
Stanchev. Published in International Journal of Semantic
Computing, 10(4), Dec. 2016: 527-555

Fine-Tuning an Algorithm for Semantic Document

Clustering Using a Similarity Graph

Lubomir Stanchev

Computer Science Department

California Polytechnic State University

San Luis Obispo, CA 93407, USA

stanchev@gmail.com

In this article, we examine an algorithm for document clustering using a similarity graph. The
graph stores words and common phrases from the English language as nodes and it can be used
to compute the degree of semantic similarity between any two phrases. One application of the
similarity graph is semantic document clustering, that is, grouping documents based on the
meaning of the words in them. Since our algorithm for semantic document clustering relies on
multiple parameters, we examine how ¯ne-tuning these values a®ects the quality of the result.
Speci¯cally, we use the Reuters-21578 benchmark, which contains 11; 362 newswire stories that
are grouped in 82 categories using human judgment. We apply the k-means clustering algorithm
to group the documents using a similarity metric that is based on keywords matching and one
that uses the similarity graph. We evaluate the results of the clustering algorithms using
multiple metrics, such as precision, recall, f-score, entropy, and purity.

Keywords: Semantic search; semantic graph; document clustering.

1. Introduction

Consider a web portal for an online store. To simplify navigation, merchandise can be
grouped into categories. When a new product is introduced, it will be bene¯cial if the
system can automatically classify the product in the correct category. This classi¯
cation can be performed based on the description of the product. For example,
consider a product with the following text description: `̀ white sneakers, size 10". If
the system contains the knowledge that the terms `̀ sneakers" and `̀ athletic shoes"
are related, then it can classify the new product in the `̀ athletic shoes" category. In
this article, we show how such semantic knowledge can be stored in a similarity graph
and how it can be used to cluster documents based on the meaning of terms in the
documents. We also carefully examine the parameters of the algorithm that builds
the similarity graph and the algorithm that performs the clustering. The goal is to
¯ne-tune the two algorithms so that the automatic classi¯cation procedure produces
results that are as precise as possible.

The problem of semantic document clustering is interesting because it can
improve the quality of the clustering result as compared to keywords-matching

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/84280012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:stanchev@gmail.com

algorithms. For example, an algorithm of the second type will likely put documents
that use di®erent terminology to describe the same concept in separate categories.
Consider a scienti¯c document that contains the term `̀ ascorbic acid" multiple times
and a scienti¯c document that contains the term `̀ vitamin C" multiple times. The
documents are semantically similar because `̀ ascorbic acid" and `̀ vitamin C" refer to
the same organic compound and therefore the clustering algorithm should take this
fact into account. However, this will only happen when the close relationship be
tween the two terms is stored in the system and used during document clustering.
The need for a semantic clustering system becomes even more apparent when the
number of documents is small or when they are very short. In this case, it is likely
that the documents will not share many words in common and a keywords-matching
system will struggle to ¯nd evidence for grouping documents together. In this article,
we go even further by using part of the Reuters-21578 benchmark to optimize the
clustering algorithm. This is an important step because we want our algorithm to
approximate human judgment as closely as possible.

The problem of semantic document clustering is di±cult because it involves some
understanding of the meaning of words and phrases and how they relate. Although
signi¯cant e®ort has focused on automated natural language processing [9, 10, 24],
current approaches fall short of understanding the precise meaning of human text. In
fact, we do not know if computers will ever become as °uent as humans in under
standing natural language text. In this article, we do not analyze natural language
text and break it down into the parts of speech. Instead, we only consider the words
and phrases in the documents and use the similarity graph, which is based on a
probabilistic model, to compute the distance between pairs of documents. Note that,
as described in the next paragraph, most clustering algorithms rely on a distance
metric to cluster the documents.

A traditional keywords-matching algorithm for document clustering falls short
because it only considers the words and their frequencies in each document. For
example, the popular k-means clustering algorithm [23] starts with k document seeds.
It then ¯nds the documents that are closest to each seed using a distance metric.
Next, the centroid (i.e., mean) of each cluster is found and then new clusters are
created using the centroids as the seeds. The process repeats and it is guaranteed to
converge. The algorithm is based on a vector representation of the documents (based
on words frequencies) and a distance metric (e.g., the cosine similarity between two
document vectors). Unfortunately, this approach will incorrectly compute the sim

ilarity distance between two documents that describe the same concept using dif
ferent words. It will only consider the common words and their frequencies and it will
ignore the meaning of the words. Conversely, our approach adds all the documents to
the similarity graph. The distance between a pair of documents is measured by
evaluating the paths between them, where a path in the graph can go through several
terms that are semantically similar. In this way, we consider not only words, but also
phrases (a.k.a. terms) that consist of several words and their meaning. The similarity
graph contains directed edges that are labeled with the probabilities that we are

interested in the destination node given that we are interested in the source node.
Note that this implies that the paths in the graph are directed and creating a sim

ilarity metric that is symmetric is not trivial and we need to consider paths in both
directions.

When computing the similarity distance between two documents, we aggregate
the evidence from all the paths between the ¯rst and the second document. Every
path provides additional evidence about the similarity between the two documents.
Note that the weight of a path decreases as the length of the path increases because
longer paths provide weaker evidence. Since the paths in the graph are directed, we
also examine the paths from the second to the ¯rst document and examine how the
results can be aggregated. Figure 1 shows the process °ow. Creating the similarity
graph involves processing information from WordNet about senses, nouns, verbs,
and adjectives. Note that words can have many senses and senses can be represented
by several words.

We experimentally validate our document clustering algorithm on the Reuters
21578 benchmark. Out of the 21,578 newswire stories, 11,362 are categorized in one
of several categories using human judgment. Since our algorithm is based on hard
clustering, that is, every document can belong to at most one category, we consider
only the ¯rst human classi¯cation for each document. We split the documents be
tween two sets. We use the ¯rst set to optimize the parameters of our algorithms. We
use the second set of documents for testing purposes. Speci¯cally, we compare the
results from the human judgment to applying the k-means clustering algorithm with

Add all Documents to the Similarity Graph

Use the similarity graph to compute the distance between
two documents.

1. Processing the Senses
2. Processing the Definitions of the Senses
3. Processing the Example Uses of the Senses
4. Processing the Backward Edges
5. Populating the Frequencies of the Senses
6. Processing Structured Knowledge About Nouns
7. Processing Structured Knowledge About Verbs
8. Processing Structured Knowledge About Adjectives

Creating the Similarity Graph

Apply k−means clustering to cluster the documents.

Fig. 1. Process °ow diagram.

two di®erent distance metrics. The ¯rst is based on the popular cosine similarity
metric that compares two documents as the cosine of the angle between their doc
ument vectors. The second metric is based on the distance between the documents in
the similarity graph. We use di®erent metrics, such as precision, recall, f-score,
entropy, and purity, to evaluate how the results from the clustering algorithms
compare to those of human judgment. When we apply the second distance metric, we
get results that indicate closer similarity to human classi¯cation. This shows that the
similarity graph can produce results that more closely match human judgment. The
reason is that the similarity graph metric considers the meaning of the words and
terms in the documents, while the cosine similarity metric only considers the words
and their frequencies. When the parameters of our similarity graph clustering pro
cedure are optimized, our algorithm produces even better results as measured by the
di®erent metrics.

In what follows, in Sec. 2 we present a brief overview of related research. The next
section describes the steps in creating the similarity graph. Our main contribution in
this article is that at each step we look at the parameters that are involved and how
they a®ect the quality of the clustering algorithm. While Sec. 4 explains how to
measure the semantic similarity between terms, Sec. 5 describes how to measure the
semantic similarity between documents. Again, we consider what parameters are
involved and which values produce the best results. Section 6 describes two algo
rithms for clustering documents: using keywords matching and using the similarity
graph. Section 7 validates our semantic clustering algorithm by showing how it can
produce data of better quality than the algorithm that is based on simple keywords
matching. Lastly, Sec. 8 summarizes the article and outlines areas for future research.

2. Related Research

A preliminary version of this article was published in the conference proceedings of
the Tenth IEEE International Conference on Semantic Computing [40]. Here, the
paper is signi¯cantly revised, corrections are made, and more detailed explanations
are provided in every section. However, the major contribution of this article is
showing how the di®erent parameters of the algorithm that creates the similarity
graph and the algorithm that performs the clustering using the similarity graph can
be ¯ne-tuned in order to improve the quality of the clustering algorithm.

A plethora of research has been published on using supervised learning models
with training sets for document classi¯cation [5, 41]. Our approach di®ers because we
use supervised learning only for ¯ne-tuning the algorithm. For example, our original
algorithm in [40] is unsupervised, it does not use a training set, and it can cluster
documents in any number of classes rather than just classify the documents in
preexisting categories.

One alternative to supervised learning is using a knowledgebase that contains
information about the relationship between the words and phrases that can be found
in the documents to be clustered. For example, in 1986, W. B. Croft proposed the use

of a thesaurus that contains semantic information, such as what words are synonyms
[7]. Sequentially, there have been multiple papers on the use of a thesaurus to rep
resent the semantic relationship between words and phrases [13–15, 17, 19, 27, 32,
42]. This approach, although very progressive for the times, di®ers from our ap
proach because we consider indirect relationships between words (i.e., relationships
along paths of several words). We also do not apply document expansion (i.e., adding
the synonyms of the words in a document to the document) when comparing two
documents. Instead, we use the similarity graph to compute the distance between
two documents. Some limited user interaction is possible when classifying docu
ments --- see for example the research on folksonomies [11]. Our system currently
does not allow for user interaction when creating the document clusters, but this is an
interesting area for future research.

In later years, the research of Croft was extended by creating a graph in the form
of a semantic network [4, 30, 33] and graphs that contain the semantic relationships
between words [1, 2, 6]. Later on, Simone Ponzetto and Michael Strube showed how
to create a graph that only represents the inheritance of words in WordNet [21, 34],
while Glen Jeh and Jennifer Widom showed how to approximate the similarity
between phrases based on information about the structure of the graph in which they
appear [18]. All these approaches di®er from our approach because they do not
consider the strength of the relationship between the nodes in the graph. In other
words, there are no weights that are assigned to the edges in the graph.

Natural language techniques can be used to analyze the text in a document [16,
26, 36]. For example, a natural language analyzer may determine that a document
talks about animals and words or concepts that can represent an animal can be
identi¯ed in other documents. As a result, documents that are identi¯ed to refer to
the same or similar concepts can be classi¯ed together. One problem with this ap
proach is that it is computationally expensive. A second problem is that it is not a
probabilistic model and therefore it is di±cult to be applied towards generating a
document similarity metric.

Ontologies can be used for document classi¯cation [31]. Our approach is di®erent
because we do not consider preselected categories. Using ontologies also requires
manual or automatic annotation of each document with a description in a formal
language [12, 20, 28]. This may be problematic because manual annotation is time
consuming and automatic annotation is not very reliable.

Since the early 1990s, research on LSA (stands for latent semantic analysis [8]) has
been prevalent. The approach has the advantage of not relying on external infor
mation. Instead, it considers the closeness of words in text documents as proof of
their semantic similarity. For example, LSA can be used to detect words that are
synonyms [22]. This di®ers from our approach because we do not consider the
closeness of words in a document. Although the LSA approach has its applications,
we believe that WordNet provide data of higher quality than the documents to be
clustered.

3. Creating and Fine-Tuning the Similarity Graph

In this section, we review how the similarity graph can be created using information
from WordNet [25]. The algorithm that creates the graph is previously published in
[38]. The novelty is that we use part of the Reuters-21578 benchmark to ¯ne-tune the
algorithm and ¯nd the best value for the di®erent parameters.

WordNet gives us information about the words in the English language. The
similarity graph is initially constructed using WordNet 3.0, which contains about
150;000 di®erent terms. Both words and phrases can be found in WordNet. For
example, `̀ sports utility vehicle" is a term from WordNet. We will sometimes refer to
these words and phrases as terms, while WordNet uses the terminology word form.
Note that the meaning of a term is not precise. For example, the word `̀ spring" can
mean the season after winter, a metal elastic device, or natural °ow of ground water,
among others. This is the reason why WordNet uses the concept of a sense. For
example, earlier in this paragraph we described three di®erent senses of the word
`̀ spring". Every term has one or more senses and every sense is represented by one
or more terms. A human can usually determine which of the many senses a
term represents by the context in which the term appears. WordNet contains about
116;000 senses for the 150;000 terms.

The goal of the similarity graph is to model the relationship between the terms
in WordNet using a probabilistic model. For every term that is not a noise word, a
node that has the term as a label is created. Similarly, for every sense we create a
node with a label that is the description of the sense. All node labels are converted
to lower case and we do not create multiple nodes with the same label. We create
edges between two nodes with a weight that approximates the probability that
someone who is interested in the source node is also interested in the destination
node.

3.1. Processing the senses

We ¯rst show how to build the edges between a term and its senses. Consider the
word chair and its three meanings: `̀ a seat for one person", `̀ the position of a
professor" and `̀ the o±cer who presides at meetings". Suppose that WordNet gives a
frequency of 35, 2, and 1, respectively, for the three senses. We will then create the
following edges.

chair) a seat for one person; weight ¼ 35=38

chair) the position of a professor; weight ¼ 2=38

chair) the officer who presides at meetings; weight ¼ 1=38

In general, we will compute the weight of each forward edge as the frequency of
the sense divided by the sum of the frequencies of all the senses for the term. The
reason is that the term can have many senses and the probability that we are
interested in a speci¯c sense depends on the frequency of the sense.

We will also add backward edges, as shown next.

a seat for one person) chair; weight ¼ 1
the position of a professor) chair; weight ¼ 1

the officer who presides at meetings) chair; weight ¼ 1

The weight of each backward edge is always equal to one because there is 100%
probability that someone who is interested in a sense is also interested in the term
that represent it. There are no parameters to be set in this step. Note that it is
possible that our algorithm creates multiple edges in the same direction between the
same two nodes. In this case, we simply add the weights of all the edges and keep a
single edge in the ¯nal graph. However, this can lead to the weight of an edge being
more than one and this is the reason why the weights of the edges are not proba
bilities in the strict sense.

3.2. Processing the de¯nitions of the senses

We next show how to model the relationship between a sense and the non-noise
terms in its de¯nition. Note that our algorithm uses a list of about one hundred noise
words, such as `̀ who", `̀ where", `̀ at", `̀ about" and so on. Consider the second sense
of the word `̀ chair": `̀ the position of a professor". The noise words: `̀ the", `̀ of", and
`̀ a" will be ignored. We will therefore be left with two words: `̀ position" and
`̀ professor". As a result, we will create the following edges according to the algorithm
from [38].

the position of a professor) position; weight ¼ minMaxð0; a1; 1=2Þ
the position of a professor) professor; weight ¼ 0:8 * minMaxð0; a1; 1=2Þ

In [38], we assumed that the ¯rst words in the de¯nition of a sense are far more
important than the later words. We therefore multiplied the edge weight by coef ¼
1:0 for the ¯rst non-noise term and kept decreasing this coe±cient by 0:2 for each
sequential term until the value of the coe±cient reached 0:2. The function minMax is
a custom functions that we will explain later in this section.

Table 1 shows the value for the f-score (/ ¼ 1) with and without using the coef
multiplier for di®erent values of a1. In this and sequential tables, we will use bold
font for the highest value and italic value for the value for the initial algorithm that is
described in [38]. Note that the results are for our training set, which includes only
the ¯rst 2,000 documents in the Reuters collection. The ¯rst column in the table
shows the results of running the algorithm from [38] and only changing the value
for a1. The second column shows the result of running the same algorithm for
di®erent values of a1, but this time we did not multiply by the coef multiplier. In
[38], a1 ¼ 0:6 is used, which the table shows to be close to optimal. However, the
training data shows that our assumption that the ¯rst words in the de¯nition of a
sense are more important is incorrect for this application.

Table 1. The value for the f-score for di®erent values of a1

with and without using the coef multiplier.

a1 Using coef multiplier Without using coef multiplier

0.1 0.2031 0.2015
0.2 0.2098 0.2097
0.3 0.2101 0.2122
0.4 0.2119 0.2209
0.5 0.2141 0.2216
0.6 0.2197 0.2079
0.7 0.2198 0.2267
0.8 0.2193 0.2273
0.9 0.2112 0.2367

The general formula for computing the edge weights for the de¯nition of the
senses in [38] is coef *minMaxð0; a1; ratioÞ, where the variable ratio is calculated as
the number of times the term appears in the de¯nition of the sense divided by the
total number of non-noise words in the sense and a1 ¼ 0:6. In our example, ratio ¼
1=2 for both edges because we have only two non-noise words in the de¯nition of the
sense. The ratio parameter expresses the importance of the term in the de¯nition of
the sense. For example, if there are only two terms in the de¯nition of the sense, then
they are both very important. However, if there are 20 terms in the de¯nition of the
sense, then each individual term is less important. The minMax function makes the
di®erence between the two cases less extreme. Using this function, the weight of
the edge in the second case will be only roughly four times smaller than the weight of
the edge in the ¯rst case. This is a common approach when processing text. The
importance of a word in a document decreases as the size of the document increases,
but the importance of the word decreases at a slower rate than the rate of the growth
of the document. We use the minMax function every time we compare the number of
occurrences of a term in a document compared to the total number of words in the
document.

The minMax function returns a number that is in most cases between the ¯rst two
arguments, where the magnitude of the number is determined by the third argument.
Since the appearance of a term in the de¯nition of a sense is not a reliable source of
evidence about the relationship between the sense and the term, the value of the
second argument is set to a1 < 1. The value for a1 is related to the probability that
someone who is interested in a sense will also be interested in one of the terms in the
de¯nition of the sense.

Formally, the minMax function is de¯ned as follows.

minMaxðminValue;maxValue; ratioÞ
-1 ¼ minValue þ ðmaxValue -minValueÞ * :

log2ðratioÞ

Table 2. The value for the f-score for di®erent values
of a1 with and without using the minMax function.

a1 coef *minMaxð0; a1; ratioÞ coef * a1 * ratio

0.1 0.2031 0.2031
0.2 0.2098 0.2023
0.3 0.2101 0.2016
0.4 0.2119 0.2100
0.5 0.2141 0.2138
0.6 0.2197 0.2143
0.7 0.2198 0.2185
0.8 0.2193 0.2183
0.9 0.2112 0.2180

Note that when ratio ¼ 0:5, the function returns maxValue. An unusual case is when
the value of the variable ratio is bigger than 0.5. For example, if ratio ¼ 1, then we
have division by zero and the value for the function is unde¯ned. We handle this case
separately and assign value to the function equal to 1:2 *maxValue. This is an
extraordinary case when there is a single non-noise word in the text description and
we need to assign higher weight to the edge.

In our example, ratio ¼ 1 for both edges and therefore minMaxð0; a1; ratioÞ ¼2
a1 for both edges. An interesting question to ask is whether the minMax function
makes a di®erence. As Table 2 shows, the answer is yes. The table shows the result
of running our algorithm on the training set. The ¯rst column shows the results of
using the minMax function and the second column shows the results without using
the function. As the table suggests, using the minMax function does lead to bigger
value for the f-score. We assume that this is also the case for the other edge
weights formulas that use the minMax function in this paper and we do not run
separate experiments to show the bene¯t of using the function for the rest of the
formulas.

3.3. Processing the example uses of the senses

WordNet also includes example uses for each sense. For example, in WordNet the
sentence `̀ he put his coat over the back of the chair and sat down" is shown as an
example use of the ¯rst sense of word `̀ chair". Since the example use represents
evidence that is weaker than the evidence from the de¯nition of a sense, we will
calculate the evidence probability as minMaxð0; a2; ratioÞ, where a2 < a1. Here, the
variable ratio is the number of times the term appears in the example use divided by
the total number of non-noise words in the example use. The constant a2 is related to
the probability that someone who is interested in a sense is also interested in one
of the terms in the example use of the sense. The following edges are created from the
¯rst sense of the word `̀ chair" and its example use. Note that the noise words have
been omitted.

()
1

a seat for one person) put; weight ¼ minMax 0; a2; 5 ()
1

a seat for one person) coat; weight ¼ minMax 0; a2; 5 ()
1

a seat for one person) back; weight ¼ minMax 0; a2; 5 ()
1

a seat for one person) sat; weight ¼ minMax 0; a2; 5 ()
1

a seat for one person) down; weight ¼ minMax 0; a2; 5

The weight is the same for all edges because all words appear once in the example
use. For all words, the value of ratio is equal to 1. Note that we ignore the order of the 5

words in the example use of a sense. In the algorithm from [38], the value for a2 is 0.2.
Next, let us examine how the value of a2 a®ects the value for the f-score. Table 3
shows how the results of changing only the value for a2 on our training set. The
Table shows that this value indeed gives the optimal for the f-score and we will not
change it.

Table 3. The value for the f-score
for di®erent values of a2.

a2 f-score

0.1 0.2101
0.2 0.2197
0.3 0.2086
0.4 0.2032
0.5 0.1989
0.6 0.1948
0.7 0.1941
0.8 0.1927
0.9 0.1922

3.4. Processing the backward edges

We also create backward edges between a term and the sense that contain it in their
de¯nition. In [38], the weight of each edge is computed using the formula
minMaxð0; a3; ratioÞ, where a3 ¼ 0:3 and the variable ratio is the number of times
the term appears in the de¯nition of the sense divided by the total number of
occurrences of the term in the de¯nition of all senses. The constant a3 relates to the
probability that someone who is interested in a term is also interested in one of the
senses that have the term in their de¯nition. As an example, if the word `̀ position"
occurs as part of the de¯nition of only three senses and exactly once in each

Table 4. The value for the f-score
for di®erent values of a3.

a3 f-score

0.1 0.2122
0.2 0.2131
0.3 0.2197
0.4 0.2109
0.5 0.2109
0.6 0.2108
0.7 0.2102
0.8 0.2101
0.9 0.2083

de¯nition, then we will add the following edge to the second sense of the word
`̀ chair". ()

1
position) the position of a professor; weight ¼ minMax 0; a3; :

3

We check to see what is the optimal value for the parameter a3. We ran our
algorithm from [38] with di®erent values for a3 on the training set and the results are
shown in Table 4. As the table suggests, the optimal value is when a3 ¼ 0:3, which is
the value that is used in the algorithm from [40].

Similarly, the algorithm from [38] creates edges between terms and the senses that
contain the terms in their example use. The weight of an edge in this case is com

puted as minMax ð0; a4; ratioÞ. Here, the ratio parameter is the number of times the
term appears in the example use of the sense divided by the total number of
occurrences in the example uses of all senses. The constant a4 relates to the prob
ability that someone who is interested in a term is also interested in one of the senses
that have the term in their example use. As an example, if the word `̀ coat" occurs as
part of the example use of only three senses and exactly once in each sense, then we
will add the following edge to the ¯rst sense of the word `̀ chair". Note that the
example use of this sense is: `̀ he put his coat over the back of the chair and sat down". ()

1
coat) a seat for one person; weight ¼ minMax 0; a4; :

3

In [38], the value for a4 is set to 0.1. Table 5 shows that this is the optimal value
for our training set.

3.5. Populating the frequencies of the senses

So far, we have shown how to extract information from textual sources, such as the
text for the de¯nition and example use of a sense. We will next show how structured
knowledge, such as the hyponym (a.k.a. kind-of) relationship between senses, can be
represented in the similarity graph. Most existing approaches [29] explore these

Table 5. The value for the f-score
for di®erent values of a4.

a4 f-score

0.1 0.2197
0.2 0.2131
0.3 0.2169
0.4 0.2177
0.5 0.2194
0.6 0.2152
0.7 0.2106
0.8 0.2104
0.9 0.2088

relationships by evaluating the information content of di®erent terms. Here, we
adjust this approach and focus on the frequency of use of each word in the English
language as described in the University of Oxford's British National Corpus. The
description of this corpus, as presented in [3], is: `̀ The British National Corpus is a
100 million word collection of samples of written and spoken language from a wide
range of sources, designed to represent a wide cross-section of British English, both
spoken and written, from the late twentieth century."

nLet s be a sense. Let fwfi g be the word forms for that sense. We will use i¼1

BNC ðwf Þ to denote the frequency of the word form in the British National Corpus.
Let p ðwf Þ be the frequency of use of the sense s of the word form wf , as speci¯ed in s

WordNet, divided by the sum of the frequencies of use of all senses of wf (also
as de¯ned in WordNet). Then we de¯ne the size of s to be equal to P njsj ¼ i¼1ðBNC ðwfi Þ * p ðwfi ÞÞ.s

The above formula approximates the size of a sense by looking at all the word
forms that represent the sense and ¯guring out how much each word form con
tributes to the sense. The size of a sense approximates its popularity. For example,
according to WordNet, the word `̀ president" has six di®erent senses with frequencies:
14, 5, 5, 3, 3, and 1. Let us refer to the fourth sense: `̀ The o±cer who presides at the
meetings ..." as s. According to above de¯nition, p ðpresidentÞ ¼ 3=31 ¼ 0:096s

because the frequency of s is 3 and the sum of all the frequencies is 31. Since the
British National Corpus shows the frequency of the word `̀ president" as 9781, the
contribution of the word `̀ president" to the size of the sense s is equal to
jsj ¼ BNC ðpresidentÞ * p ðpresidentÞ ¼ 9781 * 0:096 ¼ 938:98. Other terms thats

represent the sense s, such as `̀ chairman", will also contribute to the size of the sense.

3.6. Processing structured knowledge about nouns

WordNet de¯nes the hyponym (a.k.a. kind-of) relationship between senses that
represent nouns. For example, the most popular sense of the word `̀ dog" is a
hyponym of the most popular sense of the word `̀ canine". Consider the ¯rst sense of
the word `̀ chair": `̀ a seat for one person". WordNet de¯nes 15 hyponyms for this

sense, including senses for the words `̀ armchair" and `̀ wheelchair". We will add
edges that show the conditional probability between this ¯rst sense of the word
`̀ chair" and each of the hyponyms. Let the probability that someone who is inter
ested in a sense is also interested in one of the sub-senses be equal to a5. In order to
determine the weight of each edge, we need to compute the size of each sense. In the
British National Corpus, the frequency of `̀ armchair" is 657 and the frequency of
`̀ wheelchair" is 551. Since both senses are associated with a single term, we do not
need to consider the frequency of use of each sense. If `̀ armchair" and `̀ wheelchair"
were the only hyponyms of the sense `̀ a seat for one person", then we need to add the
following edges.

a seat for one person) chair with support on each side for arms;

weight ¼ a5 * 657=1208

a seat for one person) a moveable chair mounted on large wheels;

weight ¼ a5 * 551=1208

In general, the weight of an edge in [38] is computed as a5 multiplied by the size of
the sense and divided by the sum of the sizes of all the hyponym senses of the initial
sense. The idea is that the the weight of an edge to a `̀ bigger" sense will be bigger
because it is more likely that a bigger sense is relevant. Note that here we do not
apply the minMax function. The reason is that the function is only relevant when
computing the ratio of the number of occurrences of a term in text relative to the size
of the text. In [38], the value of a5 ¼ 0:9 was used. However, as the table Table 6
suggests, the value of a5 ¼ 0:2 is optimal for our training set.

We will also create edges for the hypernym relationship (the inverse of the
hyponym relationship). For example, the ¯rst sense of the word `̀ canine" is a
hypernym of the ¯rst sense of the word `̀ dog". The weight for each edge is the same
and equal to a6. This represents the probability that someone who is interested in a
sense will be also interested in the hypernyms of the sense. For example, if a user is
interested in the sense `̀ wheelchair", then they may be also interested in the ¯rst

Table 6. The value for the f-score
for di®erent values of a5.

a5 f-score

0.1 0.2196
0.2 0.2200
0.3 0.2197
0.4 0.2197
0.5 0.2196
0.6 0.2197
0.7 0.2197
0.8 0.2197
0.9 0.2197

Table 7. The value for the f-score
for di®erent values of a6.

a6 f-score

0.1 0.2258
0.2 0.2258
0.3 0.2197
0.4 0.2198
0.5 0.2198
0.6 0.2198
0.7 0.2204
0.8 0.2204
0.9 0.2204

sense of the word chair. However, this probability is not a function of the di®erent
hypernyms of the sense. Here is the example edge that will be built.

chair with support on each side for arms) a seat for one person;

weight ¼ a6

Table 7 shows how the value of a6 a®ects the f-score for our testing data. The
value of a6 ¼ 0:3 was used in [38], which is not the optimal value.

We next consider the meronym (a.k.a. part-of) relationship between nouns. Note
that we do not make a distinction between the three types of meronyms (part,
member, and substance) and process them identically. For example, WordNet con
tains information that the sense of the word `̀ back": `̀ a support that you can lean
against . . ." and the sense of the word `̀ leg": `̀ one of the supports for a piece of
furniture" are both meronyms of the ¯rst sense of the word `̀ chair". In other words,
back and legs are building parts of a chair. Part of this information can be repre
sented using the following edges.

a seat for one person) a support that you can lean against; weight ¼ a7 =2

a seat for one person) one of the supports for a piece of furniture;

weight ¼ a7 =2

In general, we compute the weight on an edge as a7 =n, where n is the number of
meronyms of the sense. The reasoning behind the formula is that the more meronyms
a sense has, the less likely it is that we are interested in a speci¯c meronym. Table 8
shows how the value of a7 a®ects the f-score for our testing data. The value of
a7 ¼ 0:6 was used in [38], which is not the optimal value. Note that the meronym
relationship is very rear in WordNet and therefore tuning the a7 parameter does not
signi¯cantly a®ect the resulting graph.

We also represent the holonym (the reverse of the meronym) relationship between
nouns. For example, the main sense of the word `̀ building" is a holonym of the main
sense of the word `̀ window". We set the weight of each each to a constant: a8 and
therefore create the following edges for our example.

Table 8. The value for the f-score
for di®erent values of a7.

0.1 0.2189
0.2 0.2198
0.3 0.2197
0.4 0.2197
0.5 0.2197
0.6 0.2197
0.7 0.2197
0.8 0.2197
0.9 0.2197

a support that you can lean against) a seat for one person;
weight ¼ a8 ð1Þ

one of the supports for a piece of furniture) a seat for one person;
weight ¼ a8

Table 9 shows how the value of a8 a®ects the f-score for our testing data. The
value of a8 ¼ 0:1 was used in [38] and it is the optimal value. Note that the holonym
relationship is very rarely used in WordNet and therefore the value of a8 does not
a®ect the value of the f-score.

Table 9. The value for the f-score
for di®erent values of a8.

0.1 0.2197
0.2 0.2197
0.3 0.2197
0.4 0.2197
0.5 0.2197
0.6 0.2197
0.7 0.2197
0.8 0.2197
0.9 0.2197

3.7. Processing structured knowledge about verbs

We will ¯rst represent the troponym (a.k.a. doing in some manner) relationship for
verbs. For example, to lisp is a troponym of to talk. Suppose that the main sense of
the verb `̀ talk" has only three troponyms: `̀ lisp", `̀ orate", and `̀ converse". If the sizes
of the main senses of the three verbs are 18, 1, and 95 (as determined by the formula
for the size of a sense in Sec. 3.5), respectively, then we will create the following edges.

an exchange of ideas via conversation) talk with a lisp;
18

weight ¼ a9 *
114

an exchange of ideas via conversation) talk pompously;
1

weight ¼ a9 *
114

an exchange of ideas via conversation) carry on a conversation;
95

weight ¼ a9 *
114

The edges are from the ¯rst sense of the word `̀ talk": `̀ an exchange of ideas via
conversation". The destination nodes are for the ¯rst senses of `̀ lisp", `̀ orate" and
`̀ converse", respectively. For example, the ¯rst edge expresses the conditional
probability between the main senses for `̀ talk" (an exchange of ideas via conversa
tion) and the main sense for `̀ lisp" (talk with a lisp). The constant a9 represents the
probability that someone who is interested in a verb is also interested in one of its
troponyms. The weight of each sense is computed as a9 multiplied by the size of the
sense and divided by the sum of the sizes of all the troponym senses. Table 10 shows
that the value of a9 ¼ 0:9 that was picked in [38] does not produce the highest value
for the f-score for our training data.

We will also add edges for the reverse relationship with constant weight of a10 for
all edges. For example, we will add the following edge.

talk with a lisp) an exchange of ideas via conversation; weight ¼ a10

This means that if someone is interested in one of the troponyms, then there is a
a10 probability that they are also interested in the original verb. In [38], the value of
a10 ¼ 0:3 was used. However, Table 11 shows that the optimal value for the training
set is a10 ¼ 0:7.

The hyponym and hypernym relationships are de¯ned not only for nouns, but also
for verbs. The two relationships are the reverse of each other. In other words, if X is a
hyponym of Y, then Y is a hypernym of X. The hypernym relationship for verbs
corresponds to the `̀ one way to" relationship. For example, the verb `̀ perceive" is the
hypernym of the verb `̀ listen" because one way of perceiving something is by lis
tening. As expected, the verb `̀ listen" is a hyponym of the verb `̀ perceive". The ¯rst
sense of the word `̀ perceive" is `̀ to become aware of through the senses". Suppose

Table 10. The value for the f-score
for di®erent values of a9.

0.1 0.2244
0.2 0.2244
0.3 0.2244
0.4 0.2244
0.5 0.2244
0.6 0.2245
0.7 0.2197
0.8 0.2197
0.9 0.2197

Table 11. The value for the f-score
for di®erent values of a10.

0.1 0.2195
0.2 0.2197
0.3 0.2197
0.4 0.2197
0.5 0.2202
0.6 0.2186
0.7 0.2240
0.8 0.2214
0.9 0.2197

that the ¯rst senses of the verbs `̀ listen" and `̀ see" are the only hypernyms of the
verb `̀ perceive".

We will assume that the probability that someone who is interested in a verb
sense is also interested in one of the hyponym senses is equal to a11. In order to
determine the weights of the edges, we need to compute the size of each sense. In the
British National Corpus, the frequency of `̀ listen" is 1241 and the frequency of `̀ see"
is 3624. Since both senses are associated with a single word form, we do not need to
consider the frequency of use of each sense. If `̀ perceive" and `̀ see" were the only
hyponyms of the sense `̀ to become aware of thought and senses", then we will create
the following edges.

to become aware of thought and senses) pay attention to sound;
1241

weight ¼ a11 *
4865

to become aware of thought and senses) percieve by sight;
3624

weight ¼ a11 *
4865

In general, the weight of each edge is computed as the size of the sense divided by
the sum of sizes of all hyponym senses. The idea behind the formula is that the the
weight of an edge to a `̀ bigger" senses will be bigger because it is more likely that
such bigger senses are relevant. Table 12 shows how a11 a®ects the value of the
f-score for the training data. In [38], the value of a11 ¼ 0:9 was used, which turns out
to be optimal for the training data.

We will use edge weights of a12 for the hypernym (the reverse of the hyponym)
relationship. For example, the main sense of the verb `̀ perceive" is a hypernym of the
main senses of the verbs `̀ listen" and `̀ see". This information can be expressed using
the following edges.

pay attention to sound) to become aware of thought and senses; weight ¼ a12

percieve by sight) to become aware of thought and senses; weight ¼ a12

The coe±cient a12 represents the probability that someone who is interested in a
sense will also be interested in the hypernyms of the sense. For example, if a user is

Table 12. The value for the f-score
for di®erent values of a11.

0.1 0.2124
0.2 0.2124
0.3 0.2124
0.4 0.2133
0.5 0.2171
0.6 0.2171
0.7 0.2185
0.8 0.2197
0.9 0.2197

interested in the sense `̀ see", then they may be also interested in the ¯rst sense of the
word perceive. However, this probability is not a function of the di®erent hypernyms
of the sense.

Table 13 shows how a12 a®ects the value of the f-score for the training data. In
[38], the value of a12 ¼ 0:3 was used, which turns out to be close to the optimal value
of a12 ¼ 0:1.

Table 13. The value for the f-score
for di®erent values of a12.

0.1 0.2245
0.2 0.2197
0.3 0.2197
0.4 0.2198
0.5 0.2198
0.6 0.2198
0.7 0.2198
0.8 0.2198
0.9 0.2198

3.8. Processing structured knowledge about adjectives

WordNet de¯nes two relationships for adjectives: related to and similar to. For
example, the ¯rst sense of the adjective `̀ slow" has de¯nition: `̀ not moving quickly",
while the ¯rst sense of the adjective `̀ fast" has the de¯nition: `̀ acting or moving or
capable of acting or moving quickly". WordNet speci¯es that the two senses are
related to each other. We will represent this relationship using the following edges.

not moving quickly) acting or moving quickly; weight ¼ a13

acting or moving quickly) not moving quickly; weight ¼ a13

This represents that there is a a13 probability that someone who is interested in
an adjective is also interested in a `̀ related to" adjective. In [38], a ¼ 0:6. Table 14
shows that this is close to the the optimal value for our training data.

Table 14. The value for the f-score
for di®erent values of a13.

0.1 0.2197
0.2 0.2197
0.3 0.2197
0.4 0.2198
0.5 0.2197
0.6 0.2197
0.7 0.2198
0.8 0.2198
0.9 0.2198

Table 15. The value for the f-score
for di®erent values of a14.

0.1 0.2199
0.2 0.2199
0.3 0.2199
0.4 0.2199
0.5 0.2197
0.6 0.2198
0.7 0.2197
0.8 0.2197
0.9 0.2197

WordNet also de¯nes the similar to relationship between adjectives. We create
edges with weights of a14 for this relationship, where a14 ¼ 0:8 in [38]. The number
corresponds to the probability that someone who is interested in an adjective is also
interested in a `̀ similar to" adjective. For example, WordNet contains the infor
mation that the sense for the word `̀ frequent": `̀ coming at short intervals" and the
sense for the word `̀ prevailing": `̀ most frequent or common" are similar to each
other. We will therefore create the following edges.

coming at short intervals) most frequent or common; weight ¼ a14 ð2Þ
most frequent or common) coming at short intervals; weight ¼ a14

Note that both the `̀ similar to" and `̀ related to" relationships are symmetric and
therefore the weight of an edge and its reverse is the same. Table 15 shows how the
value of a14 a®ects the f-score on our training data. Note that both the `̀ similar to"
and `̀ related to" relationships are very rear in WordNet and therefore the edges for
them do not signi¯cantly in°uence the value for the f-score.

4. Measuring the Semantic Similarity Between Terms

The similarity graph is used to estimate the conditional probability that a user is
interested in the term that is described by the label of a node given that they are also

interested in the label of an adjacent node in the graph. Note that in some case the
weight of an edge can become more than one, in which case we restrict it to one in
order to be a probability. We compute the directional similarity between two nodes

ðn1 ;n2Þ is an edge in the path Pt

using the following formula. X
A!s PPt ðC jAÞC ¼

Pt is a cycleless path from node A to node C

ð3Þ
Y

PPt ðC jAÞ ¼ Pðn2jn1Þ: ð4Þ

The function Pðn2jn1Þ refers to the weight of the edge from the node n1 to the
node n2. Informally, we compute the directional similarity between two nodes as the
sum of the weights of all the paths between the two nodes, where we eliminate cycles
from the paths. Each path provides evidence about the similarity between the terms
that are represented by the two nodes. We compute the weight of a path between
two nodes as the product of the weights of the edges along the path, which follows the
Markov chain model. Since the weight of an edge along the path is almost always
smaller than one (i.e., equal to one only in rear circumstances), the value of the
conditional probability will decrease as the length of the path increases. This is a
desirable behavior because a longer path provides less evidence about the similarity
of the two end nodes. For alternative ways of computing the directional similarity
between two nodes, see [39]. Note that there can be multiple interweaving paths
between two nodes. The above algorithms ¯nds disjoint paths (i.e., paths with no
edges in common) and there are multiple ways to do so. As expected, the decision of
which paths to pick a®ects the clustering algorithm.

Next, we present two functions for measuring the semantic similarity between two
nodes. The linear function for computing the semantic similarity between two nodes
is shown in Eq. (5). w1!sw2 þ w2!sw1 1 jw1; w2jlin ¼ min a; * ð5Þ

2 a

The minimum function is used in order to cap the value of the similarity function
at one. The coe±cient a ampli¯es the available evidence (a � 1). Note that when a
is equal to one, then the function simply takes the average of the two numbers and
caps the result at 1.

The second similarity function is inverse logarithmic, that is, it ampli¯es the
smaller values. It is shown in Eq. (6). The norm function simply multiplies the result
by a constant (i.e., -log2ðaÞ) in order to move the result value in the range [0,1]. !

-1
 jw1; w2jlog ¼ norm w1!sw2þw2!sw1
: ð6Þ

log2ðminða; ÞÞ
2

The paper [39] suggests that the two similarity metrics produce best results when
a is around 0.1 and this is the value that is used in the experimental section. Note

that since both metrics are monotonic, the value for a or the choice of similarity
function does not a®ect the result of the clustering algorithm.

5. Measuring the Semantic Similarity Between Documents

In the previous section, we described how to measure the semantic similarity between
two nodes of the graph. In this section, we describe how to measure the semantic
similarity between any two text documents. The idea is to create a node for each
document and then connect the nodes to the graph. The semantic similarity between
two documents will then be measured by computing the distance between the two
nodes using the linear or logarithmic metric from the previous section.

In order to demonstrate our approach, consider a ¯ctitious document that con
tains a total of 10 non-noise words in its title and a total of 100 non-noise words in its
body. Among these non-noise words, suppose that the word `̀ sneaker" appears once
in the title and the word `̀ shirt" is present four times in the body. We will represent
this information by creating the following edges.

document) sneakers; weight ¼ computeMinMaxð0; a15; 1=10Þ
document) shirt; weight ¼ computeMinMaxð0; a16; 4=100Þ

The weights of the edges are computed similar to the way the weights of the edged
between a sense and the words in its de¯nition were computed. The number a15 is
used to represent the probability that someone who is interested in a document also
wants information about one of the terms that appears in its title. The number a16

represents the probability that someone who is interested in a document is also
interested in one of the terms that appear in its body. In [38], we set a15 to 0:6 and
a16 to 0:3 because of our belief that terms in the title of a document are twice as
important.

Table 16 shows that the value of a15 ¼ 0:9 is optimal for our test set. In other
words, the tuning shows that someone who is interested in a document is almost
always interested in one of the words in its title. Table 17 shows that the value of
a16 ¼ 0:9 is optimal for our test set. Again, the tuning shows that someone who is
interested in a document is almost always interested in one of the words in the text.

Table 16. The value for the f-score
for di®erent values of a15.

0.1 0.1913
0.2 0.1896
0.3 0.2037
0.4 0.1921
0.5 0.2054
0.6 0.2197
0.7 0.2299
0.8 0.2360
0.9 0.2727

Table 17. The value for the f-score
for di®erent values of a16.

0.1 0.2466
0.2 0.2491
0.3 0.2197
0.4 0.2071
0.5 0.2300
0.6 0.2743
0.7 0.2607
0.8 0.2546
0.9 0.2751

Next, consider the backward edge between the word `̀ sneaker" and the document.
Suppose that the word appears a total of 10 times in the title of documents. Then the
weight of the edge between the word `̀ sneaker" and a document that contains the
word in the its title will be equal to a17 · 1 . This is the same formula that is used for 10

computing the weights of the backward edges between a word form from WordNet
and the de¯nition of the sense in which it appears, but the value of the coe±cient is
di®erent. Similarly, if the word `̀ shirt" appears a total of 20 times in the body of
documents and four times in the body of our document, then we will draw a back
ward edge with weight a18 · 4 between the word and the document. In [38], the value 20
of a17 is 0:3 and the value of a18 is 0:15. Table 18 shows that the value of a17 ¼ 0:3 is
not optimal. On our training set, the optimal value is when a17 ¼ 0:7. Similarly,
Table 19 shows that the optimal value for a18 over our training set is when a18 ¼ 0:4.
Our assumption that the words in the title of a document are roughly twice as
important as words in the text of the document turns out to be correct in this case.

Note that we do not pay special attention to the order of the words. The reason is
that there is no empirical evidence that the ¯rst words in the title or body of a
document are more important.

The word `̀ sneaker" has two di®erent senses. Our algorithm does not try to
identify which of these senses the document refers to. Instead, there will be paths in
the graph to both senses. We take this approach because it can be possible that

Table 18. The value for the f-score
for di®erent values of a17.

0.1 0.1767
0.2 0.2191
0.3 0.2197
0.4 0.1968
0.5 0.2046
0.6 0.2338
0.7 0.2407
0.8 0.1844
0.9 0.1999

Table 19. The value for the f-score
for di®erent values of a18.

0.1 0.1897
0.2 0.2260
0.3 0.3157
0.4 0.3327
0.5 0.3091
0.6 0.3047
0.7 0.2771
0.8 0.2532
0.9 0.2455

di®erent occurrences of the word in the document refer to distinct senses. The
strength of the relationship to a particular sense will be computed based on addi
tional evidence. For example, if the document also contains the word `̀ shoe", then
there will be stronger connection between the document and the main sense of the
word `̀ sneaker".

Second, note that the distance between two documents is not calculated in iso
lation. In particular, the other documents in the corpus are also taken into account
when calculating the backward edges. In other words, we calculate how similar two
documents are relative to the rest of the documents in the corpus. Once the similarity
graph is extended with the documents, the distance between two documents can be
calculated using the linear or logarithmic metrics that were described in the previous
section.

6. Clustering the Documents

In this section we describe how a set of documents can be clustered using the k-means
clustering algorithm. The algorithm relies on a way for computing the distance
between two documents. We present two variations: using keywords matching and
using the similarity graph. In the next section we show how the results of the two
algorithms compare to human judgment and the e®ect of tuning the parameters of
the second algorithm.

A common approach for computing the similarity distance between two docu
ments is to represent them as vectors and then compute the cosine of the angle
between the two vectors as the normalized dot product of the vectors. For example,
suppose that `̀ dog", `̀ cat" and `̀ shirt" are the only words that are used. Then for
every document we can denote the number of times each word occurs. For example, a
document that contains the word `̀ dog" twice, the word `̀ cat" three times and does
not contain the word `̀ shirt" can be represented as the document vector ½2; 3; 0J.
Alternatively, a document that contains the word `̀ cat" twice and the word `̀ shirt"
four times can be represented as ½0; 2; 4J. The dot product of the two vectors is
½2; 3; 0J · ½0; 2; 4J ¼ 6. Next, we need to divide the result by the product of the sizes of
the two documents. Therefore, the angle between the documents in radians will be

6pffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffi � 0:37. Unfortunately, this approach does not take into account that ð22þ32Þ* 22þ42

the words `̀ cat" and `̀ dog" are semantically similar and will calculate the similarity
distance between a document about cats and one about dogs as zero if the two
documents do not share words in common. In general, the cosine similarity between
two documents is computed using the formula in Eq. (7). Alternatively, we can use
the linear or logarithmic metric from the previous section to compute the semantic
distance between two documents.

~ · ~d1 d2jd1; d2jcosine ¼ : ð7Þ
~ ~jd1j * jd2j

The k-means clustering algorithm starts with a constant k. This is the number of
clusters that will be produced. Initially, a centroid (i.e., a document) is randomly
chosen for every cluster. Next, each document is assigned to the group that contains
the closest centroid. After that, the centroid (i.e., mean) is found for each cluster and
then the documents are clustered again around each centroid. The algorithm con
tinues until applying the last step does not change the clustering. If the documents
are represented as vectors, as we showed earlier in this section, then computing the
mean of a set of documents amounts to adding the document vectors and dividing
by the number of documents. For example, the mean of our two document vectors
from the beginning of this section is meanð½2; 3; 0J; ½0; 2; 4JÞ ¼ ½2;5;4J ¼ ½1; 2:5; 2J. Note 2
that the mean function is independent of the document similarity metric that is used.

7. Experimental Results

All our code was implemented in Java. We ¯rst created the similarity graph using
WordNet and it took about 10 min to create the graph on a standard laptop with
Intel i5 CPU. We used the Java API for WordNet Searching (JAWS) to connect to
WordNet. The interface was developed by Brett Spell [35]. We stored the graph as
several Java hash tables, where the size of the ¯le is 89 MB.

We next read 9; 362 documents from the Reuters-21578 benchmark and added
them to similarity graph. The benchmark contains 21; 578 documents that are stored
in 22 text ¯les. Out of those documents, 11;362 documents are classi¯ed in one of 82
categories using human judgment. Out of those 11;362 documents, 2;000 were used
as a training set to adjust the parameters of our algorithm. All experimental results
in this section are done on the remaining 9; 362 documents. For every document, we
stored its title, its text, the category it belongs to, and a document vector. The later
contains the non-noise words in the documents and their frequency. Since the words
in the title are more important, we counted these words twice. We stored the in
formation in Java hash tables, where the size of the ¯le is 22 MB. It took about two
minutes to parse the text ¯les.

We next added the documents to the similarity graph. We followed the algorithm
from Sec. 5. The size of the graph increased to 121 MB. For document nodes, we

stored the title of the document in the label of the node. We also stored a hash table
that keeps the mapping between the document nodes in the graph and the docu
ments in the document ¯le that was described in the previous paragraph. It took
about ¯ve minutes to add the documents to the graph.

We next clustered the documents using the k-means clustering algorithm. We
chose the value k ¼ 82 because this is the number of categories as determined by the
human judgment. The ¯rst 82 documents were put in 82 distinct clusters. At this
point, the lonely document in each category was designed as the centroid. We next
processed the rest of the documents. Every document was compared to the 82 cen
troids and assigned to the cluster with the closest centroid. Next, a new centroid was
chosen for each cluster. This was done by adding the document vectors in each
cluster and dividing the result by the number of vectors (i.e., ¯nding the mean in
each cluster). Next, the documents were reclustered around the new centroids and
the process was repeated until it converged (i.e., applying the algorithm did not
change the clusters).

The k-means clustering algorithm is based on two document functions: ¯nding the
distance between two documents and computing the average of several documents.
The later function is implemented by simply adding the document vectors and di
viding the result by the number of vectors. However, we have three choices for the
distance metric: the cosine, linear, and logarithmic. When we applied the cosine
similarity metric, the k-means clustering program terminated in about three hours.
Note that since the linear and logarithmic function are both monotonic, we got
exactly the same results using either function.

Table 20 shows the precision, recall, f-score, entropy, and purity when using the
three di®erent algorithms. Table 21 summarizes the di®erences between the algo
rithm from [38] and the tuned-up version (i.e., columns 2 and 3 in the table.) Note
that the ¯rst criteria is whether we consider the ¯rst words in the de¯nition of the
sense to be more important, that is whether we multiply the weight of the edges by
the coef variable that decreases with each consecutive word in the de¯nition of a
sense. The ¯ne-tuned version signi¯cantly changes the values for some of the para
meters, where the values in the original algorithm [38] were estimated. However, as
Table 20 shows, ¯ne-tuning the parameters leads to signi¯cantly better results.

We will next show the formulas for computing the precision, recall, f-score, en
tropy, and purity. Let TP be the number of true positives, that is, the number of
documents that were classi¯ed in the same category by both the program and human

Table 20. Summary of results on the experimental data set.

Cosine metric Similarity graph Fine-tuned similarity graph

precision
recall

0.53
0.06

0.58
0.08

0.66
0.10

f-score 0.10 0.14 0.17
entropy
purity

1.75
0.66

1.76
0.67

1.72
0.69

Table 21. Di®erences between the original and the ¯ne-tuned
similarity graph algorithm.

Algorithm from [38] Fine-tuned version

Consider word ordering yes no
Use minMax yes yes
a1 0.6 0.7
a2 0.2 0.2
a3 0.3 0.3
a4 0.1 0.1
a5 0.9 0.2
a6 0.3 0.2
a7 0.6 0.2
a8 0.1 0.1
a9 0.9 0.6
a10 0.3 0.7

0.8 0.8a11

0.3 0.1a12

0.6 0.7a13

0.8 0.4a14

0.6 0.9a15

0.3 0.9a16

0.3 0.7a17

0.15 0.4a18

judgment. Let FP be the number of false positives, that is, the number of documents
that were classi¯ed in the same category by the program, but were classi¯ed in
di®erent categories by human judgment. Lastly, let FN be the number of false
negatives, that is, the number of documents that were classi¯ed in the same category
by human judgment but were classi¯ed in di®erent categories by the program. The
formulas for computing the precision, recall, and f-score are shown below.

TP
P ¼

TP þ FP

TP
R ¼

TP þ FN

ð/ 2 þ 1Þ · P · R
F/ ¼

/2 · P þ R

In the above formulas, P is used to denote the precision and R is used to denote
the recall. We used the value / ¼ 1 in the experimental results, which is a popular
parameter for the f-score.

Entropy can be used to measure the diversity of the result, where lower entropy
means that the documents in the computer-generated cluster are more similar, that is
more of them belong to the same human-determined cluster. An entropy of zero
means exact match. For each cluster Di that is generated by our algorithm, we can P kcompute the entropy as entropyðDi Þ ¼ - j¼1 Pr i;j · log2ðPr i;j Þ, where Pr i;j is the
proportion (relative to the total size of cluster Di) of data from cluster Dj (as

determined by the human judgment) that ended up in cluster Di . The total entropy
can be computed as the weighted average of the entropies of all clusters, or more P k	 jDi jprecisely using the formula: jDj · entopyðDi Þ. Note that we have used jDi j toi¼1

denote the number of documents in cluster Di and jDj to denote the total number of
documents.

Lastly, purity measure the extends that a computer-generated cluster contains
pure data, that is documents from the same human-de¯ned cluster. A purity of one
means exact match. Formality, for a computer-generated cluster of documents Di ,

kwe de¯ne purityðDi Þ ¼ max j¼1ðPr i;j Þ. The total purity is calculated as the weighted P k	 jDi javerage of the purity over all clusters, or formally as: · purityðDiÞ. A greater i¼1 jDj
value for purity means that the computer algorithm has done a better job of putting
documents that belong together, as determined by human judgment, in the same
cluster.

8.	 Conclusion and Future Research

In this paper, we reviewed how information from WordNet can be used to build a
similarity graph. The graph shows the strength of the relationship between words
and phrases from the English language. We showed how to use the graph to cluster
documents. We use part of the Reuters-21578 benchmark to ¯ne-tune the algorithm.
We showed that using the similarity graph leads to improved clustering as measure
by precision, recall, f-score, and purity. We also showed that the ¯ne-tuned algorithm
improves these results even further and also gives us improved results on the entropy
measure as compare to the cosine similarity algorithm.

One area for future research is using an extended version of the similarity graph
that contains information from Wikipedia [37] to perform document clustering. One
challenge in this area is that the extended graph is relatively big (more than 10 GB)
and computing the distance between documents can be computationally expensive.
Another area for future research is to consider the order of the terms in the docu
ment. For example, the semantic similarity between documents that contain similar
terms should be higher if the terms appear are in the same order.

References

[1]	 M. Agosti and F. Crestani, Automatic authoring and construction of hypertext for in
formation retrieval, ACM Multimedia Systems 15(24) (1995).

[2]	 M. Agosti, F. Crestani, G. Gradenigo and P. Mattiello, An approach to conceptual
modeling of IR auxiliary data, in IEEE International Conference on Computer and
Communications, 1990.

[3]	 L. Burnard, Reference Guide for the British National Corpus (XML Edition). http://
www.natcorp.ox.ac.uk, 2007.

[4]	 P. Cohen and R. Kjeldsen, Information retrieval by constrained spreading activation on
sematic networks, in Information Processing and Management, 1987, pp. 255–268.

http:www.natcorp.ox.ac.uk

[5]	 R. Collobert and J. Weston, A uni¯ed architecture for natural language processing: Deep
neural networks with multitask learning, in Twenty-Fifth International Conference on
Machine Learning, 2008.

[6]	 F. Crestani, Application of spreading activation techniques in information retrieval,
Arti¯cial Intelligence Review 11(6) (1997) 453–482.

[7]	 Croft, User-speci¯ed domain knowledge for document retrieval, in Ninth Annual Inter
national ACM Conference on Research and Development in Information Retrieval, 1986,
pp. 201–206.

[8]	 S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer and R. Harshman, Indexing
by latent semantic analysis, Journal of the Society for Information Science 41(6) (1990)
391–407.

[9]	 C. Fox, Lexical analysis and stoplists, in Information Retrieval: Data Structures and
Algorithms, 1992, pp. 102–130.

[10]	 W. Frakes, Stemming algorithms, in Information Retrieval: Data Structures and Algo
rithms, 1992, pp. 131–160.

[11]	 T. Gruber, Collective knowledge systems: Where the social web meets the semantic, Web
Journal of Web Semantics, 2008.

[12]	 R. V. Guha, R. McCool and E. Miller, Semantic search, in Twelfth International World
Wide Web Conference, 2003, pp. 700–709.

[13]	 A. M. Harbourt, E. Syed, W. T. Hole and L. C. Kingsland, The ranking algorithm of the
coach browser for the UMLS metathesaurus, in Seventeenth Annual Symposium on
Computer Applications in Medical Care, 1993, pp. 720–724.

[14]	 W. R. Hersh and R. A. Greenes, SAPHIRE: An information retrieval system featuring
concept matching, automatic indexing, probabilistic retrieval, and hierarchical rela
tionships, in Computers and Biomedical Research, 1990, pp. 410–425.

[15]	 W. R. Hersh, D. D. Hickam and T. J. Leone, Words, concepts, or both: Optimal indexing
units for automated information retrieval, in Sixteenth Annual Symposium on Computer
Applications in Medical Care, 1992, pp. 644–648.

[16]	 E. H. Hovy, L. Gerber, U. Hermjakob, M. Junk and C. Y. Lin, Question answering in
webclopedia, in TREC-9 Conference, 2000.

[17]	 K. Jarvelin, J. Keklinen and T. Niemi, ExpansionTool: Concept-based query expansion
and construction, 2001, pp. 231–255.

[18]	 G. Jeh and J. Widom, SimRank: A measure of structural-context similarity, in Pro
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2002, pp. 538–543.

[19]	 S. Jones, Thesaurus data model for an intelligent retrieval system, Journal of Informa
tion Science 19(1) (1993) 167–178.

[20]	 A. Kiryakov, B. Popov, I. Terziev, D. Manov and D. Ognyano®, Semantic annotation,
indexing, and retrieval, Journal of Web Semantics 2(1) (2004) 49–79.

[21]	 R. Knappe, H. Bulskov and T. Andreasen, Similarity graphs, in Fourteenth International
Symposium on Foundations of Intelligent Systems, 2003.

[22]	 T. K. Landauer, P. Foltz and D. Laham, Introduction to latent semantic analysis, in
Discourse Processes, 1998, pp. 259–284.

[23]	 J. B. MacQueen, Some methods for classi¯cation and analysis of multivariate observa
tions, in Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and
Probability, 1967, pp. 281–297.

[24]	 M. F. Porter, An algorithm for su±x stripping, Readings in Information Retrieval, 1997,
pp. 313–316.

[25]	 G. A. Miller, WordNet: A lexical database for English, Commun. ACM 38(11) (1995)
39–41.

[26]	 D. Moldovan, S. Harabagiu, M. Pasca, R. Mihalcea, R. Goodrum and R. Girju, LASSO:
A tool for sur¯ng the answer net, in Text Retrieval Conference (TREC-8), 1999.

[27]	 C. Paice, A thesaural model of information retrieval, Information Processing and
Management 27(1) (1991) 433–447.

[28]	 B. Popov, A. Kiryakov, D. D. Ognyano®, D. Manov and A. Kirilov. KIM – A semantic
platform for information extraction and retrieval, Journal of Natural Language Engi
neering 10(3) (2004) 375–392.

[29]	 P. Resnik, Using information content to evaluate semantic similarity in a taxonomy, in
International Joint Conference on Arti¯cial Intelligence, 1995, pp. 448–453.

[30]	 L. Rau, Knowledge organization and access in a conceptual information system,
Information Processing and Management 23(4) (1987) 269–283.

[31]	 S. S. Luke, L. Spector and D. Rager, Ontology-based knowledge discovery on the world
wide web, in Internet-Based Information Systems: Papers from the AAAI Workshop,
1996, pp. 96–102.

[32]	 M. Sanderson, Word sense disambiguation and information retrieval, in Seventeenth
Annual International ACM SIGIR Conference on Research and Development in Infor
mation Retrieval, 1994.

[33]	 P. Shoval, Expert consultation system for a retrieval database with semantic network of
concepts, in Fourth Annual International ACM SIGIR Conference on Information
Storage and Retrieval: Theoretical Issues in Information Retrieval, 1981, pp. 145–149.

[34]	 Simone Paolo Ponzetto and Michael Strube, Deriving a large scale taxonomy from
wikipedia, in 22nd International Conference on Arti¯cial Intelligence, 2007.

[35]	 B. Spell, Java API for WordNet Searching (JAWS), http://lyle.smu.edu/ tspell/jaws/
index.html, 2009.

[36]	 K. Srihari, W. Li and X. Li, Information extraction supported question answering, in
Advances in Open Domain Question Answering, 2004.

[37]	 L. Stanchev, Creating a phrase similarity graph from wikipedia, in Eighth IEEE Inter
national Conference on Semantic Computing, 2014.

[38]	 L. Stanchev, Creating a similarity graph from wordNet, in Fourth International Con
ference on Web Intelligence, Mining and Semantics, 2014.

[39]	 L. Stanchev, Measuring the strength of the semantic relationship between words,
International Journal on Arti¯cial Intelligence Tools, 2015.

[40]	 L. Stanchev, Semantic document clustering using a similarity graph, in Tenth IEEE
International Conference on Semantic Computing, 2016, pp. 1–8.

[41]	 J. Turian, L. Ratinov and Y. Bengio, Word representations: A simple and general
method for semi-supervised learning, in 48th Annual Meeting of the Association for
Computational Linguistics, 2010, pp. 384–394.

[42]	 Y. Yang and C. G. Chute, Words or concepts: The features of indexing units and their
optimal use in information retrieval, in Seventeenth Annual Symposium on Computer
Applications in Medical Care, 1993, pp. 685–68.

http:http://lyle.smu.edu

	Fine-Tuning an Algorithm for Semantic Document Clustering Using a Similarity Graph
	1. Introduction
	2. Related Research
	3. Creating and Fine-Tuning the Similarity Graph
	3.1. Processing the senses
	3.2. Processing the definitions of the senses
	3.3. Processing the example uses of the senses
	3.4. Processing the backward edges
	3.5. Populating the frequencies of the senses
	3.6. Processing structured knowledge about nouns
	3.7. Processing structured knowledge about verbs
	3.8. Processing structured knowledge about adjectives

	4. Measuring the Semantic Similarity Between Terms
	5. Measuring the Semantic Similarity Between Documents
	6. Clustering the Documents
	7. Experimental Results
	8. Conclusion and Future Research
	References

