of the data set’s clusters, and

act as a backbone for their cluster, allowing it to expand and form amorphous shapes

as needed. Points that are reachable by a Core Point but are not themselves Core

Points (they can not reach above the minimum threshold number of points required)

are known as Edge or Fringe Points. These points often lie on the outside edges of

each cluster in the data set, and as such define the cluster’s boundaries. Finally, if a

point is not reachable by a core point then it is considered noise and is not included

in any of the clusters in the data set [15].

In order to determine how to classify point density, the DBScan algorithm requires

that the user specify the following parameters at run-time:

• The radius about a point in which other points are deemed reachable.

• The number of points needed to be reachable from a given point to consider

that point a Core Point.

Due to the nature of the DBScan algorithm, the number of clusters is deterministic

and will not change as long as the above parameters are kept constant. The only

thing that may change is that fringe points may swap cluster membership if the order

the data points are processed in is changed. While noteworthy, this caveat often is

26

inconsequential, and in general the DBScan algorithm only needs to be run once to

find the optimum cluster configuration (as opposed to multiple times for K-Means).

Additionally, since DBScan works on a point by point basis, it can form clusters of

arbitrary shapes based purely on the point density of the input data set, making it

often more flexible than K-Means clustering. However, this flexible can also be a

disadvantage and can lead to odd results such as two seemingly disparate clusters

being combined into one due to a single dense point bridge which connects the two

groups of points. However, the robust and flexible nature of DBScan make it a good

starting point for most researchers looking to classify their data.

2.6.3 Hierarchical Clustering

Hierarchical Clustering is a clustering mechanism that organizes all data points

into a tree of clusters. This process can be completed in an agglomerative manner

(starting with one element and building the tree from there) or a divisive manner

(starting with all data points and splitting them recursively until the tree is formed).

In either case, the resulting tree can consist of many di↵erent clusters, where a cluster

may contain one or more points and one or more other clusters. As such, hierarchical

clustering di↵ers from the aforementioned clustering algorithms in that it provides a

type of ordering to the final cluster set, where some clusters will be a natural subset

of other clusters [15]. This information can then be used to determine things like

lineage or family relationships between data points in the data set. However, for data

sets where this type of information is not needed (or where the data does not fit this

type of modeling), the previously mentioned clustering algorithms will likely produce

better results.

27

2.6.4 ClusPro

ClusPro is a clustering algorithm used by biologists to try and identify the structure of

proteins based on the density of their receptor-ligand structures. This algorithm works

by searching the data set for structures with the highest density of neighbors within

a fixed radius (as specified by the user at run-time). This element is considered the

cluster center and all neighbors which fall within the specified radius are considered

members of the new cluster. These elements are then removed from the data set

and the process is repeated until a stopping condition is met (either all the points

are clustered or a set number of clusters are formed) [20]. This method of clustering

has been shown to be both simple and e↵ective, with successful results in several

experiments such as the first Critical Assessment of PRedicted Interactions (CAPRI)

experiment [9].

As noted by the authors of this algorithm, the most important factor in achieving

meaningful clustering is the selection of the correct clustering radius. The authors

present several domain specific methods for selecting the proper distance metric, with

their results showing sensitivity to changes in 1 distance unit (in this example the

unit is an Angstrom due to their problem space). Regardless, if there is adequate

domain knowledge this can be a useful clustering technique to find hot spots of cluster

centers that can be given priority over the rest of the data set.

2.7 Parallel-Coordinate Graphing

Once a search platform is implemented and tuned, it can still be di�cult for the

researcher to easily see the trends that their data may be exhibiting. This di�culty

comes primarily from the high dimensionality of genetic algorithm implementations,

and while data visualization comes in a variety of forms ranging from simple 2D

28

scatter plots and curves to complex surfaces with coloring and shading, it can be

quite di�cult to capture all the variable interactions in a single plot. One option is to

reduce the number of variables that are being depicted in a single plot, and instead

produce multiple plots that cover the range of parameter interactions. While this is a

viable option, it is often tedious and variable interactions can be lost in the process.

In order to get around these issues, the concept of Parallel-Coordinate Graphing was

created as early as 1880, and has since become a commonly employed technique

for analyzing data with high-dimensionality [16]. This form of graphing consists of

creating a vertical axis for each of the variables in the problem space. Then, each

vector of parameters that makes up one-data point is drawn as a line through each of

the vertical axes, with the intersection of the line and the axis being that data-point’s

value for that parameter. Figure 2.10 shows an example of a parallel-coordinate graph

of some genetic algorithm data and highlights the performance of data-points with

high Cross-Over Percentage, high Mutation Percentage and low Selection Percentage.

Figure 2.10: An example of a parallel-coordinate graph with multiple data
points (each being described by a single line)

In general, parallel-coordinate graphs require some manipulation of the order and

inversion of the axes to see some trends which may be hidden by all of the data points.

As such, it is common for researchers to plot data in several di↵erent orders/orienta-

29

tions in order to gain more insight into their results. While somewhat time consuming,

this still only requires tweaking a single graph (as opposed to many graphs), and ul-

timately allows the researcher to capture all of their desired interactions in a single,

meaningful way.

30

Chapter 3

DESIGN

3.1 Modified Patterson Control Model

The objective of this study is to use the Patterson Control Model (PCM) to create

and analyze bike configurations in order to find a design that matches the desired

handling characteristics for a specified set of riders. However, the base Patterson

Control Model does not directly lend itself to iterative methods, mainly because many

di↵erent real world factors are absorbed into a single variable within the model. For

instance, one of the model’s input variables is the Center of Mass of the bike & rider

in the X-direction (which we specified as Center of Mass X-O↵set in Section 2.2.2).

The value of this variable is influenced by myriad factors including:

• The angle of the rider’s seat

• The length of the rider’s legs

• The mass of the rider

• The mass of the bicycle

• The center of mass of the bicycle

• The relative height of the seat and

the cranks

with all of these being parameters that may need to be independently tweaked

during the design process. This, combined with the need to be able to develop a

bicycle alongside the rider who was to fit onto it (instead of designing a bicycle and

then attempting to fit a rider to it), meant that the Patterson Control Model needed

to be modified to expose many useful parameters to the designer.

31

3.1.1 Model Modifications

The Modified Patterson Control Model (MPCM) contains upwards of twenty-four

input parameters to the PCM’s nine as outlined in Table 3.1 and as shown in Figure

3.1. Note that the purple circle denotes the bicycle’s pedal circle, and the green lines

specify the seat height and angle.

Table 3.1: Modified Patterson Control Model parameter inputs.

Parameter Symbol Units

Wheelbase A meters

Fork O↵set e meters

Handlebar Radius R
h

meters

Front Wheel Radius R
f

meters

Rear Wheel Radius R
r

meters

Crank Radius C
r

meters

Crank X-O↵set C
x

meters

Crank Z-O↵set C
y

meters

Seat Height H
z

meters

Hip Angle ↵ degrees

Headtube Angle � degrees

Frame Mass m
f rame

kilograms

Crank Mass m
crank

kilograms

Front Wheel Mass m
f ront

kilograms

Rear Wheel Mass m
rear

kilograms

Out of the nine original PCM parameters, the following five are retained un-

changed:

32

Figure 3.1: Modified Patterson Control Model parameter mappings.

• Wheelbase

• Fork O↵set

• Handlebar Radius

• Headtube Angle

• Front Wheel Radius

The four other parameters in the PCM are then expanded in the MPCM as

described below and as illustrated in Figure 3.2.

To begin, consider that in the PCM, the mass of the bicycle and rider are combined

into a single sum. While this works for simple runs of the PCM, having all of the

masses lumped together makes iterating through designs cumbersome. As such, the

mass of the bicycle was broken into the masses of its components, namely: frame,

crank, front wheel and rear wheel. Additionally, the mass of the rider was also

specified as its own distinct value, making it easier to account for di↵erent riders in

the iterative model.

The location of the center of mass of the entire assembly is still something that

33

Figure 3.2: Dependency graph showing how the variables in the origi-
nal Patterson Control Model map to the expanded parameter set in the
Modified Patterson Control Model

must be computed in order to run the model, however, there are a large number of

factors that influence the final location. While the frame makes up a meaningful

percentage of the mass for a bicycle, in general the rider’s body will be many times

more massive than the frame. As such, the orientation of the rider which the bike is

being modeled around will greatly e↵ect the final handling of a bicycle design. Section

3.1.4 details how each rider is fit to their bike frame in a sequential manner and sheds

light on why the center of mass computations depend on so many input variables.

34

Another parameter, know as the bicycle’s Radius of Gyration, is a concept

who’s main goal is to give a numeric value to the mass composition of a body about

a specific axis. In the case of the PCM and MPCM, the radius of gyration is taken

about the axis that the bicycle wheels come into contact with the ground plane (de-

noted as the X-axis in Figure 2.4), with the fundamental radius of gyration being

defined by Equation 3.1:

K
xx

=

s
I
xx

m
bicycle

(3.1)

where K
xx

denotes the radius of gyration about the X-axis, I
xx

denotes the assem-

bly’s mass moment of inertia about the X-axis and m
bicycle

denotes the mass of the

bicycle/rider assembly. Interestingly enough, by dividing the inertia of the system by

its mass, the resulting radius of gyration is a massless quantity. However, changes in

the system’s mass distribution can still greatly e↵ect its final value. This can be seen

by looking more closely at Equation 3.2 which shows the definition of mass moment

of inertia:

I
xx

=

Z

Q

r2dm (3.2)

where r is the perpendicular distance from each piece of mass Q to the specified

axis x and dm is each piece’s infinitesimal amount of mass. As such, changes to the

geometry of the bicycle or rider will alter the distance value of particles within the

integral, leading to a change in the mass moment of inertia, and ultimately in the

resulting radius of gyration. All of this combines to make the radius of gyration value

one of the most complex and tightly integrated computations in the MPCM.

35

3.1.2 Modeling the Frame

A flexible frame design model was needed in order to ensure that the MPCM would

produce reasonable bicycle models ranging from recumbent designs all the way to

safety bike configurations. While there exists bikes which have organic geometry

(such as the frame shown in Figure 1.1), in general, most bicycle frames are built

from a series of tubes that connect the key components of the vehicle together into

a rigid body. These primary tubes and their general connection points are shown in

Figure 3.3.

Figure 3.3: Commonplace bicycle tubes and connection points.

Since this is the primary configuration of most bicycle tubes, it was chosen as

a template for use in computing frame geometry within the MPCM. The steps to

computing the frame tube locations proceed as follows:

a) Compute the crank location from the given X and Z-Crank Offset inputs.

b) Compute the chain stays by connecting the rear wheel and the crank.

c) Compute the seat stays by connecting the rear wheel and the bottom corner of

the seat.

36

d) Compute the fork/headtube by connecting the front wheel mounts with a line

that exits the front wheel at the specified headtube angle. If the exit point is

lower than the seat height, extend the tube until it is at the seat height.

e) Compute the top tube by connecting the seat to the top of the fork/headtube.

f) Compute the down tube by connecting the top of the fork/headtube with the

crank.

This process is shown for both a recumbent design (Figure 3.4) as well as a safety

bike design (Figure 3.5) with the wheels represented as black circles, the pedal circle

denoted by a purple circle and the seat height specified by the blue dotted line. Note

that in the safety bike frame building process, the headtube is extended upward to

the seat height while in the recumbent design it is not.

Figure 3.4: Steps for constructing a recumbent frame.

Figure 3.5: Steps for constructing a safety bike frame.

37

As with any model, assumptions must be taken into account to determine what

scenarios it is applicable. This model makes the following major assumptions:

• All frame tubes have constant density.

• All frame tubes consist of solid lines with no radius.

• The seat tube can be omitted without drastically e↵ecting the model’s accuracy.

Assuming that the frame tubes have constant density and no radius e↵ectively

reduces the inertia they add to the bicycle frame computation. However, this inertia

is often small due to the light weight of frame tubes, and as such omitting this factor

does not hurt the overall inertia computation. Instead, the mass center of each tube

is determined and the overall frame center of gravity is computed and then factored

into the final inertia computation. Note that in this computation it is assumed that

the frame consists of 2 seat stays, 2 chain stays and a 2 sided fork. Removing the

singular seat tube from the frame computation was done because this tube does not

help locate any of the other major components of the frame or rider, and since the

model is only a rough approximation of an actual frame (and the frame accounts for

a low percentage of the final bike’s inertia), it was deemed unnecessary to add the

extra computation. Overall the inertia added by the frame to the overall bicycle/rider

assembly is often quite small, but it does scale as the frame increases in mass and/or

size.

3.1.3 Modeling the Rider

After considering the mathematical body models listed in Section 2.3, the simpler

representation used in Moore’s initial work [25] was chosen as it provides su�cient

accuracy while reducing modeling complexity.

The final rider body model adheres to the following assumptions:

38

• The human body can be decomposed into geometric primitives as outlined in

Figure 3.6.

• The density of each body segment is constant throughout.

• The mass of each body segment is determined by the mass percentages outlined

in Table 3.2 for 95th percentile men.

• The human body is symmetric about its Sagittal plane1.

Table 3.2: Body Segment Mass as Percentage of Overall Body Mass for
95th Percentile Men [29]

Body Segment Body Mass Percentage

Arm 6

Head 7

Leg 17

Torso 47

This model represents the rider’s head as a sphere, their torso as a rectangular

prism and each of the rider’s four limbs as cylinders of constant diameter. When

comparing this model to those used in [25] and [29], the only major di↵erence is

that this model represents the rider’s legs and arms as single cylinders without a

joint in the middle. This was done mainly to simplify the model, since having joints

present adds extra complexity due to the multiple possible joint configurations that

can exist for any given orientation. While this simplification does not allow for the

rider’s arms and legs to be bent in the most natural way, it is not uncommon for

one (if not both) of the rider’s limbs to be at their fullest reach in many bicycle

riding configurations (such as sitting up with arms fully extended to the handlebars

for example). Additionally, the limbs that would have the most e↵ect on the overall

1
The plane that bisects the human body into right and left halves.

39

Figure 3.6: Human body model using geometric primitives.

inertia of the rider are the legs, and there are some configurations where at least one is

fully extended while the other is not. Combine this generalization with how the PCM

is modeling a dynamically moving rider (constantly pedalling and adjusting position),

and it is likely that this model simplification has limited e↵ect on the overall solution

correctness. In a similar vein, treating the body segments as having constant density

according to the recorded data in Table 3.2 should not hamper model accuracy as

illustrated by both [25] and [29].

With this in mind, the dimensions of each of the body’s components must be

specified as inputs to the MPCM. These parameters are outlined in Table 3.3 along

40

with their units. In general, it is advised to have the measurements be the average

of the body segment being measured (so when measuring the arm diameter, take the

average of the bicep and forearm diameters). Additionally, since the rider is assumed

to be symmetric about their Sagittal plane, only a single arm and leg need to be

specified (as their values will be reflected to the other limb as well). Once all of this

data is input into the model, the rider is constructed and fit to the bicycle frame

design that is being analyzed as outlined in Section 3.1.4.

Table 3.3: Rider Parameter Inputs

Parameter Symbol Units

Rider Mass m
rider

kilograms

Rider Head Diameter head
dia

meters

Rider Torso Length torso
len

meters

Rider Torso Width torso
width

meters

Rider Torso Depth torso
depth

meters

Rider Arm Length arm
len

meters

Rider Arm Diameter arm
dia

meters

Rider Leg Length leg
len

meters

Rider Leg Diameter leg
dia

meters

3.1.4 Fitting a Rider to a Frame

Since most bicycles are designed to fit a range of riders, it was important for the

MPCM to seamlessly accommodate fitting multiple riders to a common frame as

well. In the majority of bicycles, rider fit is adjusted by changing the handlebar

dimensions and the seat location. The process of fitting a rider to their bicycle is

a time consuming and somewhat tedious task with lots of measurements and small

iterations, and as such when bikes are fit to a rider they are rarely altered moving

41

forwards. However, this form of fit tends to work only when there is a one-to-one

mapping of bicycle to rider, which is not always the case. For instance, the Cal Poly

HPV team builds a single recumbent bicycle each year to race against other collegiate

teams across the nation. Their bicycle needs to be able to accommodate a wide range

of riders without having to go through the tedium of fitting each rider at race time.

As such, many teams adopt a strategy of using a sliding seat, which allows multiple

riders to be easily fit into the bike by moving a single component. This is the model

that is adopted and simulated in the MPCM, and as such all riders are fit to bikes at

a fixed seat Z-o↵set, but at a variable seat X-o↵set.

With that in mind, fitting a rider to a bicycle frame follows the following steps:

a) Create the general bicycle from the MPCM bicycle component inputs as de-

scribed in Section 3.1.2.

b) Lock the rider’s legs to the circumference inscribed by the crank pedals posi-

tioning their feet near the assumed down-stroke side of the pedal stroke.

c) Keeping the rider’s legs constrained to the pedal circle, rotate the rider’s body

until the bottom of their hip is at the specified seat Z-o↵set and the rider’s body

is behind the cranks.

d) Rotate the rider’s upper body so that the specified rider hip angle is achieved

and outstretch the rider’s arms so that they are reaching towards the headtube

of the bicycle frame (simulating reaching for the handlebars).

These steps are outlined visually in Figure 3.7, with the frame being depicted by

red lines, the rider’s body being drawn by blue lines, the wheels of the bicycle being

represented as black circles and the pedal circle of the bicycle being shown as a purple

circle.

42

Figure 3.7: Visualization of the 4 steps of fitting a rider to a bicycle frame.

Additionally, the thickness of the rider’s body parts are also taken into account

when fitting the rider to the bicycle. This can be easily visualized if we include the

rider’s seat in the image as shown in Figure 3.8 which depicts the rider’s center-line

o↵set from their seat by half their torso and leg thickness.

Figure 3.8: Figure a) shows the rider’s center-line without the seat, and
b) includes the seat to show that the rider’s body thickness is taken into
account by the model.

3.1.5 Modeling Constraints

Since the MPCM is being developed to generate multitudes of bicycle designs on the

fly without direct supervision, it is likely that many designs that it generates will not

be physically feasible to ride. Even by enforcing that the rider can always reach the

pedals from their seat, there are still numerous conditions which may result in a bike

43

that a rider could not operate. As such, the following constraints checks were put in

place:

• The rider’s torso/head cannot be inside the front or rear wheels of the bicycle.

• The fork cannot be inverted (as in the fork must always point downward towards

the ground).

• The bicycle’s wheels cannot overlap.

• The rider’s legs must be longer than the crank diameter (or else they could not

pedal the bike).

• The crank center cannot be inside the front or rear wheels (crank overlap is

allowed however).

• The seat must be above the floor plane.

• The crank pedals must not hit the ground.

As such, each bicycle/rider combination will be checked against this list, and if

any constraint check fails then the design is given an error of infinity so that it will not

be chosen by any algorithm/designer that is using the MPCM to generate bicycles.

3.2 Establishing a Fitness Function

In order to make use of the Modified Patterson Control Model in a bicycle design

search algorithm, an idea of fitness needed to be established for each candidate design.

Since the output of the MPCM is the same as the output of the PCM, namely a set

of curves showing the bicycle design’s Control Sensitivity vs. Bike Speed and Control

Spring vs. Bike Speed, utilizing one or both of these outputs seemed sensible. While

both are meaningful in their own right, in general a bicycle’s handling characteristics

44

are characterized more by its control sensitivity curve than its control spring curve.

This is because the control spring graph only predicts at which point a bicycle’s fork

will not flop back around on the rider, and usually the curve’s value drops below 0

under 2m/s (at which point the graph gives no more meaningful information regarding

the design). On the other hand, the control sensitivity curve shows useful steering

sensitivity data across the entirety of the bike speed space which ultimately makes it

more useful as a predictor of bicycle fitness.

Thus, all of the following bicycle search algorithms accept as one of their inputs a

Target Control Sensitivity Curve. This curve should be supplied by the user as a series

of sensitivity data-points, each spaced apart from one another in 1m/s increments,

and is meant to be the target handling curve for all bicycle designs to match. As such,

the error of each bicycle design is taken to be the sum of the di↵erence of squares of the

design’s control sensitivity values versus the corresponding target control sensitivity

curve, as specified in Equation 3.3:

error =
nX

1

(sensitivity
target

� sensitivity
canidate

)2 (3.3)

where n represents the number of data points to test per curve, sensitivity
target

is the target control sensitivity value per speed increment, and sensitivity
canidate

is

the sensitivity value per speed increment of the current design that is being analyzed.

Note that in this design we are measuring the error of the resulting curve with respect

to the target design’s curve, with the design with the minimum error being the best

design from the algorithm’s perspective. Additionally, using the sum of the di↵erence

of squares of each data-point was chosen over other methods as it is both simple and

resilient to data that jumps from one side of the target curve to the other (something

that the sum of di↵erences is not resilient to). Finally, by squaring the error the

resulting values have more range than they would otherwise have, making it easier

45

for better solutions to stand out numerically.

3.3 Defining a Search Space

Along with the method of ranking bicycle designs that was discussed in Section 3.2,

the search platforms in this work require the user to specify a search space for their

bicycles, riders and in some cases genetic algorithm operators. Defining these ranges

often requires the specification of many values for each input parameter. As such, a

set of standardized configuration files was established (along with a parser) to make

it simple for the user to specify their parameter ranges at run time. The types of

configuration files are listed in the sections to follow, but it is worth noting that they

all support a subset of the following three grammars:

• Option 1: Set the parameter param equal to a specific number value.

param = value

• Option 2: Set the parameter param equal to a range of values between x & y

stepping by z.

param = x to y by z

• Option 3: Set the parameter param equal to the values x, y, z.

param = [x, y, z]

Additionally, lines in the configuration file can also be comments or empty. Com-

ments are specified using the # symbol, and are also supported inline. By default,

each of the parameter setting options support integer and decimal values, and the

range computation (Option 2) can step by either a positive or a negative non-zero

constant. However, some parameters may have value restrictions, and each configu-

ration file section specifies the range and value restrictions for each of their parame-

ters. Furthermore, each configuration file requires that the proper parameter names

46

be specified by their exact name, otherwise they will be considered omitted. Once

values are defined for each parameter, their collective values combine to define the

parameter space that each search algorithm will explore in its own fashion. The

following sections describe the di↵erent configuration files that exist for each of the

search platforms, as well as the parameters required within each.

3.3.1 Bicycle Configuration Files

The bicycle configuration file’s purpose is to specify each of the 14 parameters outlined

in Figure 3.1. However, in order to ease parsing of the file, the parameter names listed

in Table 3.4 must be used, and their assigned values must fall within the specified

ranges. For an example bicycle configuration file, see Appendix A.1.

3.3.2 Rider Configuration Files

The rider configuration file allows the designer to specify the 9 body measurements

outlined in Table 3.3 for each rider that is to be fit to a bicycle design. Note that since

riders generally have a fixed set of dimensions, iteration over a set of parameters per

rider is not a common use case. As a result, the rider configuration file only supports

setting parameters to a single value as shown in Option 1 in Section 3.3.

Table 3.5 shows the exact parameter names that must be specified in each rider

configuration file in order for proper parsing, and Appendix A.2 shows an example

rider configuration file in full detail. Additionally, if the designer would like to specify

multiple riders for a bicycle design, they can do so by adding another block of rider

parameters to the configuration file as shown in Appendix A.3. Note that in this case,

each rider block is parsed based around where the rider name parameter assignment

begins, so its important to keep the rider parameter blocks separated as the Appendix

example shows.

47

Table 3.4: Bicycle Configuration File Parameter Names and Value Ranges.

Parameter Range Units

wheelbase [0,1) meters

fork o↵set (�1,1) meters

handlebar radius [0,1) meters

front wheel radius [0,1) meters

rear wheel radius [0,1) meters

crank radius [0,1) meters

crank x o↵set (�1,1) meters

crank z o↵set (0,1) meters

seat height (0,1) meters

hip angle [0, 360) degrees

headtube angle [0, 360) degrees

frame mass (0,1) kilograms

crank mass (0,1) kilograms

front wheel mass (0,1) kilograms

rear wheel mass (0,1) kilograms

3.3.3 Genetic Algorithm Configuration Files

Similar to the bicycle and rider configuration files, the genetic algorithm configura-

tion file specifies values for each of the genetic operators needed to run the search

algorithm. As with the other configuration files, there is a strict set of parameter

names that must be used as outlined in Table 3.6.

The population size, generation count, selection percentage, cross over percentage

and mutation percentage variables all have a direct mapping to the genetic oper-

ators discussed in Section 2.4. Additionally, the cross over gene count and muta-

48

Table 3.5: Rider Configuration File Parameter Names and Value Ranges.

Parameter Range Units

rider name � string

rider mass (0,1) kilograms

head diameter (0,1) meters

torso length (0,1) meters

torso width (0,1) meters

torso depth (0,1) meters

arm length (0,1) meters

arm diameter (0,1) meters

leg length (0,1) meters

leg diameter (0,1) meters

Table 3.6: Genetic Algorithm Configuration File Parameter Names and
Value Ranges.

Parameter Range Type

population size (1,1) Integer

generation count (1,1) Integer

selection percentage [0, 100] Decimal

cross over percentage [0, 100] Decimal

mutation percentage [0, 100] Decimal

cross over gene count (1,1) Integer

mutation gene count (1,1) Integer

num runs (1,1) Integer

tion gene count variables specify the number of parameter values that will be swapped

or mutated during their respective operation. So if the mutation gene count value was

49

set to 3 and there are 14 bicycle parameters, 3 would randomly be mutated for each

bicycle design that was picked for mutation (say wheelbase, seat height and hip angle

for instance). Finally, the num runs variable allows the user to specify how many

times each trial should be conducted, allowing them to attain more statistical cer-

tainty regarding their results.

An example genetic algorithm configuration file is shown in Appendix A.4. Note

that each parameter is set to a single value – this is because these parameters define

a single tuning configuration for the search algorithm, and in that setting multiple

values do not make sense. If the designer would like to explore the genetic operator

space they can do so by setting ranges for each of the genetic operators, with an

example of this shown in Appendix D.

3.3.4 Partitioning Configuration Files

The final configuration file in this project is used to define the input parameters for

the partitioning algorithm. The first parameter that the user must specify is how large

of a radius should be used about the partition seed point when determining which

designs belong to a given partition. Since this radius is fixed during the algorithm’s

run, the only viable entry for this parameter is a single decimal value. The second

parameter that must be specified is the list of bicycle attributes listed in Table 3.4.

These attributes are then used when computing the distance between two points in

the design space (to determine whether or not to include a point in a partition). For

an example partitioning configuration file, see Appendix A.5.

3.4 Brute Force Search Platform

The brute force search platform is designed to exhaustively explore the user specified

bicycle parameter design space and return the configuration whose control sensitivity

50

Table 3.7: Partitioning Configuration File Parameter Names and Value
Ranges.

Parameter Range Type

radius (1,1) Integer

attributes [1+ Patterson Parameters] List of Strings

curve best matches the one the user specified at run-time. As such, this search

platform requires the following inputs in order to run:

• A bicycle parameter configuration file.

• A rider configuration file.

• A target control sensitivity curve to try and match.

• The number of top designs to return to the caller.

• A file name to write the results to.

Once the inputs are properly specified, the algorithm performs a full factorial

search of the space by arranging each of the parameter ranges to be tested as a series

of nested loops, ensuring that all combinations will be tried. Each bicycle design is

initially given an error score of 0.0, at which point each rider specified by the user

is fitted to the bike and the associated control sensitivity curve is generated. Each

curve is then compared against the target control sensitivity curve using the fitness

function outlined in Section 3.2, and the errors are summed and then averaged. This

average error is then used as the bicycle design’s error value, and it is this value

that bikes are ranked by. The algorithm keeps a running list of the top N bicycle

designs (where N is the number of designs to output as specified by the user) with

the lowest average error value, continuously updating the list as better designs are

51

discovered. Once the simulation is complete, the top N designs are output to a file

of the user’s choice as a JSON object. This object can then be parsed by an included

Bike Plotter application to produce the following outputs:

• A list of the control sensitivity curve values for each rider.

• A diagram of the bicycle with all riders super-imposed over it.

• A graph of the datum control sensitivity curve as well as all of the rider’s

control sensitivity curves. This graph additionally includes the average error of

the design across all of the riders.

3.5 Genetic Algorithm Search Platform

While the brute force search platform is guaranteed to generate the best set of so-

lutions, the long run-time associated with exhaustively searching any sizable space

makes it a cumbersome tool at best. The genetic algorithm search platform was

created as a alternative solution that aims to leverage the strengths of evolutionary

algorithms as a way to find close to optimal bicycle designs in a more reasonable time

period. In addition to adding support for genetic algorithm operators, this platform

was separated into two major versions: a standard genetic platform and one that

also applies partitioning to each of its generational steps. Both of these platforms are

described in detail below.

3.5.1 Unpartitioned Genetic Search

The goal of this search platform is to support all of the major genetic operators

including:

1) Population Size

52

2) Generation Count

3) Selection Percentage

4) Cross-Over Percentage

5) Mutation Percentage

6) Cross-Over Gene Count

7) Mutation Gene Count

While the main definitions of many of these genetic operators were described in

Section 2.4, the design decisions on how to enact each of these steps is worth noting.

Specifically, Elitism Selection was chosen as the selection procedure for this algorithm,

specifically because it ensures that the optimum bicycles that are generated won’t be

lost from generation to generation. Additionally, N-Point Cross-Over was chosen

because it kept the model flexible and freed its results from the order of genes (the

di↵erent bicycle parameters) used to describe bicycle configurations. In both the

cross-over and mutation cases, the number of genes to operate on is specified by the

Cross-Over Gene Count and the Mutation Gene Count parameters, respectively.

So in the case that the Mutation Gene Count was set to 8, 8 out of the 14 genes

would be randomly mutated within the bounds of the design space.

The value ranges for each of the genetic operators are listed in detail in Table

3.5.1 with a notable restriction on the selection percentage, cross-over percentage and

mutation percentage operators. While each of these three operators can technically

have any value between 0% and 100%, it must be noted that the sum of the three

parameter’s values cannot exceed 100%. This is because the steps in the genetic

algorithm sequence proceed as follows:

Generate an initial population of random individuals.

53

new_pop = create_random_population(population_size)

For each generation
for generation_count in range(0, max_generation_count):

Update the old population to be the previous one.
old_pop = new_pop
new_pop.clear()

Perform elitist selection.
elitist_selection(old_pop, new_pop, selection_percentage)

Randomly add individuals from the old population
to the new population, leaving room for those to
be generated via cross-over and mutation.
add_random_individuals(old_pop, new_pop,

random_selection_percentage)

Perform cross_over.
cross_over(new_pop, cross_over_percentage,

cross_over_gene_count)

Perform mutation.
mutate(new_pop, mutation_percentage,

mutation_gene_count)

For each iteration, the population from the previous generation is set aside so it can

be used to generate individuals in the new population. Then, the genetic operators

are applied in the order of elitist selection, random addition, cross-over and finally

mutate. Note that there is the seemingly extra step of randomly adding individuals

from the old population to fill out the new population. This was done because there

needs to be a way for the algorithm to ensure that the number of individuals from

generation to generation is constant, and it is possible for the user to specify a set

of percentages for the primary genetic operators (selection, cross-over and mutation)

that would result in a generation that was smaller than its predecessor. Additionally,

note that the elitist selection and random addition steps come before the cross-over

and mutation steps – this was done to ensure that any individual that is chosen

54

to persist to the next generation has a chance to interact with the cross-over and

mutation operators, giving more diversity to the resulting population. If the order

had been changed and individuals were randomly chosen from the old population to

fill out the population after the other genetic operators had been run, the e↵ect would

be the same as not adding the individuals at all. This is because these individuals are

by default ranked lower than those chosen by the elitist selection step, and as such

will not be chosen to interact with cross-over or mutation steps in future generations.

This would e↵ectively result in a shrinking population because a large portion of the

designs would never influence the progress of the group as a whole, and would likely

lead to poor performance. Finally, in the event that the genetic operators add up to

more than 100%, the search platform does not even run and instead returns an error.

This was done because if the operators were to be run in this configuration then the

population size would continue to grow from generation to generation, resulting in an

ever expanding search algorithm which could become hard to reason about.

Similar to that of the Brute Force Search design, this platform requires the user

to specify the following inputs:

• A bicycle parameter configuration file.

• A rider configuration file.

• A genetic algorithm configuration file.

• A target control sensitivity curve to try and match.

• The number of top designs to return to the caller.

• A file name to write the results to.

The configuration files are as described in Section 3.3 and the target control sen-

sitivity curve is the datum by which all bicycle designs will be ranked against one

55

another using the fitness function described in Section 3.2. Once run, the search

platform will output the top N bicycle designs (where N is specified by the user)

as a single JSON object which can be visualized using a Bike Plotter application

(similar to how the Brute Force solution’s output is visualized).

3.5.2 Partitioned Genetic Search

One of the shortcomings of any genetic search algorithm is that there is a possibility

for the computations to get fixated on a single, local optimum solution. This fixation

can lead to poor results from run to run and degrade the user’s overall experience.

One way to combat this problem is to try and add a large amount of mutation to

each run, however it is important that the user be careful because adding too much

mutation can cause their algorithm to devolve into a random search. Another option

is to try and survey the fitness landscape of each population that is created, and select

individuals that look to be promising to persist into the next generation (and therefore

allowing their design spaces to continue to be explored). Promising individuals can

take on many forms, but a good general metric for selecting them is to pick those

designs that form fitness peaks (or valleys depending on your fitness function) in the

population’s fitness landscape. One way of doing this is by using smart partitioning

to create groups of individuals that surround each peak (or valley), and then using

those partitions during the next selection process. This allows the selection routine

to make more informed choices when deciding what designs to include in the next

generation – for instance it could choose to favor new and upcoming designs over more

established designs (those with more individuals in their partition or with a better

fitness) in order to see if the new designs prosper, or it could choose to take the top N

individuals from each partition in order to give each design the same percent chance

to be combined with the other genetic operators moving forwards.

56

This partitioned genetic search platform is an extension of the base genetic search

platform, and adds the concept of partitioning to each iteration of the original algo-

rithm as described above. Specifically, this platform applies the same genetic oper-

ators to each generation of individuals in the same order as seen in the base imple-

mentation. However, once the operators have been run per generation, the resulting

population is partitioned into groups using the R-Partitioning algorithm described

in Section 3.7. This partitioning of the population creates groups of similar physical

form, and the selection operator in the next iteration takes the top N number of

designs from each partition (where top designs are those with the lowest error). This

allows the algorithm to value designs with a good fitness value while also prioritizing

diversity with the aim to support fledgling designs which may have been overshad-

owed by more prominent designs if partitioning was not added. Pseudo-code for the

partitioned genetic search algorithm is shown below:

Generate an initial population of random individuals.
new_pop = create_random_population(population_size)

Create a base partition set.
partitions = [new_pop]

For each generation
for generation_count in range(0, max_generation_count):

Clear the population so it can accept new individuals.
new_pop.clear()

Perform elitist selection.
elitist_selection(partitions, new_pop, selection_percentage)

Randomly add individuals from the old population
to the new population, leaving room for those to
be generated via cross-over and mutation.
add_random_individuals(partitions, new_pop,

random_selection_percentage)

Perform cross_over.
cross_over(new_pop, cross_over_percentage,

cross_over_gene_count)

57

Perform mutation.
mutate(new_pop, mutation_percentage,

mutation_gene_count)

Perform partitioning.
partitions = partition(new_pop, partition_config)

Note that the inputs to the partitioned genetic search platform include all the

inputs to the unpartitioned genetic search platform with the addition of a partition

configuration file. This file is needed in order to set the partitioning radius as well as to

define which bicycle attributes to partition based on. These partitioning parameters

are described in detail in Section 3.7, and the format of the partition configuration

file is described in Section 3.3.4.

3.6 Genetic Algorithm Tuner Design

In order to determine the best genetic algorithm parameters for each bicycle design

space, two separate tuners were created. The first completes a full factorial search over

the design space in order to ensure that no parameter vector is left unexplored. While

thorough, this method can be incredibly time consuming, so a more advanced tuner

was also investigated in an attempt to find a tuning solution that would run in a much

shorter time. After reviewing several of the aforementioned tuner implementations in

Section 2.5, an iterative sampling design along the lines of what is described in [26]

was chosen for the second tuner implementation due to its ability to cover a large

design space in a small number of runs.

These two tuners can then be run over the same design space, with the full factorial

version acting as a datum for the sampling tuner. The results of the sampling tuner

can then be compared against this datum, with the idea that if the sampling tuner

aligns with the datum results, then it can likely be used in future tuning situations

58

across unexplored portions of the bicycle design space. The sampling tuner begins

by generating a Graeco-Latin Square of the input data. In order to keep the design

simple, the square generated by the tuner has the following attributes:

• It accepts between 3 and 5 independent factors for testing.

• Each factor must have 5 di↵erent values.

Thus, the generated squares will look like one of the three depicted in Figure I.1.

Figure 3.9: Depiction of the three di↵erent Graeco-Latin squares used in
the sampling tuner. Example a) shows the square when 3 input parameters
are present, b) for when 4 are present and c) for when 5 are present.

By convention, the two parameter vectors outside the square itself are usually set

to be Population Size and Generation Count, respectively, with the interior parame-

ters being Selection Percentage, Cross-Over Percentage and/or Mutation Percentage.

Once the appropriate square has been generated, each of its cells are run through the

specified genetic algorithm platform (partitioned or unpartitioned), and the results

are collected and analyzed. At the end of the sampling stage, the fitness values for

each of the tuning attributes are collected and independently graphed so that their

trends can be made more apparent to the user. An example of such graphs is shown

in Figure 3.10, with each plot giving insight into how its parameter influences the

final output of the algorithm.

59

Figure 3.10: Example output graphs from the sampling stage of a sampling
tuner [26].

The second analysis stage is where the tuner reduces the design space for each

parameter and continues to repeat its sampling until an appropriate stopping condi-

tion is met. Since the full factorial tuner will discover the optimum genetic operator

vector on its own, it was chosen not to implement the second stage of the sampling

tuner. Instead, the first stage of the tuner is run on the design space to see if it

detects trends that reflect the findings in the full factorial search, which will help

inform whether or not it is an applicable turning approach for this design space.

60

3.7 R-Partition

This section outlines the motivations and design considerations taken when devel-

oping the R-Partition1 algorithm. Additionally, it focuses on examining how the

R-Partition algorithm di↵ers from other common clustering implementations cited in

the literature, with the aim to help the user determine whether or not R-Partition is

useful for their application.

3.7.1 Why Partition At All?

After running some simulations with the base genetic algorithm implementation, it

became clear that partitioning would be needed to make the process have more mean-

ingful results. In this context, meaningful results has two main facets. The first is to

try and ensure that for each stage of the genetic algorithm’s iteration, that the key

operators of selection, cross-over and mutation would be applied to the data set in a

way that did not fully favor one grouping of individuals at the expense of others. For

instance, consider the case where there are two di↵erent genetic peaks in a given pop-

ulation (two sets of highly di↵erent individuals that are scoring well), and one peak

has slightly more individuals with slightly better scores than the other peak. Without

partitioning, the slightly higher ranking peak was likely to be overrepresented in the

next population while the other peak may not persist at all resulting in a possible

loss of progress. With partitioning, the genetic operators can be applied to both

peaks in a more intelligent way in order to not squelch fledgling designs which may

prove to be more fruitful in later generations. The second main reason to partition

is to ensure that the simulation can return a set of useful candidate designs back to

the user. Without partitioning, it would be di�cult to return a set of designs which

1
The algorithm is named R-Partition because it partitions data based on the rankings of points

within the data set.

61

were guaranteed to be significantly di↵erent to not be seen as near duplicates. With

partitioning, we can easily return the highest ranked member of each partition and

know that they are unique enough to be considered useful by the end user (since they

specified the bicycle attributes to partition about).

After trying several di↵erent partitioning algorithms in the literature, it became

apparent that this problem space needed a more domain specific algorithm. More

specifically, an algorithm was needed which would form partitions of fixed radii around

the genetic peaks in each population generated by the genetic algorithm simulation.

By making each genetic peak be the seed of a partition, it would ensure that it was

capturing all of the individuals that were producing the most promising designs, and

by using a fixed radius it ensured that all of the individuals which were included in a

partition were similar in physical form to the partition’s seed (which is in contrast to

clusters formed by DBScan which can be large and amorphous, resulting in partitions

of data which may have large variations). Finally, a partitioning rank threshold was

included as well in order to remove noise from the partitioning process (as low scoring

points likely should not be included in the resulting partitions).

3.7.2 R-Partition Design

The R-Partition design has three primary inputs that must be specified by the user:

• The Partition Radius

• The Partition Attributes List

• The Partitioning Rank Threshold

The partition radius is the maximum distance a point can be from a partition-seed

point in order to be included in that seed’s partition. The partition attributes list

62

is a collection of bicycle genes (wheelbase, seat height, etc.) that will be used when

computing the distance from each candidate point to each partition’s seed point. This

distance is computed using the Euclidean distance formula, as specified in Equation

3.4:

distance(p, q) =
p
(p1 � q1)2 + (p2 � q2)2 + ...+ (p

n

� q
n

)2 (3.4)

where p and q represent the two points being considered, and the values 1 through

n represent attribute values from each of the two designs. Note that this equation sup-

ports any number of attributes, and as such R-Partition allows distance computations

to be as simple or complex as the user requires. Finally, the partitioning threshold

is used to exclude points with poor rankings from being assigned to a partition, thus

reducing the amount of noise in the final results.

The algorithm begins by excluding all points from the partitioning process that do

not exceed the specified rank threshold and then sorts the remaining points by rank.

Then, the highest ranking point in the data set is selected to be a new partition’s seed

point and is removed from the sorted list. From there, the distance from this seed

point to each point in the sorted list is computed, and all points that fall within the

specified partition radius are added to this new partition. Note that when a point is

added to a partition, it is removed from the sorted partitioning data set. As such, the

R-Partition algorithm only allows a data point to belong to one partition at a time,

and it will always belong to the highest ranked partition that it could be a member

of. This process continues until all points in the sorted list have been assigned to a

partition (even if that partition only contains the single point itself), after which the

resulting partitions are returned to the caller in a list ordered by partition seed rank.

Additionally, each point within the partition is ordered by rank as well. The resulting

algorithm is outlined below in pseudo-code:

def partition(data_points, radius, threshold):
Keep only points with scores better than the threshold.

63

valid_points = remove_points_below_threshold(data_points, threshold)

Rank the points.
sorted_points = rank_points(valid_points)

Create an empty list of partitions.
partitions = []

Loop until all points have been partitioned.
while sorted_points:

Get the seed individual for the next partition.
partition_seed = sorted_points.pop()

Form the new partition.
new_partition = []

Add the seed to the new partition.
new_partition.append(partition_seed)

Add any of the remaining points to this new partition if they are
within the specified radius from the partition’s seed.
for point in sorted_points:

Compute the distance from the partition seed to the point.
distance_from_partition_seed = compute_distance(partition_seed, point)

Only consider points which are within the partition radius
to the partition seed.
if distance_from_partition_seed <= radius:

Add the point to the partition.
new_partition.append(point)

Remove the point from the list of possible points.
sorted_points.remove(point)

Add the new partition to the list of partitions
partitions.append(new_partition)

Return the final set of sorted partitions to the caller.
return partitions

Assuming that the removal of points from the sorted points is done in constant

64

time, the resulting time complexity of this algorithm is O(n2), where n is the number

of data points in the input set. If the removal is instead done in linear time, the

resulting time complexity is O(n3).

3.7.3 Comparison to Other Algorithms

While this algorithm is fairly simplistic, it does share many similarities with other

major algorithms that exist in the literature. Similar to K-Means and ClusPro, R-

Partition compares all of the points in the data set to a single point in the candidate

partition. However, unlike K-Means, R-Partition compares all points to the seed

point in the partition which does not necessarily need to be partition’s centroid.

Also, the user must specify a comparison radius at run-time just like in DBScan and

ClusPro. However, the R-Partition radius defines a maximum size of the partition

based around the partition seed, where in DBScan the radius is applied to all points

in the partition, allowing it to grow into large, unpredictable shapes. Finally, a point

can only belong to one partition (as opposed to being a member of many partitions

as in Hierarchical Clustering) and each run is fully deterministic (which is di↵erent

than both DBScan and K-Means). These similarities are captured in Table 3.8, with

checkmarks representing what attributes each algorithm has.

Table 3.8: Partitioning Algorithm Comparisons

Attribute K-Means DBScan Hierarchical ClusPro R-Partition

Unique Partition Membership X X X X

Fixed # of Partitions X

Fixed Partition Size X X

Deterministic X X X X

As outlined above, the R-Partition algorithm shares many common characteristics

with the ClusPro algorithm. Both algorithms build partitions of fixed size which

65

is determined by a preset radius value from the partition’s seed. Both algorithms

only allow a point to belong to a single partition and both versions have a sense

of a threshold to stop partitioning at [20]. However, the main di↵erence between

R-Partition and ClusPro is how these algorithms determine the partition seed for

each iteration. In ClusPro, the partition seed is chosen as the element which has the

highest density of neighbors within the specified radius (which is somewhat similar

to DBScan). R-Partition instead determines the partition seed based solely on the

rankings of each particle in the data set, and has no concept of density.

3.7.4 Algorithm Characteristics

This section outlines some noteworthy points for the researcher to consider when

deciding on whether or not to use the R-Partition algorithm.

When is this algorithm applicable? – R-Partition is useful when you have

data which can be ranked, and where each attribute has an even distribution of

values. For instance, in the domain of bicycle design an attribute which may be used

in partitioning is wheelbase. Bicycle wheelbases can have a variety of values which

can be specified as a set as shown below:

wheelbase = [1, 1.1, 1.2, 1.3, 1.4, 1.5]

Note that there is a constant step value of 0.1 between each wheelbase entry.

This is critical to the success of the R-Partition algorithm as it makes it easier for

the radius computation to be reasoned about. If for instance, the wheelbase entries

had the following values:

wheelbase = [1, 1.1, 1.5, 2.0, 3.0]

66

Then it is unlikely that the partition radius would be very e↵ective as the spread

in attribute values is sporadic. This is not to say that the user cannot attempt to

partition about sporadic attribute sets, but if they choose to it is likely that they will

end up with highly isolated partitions. That or they will be forced to use such large

partition radii that they will end up with over-sized partitions that do not adequately

segment their data in a useful way. In either case, the partition algorithm can still

operate but it looses a lot of utility and usefulness.

When is this algorithm not applicable? – If you cannot rank all of your

data points in a meaningful way then this algorithm will not function properly. Addi-

tionally, if you are interested in the resulting partition shapes or partition boundaries

then R-Partition will likely not be useful in your study.

3.7.5 Extensibility

The above pseudo-code is intentionally simplified in order to make it easy to follow

and because of this it leaves out several additions to the algorithm which give it more

flexibility for future problem domains. One such consideration is that it currently only

orders data points in a ranking from highest to lowest. This can easily be adapted

to handle the opposite by passing a min/max variable as input and performing the

appropriate comparisons within. Additionally, the compute distance function is by

default set to Euclidean distance, but it could also be expanded to support other

distance calculations.

67

Chapter 4

IMPLEMENTATION

Implementation of the components of this project revolve around creating the Mod-

ified Patterson Control Model (MPCM) and building out the search algorithm plat-

forms. All of these models were built and tested using Python 3.6, with many calcu-

lations in the MPCM using the NumPy 1.11.3 package. Additionally, the plotting of

bicycles was done using the matplotlib 2.0.0 package. Python was chosen specif-

ically for the great support it has with the aforementioned packages, as well as its

ability to run within the Jupyter Notebook 4.2.1 framework. Jupyter Notebook,

an extension of iPython Notebook, is a web-based front-end which enables users to

embed HTML and scripts into a simple document which other users can interact with.

Due to its ease of use and general acceptance by the scientific community, all of the

front-ends for this project were created using Jupyter.

4.1 Implementation Architecture

The high-level package implementation of this project is shown in Figure 4.1, with

almost all of the packages utilizing the Bike, Parser and SimulationParams classes.

The Bike class is the base unit that is created and manipulated by all of the search

modules, and it is this class that handles fitting riders to bicycles and computing

all of the components of the Patterson Control Model. Additionally, each search

module requires a set of inputs to specify the design spaces to search, and these

spaces are defined using configuration files as specified in Section 3.3. It is the

Parser’s responsibility to convert these configuration files into dictionaries of param !
[set of values] for the search platforms to ingest. Since the number of configuration

68

files (and thus dictionaries) can become somewhat unwieldy with the more complex

search platforms, the SimulationParams class was created to essentially be a container

for all of this information.

Figure 4.1: Overview of the project package architecture.

While each of the search algorithms attempts to find the optimum bicycle design

in a di↵erent manner, they are all somewhat similar, and as such inherit from the

same BikeSearchBase base class. The Brute Force Search implementation is the

simplest of the group, and involves a series of 15 nested loops, one for each parameter

range in the bicycle design space. Then, for each bicycle design, the set of input riders

is fit to the bicycle in sequence and their handling curve is computed. The average

of these handling curves is then used to rank each design with respect to the rest.

From there, the top n designs are kept (in sorted order) and once the computation

is complete, they are output for the caller to view. If we assume that there are n

values for each of the 15 parameters, then this algorithm runs in roughly O(n15 logm)

(with the log due to the sorting operation required when inserting a high scoring run

into the output list of length m).While this implementation is incredibly ine�cient,

it does ensure that the entire search space is covered and acts as a good baseline for

69

other implementations to compare against.

The two genetic search algorithms circumvent this massive runtime cost by stochas-

tically sampling the design space. As with the brute force implementation, they re-

quire a set of configuration files to determine what the design spaces are. While

the user will likely define a single value for each genetic operator, the implemen-

tations support running through multiple operator ranges (for added flexibility and

future tuning if needed). These implementations then work by creating a popula-

tion of individuals and then enacting the common genetic operators as outlined in

Sections 3.5.1 and 3.5.2. These genetic operators function calls are defined in the

GeneticOperatorBase interface, with an implementation for the unpartitioned and

partitioned version being used in their respective search platforms. Additionally, the

RPartition implementation inherits from a base interface and is used specifically in

the partitioned genetic search implementation.

Defining the running time of the genetic algorithms requires investigation of

the number of individuals that will be generated, with the main factors being the

population size, generation count and number of runs (where the number of

runs is how many times to repeat the experiment to obtain statistically relevant re-

sults). As such, if we define the population size as n, generation count as m and

number of runs as p, then the overall running time of the unpartitioned implemen-

tation is roughly O(nmp). If we then extend this nomenclature to the partitioned

implementation, we find that the running time is roughly O(n4mp), where the extra

n3 comes from the partitioning operation (assuming the worse of the two implemen-

tations). All three search implementations output a JSON file of bicycle parameters

which can be fed into the BikeFilePlotter in order to plot the results as shown in

Figure 5.1. Additionally, since these search algorithms all fulfill a similar end-goal,

they were wrapped into a single Jupyter Notebook as outlined in Section 4.2.2.

70

Finally, a utility class was created to allow users to generate the bicycle diagram

and handling curves for a single bicycle design. The application, called SingleBikeGen

is primarily for spot checking the handling of di↵erent bicycle/rider combinations, as

well as allowing the user to generate handling curves for designs that they want to

emulate (for use as datums in future search algorithm runs). This application was

created as a Jupyter Notebook as described in Section 4.2.1.

4.2 User Interface

In order to make the Modified Patterson Control Model (MPCM) more usable, a

front-end needed to be created. After considering several front-end environments,

the Jupyter Notebook platform was chosen primarily due to its simplistic setup, low

resource requirements and general ease of use. Jupyter allows the developer to create

notebooks, which are web-like forms which can have code embedded within them in

containers called cells. This code can then be run in real-time by the user, allowing

for a dynamic experience with a large amount of flexibility. Running code within cells

can be done in a variety of ways, with the simplest being to select the cell and then

press the Run Cells, Select Below button from the top toolbar, as shown in Figure

4.2.

If the user would like to run all of the cells in sequential order, they can do

so by selecting the Cell menu button, and then selecting the Run All drop-down.

Additionally, the user can alter code within each of the cells as they see fit. In

general, the only code that will be exposed to the user in these notebooks will be the

contents of configuration files needed to run the MPCM. As such, it is encouraged

for the user to alter these files so that they can tweak the MPCM to examine the

bicycles and riders that they are interested in. Changing code in these cells is simple

– doubling clicking on a cell allows the code to be edited in place, with hitting the

71

Figure 4.2: Example of the Jupyter interface and how to run code embed-
ded in a notebook cell.

escape key stopping the editing. Note that some cells will have lines of text which

are proceeded by % symbols; these are notebook command line and should not be

altered by the user. Once editing has been completed, the user can then run the code

again as they had previously done to get their new output. For more details on how

to use Jupyter see [2]. All of this comes together to create a simple yet powerful user

interface that is more than adequate to run the MPCM. In order to logically breakup

the di↵erent tasks a designer might want to perform with the MPCM, two di↵erent

notebooks were created with each being elaborated on in the following sections.

4.2.1 Bike Plotter Notebook

The first thing that a designer will need to do when using the MPCM is to create a

datum set of control sensitivity curves from which to compare against. This generally

72

entails the designer having to back-calculate all of the Patterson Control Model pa-

rameters for past bike designs (if they do not have them already) prior to running the

model and generating that bike’s handling curves. This notebook provides all of the

required functionality to allow the designer to generate a set of handling curves for a

single bicycle parameter set. As such, it is broken down into the following sections:

1) Specify the bicycle’s component parameters.

2) Specify each rider(s) parameters.

3) Specify the target control sensitivity curve values (1 per km/hr).

4) Run the plotter.

Step 1 has the designer specifying a single value for each of the MPCM’s 15 bicycle

parameters. Step 2 allows the designer to specify any number of riders to ride the

bicycle (note that at least a single rider must be specified). Step 3 has the designer

input a datum handling curve which will be used to compute the aggregate error

between all of the rider’s curves (as a way of showing how close the new design is to

the desired design). Note that this curve should contain handling sensitivity values

in 1 km/hr increments, with the number of points in the datum curve specifying

the top speed the bicycle designs will be tested to. Thus if you specify 26 points

(including the 0 km/hr point), then each bicycle/rider combination will be tested

up to 25 km/hr. Once configured and run, the notebook will produce output which

shows the following:

• The control sensitivity curve values (in 1 km/hr increments) for each rider.

• The body model parameters for each rider.

• A plot showing each rider superimposed onto the bicycle design.

73

• A plot showing each rider’s control sensitivity curve as well as the datum curve.

with an example of this output shown in Figure 4.3. The user can then choose

to save the file in any form they’d like using Juypter’s File ! DownloadAs menu

selection.

Figure 4.3: Example output from the Jupyter Bike Plotter notebook.

4.2.2 Bike Search Notebook

Once the designer has their datum handling curves established, the next step is to

search the bicycle design space for candidate designs that have similar control sen-

sitivities. To do this, a Bike Search Notebook was created which allows the user

to run any of the three search platforms (Brute Force, Unpartitioned Genetic and

Partitioned Genetic). As such, the notebook has cells for each of the configuration

files needed to run all of the search platforms, with the partitioned genetic search

74

algorithm requiring the most inputs. However, the user only needs to fill out the

configuration files required for the search algorithm they are running. Selection of

the search algorithm is done by choosing one of the three options from the drop-down

menu embedded in a cell near the bottom of the notebook as shown in Figure 4.4.

Figure 4.4: Button used to select between the three search algorithms.

From there, the appropriate search algorithm will be run with the results printed

out below as shown in Figure 4.5. Note that if the Brute Force or Unpartitioned

Search algorithms are run then the top 25 ranking designs will be output to the

notebook cell. However, if the partitioned search algorith is run then the top ranking

design from each of the final partitions will be output to the notebook cell so that

the user can see how their partitions ended up looking. As with the bike plotter

notebook, the search results can be saved by using Juypter’s File ! DownloadAs

menu selection.

75

Figure 4.5: Example output from the Jupyter Bike Search notebook.

76

Chapter 5

VALIDATION

5.1 Bicycle Model Validation

Validation of the bicycle model could take on several di↵erent forms. To begin,

this thesis makes the assumption that the Patterson Control Model (which all of

this work is based o↵ of) is valid and correctly models real world bicycle handling.

As such, vetting of the Patterson Control Model will not be part of this work’s

validation. However, it is imperative that the extensions to the Patterson Control

Model accurately configure the bicycle rider in 3D space, and that the outputs of the

model are the same as that of the Patterson Control Model (given equivalent input

sets).

Validating that the rider and bicycle are correctly oriented in space relative to one

another was done by creating a bicycle plotting program which would display a 2D

representation of the bicycle and rider (an example of this can be seen in Figure 5.1).

This plot shows the rider (blue) overlaid on the bicycle frame (red) with wheels (black)

and cranks (purple). Additionally, this bicycle plotter made it easy to check that the

center of gravity values for each of the bicycle frame and rider body components was

accurately computed as well. In the figure, the centers of gravity of each of the rider’s

body components are represented by blue x’s, the center of gravity of each frame

tube is represented by a red x, the center of gravity of the rider is shown as a blue

dot, the center of gravity of the frame is shown as a red dot and the center of gravity

of the bicycle + rider is shown as a black dot. Finally, the radius of gyration of the

bicycle + rider with respect to the ground plane is shown as a dashed blue line. Then,

by running this model across myriad di↵erent bicycle + rider configurations, it was

77

straightforward to catch any edge cases and vet that the computations were correct.

Figure 5.1: Example output from the bicycle plotter with the left plot
showing the bicycle and rider configuration and the right plot showing the
resulting handling curve graphed alongside a target handling curve. The
0.0 error value shows that this bicycle design had the expected handling
characteristics.

The second concern revolved around the proper implementation of the Patterson

Control Model (PCM) itself. Since the Modified Patterson Control Model (MPCM)

e↵ectively reduces its input parameters into the 9 values that the original PCM takes,

confirming that the model correctly computed the proper PCM curves was as simple

as checking that the output of the PCM and MPCM matched for equivalent inputs.

Here we say equivalent inputs because the two models take di↵erent parameters –

however, the MPCM reduces its 14 parameters down to the 9 that the PCM takes

internally. As such, inputs were fed into the MPCM and the 9 intermediate values

that were produced were recorded and fed into a standalone copy of the PCM as

well. This was done for myriad bicycle and rider combinations, and the resultant

handling curves were compared to ensure they were identical. Figure 5.1 shows one

such example run, with the handling curve computed by the MPCM matching the

expected PCM curve exactly.

Ultimately the methods described above are not 100% fool proof, and some corner

cases could exist that the testing did not uncover. However, since the output of the

MPCM shows the center of gravity values for all of the associated model components,

78

it is likely that the engineer using the model would be able to at least detect an error

and not move forward with incorrect values (if such a case were to occur).

5.2 Body Model Validation

Validation of the body model revolved around determining if the python implemen-

tation correctly computed the inertia values of each of the rider’s geometric compo-

nents, as well as the final radius of gyration of the rider’s body about the ground

plane. Note that this is di↵erent than trying to validate that the body model itself

properly represents real world riders – this validation work was done by the work in

[25] and [29]. To check whether the python code was correctly computing the body’s

inertia values, a SolidWorks model of a human body was generated and its inertial

values were recorded as shown in Figure 5.2. The same parameters were then fed

into the MPCM’s body model and the resulting inertial values for each of the body’s

components as well as the overall radius of gyration were computed. Comparing the

results of the two models showed less than a 1% deviation from one another, helping

to bolster the accuracy of the python implementation.

5.3 Design of Experiments

5.3.1 Overview

The concept of Experimental Design or Design of Experiments (DOE) can be con-

ducted in a variety of ways with varying levels of rigor. In a general sense, DOE is

a series of documented steps which others can reproduce to obtain the same findings

as the original experimenter. In a stricter sense, DOE is a rigid framework of steps

outlined as follows:

• Step 1: Declare the Experiment Objective

79

Figure 5.2: SolidWorks model of a rider along with its inertial properties.

• Step 2: Declare the Process Variables

• Step 3: Select the Experimental Design

• Step 4: Execute the Experiment

• Step 5: Analyze the Experimental Results

• Step 6: Report Results or Continue Iterating from Step 3

where each step is rigorously documented and iteration is expected/encouraged

80

in many cases [3]. The Experiment Objective states the main goals of the experiment

in clear, concise detail so that others can understand them without ambiguity. Each

experiment will revolve around a set of Process Variables, which can be broken down

into Inputs (known as Factors), and Outputs (known as Responses). Common

experimental factors include the problems being analyzed, the parameters to those

problems which are being manipulated and the algorithm used to solve the given

problem. Responses on the other hand are the results of the experiment that the

researcher is looking to analyze and hopefully draw conclusions from in order to

make statements regarding the relation between the observed response and the chosen

experimental factors [7]. Selection of an Experimental Design should take into account

the original experiment objective, since certain experimental setups lend themselves

to certain objectives more than others. Common experimental designs include:

• Comparative: determines if one factor is important in the presence or absence

of another.

• Screening : determines what factors are most important in a design and what

factors are just noise.

• Response Surface: determines interactions between factors in order to come to

an optimal factor combination.

Execution of the Experiment should be done in a way that can be easily replicated

with as little ambiguity as possible, and Experimental Analysis should be conducted

in a way that benchmarks other designs/implementations so that meaningful com-

parisons can be drawn when the results are reported to the rest of the community.

81

5.3.2 Experimental Setup

Unless otherwise mentioned, all experiments in this work were conducted under the

Python3 runtime environment on a Intel i7-920 2.66 GHz quad-core chip with 8 giga-

bytes of DDR3-1333 ram running the Arch Linux kernel. At times, some experiments

were conducted along side one another, with one executable running per core.

5.4 Brute Force Experiments

All experiments need a base benchmark to be compared against, and discovering

the optimal bike design using Brute Force search is both the simplest, and the most

computationally expensive method to start with. As such, a baseline implementation

of this algorithm was created and run in order to show that there does exist an optimal

bike which can be generated using the Patterson Control Model, and to provide a

runtime benchmark to compare all other algorithms against.

5.4.1 Experiment Objectives

The objectives of the brute force experiments are twofold:

• To show that the model can find an optimal bicycle design through iteration.

• To measure the running time of the brute force implementation.

Having the model find the optimum bicycle design has two di↵erent practical

uses. The first occurs when we are trying to show that the model does converge to

the optimal solution, and in this case we would input a handling curve from a known

bicycle and see if the model finds the anticipated design. The other case occurs when

we do not know what the optimal bicycle design is for an arbitrary curve or design

space, and are looking for the best bicycle design to use as a benchmark for other

82

search implementations. Along a similar vein of thought, we look to also record the

running time of this algorithm in order to compare its time e�ciency to other search

implementations.

5.4.2 Process Variables

In this experiment the factors include the following:

• Target Control Sensitivity Curve

• Bike Design Space

• List of Riders to fit to the generated bikes

The Target Control Sensitivity Curve describes the handling characteristics of the

bicycle we would like the Brute Force search to create. The Bike Design Space is the

range of values for each input variable to the Modified Patterson Control Model, and

their cross-product defines the searchable bicycle design space for this experiment.

Finally, the List of Riders describes the shape and size of each rider that the final

bike design is to be built for.

The responses for the experiments include:

• The optimal bike design generated by the Brute Force search algorithm.

• The required runtime to exhaust the search space.

5.4.3 Experimental Design

In an ideal scenario, it would be feasible to run the Brute Force simulation on all of

the problem sets that the other algorithms will be run on. Unfortunately, it is likely

that the Brute Force implementation will take far too long to finish enumerating every

83

possible option in these large search spaces for this plan to be feasible, and as such,

a full brute force search of all design spaces was not conducted. Instead, the Brute

Force implementation was used to search a reduced design space in order to show that

the algorithm can indeed converge to the optimum bicycle design. To do this, a bicy-

cle handling curve was first generated using the Modified Patterson Control Model,

and was then fed into the Brute Force algorithm along with an appropriate bicycle

design space and rider configuration. Once the simulation ended, the top design was

compared against the datum design to ensure that they matched. Additionally, the

number of bicycle combinations was divided by the experiment’s total runtime to get

an estimate of (runtime / iteration), and this estimate was then used to extrapolate

the amount of runtime needed for the larger problem sets (so it can be used as a

pseudo-benchmark).

For this benchmark, the Gemini recumbent bicycle parameters (see Appendix

B.1) were fed into the Modified Patterson Control Model with the rider specified as

Chris (see Appendix C.1). This resulted in the handling curve values shown in Table

E.1. Additionally, the parameter set outlined in Appendix B.3 was used to generate a

meaningful reduced search space that ensured that the Brute Force algorithm would

finish in a reasonable amount of time.

5.4.4 Experimental Results

The brute force implementation described above running on the machine described

in Section 5.3.2 took ⇡ 5760 seconds to complete, and successfully found the optimal

design (which was the design with zero error that directly reflected the Gemini bicycle

frame parameters used as inputs) as shown in Figure 5.3. The total number of

iterations taken was ⇡ 12440000, resulting in an average time per iteration of ⇡ 0.463

milliseconds. If the same experiment had been conducted on the design search spaces

84

used for the genetic algorithm experiments, it would have taken ⇡ 40060 seconds

(⇡ 11 hours), showing the infeasibility of the brute force method as a practical search

method for most large studies.

Figure 5.3: Resulting bicycle design generated by Brute Force search with
Chris and Gemini as the datums.

5.5 Unpartitioned Genetic Algorithm Experiments

The Unpartitioned Genetic Algorithm Experiments act as an initial step into using

the concept of Genetic Algorithms and Evolutionary Computing to search the bicycle

design space. The ultimate objective of this implementation is to create a platform

to allow designers to use the Modified Patterson Control Model as a proactive design

tool, hopefully helping to expose new designs while cutting down on the runtime

required by the Brute Force implementation.

5.5.1 Experiment Objectives

The objectives of these experiments are to:

• Determine the optimal combination of genetic operators for each design space.

• Determine how operators change as bicycle design spaces change.

85

• Determine what the time to output-quality trade-o↵s are.

In this context, an optimal combination of genetic operators is a vector of operators

that consistently produces bicycle designs whose handling curves are closest to that

of the target handling curve. These parameter vectors may change as the problem

space changes, and as such multiple design spaces needed to be tried in order to see

what trends emerge. Finally, it is likely that the more computationally expensive runs

will produce higher quality results, so analyzing how the final bicycle design quality

changes with runtime was conducted to see where the practical break-even point was.

5.5.2 Process Variables

The experimental factors for these tests include:

• Population Size

• Generation Count

• Selection Percentage

• Cross-Over Percentage

• Mutation Percentage

• Target Control Sensitivity Curve

• Bike Design Space

• List of Riders to fit to the generated

bikes

where all of the genetic algorithm parameters are as they were described in Section

2.4. Two major bicycle design spaces were analyzed – the recumbent space and the

safety bike space. In both cases, an existing bicycle’s parameters were run through

the Modified Patterson Control Model to produce a target control sensitivity curve

for use in the subsequent experiment. In order to reduce ambiguity, only a single

rider was used in the experiments so that the exact solution would exist in the design

space.

The responses that were recorded include:

86

• The vector of genetic algorithm parameters which produced the optimal bicycle

design.

• A breakdown of the runtimes and bicycle design scores for all attempted genetic

parameter vectors.

The results of each trial were then aggregated and analyzed to discern trends

between genetic operator vectors and algorithm performance, with the ultimate aim

to discover an optimum vector which would be useful across multiple bicycle design

spaces.

5.5.3 Experimental Design

Since this is a problem which looks to find the optimal set of parameters (namely

the vector of genetic algorithm parameters to consistently generate the best bikes), it

appeared that either a Full Factorial Search or Response Surface Modeling would align

best with the experiment’s objectives. Fortunately, since the number of combinations

of genetic operators are relatively small, a full factorial search could be conducted to

ensure that the optimum operator vector is not accidentally overlooked. In addition,

the genetic algorithm tuner described in Section 3.6 was also run over the design

space to see what general trends appeared on a per operator basis, and to see if

that tuner would have correctly located the range of values containing the optimum

operator vector. Thus, this search study allowed for the optimum operator vector to

be discovered and helped to vet the viability of using Response Surface Modeling in

this problem domain. The list of genetic operators used in this experiment, as well

as their associated value options are outlined in Table 5.1 with their genetic operator

configuration file being shown in Appendix D.1.

As for problem spaces, two were chosen for consideration: the recumbent design

space and the safety bike design space.

87

Table 5.1: Genetic Algorithm Parameter Space

Variable Values

Population Size 100, 200, 300, 400, 500

Generation Count 2, 4, 6, 8

Selection Percentage 5, 10, 15, 20, 25

Cross-Over Percentage 5, 10, 15, 20, 25

Mutation Percentage 5, 10, 15, 20, 25

For the recumbent space, the Gemini recumbent bicycle parameters (see Appendix

B.1) were fed into the Modified Patterson Control Model with the rider specified as

Chris (see Appendix C.1). This resulted in the handling curve shown in Appendix

E.1. These parameters were used as inputs to the recumbent space experiment along

with the bicycle parameter space outlined in Appendix B.4.

For the safety bike space, the Cervelo R3 Team parameters (see Appendix B.2)

were fed into the Modified Patterson Control Model with the rider specified as Chris

(see Appendix C.1). This resulted in the handling curve shown in Appendix E.2.

These parameters were used as inputs to the recumbent space experiment along with

the bicycle parameter space outlined in Appendix B.5.

5.5.4 Experimental Results

A full factorial search was conducted across the genetic design space outlined in Table

5.1, resulting in 2500 di↵erent parameter combinations that needed to be tried per run.

Due to the stochastic nature of genetic algorithms, 20 full factorial searches were run

over the design space with the average results being reported below. Additionally, the

following sections focus on analyzing their experimental results to determine the best

genetic operator vector, where best is the vector that produces results with the lowest

88

average error (as described in Section 3.2). Much of the results are expressed using

parallel-coordinates graphing, with line coloring helping to represent the solution

quality (where hot colors such as red - yellow are solutions with low error and cool

colors (green - blue) are solutions with higher error). Finally, all experiments were

run on the machine setup described in Section 5.3.2.

5.5.5 Recumbent Full Factorial Tuner Results

The results of the full factorial search over the recumbent design space are displayed

in Figures 5.4 and 5.5, which show the top 1000 genetic vectors as well as the optimum

vector. The average runtime for a full factorial pass over the design space was ⇡ 1490

seconds, with the optimal genetic operator vector consisting of the values outlined in

Table 5.2, which on average produced recumbent designs with an error value of 0.035

and took 1.31 seconds to run.

Table 5.2: Optimum Genetic Algorithm Recumbent Parameters

Variable Values

Population Size 500

Generation Count 8

Selection Percentage 5

Cross-Over Percentage 25

Mutation Percentage 10

Given that the runtime is relatively low, this is the genetic operator vector that

would be recommended for studies moving forward. However, looking at a single run

does not give much insight into the overall characteristics of the genetic platform over

the recumbent design space. To do this, we must look at several di↵erent ranges of

the design space to see if the trend of high cross-over and low selection and mutation

89

persists. Figure 5.4 shows the solutions with filters set on the population size and the

generation count, and helps to give an idea of how influential generation count is on

the final solution’s quality. Figure 5.5 shows a similar set of graphs, however there is

filtering set to only show the best set of solutions per graph to help give more insight

into the underlying operator trends. Note that in both figures the population size was

fixed to 500 – this was done to reduce the clutter of lines in the graph, allowing colors

to show through and trends to more easily emerge (and the larger populations tend

to yield the best results so this generalization holds there as well). The correlations

between variables in Figures 5.4 and 5.5 are summarized as follows:

• " Generation Count yields # Error

• " Cross-Over Percentage yields # Error

• # Selection Percentage yields # Error

• # Generation Count requires " Mutation Percentage to yield # Error

Note that there is not a strong correlation between error and mutation percentage

as shown in this data set, with mutation percentage tending to jump around seemingly

randomly. This may be indicative of one of several factors including the size of

the search space and the characteristics of its fitness landscape. For instance, it

could be the case that the fitness landscape has many di↵erent local optimums that

the algorithm can locate and converge to, and as such a higher mutation rate may

be beneficial to increase the chance of finding a better solution from generation to

generation. This would also explain why the mutation rate tends to increase as the

generation count decreases; the algorithm needs to up its random search to find a

decent solution in a shorter number of iterations.

90

Figure 5.4: The top 1000 designs from the full factorial experiments over
the recumbent design space.

91

Figure 5.5: The top designs per segment for the full factorial experiments
over the recumbent design space.

92

5.5.6 Recumbent Sampling Tuner Search Results

A sampling tuner study was also run over the genetic parameter set within the context

of the recumbent design space outlined in the above experiment. The intention of

this secondary experiment was to determine whether or not a sampling tuner could

produce similar results as the full factorial search, which may allow it to be used in

its place in future experiments. As such, the sampling tuner was setup to take the

following inputs:

• Generation Count: [1, 2, 4, 6, 8]

• Population Size: [100, 200, 300, 400, 500]

• Selection Percentage: [5, 10, 15, 20, 25]

• Mutation Percentage: [5, 10, 15, 20, 25]

• Cross Over Percentage: [5, 10, 15, 20, 25]

Note that these are the same parameters used in the previous experiment with

the addition of a generation count of 1 (this needed to be done so that all parameter

vectors had the same length, otherwise they could not form a Greaco-Latin Square

in the sampling tuner). Additionally, in order to try and add more confidence to

the results of the experiment, the number of trials per configuration were increased

from 20 to 100. Since the purpose of this initial experiment is only to determine the

validity of this tuner, only the sampling stage was run as described in Section 3.6.

The results of these trials are shown below in Figure 5.6, with each attribute being

plotted separately to try and make trends more evident.

Looking at all of these plots as a whole, it is evident that there are much larger

error ranges for smaller values of each parameter. Reflecting on the trends observed in

93

Figure 5.6: Sampling tuner error values for each parameter vector.

the full factorial search, this is likely due to the influence of low generation count and

population size values more than the result of low selection, mutation of cross-over

operators. The plots for generation count and population size support this theory by

showing that both the average solution error and the solution spread decrease as their

94

parameter value increases (which directly reflects what was seen in the full factorial

search as well). However, while the generation count and population size plots seem

to follow the trends observed in the full factorial search, the other genetic operators

are not as clear cut. While both the mutation and cross-over percentage plots seem to

show a general trend of increasing solution quality with increasing parameter values,

this trend seems weak at best. Adding concern to these findings is the selection

percentage plot which has no reasonable trend and instead seems erratic and random

in nature. However, this randomness can also imply that the selection parameter

has less influence on the overall solution quality than the other genetic operators.

Another noteworthy point is that this study found the selection percentage to be

weakly coupled to the final solution quality, while the full factorial findings showed

mutation percentage to be erratic in nature. These deviations from the datum coupled

with the fact that these final three plots show only muddled trends gives concern to

using this method as a tuning solution in future design space searches.

5.5.7 Safety Bike Full Factorial Results

The full factorial search of the safety bike design space was carried out in a similar

fashion to that of the recumbent full factorial experiment, and in line with that, the

top 1000 genetic vectors as well as the optimum vector are shown in Figures 5.7 and

5.8. The average runtime for a full factorial pass over the design space was ⇡ 1480

seconds, with the optimal genetic operator vector consisting of the values outlined

in Table 5.3, which on average produced recumbent designs with an error value of

0.022 and took 1.22 seconds to run. As with the recumbent experiments, Figure 5.7

plots the top 1000 genetic vectors and shows how the performance of the algorithm

changes based on changing generation count, and Figure 5.8 shows the top solutions

for each of those filtered graphs to make trends easier to spot.

95

Table 5.3: Optimum Genetic Algorithm Safety Bike Parameters

Variable Values

Population Size 500

Generation Count 8

Selection Percentage 5

Cross-Over Percentage 25

Mutation Percentage 5

It is noteworthy that the average solution error over the safety bike space was 40%

less than that over the recumbent design space. This is likely due to how the MPCM

fits riders to bicycles and the constraints that the model enforces. Specifically, the

MPCM requires that the bicycle crank’s X and Z location be fully specified, along

with the height of the rider’s seat. This works well in a recumbent design space

where the rider’s seat is allowed to slide forwards and backwards, allowing the model

to accommodate a large variety of crank/seat locations. However, in a safety bike

design the rider is usually placed above their cranks at a set distance and uses the

up and down motion of the seat to adjust for rider height changes. Since the MPCM

does not allow this, it can result in a large number of safety bicycle designs being

considered invalid. This then leads to a large pruning of the design space, which

likely makes it easier to iterate to a stronger final solution. Note that this pruning

of the search space is not necessarily a negative feature when fitting a single rider,

however it does mean that fitting multiple riders to a safety bike produces fewer valid

solutions than fitting multiple riders to a recumbent.

96

Figure 5.7: The top 1000 designs from the full factorial experiments over
the safety bike design space.

97

Figure 5.8: The top designs per segment for the full factorial experiments
over the safety bike design space.

98

5.5.8 Experiment Conclusions

The purpose of these experiments was to determine what the best genetic vector was

for both the recumbent and the safety bike design spaces. After running a full factorial

search over both spaces, it was found that the top genetic vector from each di↵ered

only in the mutation percentage, and even then only by 5%. With that in mind, we

can conclude that these two design spaces behave in roughly similar fashions with

respect to the genetic framework, and the single genetic vector outlined in Table 5.4

can be used across both spaces with great success. Note that the recumbent genetic

vector was chosen to be used across the entire bicycle design space – this choice was

made because the PCM (and thus the MPCM) better models recumbent riders than

safety bike riders due to the nature of the rider’s orientation in the bicycle, and as

such it is likely that the MPCM model will be used to model recumbent bicycles

more often than safety bicycles. Additionally, this optimum genetic vector will not

necessarily work best across all design spaces in the MPCM, rather it works well

for the spaces that were investigated in this study. However, given how distinct the

recumbent design space is from the safety bike design space, it is likely that the

genetic operators listed in Table 5.4 will produce high quality solutions across the

entirety of the bicycle design space.

In addition to these full factorial searches, a sampling tuner experiment was con-

ducted over the recumbent design space in an attempt to characterize its performance

and correctness. While both generation count and population size showed strong cor-

relations that matched the findings in the full factorial search, the other genetic

operator findings were either weakly correlated at best or opposite the findings of the

full factorial trials. Because of this, the sampling tuner is not recommended for use

in characterizing the search spaces examined in these studies.

99

Table 5.4: Optimum Genetic Algorithm Parameters For Entire Bicycle
Space

Variable Values

Population Size 500

Generation Count 8

Selection Percentage 5

Cross-Over Percentage 25

Mutation Percentage 10

5.6 Partitioned Genetic Algorithm Experiments

One shortcoming to genetic platforms is their tendency to become overly focused on

a single subset of the design space, often missing the optimal solution. One way to

circumvent this is through reducing the influence that the top designs have on the

iterative process, and partitioning is one way to achieve this. As such, the partitioning

algorithm presented in Section 3.7 was applied to the genetic platform described in

Section 3.5 as outlined in Section 3.5.2.

5.6.1 Experiment Objectives

These experiments aim to gain insight into how helpful the application of partitioning

is in concert with genetic algorithms when applied to the bicycle design space, with

the final goal of determining what the best vector of partitioning parameters is. As

with previous experiments, best here signifies the combination of parameters that

routinely yields solutions with the lowest error, where error is measured using the

fitness function outlined in Section 3.2.

100

5.6.2 Process Variables

Since the partitioning algorithm is being run on top of the genetic platform, there are

myriad factors that could be considered in the following experiments. However, in

order to keep the complexity of the experiments down while focusing on tuning the

partitioning algorithm, only the following experimental factors will be examined:

• Partitioning radius

• List of bicycle attributes to partition about

where the partitioning radius is a series of decimal values, and the list of bicycle

attributes can be any non-zero combination of attributes outlined in Table 3.4.

The responses that will be recorded include:

• The averaged runtime and errors of all combinations of partition radii and

bicycle attributes.

• The vector that produces the optimum solution per partitioning radius.

5.6.3 Experimental Design

While the main focus of this experiment is to determine what the optimum parti-

tioning parameters are, the tests still need a fixed set of bicycle, rider and genetic

search spaces to operate within. Since the experiments in Section 5.5 heavily exam-

ined subsets of the recumbent and safety bike design spaces, it seemed sensible to

use those spaces in this experiment as well. Additionally, since the aim is to find a

more optimum solution than the unpartitioned variants, these experiments will use

the optimum genetic algorithm configuration that is listed in Table 5.4. With these

search spaces fixed, the partitioning parameter space could be expanded and explored

101

with the knowledge that any improvements that are found will be better than the

results uncovered in the unpartitioned experiments.

Defining the Partitioning Parameter Space – The partitioning design space

has three primary inputs that need to be defined including:

• The partitioning radius

• The list of attributes to partition about

• The threshold to stop considering individuals at

with each having their own set of bounds that they can exist within. For the

sake of simplicity, the partitioning algorithm’s threshold value was set to 50%, and as

such only the top half of each generation’s population would be partitioned (and thus

available for selection in the next generation). Additionally, while the partitioning

radius can technically be any positive decimal value, it makes sense that it would

not exceed the maximum distance between two points in the bicycle design space.

However, this can still result in a massive range of radii to test, and as such, a more

conservative approach was taken in these experiments, with radius integer values

between 1 and 5 (inclusive) being tried and analyzed. Additionally, the MPCM has

15 bicycle parameters which could be used in the partitioning distance computation.

After some consideration, this list was reduced to the 9 parameters listed in Table

5.5.

The masses of the frame, rider, crank and wheels were omitted because they are

generally fairly constant from run to run, and the radius of the crank and the rear

wheel were excluded because they have the smallest impact on the underlying Patter-

son Control Model equations. In order to insure that the optimal radius/attributes

configuration would not be overlooked, all combinations of radii and attributes was

attempted, with the results being recorded and analyzed below.

102

Table 5.5: List of bicycle attributes to combine while tuning the parti-
tioned genetic search platform.

Partitioning Attributes List

wheelbase

fork o↵set

handlebar radius

front wheel radius

crank x o↵set

crank z o↵set

seat height

hip angle

headtube angle

5.6.4 Experimental Results

A full factorial search was conducted across the entire design space outlined in Section

5.5.3, resulting in 2560 di↵erent parameter combinations that needed to be tried per

run. Similar to previous experiments, each trial was repeated 20 times with the

average results being reported below. The following sections look to determine what

e↵ects partitioning has on the quality of solutions produced by the genetic platform,

and what partitioning parameter set yielded the best results. More specifically, the

e↵ects of changing the partitioning radius as well as the bike design parameters to

partition about is reported and analyzed, with all experiments run on the machine

setup described in Section 5.3.2.

103

5.6.5 Recumbent Full Factorial Results

This study was conducted with the same input parameters as the recumbent genetic

search trials presented in Section 5.5.4, and iterated over the partitioning parameter

space as outlined in Section 5.6.3, with each of the 20 runs taking ⇡ 8500 seconds on

average to complete. The results of these trials are outlined in Figures 5.9 and 5.10.

Figure 5.9 shows the averaged results for every trial, with line colors being defined by

the final solution error. Figure 5.10 highlights the top configuration for each radius.

Note that these graphs are each for a single partitioning radius, and that the majority

of their axes represent the partitioning attributes. These axes represent a binary

include/exclude of their respective attribute in each partitioning configuration. For

example, the optimum partitioning configuration for a partitioning radius of 1.0 shown

in Figure 5.10 partitioned the design space using wheelbase, crank x offset and

seat height (since those are the three axes where the configuration passed through

them with a value of 1.0). Each graph also includes the minimum, maximum and

average errors, as well as the average runtime. Finally, the error and runtime values

for the optimum vector per partition radius are outlined in Table 5.6.

Table 5.6: Runtime and error results for the optimum recumbent parti-
tioning vectors.

Partition Radius 1 2 3 4 5

min error 2.7e-05 1.3e-27 7.2e-05 4.6e-06 0.0019

max error 0.0754 0.0789 0.0980 0.0727 0.0757

avg error 0.0233 0.0244 0.0256 0.0209 0.0229

avg runtime [sec] 6.65 6.78 6.54 6.89 6.79

104

Figure 5.9: All recumbent tuning results with a radius value of a) 1.0 b)
2.0 c) 3.0 d) 4.0 e) 5.0.

105

5.6.6 Safety Bike Full Factorial Results

The same experiment was run over the safety bike design space with each of the 20

trials taking ⇡ 8400 seconds to complete, producing the results outlined in Figures

5.11 and 5.12. Figure 5.11 shows the averaged results for every trial, with line colors

being defined by the final solution error. Figure 5.12 highlights the top configuration

for each radius in a similar fashion to the recumbent experiments from the previous

section. Finally, the runtimes and errors for the top vector for each partition radius

are listed in Table 5.7.

Table 5.7: Runtime and error results for the optimum safety bike parti-
tioning vectors.

Partition Radius 1 2 3 4 5

min error 0.0007 8.0e-05 0.0003 0.0031 0.0004

max error 0.0696 0.0900 0.0664 0.0731 0.1392

avg error 0.0190 0.0178 0.0170 0.0230 0.0191

avg runtime [sec] 6.69 6.39 6.58 6.55 6.79

5.6.7 Experiment Conclusions

Looking at the data from the recumbent and safety bike search trials shown in Figures

5.10 and 5.12, there is no obvious correlation between partitioning attributes and

quality of solution. This is most likely due to the complex interactions that occur

between the partitioning radius and the attributes, with every additional attribute

that is considered adding another dimension to the partitioning space. Figure 5.13

shows the top result for each of the runs, and while there is a slight trend in how

both lines are curving, in general the deviation is so small that it is hard to consider

noteworthy.

106

However, while there were no direct trends between individual parameter com-

binations, on average all partitioned trials produced solutions with roughly 80% of

the error of their unpartitioned counterparts. More interestingly, even the partition

configuration where there were no partitioning attributes performed better than the

unpartitioned version. In this case, it is likely due to the partitioning algorithm’s

threshold step which removes the bottom 50% of all individuals from the population.

This would result in there being a generally higher quality population for the random

selection to be performed on from generation to generation, which appears to have

improved the final solution quality.

Finally, it is important to keep perspective regarding these results. Specifically,

while it is true that the partitioned implementation performed better than its unpar-

titioned variant, the di↵erence between the resulting design scores is incredibly small

– small enough to be considered essentially negligible. Thus, the practical conclusion

to draw from these experiments is that the user can use either genetic search platform

because both will produce the same quality designs. However, the primary benefit

to using the partitioned search platform is that it outputs the top design from each

of the resulting bike partitions. Thus, the user can specify how they want to parti-

tion their results, making it easier to spot design groups, and ultimately see di↵erent

families of candidates more easily in the final output.

107

Figure 5.10: Top recumbent tuning results with a radius value of a) 1.0 b)
2.0 c) 3.0 d) 4.0 e) 5.0.

108

Figure 5.11: All safety bike tuning results with a radius value of a) 1.0 b)
2.0 c) 3.0 d) 4.0 e) 5.0.

109

Figure 5.12: Top safety bike tuning results with a radius value of a) 1.0 b)
2.0 c) 3.0 d) 4.0 e) 5.0.

110

Figure 5.13: Partition radii versus top errors for the recumbent and safety
bike design spaces.

111

Chapter 6

CONCLUSIONS

The primary goal of this work was to use the Patterson Control Model to proactively

search the bicycle design space and hopefully find rideable bicycle designs that fit

a designer’s handling needs. This was accomplished by expanding the input set of

the Patterson Control Model so that it included more bicycle parameters as well as

a 3D body model for the bicycle’s rider, which ultimately created a tool which was

easier to use than the initial Patterson Control Model itself. From there, this model

was integrated into several di↵erent search algorithms, all of which had the goal of

determining which bicycle design most closely matched the designer’s handling goals

within a specified bicycle parameter space. While the initial Brute Force implementa-

tion was able to reliably locate the optimum bicycle design in any given search space,

it was incredibly slow, making it impractical to use in real world design situations. To

alleviate this issue, two platforms were created that utilized the strengths of genetic

algorithms to search for near optimal bicycle designs in a fraction of the time that

the Brute Force implementation required. The base genetic platform was able to find

recumbent bicycle designs with an average error of 0.035 in 1.31 seconds of runtime

and safety bicycle designs with an average error of 0.022 in 1.22 seconds, making

this platform more than practical for a designer to use in the future. The addition

of partitioning on top of the genetic search platform halved the solution errors at

the cost of increasing the runtime by a factor of 6. However, even with a 6 times

increase in runtime the platform still runs in a practical amount of time, making

either genetic implementation a feasible option for designers to choose between, with

the benefit of the partitioning solution being that the designer can more easily group

their output data so that distinct designs are more apparent. These search platforms

112

were then wrapped in a Jupyter Notebook front-end so that users could more easily

interface with their code, making tools which should be both useful and approachable

for interested parties from both computing and non-computing backgrounds alike.

113

Chapter 7

FUTURE WORK

Improvements to the work presented in this document fall into two major categories:

improvements to the Modified Patterson Control Model (MPCM) and improvements

to the genetic search platform itself.

With regards to the MPCM, there are three primary avenues which could be

explored. The first would be to investigate using more complex human body models

to see what the improvements would be to the final inertial values for the bicycle/rider

system. While these are likely small (as mentioned in the previous chapters), it

could allow for higher fidelity results which may tweak the overall ranking of some

bicycle designs over others. Additionally, many human powered vehicles (HPV’s) are

wrapped in a fairing, which is an aerodynamic shell that is used to reduce wind drag in

an attempt to improve the bicycle’s speed performance. The current implementation

of the MPCM does not factor the fairing into the final inertial computations, which is

something that would need to be done if faired bikes were to be accurately modeled in

the future (especially since fairings can make up 25+% of some bicycle’s overall mass).

An initial idea for computing a fairing shape would be to use Convex Hull to get the

polygon that encloses the bicycle. This could then be done for varying y-o↵sets from

the bicycle’s center in an attempt to capture the 3D shape of a bicycle/rider system.

The mass of the 3D fairing could then be computed and used in the overall bicycle

inertia calculations. As an extension of the fairing idea, smoothing and aerodynamic

rules could also be applied to the final result, allowing the design’s aerodynamic

performance to also be factored into the bicycle’s fitness computation (which would be

useful since aerodynamics is a huge portion of top speed recumbent racing). Finally,

the last major addition the MPCM could use is the ability to better fit riders to upright

114

bicycles. Currently, rider’s seat heights are fixed by the user’s bicycle parameter

configuration file with a horizontal sliding seat used to fit riders of varying sizes to

the bicycle frame. In order to successfully fit a set of riders to a safety bike, the seat

would likely need to be allowed to slide in the vertical direction, which is something

the model is not setup to accommodate at this time.

Improving the genetic search platform on the other hand primarily revolves around

investigating more design spaces and trying other tuners and parameter configura-

tions. In the studies conducted in this work, the selection, cross-over and mutation

operator values were restricted to a ceiling of 25%. This ceiling was arbitrarily set in

the beginning of the experiments, and was maintained primarily because the result-

ing bicycle design solutions and their resulting runtimes were considered worthwhile

enough to stop further investigation. However, while the solutions are adequate for a

user’s needs, more tuning experiments could be done to better characterize the solu-

tion landscape of the Patterson Control Model. This practice could also be expanded

to other bicycle models (such as the Whipple model) in an attempt to compare and

contrast it with the PCM, with the conclusions of this study helping to inform re-

searchers of where to put their resources in future bicycle design related endeavours.

115

BIBLIOGRAPHY

[1] Cycling timeline revised. https://mjmatthewsdesign.wordpress.com/.

Accessed 22 May 2016.

[2] Jupyter notebook. https://jupyter.org/. Accessed 1 Feb 2017.

[3] NIST/SEMATECH e-Handbook of Statistical Methods. Accessed 20 January

2017.

[4] A short history of bicycles. Access 1 June 2016.

[5] J. K. A. L. Schwab and J. Nieuwendijk. On the design of a recumbent bicycle

with a perspective on handling qualities. ASME, 2012.

[6] B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional

experimental designs and local search. Oper. Res., 54(1):99–114, Jan. 2006.

[7] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and W. R. Stewart.

Designing and reporting on computational experiments with heuristic methods.

Journal of Heuristics, 1(1):9–32, 1995.

[8] D. Beasley, D. R. Bull, and R. R. Martin. An overview of genetic algorithms:

Part 1, fundamentals, 1993.

[9] C. J. Camacho and D. Gatchell. Successful discrimination of protein

interactions. Proteins, 40:525537, 2003.

[10] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. Using experimental

design to find e↵ective parameter settings for heuristics. Journal of Heuristics,

7(1):77–97, 2001.

116

[11] W. T. Dempster. Space requirements of the seated operator, geometrical,

kinematic and mechanical aspects of the body with special reference to the

limbs. 1955.

[12] A. E. Eiben and S. K. Smit. Parameter tuning for configuring and analyzing

evolutionary algorithms. Swarm and Evolutionary Computation, 2011.

[13] A. E. Eiben and S. K. Smit. Parameter tuning for configuring and analyzing

evolutionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31,

2011.

[14] W. Erdmann. Geometry and inertia of the human body-review of research.

Acta of Bioengineering and Biomechanics, 1:23–35, 1999.

[15] B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Wiley Publishing,

4th edition, 2009.

[16] H. Gannett. General Summary Showing the Rank of States by Ratios 1880.

1880.

[17] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1st edition, 1989.

[18] J. M. P. A. R. J. D. G. Kooijman, J. P. Meijaard and A. L. Schwab1. A bicycle

can be self-stable without gyroscopic or caster e↵ects, April 2011.

[19] M. JK. Human control of a bicycle.

[20] V. S. C. C. Kozakov D, Clodfelter KH. Optimal clustering for detecting

near-native conformations in protein docking.

[21] J. Lowell and H. D. McKell. The stability of bicycles. American Journal of

Physics, 50(12):1106–1112, December 1982.

117

[22] J. K. M. M. Hubbard, R. Hess and D. L. Peterson. Human control of bicycle

dynamics with experimental validation and implications for bike handling and

design. NSF Engineering Research and Innovation Conference, 2011.

[23] C. C. E. C. T. D. C. J. McConville, J. T. and I. Kaleps. Anthropometric

relationships of body and body segment moments of inertia. Technical Report

AFAMRL-TR-80-119, Air Force Aerospace Medical Research Laboratory,

Wright-Patterson AFB, OH., 1980.

[24] J. P. Meijaard, J. M. Papadopoulos, A. Ruina, and A. L. Schwab. Linearized

dynamics equations for the balance and steer of a bicycle: A benchmark and

review. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 463(2084):1955–1982, August 2007.

[25] K. J. Moore JK, Hubbard M. A method for estimating physical properties of a

combined bicycle and rider. 2009.

[26] R. Myers and E. R. Hancock. Empirical modelling of genetic algorithms.

Evolutionary Computation, 9(4):461–493, 2001.

[27] M. Obitko. Introduction to genetic algorithms.

[28] W. B. Patterson. The Lords of the Chainring. W. B. Patterson, 2004.

[29] A. K. B. S. P. R. Hari Krisnan, V. Devanandh. Estimation of mass moment of

inertia of human body, when bending forward, for the design of a self-transfer

robotic facility. 2016.

[30] K. L. R. Mukesh and U. Selvakumar. Airfoil shape optimization using

non-traditional optimization technique and its validation. Access 5 June 2016.

[31] A. L. Schwab and J. P. Meijaard. A review on bicycle dynamics and rider

control. Vehicle System Dynamics, 51(7):1059–1090, 2013.

118

[32] K. Wloch and P. J. Bentley. Optimising the performance of a formula one car

using a genetic algorithm. In In Proceedings of Eighth International Conference

on Parallel Problem Solving From Nature, pages 702–711, 2004.

[33] M. R. Yeadon. The simulation of aerial movement-ii. a mathematical inertia

model of the human body. Journal of Biomechanics, 23:67–74, 1990.

119

APPENDICES

Appendix A

CONFIGURATION FILE TEMPLATES

A.1 Bicycle Configuration Template

This is a template for bike parameter inputs. The order
and capitalization of each parameter is not important,
but the names of the parameters are.
#
Additionally, you can specify the value for each variable
in 1 of 3 ways:
#
Option 1: Set the parameter equal to a specific value.
#
param = value
#
Option 2: Set the parameter to a range of values between
x & y stepping by z.
#
param = x to y by z
#
Option 3: Set the parameter to the values x, y, z.
#
param = [x, y, z]
#
Additionally, you can include comments on their own own
lines or inline.
#
Note that the units per line below are just to tell the
user what units each parameter values should be in.

Bike Parameters
wheelbase = 1.1 to 1.4 by 0.1 # [m]
fork_offset = -0.075 to 0 by 0.01 # [m]
handlebar_radius = 0.1 to 0.4 by 0.1 # [m]
front_wheel_radius = 0.241 to 0.343 by 0.2 # [m]
rear_wheel_radius = 0.241 to 0.343 by 0.2 # [m]
crank_radius = [0.150, 0.165, 0.175] # [m]

120

crank_x_offset = 0.2 to 0.4 by 0.05 # [m]
crank_z_offset = 0.4 to 0.6 by 0.05 # [m]
seat_height = 0.2 to 0.8 by 0.1 # [m]
hip_angle = 110 to 135 by 5 # [degrees]
headtube_angle = 0 to 12 by 1 # [degrees]
frame_mass = 5 to 20 by 5 # [kg]
crank_mass = 1 # [kg]
front_wheel_mass = 2 # [kg]
rear_wheel_mass = 2 # [kg]

A.2 Rider Configuration Template

This is a template for rider parameter inputs. The order
and capitalization of each parameter is not important,
but the names of the parameters are.
#
Additionally, you can specify the value for each variable
in 1 way:
#
Set the parameter equal to a specific value:
#
param = value
#
Additionally, you can include comments on their own own lines
or inline.
#
Note that the units per line below are just to tell the user
what units each parameter values should be in.

Rider Parameters
rider_name = Chris
rider_mass = 60 # [kg]
head_diameter = 0.185 # [m]
torso_length = 0.48 # [m]
torso_width = 0.2 # [m]
torso_depth = 0.2 # [m]
arm_length = 0.5 # [m]
arm_diameter = 0.08 # [m]
leg_length = 1.0 # [m]
leg_diameter = 0.12 # [m]

121

A.3 Double Rider Configuration File

This configuration file shows how to specify two di↵erent rider’s for use with the

Modified Patterson Control Model. In this example, one rider is Chris and the

other rider is Steve. Note that the parsing of each rider in the file is based around

the appearance of the rider name assignment, so its important to keep the blocks

separated as shown below.

Rider Parameters for Chris
rider_name = Chris
rider_mass = 60 # [kg]
head_diameter = 0.185 # [m]
torso_length = 0.48 # [m]
torso_depth = 0.2 # [m]
torso_width = 0.2 # [m]
arm_length = 0.5 # [m]
arm_diameter = 0.08 # [m]
leg_length = 1.0 # [m]
leg_diameter = 0.12 # [m]

Rider Parameters for Steve
rider_name = Steve
rider_mass = 90 # [kg]
head_diameter = 0.2 # [m]
torso_length = 0.58 # [m]
torso_depth = 0.4 # [m]
torso_width = 0.4 # [m]
arm_length = 0.6 # [m]
arm_diameter = 0.15 # [m]
leg_length = 0.8 # [m]
leg_diameter = 0.22 # [m]

A.4 Genetic Algorithm Configuration Template

This is a template for a genetic algorithm config.
The order and capitalization of each parameter is
not important, but the names of the parameters are.
#
Additionally, you can specify the value for each

122

variable in 1 of 3 ways:
#
Option 1: Set the parameter equal to a specific value.
#
param = value
#
Option 2: Set the parameter to a range of values between
x & y stepping by z.
#
param = x to y by z
#
Option 3: Set the parameter to the values x, y, z.
#
param = [x, y, z]
#
Additionally, you can include comments on their own lines
or inline.

Genetic Algorithm Config Parameters

Number of runs for each trial to average across
num_runs = 10.0

Number of generations to run
generation_count = 1 to 2 by 1

Size of each generation’s population
population_size = 10 to 20 by 10

% population to be selected from per iteration
selection_percentage = 5 to 10 by 5

% population to be crossed-over per iteration
cross_over_percentage = 5 to 10 by 5

% population to be mutated per iteration
mutation_percentage = 5 to 10 by 5

Number of genes to involve during cross-over
cross_over_gene_count = 5

Number of genes to involve during mutation
mutation_gene_count = 10

123

A.5 Partitioning Configuration Template

This is an example partitioning configuration file. Note that the attributes list spec-

ifies only a subset of the bicycle parameters outlined in Table 3.4, however, all may

be listed if need be. Note that at least one attribute must be listed, otherwise the

partitioning algorithm will not be able to correctly compute the distance between

individuals in the bike design space.

This is a template for a partitioning config. The order and
capitalization of each parameter is not important, but the
names of the parameters are.
#
Note that there are 2 parameters that you can set in this config.
They are the partitioning ’radius’ and the set of ’attributes’ to
partition about.
#
The following describes how you can set the values for each of
these parameters in this config.
#
Set the value for the radius by specifying a single value:
radius = value
#
Set the attributes to partition about by specifying a set:
param = [x, y, z]
#
where x, y and z are valid attributes (note that no quotes are
needed here). Additionally, valid attributes include any of
those in the Modified Patterson Control Model.
#
Additionally, you can include comments on their own own lines or inline.

Partitioning Parameters
radius = 5.0
attributes = [wheelbase, seat_height, crank_x_offset]

124

Appendix B

BIKE CONFIGURATIONS

B.1 Cal Poly’s Gemini Bicycle Frame Parameters

Cal Poly’s Gemini Bicycle Frame Parameters
wheelbase = 1.15 # [m]
hip_angle = 120 # [degrees]
headtube_angle = 12 # [degrees]
crank_radius = 0.175 # [m]
crank_x_offset = 0.2 # [m]
crank_z_offset = 0.6 # [m]
fork_offset = -0.075 # [m]
seat_height = 0.325 # [m]
handlebar_radius = 0.2 # [m]
front_wheel_radius = 0.28 # [m]
rear_wheel_radius = 0.28 # [m]
frame_mass = 10 # [kg]
crank_mass = 1 # [kg]
front_wheel_mass = 2 # [kg]
rear_wheel_mass = 2 # [kg]

B.2 Cervelo R3 Team Bicycle Frame Parameters

Cervelo R3 Team Bicycle Frame Parameters
wheelbase = 0.94 # [m]
hip_angle = 120 # [degrees]
headtube_angle = 17 # [degrees]
crank_radius = 0.175 # [m]
crank_x_offset = -0.58 # [m]
crank_z_offset = 0.27 # [m]
fork_offset = 0.0 # [m]
seat_height = 1.05 # [m]
handlebar_radius = 0.2 # [m]
front_wheel_radius = 0.336 # [m] (700c + tire)
rear_wheel_radius = 0.336 # [m] (700c + tire)
frame_mass = 5 # [kg]
fairing_mass = 0 # [kg]
crank_mass = 1 # [kg]

125

front_wheel_mass = 2 # [kg]
rear_wheel_mass = 2 # [kg]

B.3 Parameter Space for Brute Force Search – Gemini Bike Frame

Design space including the Gemini bicycle frame
wheelbase = 1 to 2 by 0.15 # [m]
hip_angle = 100 to 130 by 10 # [degrees]
headtube_angle = 6 to 18 by 3 # [degrees]
crank_radius = [0.165, 0.170, 0.175] # [m]
crank_x_offset = 0 to 0.4 by 0.1 # [m]
crank_z_offset = 0.2 to 0.8 by 0.2 # [m]
fork_offset = [0, -0.03, -0.06, -0.075] # [m]
seat_height = 0.3 to 0.5 by 0.025 # [m]
handlebar_radius = 0.1 to 0.4 by 0.1 # [m]
front_wheel_radius = [0.23, 0.28, 0.36] # [m]
rear_wheel_radius = [0.23, 0.28, 0.36] # [m]
frame_mass = 10 # [kg]
crank_mass = 1 # [kg]
front_wheel_mass = 2 # [kg]
rear_wheel_mass = 2 # [kg]

B.4 Parameter Space for Recumbent Genetic Search

Recumbent design space including the Gemini bicycle frame
wheelbase = 1 to 2 by 0.15 # [m]
hip_angle = 100 to 150 by 10 # [degrees]
headtube_angle = 0 to 18 by 2 # [degrees]
crank_radius = [0.165, 0.170, 0.175] # [m]
crank_x_offset = -0.5 to 0.5 by 0.05 # [m]
crank_z_offset = 0.2 to 0.8 by 0.05 # [m]
fork_offset = [0, -0.03, -0.06, -0.075] # [m]
seat_height = 0.2 to 0.6 by 0.025 # [m]
handlebar_radius = 0.1 to 0.4 by 0.05 # [m]
front_wheel_radius = [0.23, 0.28, 0.36] # [m]
rear_wheel_radius = [0.23, 0.28, 0.36] # [m]
frame_mass = 10 # [kg]
fairing_mass = 0 # [kg]
crank_mass = 1 # [kg]
front_wheel_mass = 2 # [kg]
rear_wheel_mass = 2 # [kg]

126

B.5 Parameter Space for Safety Bike Genetic Search

Recumbent design space including the Cervelo R3 safety bicycle frame
wheelbase = 1 to 2 by 0.15 # [m]
hip_angle = 100 to 150 by 10 # [degrees]
headtube_angle = 0 to 20 by 2 # [degrees]
crank_radius = [0.165, 0.170, 0.175] # [m]
crank_x_offset = -1.0 to 1.0 by 0.05 # [m]
crank_z_offset = 0.2 to 0.8 by 0.05 # [m]
fork_offset = [0, -0.03, -0.06, -0.075] # [m]
seat_height = 0.2 to 1.2 by 0.025 # [m]
handlebar_radius = 0.1 to 0.4 by 0.05 # [m]
front_wheel_radius = [0.23, 0.28, 0.336] # [m]
rear_wheel_radius = [0.23, 0.28, 0.336] # [m]
frame_mass = 5 # [kg]
fairing_mass = 0 # [kg]
crank_mass = 1 # [kg]
front_wheel_mass = 2 # [kg]
rear_wheel_mass = 2 # [kg]

127

Appendix C

RIDER CONFIGURATION TRIALS

C.1 Chris Hunt’s Rider Parameters

This configuration file outlines all of the rider parameters used to model Chris Hunt.

Chris Hunt’s Rider Parameters
rider_name = Chris
rider_mass = 60 # [kg]
head_diameter = 0.185 # [m]
torso_length = 0.48 # [m]
torso_depth = 0.2 # [m]
torso_width = 0.2 # [m]
arm_length = 0.5 # [m]
arm_diameter = 0.08 # [m]
leg_length = 1.0 # [m]
leg_diameter = 0.12 # [m]

128

Appendix D

GENETIC OPERATOR CONFIGURATIONS

D.1 Base Genetic Search Configuration

The following is the base genetic algorithm configuration file used in the main vali-

dation experiments for the genetic search platform.

Number of runs for each trial to average across
num_runs = 20.0

Number of generations to run
generation_count = 2 to 8 by 2

Size of each generation’s population
population_size = 100 to 500 by 100

% population to be selected from per iteration
selection_percentage = 5 to 25 by 5

% population to be crossed-over per iteration
cross_over_percentage = 5 to 25 by 5

% population to be mutated per iteration
mutation_percentage = 5 to 25 by 5

Number of genes to involve during cross-over
cross_over_gene_count = 8

Number of genes to involve during mutation
mutation_gene_count = 8

129

Appendix E

CONTROL SENSITIVITY TRIALS

E.1 Control Sensitivity Values for Chris Hunt Riding Cal Poly’s Gemini

Frame

Table E.1 enumerates the control sensitivity values for the rider specified in Appendix

C.1 riding Cal Poly’s Gemini frame (see Appendix B.1) from 0 to 25 m/s.

E.2 Control Sensitivity Values for Chris Hunt Riding Cervelo’s 2012

55cm R3 Team Frame

Table E.3 enumerates the control sensitivity values for the rider specified in Appendix

C.1 riding Cervelo’s 2012 R3 Team frame (see Appendix B.2) from 0 to 25 m/s.

130

Table E.1: Control Sensitivity for Chris Hunt on Cal Poly’s Gemini Frame.

Speed [m/s] Control Sensitivity

0 0.0

1 5.2874126319688814

2 9.354120785527682

3 11.76725941081217

4 12.798612526935305

5 12.93402876510182

6 12.576652422290532

7 11.9857701616695

8 11.308517943958789

9 10.62209029950619

10 9.964085088347053

11 9.350782989946877

12 8.787386266179801

13 8.273564580645214

14 7.806404030623976

15 7.381950634303657

16 6.995999896484056

17 6.6444840070832525

18 6.3236457485945685

19 6.030100891080484

20 5.760843907430813

21 5.513226483676934

22 5.284924533503191

23 5.073901927187384

24 4.878375059368508

25 4.69678016551565

131

Table E.2: Control Sensitivity for Chris Hunt on Cal Poly’s Gemini Frame.

Speed [m/s] Control Sensitivity

0 0.0

1 2.317841464743265

2 4.304454705511157

3 5.769600764672873

4 6.695333078648078

5 7.173311173885147

6 7.328172920907239

7 7.2718171888559135

8 7.088329936036018

9 6.835044164166083

10 6.548771056446919

11 6.25214096975315

12 5.958519031826883

13 5.675413804032869

14 5.4067138819541

15 5.154112774961068

16 4.91800169083479

17 4.698023105053452

18 4.493411116204026

19 4.303198721807412

20 4.126342326175626

21 3.9617948983646185

22 3.8085473726739907

23 3.665650515910766

24 3.5322248961374347

25 3.4074637233886675

Table E.3: Control Sensitivity for Chris Hunt on Cervelo’s 2012 R3 Team
Frame.

132

Appendix F

COMPUTING THE RIDER’S GEOMETRY

This chapter explains how the rider’s body is fit to the bicycle frame, including how

each of their body segment’s is located and rotated. This section assumes that the

bicycle is operating in the same XZ-Plane as used by the Modified Patterson Control

Model, and the equations listed will utilize all of the parameter inputs defined in Table

3.1 and Figure 3.1. Finally, the body model being positioned is the same model as

described in Section G.1, and as such, all of that model’s assumptions apply here as

well. With all that in mind, the following sections break down how each segment of

the rider’s body is positioned relative to the bicycle.

F.1 Accommodating Rider Body Thickness

This model begins locating the rider on the bicycle by positioning them such that the

center of their legs goes through the center of the bicycle’s cranks, and so that the

rider is sitting in a seat that is behind those cranks at the user specified seat height.

However, since the rider has a thickness specified by the user (both a torso and a leg

thickness), placing the rider in their seat is not completely straightforward. Instead,

this model generally works by computing where the rider would be if they had zero

body thickness, and then adds in the o↵sets to accommodate for their actual body

thickness. This manifests itself as an o↵set of the rider’s hip from the bicycle seat,

with many equations utilizing the following two variables:

hip center delta
x

=

✓
torso depth

2

◆
Cos(↵� 90� + ✓)

hip center delta
z

=

✓
torso depth

2

◆
Sin(↵� 90� + ✓) + Cos(✓)

✓
leg diameter

2

◆

133

Figure F.1: Calculating the rider’s hip center.

which specify the o↵set of the body’s hips in the X and Z locations as shown in

Figure F.1. Additionally, computing the angle between the X axis and the bottom

of the seat is important in many calculations. This angle, known as ✓ is complex

to calculate because the rider’s leg length and seat height are fixed, and as a result

the rider’s seat must be rotated to accommodate for their leg’s thickness as shown in

Figure F.2. In that figure, ✓0 is defined as if the seat bottom were of infinite length

and went through the crank center, while ✓ is defined as the proper angle between

the seat and the X axis in order to make the rider’s leg center-line go through the

crank center, as defined in the following equations:

✓0 = ArcSin

✓
C

z

�H
z

leg length� C
r

◆

✓ = ArcSin

✓
C

z

� (leg diameter

2)Cos(✓0)�H
z

leg length� C
r

◆

F.2 Locating the Rider’s Head

The rider’s head is located atop the rider’s torso and as such is simple to locate, as

shown in Figure F.3, with the equations of the rider’s head’s center of mass being

134

Figure F.2: Calculating the seat angle while compensating for rider body
thickness.

given by:

� = 180� � ↵� ✓

x0 =

✓
torso length+

head diameter

2

◆
Cos(�)� hip center delta

x

z0 =

✓
torso length+

head diameter

2

◆
Sin(�) + hip center delta

z

head cg
x

= H
x

� x0

head cg
z

= H
z

+ z0

Figure F.3: Calculating the location of the rider’s head’s center of gravity.

135

F.3 Locating the Rider’s Torso

The rider’s torso is assumed to be a cuboid as shown in Figure F.4, with the equations

specifying its center of mass being given by:

� = 180� � ↵� ✓

torso cg
x

= H
x

+ hip center delta
x

�
✓
torso length

2

◆
Cos(�)

torso cg
z

= H
z

+ hip center delta
z

+

✓
torso length

2

◆
Sin(�)

Figure F.4: Calculating the location of the rider’s torso’s center of gravity.

F.4 Locating the Rider’s Legs

The rider’s legs are assumed to each be a single cylinder, with both going through

the crank center with the legs stopping at the farthest point away from the rider on

the crank circle. Additionally, the rider’s legs are assumed to start at their hip center

as shown in Figure F.5, with the equations specifying each leg’s center of mass being

given by:

leg start
x

= H
x

+ hip center delta
x

136

leg start
z

= H
z

+ hip center delta
z

leg end
x

= H
x

+ leg length ⇤ Cos(✓) + hip center delta
x

leg end
z

= H
z

+ leg length ⇤ Sin(✓) + hip center delta
z

leg cg
x

= leg start
x

� leg start
x

� leg end
x

2

leg cg
z

= leg start
z

� leg start
z

� leg end
z

2

Figure F.5: Calculating the location of the rider’s leg’s center of gravity.

F.5 Locating the Rider’s Arms

Since the rider’s arms are the last component to be oriented, they are able to utilize

many of the variables which had been computed to locate the other body segments.

As such, many of the variables listed in Figure F.6 and the subsequent equations are

computed in previous sections.

arm start
x

= H
x

+ hip center delta
x

� torso length ⇤ Cos(�)

arm start
z

= H
z

+ hip center delta
z

+ torso length ⇤ Sin(�)

137

⇣ = ArcTan

✓
arm start

z

� fork top
z

fork top
x

� arm start
x

◆

arm end
x

= arm start
x

+ arm length ⇤ Cos(⇣)

arm end
z

= arm start
z

� arm length ⇤ Sin(⇣)

arm cg
x

= Cos(⇣) ⇤ arm length

2
+ arm start

x

arm cg
z

= �Sin(⇣) ⇤ arm length

2
+ arm start

z

Figure F.6: Calculating the location of the rider’s arm’s center of gravity.

138

Appendix G

RIDER INERTIA EQUATIONS

This chapter assumes that the rider is being modeled using the body model explained

in Section 3.1.3 and that the center of gravity locations and masses for each of the

rider’s segments have been computed already. Each segment’s inertia is computed

about the global X axis used in the Patterson Control Model (the axis that passes

through the wheel’s contact points with the ground plane), and the process of com-

puting these inertia values follows the steps outlined in Section G.1.

G.1 Computing the Inertia of a Body about an Axis

This section outlines the general steps required to compute the Moment of Inertia

(and subsequently the Radius of Gyration) of a body about an arbitrary axis. Note

that this example focuses on computing the Moment of Inertia I about the X axis,

and this is represented by I
xx

. Additionally, the Radius of Gyration will also be about

the X axis, and is represented by K
xx

.

1) Establish the Global Coordinate System and call it XY Z.

2) Establish a local coordinate system for each member located at the member’s

mass center and call it x
i

y
i

z
i

.

3) Compute the total body’s center of mass location relative to the desired axis:

r
body

=

P
m

i

r
i

m
body

where r
i

is the position vector to the centroid of each segment that makes up

the body, m
i

is the mass of each segment being analyzed, m
body

is the total mass

of the body and r
body

is the position vector to the center of mass of the body.

139

4) Compute each segment’s local moment of inertia using the ideal definitions of

inertia for the segment about its local mass center. Note that this assumes that

the segment’s mass moment of inertia is already cataloged due to it being a

common shape such as a sphere, cylinder or cube. If this is not the case then

you will need to compute the inertia value manually about the body’s center of

mass. Mass moment of inertia equations for common shapes fixed at their mass

centers include:

Cuboid) m

12

2

664

y2 + z2 0 0

0 x2 + z2 0

0 0 x2 + y2

3

775

Cylinder) I
xx

= I
yy

=
1

4
m ⇤ r2 + 1

12
m ⇤ l2, I

zz

=
1

2
m ⇤ r2

Sphere) I
xx

= I
yy

= I
zz

=
2

5
m ⇤ r2

Finally, define each segment’s local inertia matrix using the symbol J .

5) Define a local set of unit vectors to be used later for rotation of each segment.

• Let ẑ be along the length of the member.

• Let ŷ be parallel to Y .

• Let ẑ be defined by the right-hand-rule.

6) Define a rotation matrix for each segment by dotting its unit vector with the

Global Coordinate System:

R
i

=

2

664

X ⇤ x̂
i

X ⇤ ŷ
i

X ⇤ ẑ
i

Y ⇤ x̂
i

Y ⇤ ŷ
i

Y ⇤ ẑ
i

Z ⇤ x̂
i

Z ⇤ ŷ
i

Z ⇤ ẑ
i

3

775

where R
i

represents a rotation matrix for each individual body segment.

7) Now, rotate each segment’s inertia matrix to align with the Global Coordinate

System:

I
i

= R
i

⇤ J
i

⇤RT

i

140

where R
i

is the segment’s rotation matrix, J
i

is the segment’s local inertia

matrix and I
i

is the resulting rotated local inertia matrix for each segment that

is now aligned with the Global Coordinate System.

8) Translate each segment’s rotated moment of inertia so that it is referencing the

rider’s center of mass using the parallel-axis theorem.

I⇤
i

= I
i

+m
i

2

664

d2
y

+ d2
z

�d
x

d
y

�d
x

d
z

�d
x

d
y

d2
z

+ d2
x

�d
y

d
z

�d
x

d
z

�d
y

d
z

d2
x

+ d2
y

3

775

where:

• I
i

= the segment’s rotated moment of inertia.

• m
i

= the mass of the segment.

• d
x

= the x distance from the segment’s center of mass to the body’s center

of mass.

• d
y

= the y distance from the segment’s center of mass to the body’s center

of mass.

• d
z

= the z distance from the segment’s center of mass to the body’s center

of mass.

9) Sum all segment’s moments of inertia to get the body’s moment of inertia.

I
xx

=
X

I⇤
i

This moment of inertia about a given axis can then be converted into the body’s

Radius of Gyration about that axis via:

K
xx

=

s
I
xx

m
body

This process was completed for each of the components of the rider’s body with

each body segment using the unit vectors shown in Figure G.1, with the resulting

141

radius of gyration being used as an input into the core Patterson Control Model

equations.

Figure G.1: Unit vectors for each of the rider’s body segments.

G.2 Computing the Inertia of the Rider’s Head

Since the rider’s head is a sphere of constant density, its moment of inertia values are

the same in all 3 global axes, namely:

I
xx

= I
yy

= I
zz

=
2

5
m ⇤ r2

As such, this inertia need only be computed and then translated to be about the

wheel contact patch using the parallel-axis theorem:

I⇤
xx

head = I
xx

+m ⇤ dx2

I⇤
xx

head =
2

5
m

head

⇤ r2
head

+m
head

⇤ head cg2
z

142

G.3 Computing the Inertia of the Rider’s Torso

The rider’s torso is represented as a cuboid which has the following principle moments

of inertia:

J =
m

12

2

664

a2 + l2 0 0

0 b2 + l2 0

0 0 a2 + b2

3

775

where a = torso width, b = torso depth and l = torso length. Next, these

inertias must be rotated using a rotation matrix given by the following equation:

R
torso

=

2

664

X ⇤ ˆx
torso

X ⇤ ˆy
torso

X ⇤ ˆz
torso

Y ⇤ ˆx
torso

Y ⇤ ˆy
torso

Y ⇤ ˆz
torso

Z ⇤ ˆx
torso

Z ⇤ ˆy
torso

Z ⇤ ˆz
torso

3

775

X = (1, 0, 0)

Y = (0, 1, 0)

Z = (0, 0, 1)

ˆx
torso

= (Cos(90� � �), 0, Sin(90� � �))

ˆy
torso

= (0, 1, 0)

ˆz
torso

= (�Cos(�), 0, Sin(�))

resulting in the following rotational matrix:

R
torso

=

2

664

Sin(�) 0 �Cos(�)

0 1 0

Cos(�) 0 Sin(�)

3

775

Applying the rotation to the local inertial tensor results in:

I
torso

= R
torso

⇤ J
torso

⇤RT

torso

I˙torso =

2

664

Sin(�) 0 �Cos(�)

0 1 0

Cos(�) 0 Sin(�)

3

775
m

torso

12

2

664

a2 + l2 0 0

0 b2 + l2 0

0 0 a2 + b2

3

775

2

664

Sin(�) 0 Cos(�)

0 1 0

�Cos(�) 0 Sin(�)

3

775

which results in the final, rotated but unshifted intertial tensor:

143

I
torso

= m

torso

12

2

664

(a2 + l2)Sin(�)2 0 (a2 + l2)Sin(�)Cos(�)� (a2 + b2)Sin(�)Cos(�)

0 (b2 + l2) 0

(a2 + l2)Sin(�)Cos(�)� (a2 + b2)Sin(�)Cos(�) 0 (a2 + l2)Cos(�)2 + (a2 + b2)Sin(�)2

3

775

This inertia now must be shifted to be about the X-axis via the parallel-axis

theorem:

I⇤
torso

= I
torso

+m
torso

2

664

d2
y

+ d2
z

�d
x

d
y

�d
x

d
z

�d
x

d
y

d2
z

+ d2
x

�d
y

d
z

�d
x

d
z

�d
y

d
z

d2
x

+ d2
y

3

775

dx = torso cg
x

dy = 0

dz = torso cg
z

I⇤
torso

= I
torso

+m
torso

2

664

(torso cg
z

)2 0 �torso cg
x

⇤ torso cg
z

0 (torso cg
x

)2 + (torso cg
z

)2 0

�torso cg
x

⇤ torso cg
z

0 (torso cg
x

)2

3

775

However, since we only are concerned with I˙xx, we can simplify this to:

I⇤
torso xx

= I
torso xx

+m
torso

(torso cg
z

)2

G.4 Computing the Inertia of the Rider’s Leg

The rider’s legs are represented as cylinders which have the following principle mo-

ments of inertia:

J
xx

= J
yy

=
1

4
m ⇤ r2 + 1

12
m ⇤ l2

J
zz

=
1

2
m ⇤ r2

144

r =
leg diameter

2

R
leg

=

2

664

X ⇤ ˆx
leg

X ⇤ ˆy
leg

X ⇤ ˆz
leg

Y ⇤ ˆx
leg

Y ⇤ ˆy
leg

Y ⇤ ˆz
leg

Z ⇤ ˆx
leg

Z ⇤ ˆy
leg

Z ⇤ ˆz
leg

3

775

X = (1, 0, 0)

Y = (0, 1, 0)

Z = (0, 0, 1)

ˆx
leg

= (�Sin(✓), 0, Cos(✓))

ˆy
leg

= (0, 1, 0)

ˆz
leg

= (�Cos(✓), 0,�Sin(✓))

resulting in the following rotational matrix:

R
leg

=

2

664

�Sin(✓) 0 �Cos(✓)

0 1 0

Cos(✓) 0 �Sin(✓)

3

775

Applying the rotation to the local inertial tensor results in:

I
leg

= R
leg

⇤ J
leg

⇤RT

leg

I˙leg =

2

664

�Sin(✓) 0 �Cos(✓)

0 1 0

Cos(✓) 0 �Sin(✓)

3

775

2

664

14m
leg

⇤ r2 + 1
12mleg

⇤ l2 0 0

0 1
4mleg

⇤ r2 + 1
12mleg

⇤ l2 0

0 0 1
2mleg

⇤ r2

3

775

2

664

�Sin(✓) 0 Cos(✓)

0 1 0

�Cos(✓) 0 �Sin(✓)

3

775

which results in the final, rotated but unshifted intertial tensor:

I
leg

= m

leg

12

2

664

(3r2 + l2)Sin(✓)2 + 6r2Cos(✓)2 0 (3r2 � l2)Sin(✓)Cos(✓)

0 3r2 + l2 0

(3r2 � l2)Sin(✓)Cos(✓) 0 (3r2 + l2)Cos(✓)2 + 6r2Sin(✓)2

3

775

This inertia now must be shifted to be about the X-axis via the parallel-axis

theorem:

I⇤
leg

= I
leg

+m
leg

2

664

d2
y

+ d2
z

�d
x

d
y

�d
x

d
z

�d
x

d
y

d2
z

+ d2
x

�d
y

d
z

�d
x

d
z

�d
y

d
z

d2
x

+ d2
y

3

775

145

dx = leg cg
x

dy =
torso width

2
� leg diameter

2

dz = leg cg
z

Note that dy is not zero in this case because the two legs are o↵set from the rider’s

sagittal plane, and as such each leg exhibits extra inertia about the global X axis.

In this model we are assuming that the outside of the rider’s leg is aligned with the

outside edge of their torso, and we are then finding the center-line of that leg relative

to the rider’s sagittal plane. Additionally, since we only are concerned with I
xx

, we

can simplify this equation to:

I⇤
leg xx

= I
leg xx

+m
leg

"✓
torso width

2
� leg diameter

2

◆2

+ leg cg2
z

#

G.5 Computing the Inertia of the Rider’s Arm

The rider’s arms are represented as cylinders which have the following principle mo-

ments of inertia:

J
xx

= J
yy

=
1

4
m ⇤ r2 + 1

12
m ⇤ l2

J
zz

=
1

2
m ⇤ r2

r =
arm diameter

2

R
arm

=

2

664

X ⇤ ˆx
arm

X ⇤ ˆy
arm

X ⇤ ˆz
arm

Y ⇤ ˆx
arm

Y ⇤ ˆy
arm

Y ⇤ ˆz
arm

Z ⇤ ˆx
arm

Z ⇤ ˆy
arm

Z ⇤ ˆz
arm

3

775

X = (1, 0, 0)

Y = (0, 1, 0)

Z = (0, 0, 1)

ˆx
arm

= (Sin(⌘), 0, Cos(⌘))

ˆy
arm

= (0, 1, 0)

ˆz
arm

= (Cos(⌘), 0, Sin(⌘))

146

resulting in the following rotational matrix:

R
arm

=

2

664

Sin(⌘) 0 Cos(⌘)

0 1 0

Cos(⌘) 0 Sin(⌘)

3

775

Applying the rotation to the local inertial tensor results in:

I
arm

= R
arm

⇤ J
arm

⇤RT

arm

I˙arm =

2

664

Sin(⌘) 0 Cos(⌘)

0 1 0

Cos(⌘) 0 Sin(⌘)

3

775
m

12

2

664

3r2 + l2 0 0

0 3r2 + l2 0

0 0 6r2

3

775

2

664

Sin(⌘) 0 Cos(⌘)

0 1 0

Cos(⌘) 0 Sin(⌘)

3

775

which results in the final, rotated but unshifted intertial tensor:

I
arm

= m

arm

12

2

664

(3r2 + l2)Sin(⌘)2 + 6r2Cos(⌘)2 0 (9r2 � l2)Sin(⌘)Cos(⌘)

0 3r2 + l2 0

(3r2 � l2)Sin(⌘)Cos(⌘) 0 (3r2 + l2)Cos(⌘)2 + 6r2Sin(⌘)2

3

775

This inertia now must be shifted to be about the X-axis via the parallel-axis

theorem:

I⇤
arm

= I
arm

+m
arm

2

664

d2
y

+ d2
z

�d
x

d
y

�d
x

d
z

�d
x

d
y

d2
z

+ d2
x

�d
y

d
z

�d
x

d
z

�d
y

d
z

d2
x

+ d2
y

3

775

dx = arm cg
x

dy =
torso width

2
� arm diameter

2

dz = arm cg
z

Note that dy is not zero in this case because the two arms are o↵set from the

rider’s sagittal plane, and as such each arm exhibits extra inertia about the global

147

X axis. In this model we are assuming that the outside of the rider’s arm is aligned

with the outside edge of their torso, and we are then finding the center-line of that

arm relative to the rider’s sagittal plane. Additionally, since we only are concerned

with I
xx

, we can simplify this equation to:

I⇤
arm xx

= I
arm xx

+m
arm

"✓
torso width

2
� arm diameter

2

◆2

+ arm cg2
z

#

G.6 Computing the Overall Radius of Gyration

Once the moments of inertia of each of the rider’s body segments, and each of the

bike frame’s tubes has been computed the total radius of gyration of the bicycle can

be calculated using the following equation:

This moment of inertia about a given axis can then be converted into the body’s

Radius of Gyration about that axis via:

K
xx

=

sP
I
i xx

m
total

Additionally, this is where the observation that some rider limbs and frame tubes

are doubled (two legs, 2 seat stays, etc.), and their inertias should be doubled in this

summation as well to take that into account. The resulting radius of gyration can

then be fed directly into the Patterson Control Model (which the Modified Patterson

Control Model wraps) in order to compute the Control Spring and Control Sensitivity

curves for a specific bicycle/rider configuration.

148

Appendix H

COMPUTING THE FRAME

Note that this section uses all of the variables expressed in the Modified Patterson

Control Model (reference Table 3.1 and Figure 3.1). As with the MPCM, the bicycle

calculations will lie in the XZ-Plane, with Y being orthogonal to the other two axes

in accordance with the right-hand-rule. Finally, this section assumes that the rider’s

location has already been computed, and as such we know the seat’s location in the

X and Z axes (expressed as H
x

and H
z

, respectively).

H.1 Computing Seat Stay Location

Figure H.1: Calculating the location of the frame’s seat stay center of
gravity.

seat stay cg
x

=
H

x

2

seat stay cg
z

=
(H

z

�R
r

)

2
+R

r

seat stay
len

=
p

(H
z

�R
r

)2 +H2
x

149

H.2 Computing the Chain Stay Location

Figure H.2: Calculating the location of the frame’s chain stay center of
gravity.

chain stay cg
x

=
(A+ C

x

)

2

chain stay cg
z

=
(C

z

�R
r

)

2
+R

r

chain stay
len

=
p
(A+ C

x

)2 + (C
z

�R
r

)2

H.3 Computing the Fork Location

To begin, we will compute the bottom of the fork since it is known based on the

model inputs.

fork slope = tan(90� + �)

fork bottom
x

= A+ e ⇤ Cos(�)

fork bottom
z

= R
f

+ e ⇤ Sin(�)

fork intercept = fork bottom
z

� fork slope ⇤ fork bottom
x

150

Figure H.3: Calculating the location of the frame’s fork center of gravity.

Now that we know where the bottom of the fork is, we need to determine where

it crosses the front wheel so that we can specify the top of the fork as well. Note that

we assume here that the fork will cross the front wheel (and thus that the fork o↵set

(e) isn’t so massive that it is larger than the radius of the front wheel). Since we don’t

know the headtube angle up front, we need to compute both locations that the fork

line would cross the front wheel (assuming it had infinite length), and then choose

the one that is at the top of the wheel. To do this, we will use a modified version of

the equation of a circle:

(x� h)2 + (z + k)2 = r2

assuming that h = A and k = R
f

we get:

(x� A)2 + (z +R
f

)2 = r2

now, since we know that the fork circle is centered at the temporary origin, we

151

can use the equation of a line and plug that in for z to get:

(x� A)2 + (m ⇤ x+ (b�R
f

))2 = r2

substituting fork slope for m and fork intercept for b results in:

(x� A)2 + (fork slope ⇤ x+ (fork intercept�R
f

))2 = r2

now, multiplying everything out and combining like terms results in:

(fork slope2 + 1)x2 + (2 ⇤ (fork intercept�R
f

) ⇤ fork slope� 2A)x+ (A2 + (fork intercept�R
f

)2 � r2) = 0

now, using the quadratic equation we can compute the two locations (x1, z1) and

(x2, z2) that the fork would cross the front wheel assuming infinite length.

a = fork slope2 + 1

b = 2 ⇤ (fork intercept�R
f

) ⇤ fork slope� 2A

c = A2 + (fork intercept�R
f

)2 � r2

x = �b±
p
b2 � 4 ⇤ a ⇤ c

2 ⇤ a

Now we can compare the location of the rider’s seat to know if we should extend

the fork to just the wheel’s radius, or past it to the height of the seat’s height.

if Hz > 2Rf:
fork_top_x = (Hz - fork_intercept) / fork_slope
fork_top_z = Hz

else:
if z1 > z2:

fork_top_x = x1
fork_top_z = z1

else:
fork_top_x = x2
fork_top_z = z2

152

Finally, with the fork’s bottom and top location’s computed, we can calculate the

location of its center of gravity and its total length:

fork cg
x

=
(fork top

x

� fork bottom
x

)

2
+ fork bottom

x

fork cg
z

=
(fork top

z

� fork bottom
z

)

2
+ fork bottom

z

fork
len

=
p
fork bottom

x

� fork top
x

)2 + (fork top
z

� fork bottom
z

)2

H.4 Computing the Top Tube Location

Figure H.4: Calculating the location of the frame’s top tube center of
gravity.

top tube cg
x

=
(fork top

x

�H
x

)

2
+H

x

top tube cg
z

=
(fork top

z

�H
z

)

2
+H

z

top tube
len

=
p

(fork top
x

�H
x

)2 + (fork top
z

�H
z

)2

H.5 Computing the Down Tube Location

Since the crank location can move around relative to the top of the fork, there needs

to be a set of if-else logic to determine the proper equation to use when computing

153

the down tube.

Figure H.5: Calculating the location of the frame’s down tube center of
gravity.

If the crank is ahead of the front wheel then the tube’s X center of gravity location

is:

down tube cg
x

=
(A+ C

x

)� fork top
x

2
+ fork top

x

otherwise, the tube’s X center of gravity location is:

down tube cg
x

=
fork top

x

� (C
x

+ A)

2
+ C

x

+ A

Likewise, if the crank is above the top of the front wheel then the tube’s Z center

of gravity location is:

down tube cg
z

=
(C

z

� fork top
z

)

2
+ fork top

z

otherwise, the tube’s Z center of gravity is:

down tube cg
z

=
(fork top

z

� C
z

)

2
+ C

z

with the final tube length being equation to:

down tube
len

=
p

fork top
z

� down tube
z

)2 + (fork top
x

� down tube
x

)2

154

Appendix I

BLOOPERS

This appendix exists just to provide a visual for the range of bicycle designs that

were generated in this work. The top designs represent some of the best designs that

the model generated, followed by a slow degradation of handling quality as you read

down the page. Note that while some designs are obviously impractical (namely the

ones at the bottom of the page), there are a few which look novel enough to be worth

investigating (excluding the top row which has already been built).

155

Figure I.1: A sampling of generated bicycle designs.

156

