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ABSTRACT

Energy Management System Modeling of DC Data Center with Hybrid Energy Sources
Using Neural Network

Khalid Althomali

As data centers continue to grow rapidly, engineers will face the greater challenge
in finding ways to minimize the cost of powering data centers while improving their
reliability. The continuing growth of renewable energy sources such as photovoltaics
(PV) system presents an opportunity to reduce the long-term energy cost of data centers
and to enhance reliability when used with utility AC power and energy storage. However,
the inter-temporal and the intermittency nature of solar energy makes it necessary for the

proper coordination and management of these energy sources.

This thesis proposes an energy management system in DC data center using a
neural network to coordinate AC power, energy storage, and PV system that constitutes a
reliable electrical power distribution to the data center. Software modeling of the DC data
center was first developed for the proposed system followed by the construction of a lab-
scale model to simulate the proposed system. Five scenarios were tested on the hardware
model and the results demonstrate the effectiveness and accuracy of the neural network
approach. Results further prove the feasibility in utilizing renewable energy source and
energy storage in DC data centers. Analysis and performance of the proposed system will
be discussed in this thesis, and future improvement for improved energy system

reliability will also be presented.

Keywords: DC Data Centers, Renewable Energy Source, Neural Network, Hybrid
Energy
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Chapter 1: Introduction

In the late 19™ century, Thomas Edison and Nikola Tesla waged the war of the
currents where opposing views of the way electricity should be transmitted were battled.
Edison established direct current (DC) to be the standard in the United States in the early
age of electricity. However, at higher voltages, DC transmission revealed its difficulties.
As a result, power plants at the time were only able to provide power to individual
neighborhoods or small areas of a city. It became a challenge to provide electricity to
rural areas because the power plants need to be at close proximity to prevent significant
voltage drop. As the distance of the conductor increases, its resistance becomes higher
which consequently results in a higher voltage drop. To solve this issue, Tesla proposed
his idea of alternating the direction of current giving rise to the term alternating current

(AC).

At the end, Edison’s DC system proved to be inefficient and costly while Tesla’s AC
system became increasingly popular. The more prevalent use of AC owed greatly to
Tesla’s invention of poly-phase induction machine with a rotating magnetic field and an
earlier invention on Transformer. With the two equipment, it was then possible to step the
AC voltage produced by a three-phase generator to a much higher voltage, further

allowing electrical power to be transmitted long distance while minimizing line losses.

As technology has developed in the past decades, in particular on solid-state devices
and power electronics, so has the push toward the use of DC electricity again. This has

also been coupled with the increasing use of renewable energy but in particular the solar



energy through solar panels that inherently produce DC power. In the United States
alone, the more prevalent use of solar photovoltaic installations is evidenced by the 24%
increased PV installations between quarter 1 of 2015 and quarter 1 of 2016 as shown in
Figure 1-1 [1]. In addition, Figure 1-2 shows that last year solar exceeded natural gas
capacity in the US for the first time, and by the first quarter of 2016 solar rose to 64% of
all electric generation capacities in the United States [1]. Therefore, it makes sense to see
that solar PVs will present the potential of where DC electrical system may find its new

home and implementations.
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Figure 1-1 Annual U.S. Solar PV Installations
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Figure 1-2 Share of New U.S. Electric Generating Capacity Additions

Another reason for the coming back of DC is that DC internally powers most
electronic devices used at homes such as cell phone and tablet chargers, laptop adapters,
etc. With the existing AC system, the available AC voltage must go through AC to DC
conversion process that causes power loss. ABB is estimating saving from using DC
instead of AC in buildings about 10% to 20% [2]. Additionally, the emerging and the fast
growth in LED light bulb technology is another factor to coming back to DC. LED light
bulbs phased out the traditional incandescent lamps, and it is inherently run on DC. This
is estimated to save millions of kWh in the United States alone [3]. When comparing the
LED light bulbs to the traditional incandescent lamps, LEDs typically use about 25% to
80% less than the incandescence lamps [4]. The benefit of LEDs includes longer
operation life since they can last about 3 to 25 times longer [4]. As indicated in the
United States Department of Energy website, the table below compares the incandescent

with energy efficient bulbs.



Table 1-1 Comparison Between Different Light Bulbs [4]

Comparisons between Traditional Incandescents, Halogen Incandescents, CFLs, and LEDs

Energy $
Saved (%)

Annual
Energy
Cost*

Bulb Life

60W Traditional

Incandescent

$4.80

1000 hours

43w
Energy-Saving

Incandescent

~25%

$3.50

1000 to 3000 hours

15W CFL

60W

Traditional

~75%

$1.20

10,000 hours

43W

Halogen

~65%

12W LED

60W 43W

Traditional Halogen

~75%-80% ~72%

$1.00

25,000 hours

One industry sector that has shown interest in taking advantage of DC electricity to

improve energy efficiency is Data Center [5]. With the continued rapid growth in data

centers, the demand for processing power will significantly increase. Such increase in

power demand is related to the fact that there are typically tens of thousands of servers

and their energy consumption is in raise. It is reported that Google alone has more than

900,000 servers [6], Meanwhile, Microsoft’s Chicago data center as another example

contains over 300,000 servers [7]. To further understand the scale of the problem,

assuming each server consumes 200 watts per year, one million servers require 200

megawatts per year. When building data centers, usually they are priced by megawatt,



and it is around $10 million per megawatt, and that will bring the cost to $2 billion. That

was even before powering the data centers [8].

In 2013, the United States data centers consumed an estimated 91 billion kwWh of
electricity [9]. This amount of power is equivalent to an annual output power of 34 large
500-megawatt coal power plants, and it is enough to power all of the New York City
households twice over a year [9]. By the year 2020, the power consumption is expected
to increase to roughly 140 billion kWh annually, the equivalent output of 50 power plants

with a total cost of $13 billion a year [9].

In the study of Integrated Approach to Data Center Power Management [7], it is
demonstrated that 35% of the total cost of the data centers account for its energy, and the
cost of this energy is competing with the cost of the computer servers. One reason for this
high cost is that overall system efficiency for power usage of a typical data center is
around 50% [7]. Such inefficiency, and thus the opportunity to improve the figure to
reduce the energy cost, has brought back the century-old battle of AC versus DC for
electrical power distribution in data centers. The AC supporters suggest that data centers
maintain the AC system and improve efficiency by implementing high-efficiency UPS
system. Those who believe that DC is the way to go, insist that the use of DC reduces the
number of conversion stages along the power chain, and hence increases the overall

efficiency.



Chapter 2: AC and DC Data Centers Power System Configuration

2.1 General Overview

Data centers consist of servers, cooling equipment, and power distribution equipment.
They all come together to create a large system that consumes enormous amounts of
energy which affect the system efficiency. In a typical data center, the computer load
contributes to less than half the total energy consumption with the rest being lost in the
UPS and cooling [10]. It has been estimated that the total energy consumption of a typical
data center is at 40 TWh in 2005 in the United States, and 120 TWh worldwide [11]. Due
to such tremendous amount of energy usage, the EPA in 2007 represented a report to the
congress that included a recommendation to reduce the energy consumption in data
centers [12]. The industry quickly responded and attempted to design more efficient
servers, power supplies, and alternative ways of cooling. However, the overall
complexity of the data center system poses a great challenge to find an efficient way to

deliver power from the main generator to the load with less energy losses.

To help reduce energy loss, a few approaches for electrical power distribution in data
centers have been used with some showing better efficiency than others. For example,
data centers in North America typically use 480 V/ 600 VV AC power distribution
topology. This topology has been known to yield a less efficient system due to the
relatively many numbers of conversions needed in order to feed a DC source (e.g. the
server). This problem gets even worse when renewable energy is put into the mix.

Therefore, industry and researchers have been investigating alternative ways to achieve a



more efficient power distribution system in data centers. The following sections review

literature that explain different topologies of power delivery architectures in data centers.

2.2 AC Powered Data Centers

As previously mentioned, in North America the traditional way to power a data center

is through AC power distribution as shown in Figure 2-1 [12]. The 480 V AC connects

into a UPS to produce DC voltage needed to charge energy storage device such as

batteries. This power needs to be inverted back to AC voltage to feed the AC bus; hence,

the process is called the double conversion mode. The AC voltage is then stepped down

to 208 VV AC in the power distribution unit (PDU). The next step of conversion happens

in the power supply unit where the AC voltage is rectified to yield DC voltage which then

goes through DC-DC converter stage to distribute the DC power to typically 12 V DC.

This DC power supplies the main DC loads consisting of processors, memory, and

Server

12v DC

storage.
Double Conversion UPS
-~ .
480V AC : 1 PDU PSU
| |
O L Clectiﬁerll Inveneri L 480V AC Transformer 208V AC AC/DC{DC/DC
Battery

Load

Figure 2-1. Typical 480V AC data center power system configuration

To achieve higher operating efficiency, data center manufacturers have developed

some variations of the AC power distribution for data centers as illustrated below.




2.2.1 Bypass Filter (Eco-mode)

In this AC topology, manufacturers try to reduce the number of conversion in the
typical 480V AC data center architecture by using a bypass filter. The bypass filter
connects the AC source and the transformer as shown in Figure 2-2. This attempt
eliminates the conversion step that is normally done by the inverter known as the eco-
mode. This results in efficiency improvement; however, system reliability is affected.
The load is no longer isolated from the power source and voltage regulation previously
provided by the inverter no longer exists. To overcome these issues, a synchronous

circuit may be used to ensure voltage regulation and high system reliability [12].

Double Conversion UPS

Server

f Bypass |

PSU
PDU

;

480V AC Transformer 208V AC Ac/DC HDe/DEHL2Y DE 1 oad

Q 480V AC Rectifier]

Figure 2-2. 480V AC data center power system configuration, power bypasses the
inverter (ech-mode)

2.2.2 Delivering Higher Voltages to the Load

Another approach to increasing efficiency is to remove the phase voltage from the
UPS (277 V AC instead of the 208 VV AC coming from the transformer) and deliver a
higher voltage to the load as illustrated in Figure 2-3 [12]. By doing this, the step-down
conversion that is done by the power transformer in the power distribution unit is

eliminated. However, this approach introduces new current harmonics in the system that



will affect the efficiency gain. On top of that, the higher voltage presents a higher risk for

IT workers.

Double Conversion UPS

Inverter

480V/277V AC

Q 480V AC Rectifier

Figure 2-3. 480V/ 277V AC data center power system configuration

2.2.3 Modular Scalable AC UPS

PDU

277V AC

12v DC

——

Load‘

Another method to increase the efficiency of AC data centers is a modular scalable

AC UPS as depicted in Figure 2-4 [13]. The traditional double conversion AC UPS is

usually built with future demand growth in mind. Data centers are typically lightly loaded

and the IT loading factor is low. Therefore, the power converters will operate at lower

efficiency which decreases the system’s efficiency. The modular topology aims to
combat this under-utilization of resources by keeping the working modules of an AC
UPS at close to maximum load while retaining the flexibility to turn-on or turn-off

online/offline modules as IT load/demand increases; hence, maximizing efficiency

throughout the data center’s life cycle [13].
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Figure 2-4. 400V AC data center power system configuration with scalable AC UPS

400V AC

2.3 DC Powered Data Centers

From the system perspective, the UPS inverter that converts the DC power to AC and
the PDU rectifier that converts it back to DC are only present in the architecture because
electrical power is being distributed to the data center in AC form. For a DC topology,
those conversion stages are duly taken out of the picture and hence may increase the

overall system efficiency.

2.3.1 48V DC Data Center

One of the first DC data centers is the 48V DC data center used by
telecommunication companies [14]. Here, the 480V AC is rectified to 48V DC and wired
to the PDU from the DC UPS as shown in Figure 2-5. Although this method is more
efficient than their AC counterparts due to the fewer conversion stages, the relatively low

48V DC voltage produces higher current in the power system and remains as a major

10



limitation of the topology. In order to solve the problem, a much larger voltage of 400V
DC was introduced. In comparison, a 400V DC topology requires cables that are 15 times

smaller than a 48V topology [15] to transmit a 100kW of power.

DC UPS

PDU Server
12v

Q 480V/400V | fRectifier 48V DC 48V DC I DC-DC }7 LOAD
Battery b

Figure 2-5. 48V DC data center power system configuration

2.3.2 400V DC Data Center

In order to further improve the efficiency of DC data centers, the DC voltage used to
distribute the power is made larger at 400V DC as shown in Figure 2-6. Each of the
conversion devices has been optimized in separate studies: a front-end three-phase buck-
rectifier topology converting 480V AC to 400V DC and utilizing SiC (Silicon Carbide)
devices in place of Si (Silicon) with 98.5% efficiency [12]. These single-stage conversion
devices lead to smaller and cheaper data centers and more efficient power consumption

with 28% efficiency improvement over typical AC power distribution [16].

11



DC UPS

PDU Server
12v

400V DA} pc-pe LOAD

O 480V/400V__| | Rectifier 400V DC

N

Battery

Figure 2-6. 400V DC data center power system configuration

2.3.3 Modular Scalable DC UPS

In this approach, the operation is similar to the 400V DC distribution. However,
further efficiency improvement was introduced by using DC power for the scalable UPS.
This approach eliminates the double conversion in AC UPS. In addition, DC UPS loss is
reduced by 2% to 3% due to a single stage of conversion [12]. Figure 2-7 depicts the

modified 400V DC architecture with modular scalable DC UPS.

AC-DC
UD'SS / LOAD|
400V AC i ﬁ;&
i |
l |
: AC-DC
DC / LOAD
UPS DC-DC

Figure 2-7. DC data center power system configuration with scalable DC UPS

12



2.4 Data Centers Powered by Renewable Energy

As explained above, the 400 Volt DC topology proved to be much more efficient
than the traditional AC topology. As such, there has been a rise in the use of renewable
resources to help power Data Centers. This trend has become popular among the largest
Tech companies in the United Sates. For example, Apple has brought major changes to
the functionality of their Data Centers. As stated in their 2016 Environment
Responsibility Report [17], their Data Centers located in California, Nevada, North
Carolina, and Oregon are 100% powered by Renewable Energy resources. These Data
Centers are all powered by a mix of Solar PV, Biogas fuel cells, NC green Power, and
Wind. To highlight Apple uses approximately 64% of Solar PV to power their North
Carolina Datacenter and approximately 80% of Solar PV in Nevada. Ultimately, Apple’s
goal is to archive a 100% use of renewable energy resources to run all of their Data

centers by the year 2017.

Because Solar PV energy is irregular throughout the day, it becomes a challenge
to fully rely on it as the main power source. One approach to overcome this issue is to use
batteries to store the energy or to maintain another backup source such as a utility grid.
Further, another approach is to adapt the load and its energy demand to the generation
from the renewable energy [18]. In this thesis, the approach applied is to use a grid as a
backup source of the Solar PV and the use of batteries as an additional backup in the case
of any power failures. The software would be developed to help control the shifting

between these power sources based on the load demand.

13



Chapter 3: Design Requirements

System Overview The proposed topology for this thesis is influenced by the use of
high voltage DC powered data center with the integration of renewable energy source as
reported in references [12,16,17,18]. For the proposed topology, a PV system as the
renewable energy source will supply the DC electrical power directly to the data center as
the main power source instead of relying on DC power resulting from rectified AC
power. However, because of the inter-temporal and the intermittency of solar energy, the
design will not eliminate the use of the AC grid to achieve reliability of the data center. In
addition, to enhancing power reliability even further, the proposed topology will also add
an energy storage system utilizing a battery bank. The operation and coordination of the
PV system, AC grid, and the battery bank depend on the load requirements and the
energy availability. Since the proposed design uses a PV system as an energy source,
priority assignment based on time in the day will be implemented. During the day, the
solar panels get the first priority as the main energy source to supply the load. If the solar
PV system does not produce enough energy, the AC grid will compensate for the energy
and will be combined with the PV. If the PV system fails to generate power, the AC grid
will supply the entire required energy to the load. During the nighttime, the priority goes
to the AC grid to supply power to the load. For the case where the system experiences

loss on both PV and AC power from the utility, the battery bank will take over and power

14



the load. Figure 3-1 illustrates the high-level block diagram of proposed design showing

its major components.

Solar Photovoltaics

DC Bus

IV AY

RLY_MPPT

) 4

Qé‘\m H | K

.

Figure 3-1 High-Level System Block Diagram

3.1  Prototype Specifications

Data centers consume a big amount of energy. As an example, Apple data center’s
energy consumption is estimated to be 324 million kWh in 2013 as mentioned in their
Environmental Responsibility Report [17]. Therefore, the design of a PV system is based
on the load requirements. Such intensive energy demand will require a large PV system
especially when the sole use of PV is desired to cover the entire load demand during the
day. In the proposed design, the size of the PV system size should match the peak load

energy demand. For the lab-scale model of the proposed design, the system load will

15



have a maximum power of 100 W to keep the cost of the lab setup low and to minimize
risk when performing the test. Furthermore, for safety purpose, the lab setup will not be
using 400 V DC as mentioned in [12,15,16]. Instead, the operating voltage of the lab
setup will be 24 V DC. The lower operating DC voltage will also allow test

measurements using standard lab equipment.

Lastly, to demonstrate the functionality and performance of the proposed topology, a
lab-scale construction of the proposed design will be assembled and tested. The lab scale

high-level block diagram will be explained in details in Chapter 5.

3.2 Switching Control and Coordination

To ensure proper operation and coordination of such mixture of energy sources, the
proposed design utilized a microcontroller to control the switching between the energy
sources. When developing an algorithm for the microcontroller, two combined techniques
were used. The first technique utilizes Neural Network (NN), and the other technique
utilizes combination using C language. NN is chosen because of its ability to respond to
any unexpected inputs to the network. During training, neurons are taught to recognize
different patterns and generate an output for each pattern. If an unexpected pattern is
received, the NN will generate the output from the set of the patterns that has been taught.
With the use of NN, all of the possible load values (load power) can be uncovered. Also,
NN was able to recognize all of the possible power values generated from the PV system.
These values were then used for selecting the proper switch to connect the suitable power

source to supply the load.

16



In the hardware implementation, every power source was connected to the load via a
switch that is continuously monitored by sensors. The sensors provide a Multiple Input
Multiple Output (MIMO) microcontroller system that measures the amount of power
coming from each source and compares them to the power demand at the load. The
microcontroller then decides which power source will supply power to the load. As stated
earlier and as depicted in Figure 3-2, the algorithm was developed using NN and C
language. As previously shown, the block diagram is divided into two halves: the first
half shows the NN modeling, and the second half shows the C code modeling. The inputs
to the NN are the power generated from the PV and the power at the load. Also, the day
time and the AC status are needed for the NN to run. The NN will run only if it is day-
time the power from the grid is available. These two parameters are also used in the C
code as illustrated in the second half of the block diagram. They are used to control the
power sources during the night. The operation of the backup power source (battery bank)
was controlled using “if”” statement. Also, the block diagram shows that the relay
connected to the PV system is controlled by the NN, while the relay connected to the

battery bank is controlled by the added C code. However, the relay connected to the AC

17



grid is controlled by the NN only in the day-time and by the C code modeling during

night time.

MPPT —

& RLY_MPPT
»
RLY_AC

Neural Network Model

STS_Day
— C code Model
sTS_BAT

Figure 3-2 System Modeling

b
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Chapter 4: System Design

4.1 System Flowchart

The first step to developing the C code for the proposed system was to create the
flowchart as illustrated in Figure 4-1. It starts with reading five different values: the
required load power, the power generated from the PV system, the AC grid availability,
day/night time status, and the availability of the backup system (batteries). The power
measurement of the PV system and the load are analog inputs obtained from voltage and
current sensors. The time of day status is a digital input represented by either “1” for
daytime or “0” for night-time. During the day and when the status is “1”, the energy will
be delivered to the load from the PV system if “MPPT >= Load”. If the PV system is not
enough to power the load, the system will combine the AC grid with the solar panels
when the AC status is “1” or available. If the AC status is “0” which means unavailable,
the battery bank will serve as a backup. The second possible state is the night-time that
means the day status displays “0”. The load gets its power either from the utility grid if
the AC status is “1”, or from the battery bank if the AC status is “0”. Specifically, for the
battery bank, the status “0” means the battery is not charged while the status “1” means
the battery is charged. SWac, SWweet, and SWear represent switches connected to the
AC grid, MPPT charge controller, and the battery bank respectively. The number “0”

means the switch is not connected, and the number “1” means the switch is connected.
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ALL Power
Supplies are
Connected
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Status, Day
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No
Y
SWac=0
SWipppr=0  |epm————Ye's Batiary Staius Y AC Status = 0
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Do you want
to Exit?

Yes

Figure 4-1 System Flowchart
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To develop the firmware in C for the flowchart, different tools are utilized as illustrated

in Figure 4-2. These tools are discussed separately in more details later in this chapter.

S &7 SKEL

life.augmented

/—'\ T ATy

MAT
Keil Tool
Matlab /Target ‘ eil Tools
‘ Simulink STM32Cube —

Figure 4-2 Tools to develop the FW for STM32F7

4.2 Matlab and Simulink Model for the Neural Network

A Matlab tool is used to develop an algorithm for the Neural Network (NN). The NN will
function only during the day to determine which power source supplies the load, and
whether or not to combine the grid with the energy coming from the solar panels. As
mentioned in Chapter 3, the NN has two inputs: the load power, and the PV system
power. These values are listed in the first two columns of the Table in Appendix (A).
These values were chosen between 0.5W and 100W since the goal is to demonstrate a
proof-of-concept lab-scale system rather than testing the concept in a real system. The

third and the fourth columns of the Table in Appendix (A ) are the targets representing
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the status of the relays connected to the PV and to the grid. Based on the load value and
the PV generation, either one relay or two relays will be connected. The number “0”
indicates that the relay is not connected, while “1” means that the relay is connected.

Below is the NN MATLAB command line for testing the NN.

$-—---Read data----

Data = xlsread('NN data.xlsx'); %-read data from Excell

data input = Data(1:400,1:2)"; $-data input [2] -> coloumn 1,2
data target = Data(1:400,3:4)"; $—data target[3] -> coloumn 3,4
S=[5 2]:

$—-——-Preparing data----

[Input ,IN] = mapstd(data_ input):;
[Target ,TG] = mapstd(data target);

$————-Create Network----
NN = newff (minmax(Input ),S,{'tansig’', "purelin'});
$—-——-Setting Param——--

NN.trainParam.epochs = 1000;
NN.trainParam.min grad = le-20;

$-——-Training Network----
NN=train (NN, Input , Target );

$———=Check Result----

Sim NN = sim (NN, Input ):;
Rslt NN = mapstd('reverse',SimiNN,TG);

[rl,ml,bl] = regression(Target ,Rslt NN)
NN.IW{1l}

The first three lines of the code choose the input values from a predefined table.
Following this step is to choose the number of layers and the number of neurons in each
layer. For this design, there are two layers: a hidden layer with five neurons and an outer
layer with two neurons. The mean and the standard deviation of the inputs and targets are
then computed and normalized to zero mean and unity standard deviation using the

“mapstd” function. Once the normalizing is done, the function “newff” follows to create

22



a feedforward network. The transfer function in the first layer is tan-sigmoid, and the
output layer is linear. The “Sim” is used to simulate the NN which takes the network
inputs and target, and then return the network outputs. The network output is saved in a
new variable called Rslt_NN. These values are also listed in the last two columns in the

Table in Appendix A, and their values are equal to the network targets.

4\ Neural Network Training (nntraintool) lilﬂléj

Neural Network

Dl S

Algorithms

Training: Levenberg-Marquardt  (trainlm)
Performance: Mean Squared Error  (mise)
Calculations:  MEX

Progress

Epoch: 0 | 1000 iterations | 1000
Time: 0:03:54

Performance: 111 l:l 0.00
Gradient: 237 [ e | 1.00e-20
Mu: 0.00100 1.00e-16 1.00e+10
Validation Checks: o 0 | &

Plots

Training State (plottrainstate)

(plotregression)

Plot Interval: U 1 epochs

v Maximum epoch reached.

[ Stop Training @ cancel

Figure 4-3 NN Training

From the MATLAB training window, three plots were captured: performance, training
state, and regression. The performance plot in Figure 4-4 shows the mean square error

(MSE) which is always decreasing under training. The training state in Figure 4-5 shows
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that we reached the bottom of the local minimum of the goal function. The regression

plot in Figure 4-6 indicates that the target and the output are having a linear relationship.

i E— L —
-;.. eural Network Training Performance (plotperform), Epoch 1000, Maxmum Epu...@ﬁgn

File Edit View Insert | Tools | Desktop Window Help k]

Best Training Performance is 3.4168e-18 at epoch 1000

10% | Train

==
=
L

-

=
-
=
I

Mean Squared Error {(mse)

==

=
—
L
T

0 100 200 300 400 500 600 700 BOO 900 1000
1000 Epochs

Figure 4-4 Performance plot

24



File Edit View Insert Tools Desktop Window Help
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Figure 4-5 Training State
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Figure 4-6 Regression Plot
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4.3 Simulink

Referring to Figure 4-2, the second tool to develop our code was to build the Matlab
function model in Simulink. By typing the command line “gensim(NN)” in the command
window, the equivalent NN model was generated in Simulink as shown in Figure 4-7.
The Custom Neural Network contains the Matlab code listed in the previous section. The
function block mapstd normalizes the inputs and the targets so they both have zero mean
and unity standard division. When the mapstd is used to normalize the targets, the
network is trained to produce outputs with zero mean and unity standard division. These
outputs are finally converted to their original units by means of the mapstd_reverse
function block.

To test and verify the model, three cases are presented as depicted in Figures 4-7 through
4-9. In Figure 4-7, the relay connected to the PV system is turned ON while the other
relay connected to the AC grid is turned OFF. The reason is that the PV system is
generating 80 W that is equal to the power needed by the load. When the PV system is
generating more power than what the load requires as shown in Figure 4-8, the relay
connected to the PV system is turned ON while the other relay is turned OFF. Lastly, if
the power needed by the load is 80 W and the generation from the solar panel is 75.5 W,
both switches are turned ON. As expected, the 75.5 W consumed by the load comes from

the PV system while the remaining 0.5 W comes from the AC grid, as presented in
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Figure 4-9.

h 4

Custom Meuwral Netwerk

mapstd_reverse

Relay Connected to PV

1.421e-10

Relsy Connected to the grid

Figure 4-7 Custom NN Model in Simulink when P 1044 is equal to Ppy

Custom Neuwal Network

mapstd reverse

Relay Connected to PV

-928=-10

Relay Connected to the grid

Figure 4-8 Custom NN Model in Simulink when P joad is Less than Ppy

Y

Custom Newal Network

mapstd _reverse

Relay Connected to PV

Relay Connected to the grid

Figure 4-9 Custom NN Model in Simulink when P |0ad is greater than Ppy

4.4 STM32-MAT/TARGET

After creating the MATLAB and the Simulink design files, the STM32 Embedded Target

is used to deploy the design files to STM32 MCU. This step can be done before or after

27



the configuration using STM32CubeMx. The embedded target allows the user to upload a
saved configuration or create a new one. When the cubeMx file is uploaded, the STM32-
MAT will generate the “C” code in Keil tool. Figure 4-10 shows the Simulink model to
generate the “C” code using STM32-MAT. When using the target support package

STM32 in Simulink, the equivalent STM32 model for the MCU will be created as shown

in Figure 4-11.
—— D
Im Cut1
—— a1
—>» > '
—™ F 2
mapstd mapstd _reverse
D
In2 Out2

Custom Neural Network

Figure 4-10 Custom NN Model for Mat/Target Showing Two Inputs and two Outputs

STM32F = m

STM3E2FTA46NGHx

5TM22 Config

Figure 4-11 Target Support Package STM32
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45 STM32CubeMx

The STM32CubeMX is a software tool to develop applications on STM32
Microcontrollers based on the user choice and configuration. The STM32CubeMx
graphical software configuration tool helps generate the “C” code skeleton. This package
includes a low-level hardware abstraction layer (HAL) that covers the Microcontroller
hardware. The board STM32F746G-DISCO was first selected for the design. Following
this is pin assignments from the pinout window based on the design requirements as

explained later in this chapter as pictured in Figure 4-17 and Figure 4-18.

STM32FFAIONGHY
TFBGAZ216

Figure 4-12 STM32CubeMx Pinout
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Additionally, pin assignments were also determined according to the microcontroller pins

layout in Figure 4-16 that describe the pin number and its name. In Figure 4-12 the pins

in green are those assigned for building the C code. Under Pin Configuration window in

Figure 4-13, there is a list of all of the assigned digital inputs/outputs. Under GPIO, the

pins assigned as outputs are PB4, PG6, and PG7. These pins are for the relay connected

to the PV (RLY_MPPT), the relay connected to the AC (RLY_AC), and the relay

connected to the battery bank (RLY_BATT) Respectively. The input digital pin is PI3

which serves as an input pin for the day status (STS_DAY). The labels used in this

configuration are discussed in more detail under the hardware design section.

[ N
Pin Configuration @
[GPIGY apca | Fmc | Ltoc | rec [ usarT1 |
Search Signals
search (Cri+F) [7] Show enly Medified Pins
-
Fin Name Signal on Pin GPIO output level GPIO mode GPIO Pull-up/P... Maximum outp... User Label Modified
PB4 nfa Low Cutput Push Pull  |Ne pull-up and n... |Low RLY_MPET ¥ |I
PG6 nfa Low Cutput Push Pull  |No pull-up and ni... |Low RLY_AC ¥
PGT nfa Low Output Push Pull  [No pull-up and n... |Low RLY_BATT i
P11 nfa Low Cutput Push Pull  |Ne pull-up and n... |Low USER_LED ¥
P13 nfa nfa Input mode Pull-up nfa STS_DAY ¥
PI11 nfa nfa Input mode Pull-up nfa LUSER_BUTTON i
Ll
| |
|?| Select Pins from table to configure them. Multiple selection is Allowed.
[ Group By IP [ Apply ] [ ok ] [ Cancel

Figure 4-13 Pin Configuration GP1O

Figure 4-14 list shows all the analog pins for the Microcontroller. These pins are PAOQ,

PF6, PF7, PF8, PF9, and PF10They are assigned to read the current coming from the
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PV(MPPTI), the AC Status(STS_AC), the load current(LOADI), the load voltage

(LOADV), and the PV voltage(MPPTV).

F B
@ Pin Configuration M
| gr1o [fABES] Amc | uioe | Rec | usarTt
Search Signals
Search (Crt+F) [] show only Modified Fins
Pin Name Signal on Pin GPIO output level GPIO mode GPIO Pull-up/P...  Maximum outp... User Label Maodified
I PAOWELP ADC3_INO nfa Analog mode Mo pull-up and n... |nfa MPFTI ] ||
PF& ADC3_INg nfa Analog mode Mo pull-up and n... |nfa STS_AC ]
|PF7 ADC3_INS nja Analog mode Mo pul-up and ... |n/a STS_BAT &
|PFa ADC3_ING nfa Analog mode Mo pul-up and ... |n/a LOADI F
|IPF3 ADC3_INT nfa Anzlog mode Mo pull-up and ... |nfa LOADY Fl
||PF1[.’| ADC3_ING nfa Analog mode Mo pull-up and n... |nfa MPFTV [¥]
L
| ?| Select Pins from table to configure them. Multiple selection is Allowed.
[ Group By IP [ Apply ] [ ok ] l Cancel

Figure 4-14 Pin Configuration ADC

4.6 KEIL Tool by ARM

The “C” code resided in STM32-MAT Embedded including all of the configurations
STM32CubeMx will be opened in KEIL software developing tool. The complete “C”
code is included in Appendix (B). However, some of its lines will be explained next since
they pertain to this section. For the NN model illustrated in Figure 4-10 the equivalent

“C” code generated is:

276 SysIntgration U.Inl=LOADE;
277 SysIntgration U.In2=MFPFTF:
278

279 SyzIntgration step():

280

281 my Outl=3SysIntgration Y.Outl;
282 my OutZ=3ysIntgration Y.Outl;
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Within these codes, “Systelntgration” is the Simulink file’s name. There are two inputs

and two outputs: LOADP and MPPTP are the two input quantities to the NN, and

my_Outl and my_Out2 are the output quantities. These output values will determine

which relay is connected.

Next, based on the assumptions mentioned in Chapter 3, and according to the flowchart

explained earlier in the Chapter the “C” code was developed.

264
265
266
267
| 268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
250
251
282
283
2594
285

i REead DAY Status
S5TS Day=!(HAL GPIC ReadPin(GPIOI, S5TS DAY Pin)):

aWikeh (STS_Day)

{

caze SET:

{

if
{

if
if

if
if

Digital ERead

(5T5 AC==5ET && MPPTP>=limit]

SysIntgration U.Inl=LOADE;
SysIntgration U.In2=MPETE;

SysIntgration step():

my Cutl=SysIntgration ¥.Outl:
my Cut2=3Syslntgration ¥.Out2;

my CutlB=round (my Cutl):;
my CutZB=round (my Cutl):

(my OutlR==0) RLY MPPT=RESET;
(my OutlR==1) RLY MPPT=SET;
DISPE on LCD
(my Out2R==0) RLY AC=RESET;
(my Out2R==1) RLY AC=S5ET;

/ DISP on LCD

FfHH end Plus delay......
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These codes basically summarize what is happening inside the NN. It starts with reading
the day status based on the output value from the LDR. If both AC grid and PV are

available, the NN will control the relays as previously explained in Chapter 3.

If for any reason and as shown in the code below the PV is not operational, then the
power comes from the grid. Also, if both the PV and the grid are not supplying power

then the battery bank powers the load.

296

297

2598 if (5T5_RAC==5ET && MPPFTP<=limit)
299 [ {

300 RLY AC=5ET:

301 ELY MPPT=RESET:

302 RLY BATT=RESET;

303 ¥

304

305 if (5T5_AC==RESET && MPPTPF<=0 && S5TS5_BAT==5ET)
306 [ {

307 RLY AC=RESET;

308 ELY MPPT=RESET:

309 RLY BATT=35ET;

210 S /Di=p on LCD

311 }

312 if (5T5 AC==RESET && MPPTP<=0 && S5T5 BAT==RESET)
313 [ {

314 RLY AC=RESET;

315 ELY MPPT=RESET:

316 ELY BATT=RESET:

317 f+Disp on LCD

218 //Ho Source

315 H

320 brealk:;

321 }

322

The equivalent “C” code for the night time is illustrated below. The codes implement the
idea that if the AC is available at night time, the power will travel from the grid to the

servers. Otherwise, when the AC is not available the battery will serve as a backup.
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323 caze RESET:

324 i{

325 if (5T5 AC==S5ET)
326 [ i

327 RLY AC=5ET:

328 RLY MPPT=RESET;
329 RLY BATT=RESET;
230 S iDi=p on LCD
HYLE e H

332 if (5T5 AC==RESET && S5T5 BAT==5ET)
333 [H i{

HE RLY AC=RESET;
S RLY MPPT=RESET;
336 RLY BATT=S5SET:
=T S iDi=p on LCD
338 H

HEZ if (5T5 AC==RESET && S5TS5 BAT==RESET)
340 [H i{

341 RLY AC=RESET;
342 RLY MPPT=RESET;
e RLY BATT=RESET;
i S iDi=p on LCD
345 / Ho SCurce

346

HET B

348 break:;

SEES i

350

4.7 Hardware Design: Microcontroller

The hardware implementation requires a microcontroller unit to control the relays.
STM32F746G-DISCO Board was chosen in the design as illustrated in Figure 4-8. This
MCU features 12-bit ADCs, two 12-bit DACs, and a colored LCD. It also comes with
powerful firmware libraries to support the hardware and comes with the STM32
comprehensive software HAL library. The HAL driver layer comes with a complete set
of ready to use APIs (Application Programing Interfaces). As an example, the API that is

used to read pin is “HAL_GPIO_ReadPin()”.
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Figure 4-15 STM32F746G-DISCO Board Top and Bottom View

By looking at the STM32F7 board layout in Figure 4-16, there are six Analog pins
labeled as A0, Al, A2, A3, A4, and A5. It also has 16 digital pins labeled DO through
D15. Hence, some of these pins are used for inputs and some for outputs as illustrated in

Figure 4-17 and Figure 4-18.

71

life.augmented

DISCO-F746NG

PWM4/3 12C1 SCL
P | PwMa/a 12C1SDA |

AV PYEl Seriald TX|

Serial7 TX| PWMS/1
> Wserial7 RY] PWMS8/2

USER_BUTTON

Figure 4-16 Pinout for the STM32F7
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As shown in Figure 4-13, there are six analog inputs: two pins to measure the PV power,
another two inputs for the load power, one input for the availability of the AC grid, and
one input for the availability of a backup system. Also, there is one digital input for the

day/night time. However, the three output pins are all digital, and they are for the relays.

ACSTS BatSTS DayTime

K

RLY1

RLY2

Load

AC Grid

RLY3

Battery

Figure 4-17 Microcontroller 1/0
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Analog Input

MPPTI

MPPTV B

LoadV Digital Output

soedl RLY_AC

eAc RLY_MPPT

STS_BAT RLY BATT
Digital Input

STS_DAY

Figure 4-18 Assigned pins to the STM32F7

As previously explained, pin assignments were processed by the STM32CubeMx while

the KEIL environment develops the C code. To read from the pins, the following code

was utilized.
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223
224
225
226
227
228
223
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248 |
249
250 H
251
FEa |
253
254
255
256
257
258 |
259
260
261
e |
263 |

f(————————— Read Power

for (i=0;1<1000;1i++)
i

MPPTI=(float)ADC BUFFER[0]*3.3/4096;
MPPETI=(MPPTI-2.5)/0.066;

MPPTV=(float) (ADC BUFFER[1]*3.3/4098)*(7.8);

MPFTF=MFFIV*MFFTIL:

if (MPPTV»>=2Z4) 5T5 MPPT=3ET:
if (MPPTV<2Z0} S5T5_MPPFT=RESET:

J/Power LOAD
LOADV=(float) (ADC BUFFER[2]*3.3/4098) *7.8
LOADI=(float)ADC BUFFER[3]*(3.3/4096);

LOADT=(LOADI-2.5)/0.066;
LOADP=LOADV=*LOADI ;
f/ Dsiplay to LCD

f - Eead AC Status
5T5 ACwval=(float)ADC BUFFER[4]%3.3/40%96:;

if (5TS_ACval>=1)
{
STS_AC=SET:

if (5TS ACval<l)
{
STS_AC=RESET:

S - Read Battery S5tatus
5TS5 BATval=(float)ADC BUFFER[S]*3.3/40895;

if (5TS BATval>=1)
{
STS BAT=SET;

if (5T5_BATval<l)
{
5TS BAT=RESET;

/S /Analog Read

JfAnalog BRead

/S /Analog Read

S /Analog Read

The library driver used in the code above to read analog input was “ADC_BUFFER[]”.

These read values are from the current and voltage sensors for the PV system and the

load, and from the voltage dividers for the AC and the read battery status. In addition, the

HAL driver “HAL GPIO_ ReadPin()” is being used to read the digital input for the day

status. Further explanation on these sensors will be presented in the next chapter.
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264 i-———— Read DLY Status Digital Eead

265 STS Day=! (HAL GPIO ReadPin (GPIOI, STS DAY Pin)):

These values were displayed in the MCU colored LCD as shown in Figure 4-19 using

Board Support Package Driver (BSP). The driver provides a set of user-friendly APIs.

Power System Management

LOAD
Power [W]= 2
Voltage [V]= 2
Current [4]= 1.

Figure 4-19 LCD Display for STM32F7
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By

352 | S/ J/EEFEEEFEEEEE DV System FEFFFEIFIFFEEEFEEER AR

353 for(display0=0;display0<=30;display0++)

354 |

355 BSP_LCD SetFont (&Fontlé); /f Set font size

356 BSP_LCD SetTextColor (LCD COLOR BROWN) ; //3et text color

357 ESP_LCD DisplayStringhAt (10, 50, (uint& t *)"PV Sys", LEFT MODE); //set the location in the =screen
358

359 sprintf((char *)EBUFFER_STR, "POWER [W]l= %3.2L",MPPTIF):

360 B5P_LCD SetFont (&Fontl2): 174

381 BSP_LCD SetTextColor (LCD COLOR_BROWN) ; /7

362 B5P_LCD DisplayStringft (10, 75, (uint& t *)EBUFFER_S5TR, LEFT MODE):
363

364 sprintf( (char *)BUFFER_S5TR, "Voltage [V]= %2.2f" MPPTV):;

365 BSP_LCD SetFont (&Fontcl2): 174

366 BSE_LCD SetTextColor (LCD COLOR_BROWHN) ; 'y

367 BSF_LCD DisplayStringkit (10, 95, (uint& t *)BUFFER_STR, LEFT_MODE)
368

360 sprintf((char *)BUFFER STR, "Current [R]= %2.2f" MPPTI);:

370 BSP_LCD SetFont (&éFontl2): Iz

371 BSP_LCD SetTextColor (LCD COLOR BROWHN) ; Iy

372 BSP_LCD DisplayStringat (10, 115, (uint8_t *)BUFFER S5TR, LEFT MODE) :
373

S BSP_LCD SetFont (&éFontl2): Iz

375 BSP_LCD SetTextColor (LCD COLOR BROWHN) ; Iy

376 if (RLY MPPT==RESET) {

377 BSF_LCD DisplayStringht (10, 135, (uint8_t *)"STATUS:DISCONNECTED", LEFT_MODE);
378 HAL GPIQ WritePin(RLY MPPT GPIO Port, RLY MPPT Pin,GPIC PIN RESET);
T }

3B0H if (RLY MPPT==5ET){

381 BSF_LCD DisplayStringht (10, 135, (uint8_t *)"STATUS: CONNECTTED", LEFT_MODE)
382 HAL GPIQ WritePin(RLY MPPT GPIO Port, RLY MPPT Pin,GPIC PIN SET);
383 1 //

384 | J///R3ER4343888 RO CGrid #3idfidfisssssaassaass

385

386 BSP_LCD SetFont (&Fontlé); "y

387 BSP_LCD SetTextColor (LCD _CCLOR _BROWN) ; /i

3a8 BSP_LCD DisplayStringht (10, 160, (uintd® t *)"AC Grid", LEFT_MODE}:

389

3390

39 BSP_LCD SetFont (&Fontll); "y

392 BSP_LCD SetTextColor (LCD _CCLOR _BROWN) ; I

393 if (5T5_AC==RESET)

394 BSP_LCD DisplayStringht (10, 185, (uint8_t *)"STATUS:Unavailable", LEFT MCDE):
395 if (ST5_AC==5ET)

396 BSP LCD DisplayStringht (10, 185, (uintd8 t *)"STATUS: Available", LEFT MCDE);
337

398 BSP_LCD SetFont (&Fontll); "y

399 BSP_LCD SetTextColor (LCD _CCLOR _BROWN) ; /i

400 [ 4if (RLY AC==RESET){

401 BSP _LCD DisplayStringht (10, 205, (uint8_t *)"STATUS:DISCCNNECTED", LEFT_MODE) :
402 HAL GPIO WritePin(GPIOG, RLY AC Pin,GPIQ PIN RESET):

403 - }

404 [] 4if (RLY RC==5ET){

405 BSP_LCD DisplayStringht (10, 205, (uintd® t *)"STATUS:  CONNECTED", LEFT_MODE);
406 HAL GPIO WritePin(GPIOG, RLY AC Pin,GPIC PIN S5ET):

407 -~}

408 /i
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408
410
411
412
413
414
415
416
417
418
415
420
421

422

423
424
425

426 £

427
428
423
430
431
432
433
434
435
436
437
438
438
440

441

442
G
444
G
446
447
448
449
450
431
452
T
454
355
456
)
458
G
460
461
462
463

FAFFRFER333 74438 Battery FRafiaaisadsaaasaasissss

r
BESP_LCD SetFont (&Fontlé); £
BSP_LCD SetTextColor (LCD_COLOR_BROWN) ; i
BSP_LCD DisplayStringlAt (175, 50, (uint@ t *)"Battery", LEFT_MODE);:
BSP_LCD SetFont (&Fontl2): Iy
BSP _LCD SetTextColor (LCD COLCR BROWN) ; i

if (5T5_BAT==RESET)
BSP LCD DisplayStringht (175, 75, (uintg t #)"STATUS:Unavailable", LEFT MODE);
if (5T5_BAT==5ET)
BSF LCD DisplayStringlt (173, 75, (uintd t *)"STATUS: Available", LEFT MODE):
BSP_LCD SetFont(&Fontll): Iy
BESP LCD SetTextColor (LCD COLOR BROWN): //
if (RLY BATT==RESET){
BSP_LCD DisplayStringAt (175, 95, (uint8 t *)"STATUS:DISCONNECTED", LEFT MODE);
HAL GPIO WritePin(GPIOG, RLY BATT Pin,GPIO FIN RESET);
}
if (RLY BATT==5ET){
HAL GPIO WritePin(GPIOG, RLY BATT Pin,GPIC PIN SET);:
BSF LCD DisplayStringlt (175, 25, (uintd t *)"STATUS: CONNECTED"™, LEFT MODE):
}
SAPFR5385445444% Day or night #FF#858555855808448584484%

BSP_LCD SetFont (&Fontlé); £

BSP_LCD SetTextColor (LCD_COLOR_BROWN) ; i

BSP_LCD DisplayStringht (175, 115, (uwintd8 t *)"Time", LEFT MOLE):
BSP_LCD SetFont(&Fontl2): Iy

BSP _LCD SetTextColor (LCD COLCR BROWN) ; i

if (STS_Day==SET)
BSP LCD DisplayStringRt (175, 135, (uint® t #)"STATUS: DayTime", LEFT MODE);
if (STS_Day=—RESET)

BSP LCD DisplayStringlt (175, 135, (uint® t *)"STATUS:NightTime", LEFT MODE);

'

FAAT88588434434F Load ##3334448485838548884444¢
ESP_LCD SetFont (&Fontlé); I
BSP_LCD SetTextColor (LCD COLOR BROWN) ; //
BSP_LCD DisplayStringht (350, 50, (uint t *)"LOAD", LEFT MODE);

sprintf ( (char *)BUFFER STR,"Power  [W]= 3.2f",LOADP);
ESP_LCD SetFont (&Fontl2); I

BSP_LCD SetTextColor (LCD COLCR_BROWN) ; i

BSP_LCD DisplayStringht (340, 75, (uint t *)BUFFER STR, LEFT MODE) ;

sprintf ((char *)BUFFER_STR,"Voltage [V]= 32.2f",LOADV);
ESP_LCD SetFont (&Fontl2); I

BSP_LCD SetTextColor (LCD COLCR_BROWN) ; i

BSP_LCD DisplayStringht (340, 95, (uint8 t *)BUFFER STR, LEFT MODE);

sprintf ( (char *)BUFFER STR,"Current [A]= %2.2f",LOADI);
BSP_LCD SetFont (&Fontl2): £

BSP LCD SetTextColor (LCD COLOR BROWN) ; i

BSP LCD DisplayStringlt (340, 115, (uint8 t *)BUFFER STR, LEFT MODE);
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4.8 Current sensor

The design employs two current sensors ACS712ELCTR-30A-T to measure the MPPT
and the load current values. Based on their datasheet and as shown in Figure 4-20 the two
terminals on the left side tie to the positive terminal of the load/MPPT to measure the
current. If zero current flows in the sensor, the output voltage is 2.5 V which is half of the
supply voltage VCC. When an increasing current flows in the sensor, the out voltage

changes as a fraction of this current creating a positive slope as shown in Figure 4-21.

L IP+ vee

2| \p+ VIOUT 200000000000000=

2000000000000000

o @ - - -

I ACST712 e 12 Zopay] S gt

3 e NS <0
ip— FILTER o 1a R =3 RN
4|p a—QohmR] 1N e

. GND| \H(JM?’MQUOOOOOOO~

Figure 4-20 ACS712ELCTR-30A-T Current Sensor Model
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Figure 4-21 Output Voltage Vs Sensed Current (Datasheet Result)
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The right side of the sensor requires three connections: 5 volt VCC, ground, and the
output voltage must connect to the analog input of the microcontroller PA_0 and PF_8.
For testing purposes, one terminal of the sensor connects to 40 VDC power supply while
the other terminal is connected to the electronic load. The electronic load acts as a
variable resistor to control the current value. The current values and their corresponding
voltage value were measured at different resistance as shown in Figure 4-22. Figure 4-23

shows the resulting voltage to current ratio graph.

Figure 4-22 Current Sensor Testing
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Figure 4-23 Output Voltage Vs Sensed Current (Lab Result)
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Next, for the microcontroller to read the current value, each current sensor (MPPTI and

LOADI) needs two lines of code. The first line is to read an analog input that converts to

Ampere (A) using Equation 4-1.

Vrefrence

N X read Value

where N is the number of bits

Equation 4—1

The second line of code is to subtract the sensor initial value from the value read and

divide it by the efficiency as in Equation 4-2.

4.9

[T
[ I

[T= =]

[ %]

(Read Voltage — 2.5)

sensitivity

MPPTI=(float)ADC BUFFER[0]*3.3/4096;
MPPETI=(MPETI-2.5}/0.066;

LOADI=(float)ADC BUFFER[3]1%(3.3/4096);
LORDI=(LOADI-2.5)/0.066;

Voltage Sensor

Equation 4—2

//hnalog Read

The system uses four voltage sensors to measure the MPPTV, LOADV, DAY _STS, and

STS_BAT. The voltage sensors also scale down the system voltage from 24 VV DC to 3.3

V DC to provide the suitable maximum analog input of the microcontroller. For the

purpose of this thesis, voltage divider operates as a linear circuit that generates an output

voltage Vo as a fraction of its input voltage Vin. The voltage divider accepts variable Vin
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=0-24V, and maximum Vo= 3.3 V. The ratio needed to select the resistor values for

the voltage divider was calculated from Equation 4-3.

Max System Voltage 24

— =7.27
Max Vo 3.3

Equation 4—3

The resulting ratio is approximately 7:1, and an example of standard resistance values

that meet this ratio are 1kQ and 6.8 kQ. These two resistors make the series connection

as in Figure 4-24.

R1=6.8KQ

M\

+
Vin=0-24V ——

— Vout

\Y%

R2=1KQ

A

b
¢
~
o
Q
N

Figure 4-24 Voltage sensor Circuit

Before start using the divider, tests were conducted to the voltage sensor circuit
by connecting them to a variable DC power supply. The voltage value was varied and
recorded with the corresponding Vout as listed in Table 4-1. The resulting plot that shows

the relationship between Vin and Vout is presented in Figure 4-25.
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Table 4-1 Voltage Divider Testing Result (Vin Vs Vout)

Vin Vout
(Volt) (Volt)
0.5 0.0635
1 0.1269
15 0.19074
2 0.25402
2.5 0.31737
3 0.38117
3.5 0.4447
4 0.5083
4.5 0.5717
5 0.6353
55 0.6991
6 0.7628
6.5 0.8262
7 0.8895
7.5 0.953
8 1.0166
8.5 1.0803
9 1.1434
9.5 1.2071
10 1.2709
10.5 1.3347
11 1.3983
115 1.4616
12 1.5253
125 1.5888
13 1.6524
135 1.7161
14 1.7798
145 1.8434
15 1.9069
15.5 1.9706
16 2.0344
16.5 2.0978
17 2.1615
175 2.2253
18 2.2888
18.5 2.3528
19 2.4163
19.5 2.4798
20 2.5435
20.5 2.6073
21 2.671
215 2.7347
22 2.7985
22.5 2.8622
23 2.9259
235 2.9898
24 3.0536
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Voltage Divider Result (Vout as a fraction of Vin)

3.5

2.5 ..o".

Vout

1.5 .’.O
0.5 o®
o".

Vin

Figure 4-25 Voltage Divider Result (Vout as a fraction of Vin)

For the microcontroller to read the voltage value, only one line of code was used for the

MPPTV and the LOADYV divider as shown below.

230 | MPPTV=(float) (ADC BUFFER[1]*3.3/4096)*(7.8);
237 | LOADV=(float) (ADC BUFFER[2]%3.3/4098)*7.8;

Both dividers used Equation 4-4 to convert the read value to voltage

3.3
o X Voltage Divider Ratio X Read Value
Equation 4—4

where N: is the number of bits

The codes for the voltage dividers used in STS_AC and STS_BAT are a little bit
different. If there is a voltage exist in the divider, that means the AC/Battery is available

and the opposite is true if no voltage was measured, as in the code below.
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243
244
245

246 [

247
248
249

250 [

251
252
253
254
255

256 [

257
258
259

260 [

2el
2ad
263

N = I =]

H - Eead AC Status

STS_ACval=(float)ADC_BUFFER[4]*3.3/4096;
if (STS_ACval>=1)
{

STS_AC=SET:

if (STS_ACval<l)
{
STS_AC=RESET:

H-———— Eead Battery Status

STS BATval=(float)ADC BUFFER[5]*3.3/4095;
if (STS BATval>=1)
{

STS_BAT=SET:

if (STS BATval<l)
{
STS BAT=RESET:

4.10 Light Dependent Resistor

The Light Dependent Resistor (LDR) is a device that can simulate day and night times.

For this project, the LDR chosen is PGM5506 LDR. Figure 4-26 shows the voltage

divider for the LDR where one leg of the LDR is connected to ground, the other leg to the

digital input of the STM32F7 microcontroller and a 10.4 kQ resistor, and the other side

of the resistor is connected to 3.3 V of the Vcc.
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Figure 4-26 LDR Circuit Design

Before designing the circuit, the resistor across the two terminals of the LDR was
measured using Fluke 116 HVAC Multimeter. The dark resistance for the LDR is 48 kQ,
and the photo resistance is 1.4 kQ. A 10.4 kQ in the divider is selected to maintain the
output voltage values so that the voltage levels will correspond to digital 0 or digital 1.

Figure 4-27 illustrates the standard CMOS voltage level [19].

33V Vee
2.4V Vou
20V Vi

Indeterminate Range

0.8V Va
05V Ve
"1
Figure 4-27 CMOS voltage level
where

VIL is the input voltage needs to be sent to the device to read logic 0

VIH is the input voltage needs to be sent to the device to read logic 1
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VOH is the output high-level voltage which measures the output to generate 1

VOL is the output low-level voltage which measures the output to generate 0

For this design with LDR resistor is 48 kQ, the output voltage is equal to:

48k Q Equation 4—5

28k F 104k 33
= 2.71V (Logic 1)

And when LDR resistor is 1.4 k€, the output voltage is equal to:

14k Q Equation 4—6

T4k + 104k q 53
= 0.39V (Logic 0)

The above two equations provide logic 1 for the night time and logic O for the day time.
However, these values are the opposite to what being used in the design. Hence, these
values were inverted in the C command for the microcontroller to read logic 1 during the
day and logic 0 during the night. Below shows the C command line to read the value

coming from the LDR:

Fud

H————— Eead DAY Status Digital Read
265 STS Day=! (HAL GPIO ReadPin(GPIOI, S5TS DAY Pin));

The status the day will then be displayed on the screen as shown in Figures 4-28 and 4-
29.
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Power System Management

pattery

Voltage

Curcent

Figure 4-28 Daytime testing

Power System Management
Battery LOAD
ATUS:  Available

Power  (V]e 2
Voltage [V]~

Curzent [A)e

Night time Testing

Figure 4-29
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411 Relay Board

The relay board is the DT-1/0 Quad Relay Board as shown in Figure 4-30. The model
requires 5 V supply voltage and can handle up to 10 A rated current. Out of the four
relays, the model has only three relays are actually used which are labeled 0, 1, and 2 in
the Figure. Relay 0 is connected to the MPPT charge controller which is RLY_MPPT in
our C code. Relay 1 is RLY_AC in our code which connects to the AC grid, and finally

Relay 2 is connected to the battery bank assigned as RLY_BAT.

Relay Terminals Relay Terminals

Load (Data Center)

Figure 4-31 High Level Block Diagram showing Power Sources Connections to the Relay
Board
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From Figure 4-31, the NO1 (Normally Open) terminal is connected to the positive line

that is coming from the MPPT, and the COM1 (Common) is connected to the load. Also,
NO2 terminal is connected to the phase line coming from the AC grid, and the COM2 is
connected to the load. The last two relay terminals NO3 and COM3 are connected to the

battery bank.

To connect the relay board to the STM32F7 Discovery kit, the communication pins (J1

IN Port), are labeled as IN1, IN2, and IN3. IN1 is the control input signal connected to a
digital input D3 in the microcontroller. IN2 and IN3 are also control signals connected to
D2 and D4 respectively. For the MCU to send the command to the relay to be turned ON

of OFF, the GPIO HAL function is utilized from the HAL driver as illustrated below:

\ 382 | HAL_GPIO WritePin(RLY MPPT_GPIO Port, RLY MPPT_Pin,GPIO_PIN SET):
| 406 | HAL GPIO WritePin(GPIOG, RLY_AC Pin,GPIO PIN_SET);
427 | HAL GPIO_WritePin(GPIOG, RLY BATT_Pin,GPIO_PIN_SET);
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Chapter 5: Hardware Results

A lab-scale construction of the system previously explained in Figure 3-1 was
conducted as illustrated in Figure 5-1. Each power source of the system was simulated
using a DC power supply (RIGOL DP832 Triple Output Power Supply). Since each
power supply has three outputs 30V/3A, 30V/3A, and 5V/3A, only two of the higher
voltage outputs are being used from the first power supply, while the third source comes
from one output of the second power supply to meet the design requirements of
24V/4.2A. The two outputs of the first power supply simulate the power coming from the
solar MPPT charge controller and the rectified AC grid. The second power supply
functions to simulate the power coming from the battery. A diode connects to the positive
side of each power supply to prevent the current flowing back to the outputs of the other
power supplies when one power supply is conducting. These diodes are marked as D1,
D2, D3 in Figure 5-1(NTE5812) and rated at 6A. For D1, the cathode of the diode
connects to a voltage divider (V1) and current sensor (I11) to measure the power coming
from the PV. These two sensors are connected to the MCU to control the relay
(RLY_MPPT) based on their values. The operation of the relays follows the assumptions
as described in Chapter 3 and Chapter 4. Moreover, the cathode of D2 connects to a
voltage divider (V2) to simulate the power coming from the grid. The voltage divider
informs the MCU whether or not the AC grid is available. As explained in Chapter 4, if a
voltage exists at the output of the divider, then the AC grid is available to provide power
to the load. This connection operates based on the assumption made in Chapter 4 via a
relay (RLY_AC). The last line is the line connected to D3 to simulate the battery. To

determine the status of the battery, the line connects to a voltage divider (V3). If the
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MCU detects any voltage at the output of the divider, then the battery is available. The

power coming from the battery is controlled by the relay connected to D3 (RLY_BAT).

Vi

v4

12

M

plz303w
electronic load |

D1 L T RLY_MPPT L
RIGOL DP832 *‘D§= —»—0" O0—
Power Supply [\ [7
J
| eveerness 3
V2
L8 =
RIGOL DP832 ( —»—0 O—
Power Supply Ve
3
V3
L RLY_BAT
D3
RIGOL DP832 ﬁ —»—C0 O
Power Supply

Figure 5-1 Lab-Scale wiring diagram

Again, the STM32F7 Microcontroller controls all relays by following the

assumptions made in Chapter 3. These relays connect to an electronic load to simulate the

load (PLZ303W Electronic Load). This load-current ties to a voltage divider (V4) and a

current sensor (12) to measure the power at the load. Based on the two values measured

via these two sensors the microcontroller controls the operation of the system.
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Figure 5-2 RIGOL DP832 triple output power supply used for test setup

snteees Lses L ZIO3IW T -

Figure 5-3 PLZ303W electronic load to simulate the load

In order to analyze the results and to demonstrate the functionality and
performance of the proposed system, the lab setup illustrated in Figure 5-4 was
assembled. Additionally, several cases were tested whose results were captured from the

LCD of the STM32F7 microcontroller. These cases are as follows:

e Case #1: getting the microcontroller to combine the power from the PV and
the AC grid

e Case #2: powering the load from the PV system only
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Case #3: connecting the battery to the load when the grid and the PV are not
available
Case #4: supplying the load from the grid at night

Case #5: using the batteries as a backup at night.

Figure 5-5 Lab setup zoomed in
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Case #1

When simulating the first case, the LDR was exposed to light, so the MCU is
automatically set as “day-time” as shown in Figure 5-6. In this case, the load power was
adjusted from the electronic load to 24 W and the PV system power was adjusted from
the DC power supply to 14 W. Since the generation from the PV is less than the power
required by the load, the MCU will automatically turn on the two relays connected to the
AC grid and the MPPT charge controller. Therefore, the AC grid will compensate the
remaining 10 W needed to power the load. Figure 5-6 displays the STM32F7
microcontroller screen indicating that the PV system and the AC grid are both connected.

Further, we can see that the battery is available and can be used as a backup if needed.

Power System Management

PY Sys Battery LOAD
TATUS: Available Power [W]= 23.7551
ATUS: DISCORNECTED Voltage [V]= 22.90
T ime Current [A)= 1,0487
NNECTTEL STATUS: DayTime

Figure 5-6 Case 1: AC Grid and PV are combined

Case #2

In this case, the microcontroller remained set at “day-time”. The load was

adjusted from the electronic load to 18W and the PV system was adjusted from the DC
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power supply to 24W. Since the load only needs 18W of power, and the PV system was
sufficient to supply the needed power to the load; therefore, the MCU automatically
turned off the relay connected to the grid and the relay from the PV charge controller
remained connected. As you can see in Figure 5-7, the AC grid is available but
disconnected, while the PV system is the only source of power connected. As mentioned

above the battery will still serve as a backup power source if needed.

Power System Management

LOAD
Power
Voltage [V]= 22.79

urrent [Al«

Figure 5-7 Case 2: PV is Supplying the load

Case #3

With the microcontroller still functioning at day-time, the PV and the AC system
were both set to OW. Because the two sensors at the PV line did not send any readings to
the microcontroller, the relay connected to the PV was automatically turned off. Further,
the voltage sensor that was placed in the positive line coming from the AC grid did not
measure any voltage across its terminals, the MCU also automatically disconnected that

relay. As shown in Figure 5-8, the PV system and the AC grid are not available and
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disconnected. The battery is the only source of power that is available and connected to

the system.

Case #4

System Management

Battery LOAD
| Power [(W]= 24.055
NNECTED Voltage [V]= 23.1%9
Current [A)= 1.0417

Tine

Figure 5-8 Case 3: Battery is connected as backup during the day

In conducting this case, the LDR sensor was covered to notify the MCU that it is

“night time”. During this setting, the MCU will read O power coming from the PV;

therefore the PV is automatically disconnected from the network. The MCU will fully

rely on the AC grid power source. The relay connected to the grid will be turned on to

deliver the power to the load. As shown in Figure 5-9, the PV system is disconnected and

the AC grid is available and connected to the system. Again the battery will remain as a

backup power source if needed.
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Power System Management

Battery LOAD

STATUS: Available Power [V]= 14.435
STATUS: DISCONNECTED Voltage [V]

T ime Current [A]= €
STATUS:NightTine

Figure 5-9 Case 4: AC Grid is supplying load

Case #5

The purpose of this case was to test the backup power supply during night time.
The power supply that was assumed to be the rectifier AC grid was turned off, leaving
the backup battery as the only power source available to feed the load. Figure 5-10
displays both AC and PV as not available and not connected. the backup battery as a

source that is available and connected to the system.

61



Power System Management

Battery LOAD

"ATUS: Available Power [W]= 24.453
TUs:  CONNECTED Voltage [V]= 23.3C

I ime Current [A]= 1.0507
\TUS:NightTime

d

Figure 5-10 Case 5: Battery is connected as backup at night
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Chapter 6: Conclusion and Future Work

This thesis presents the hardware and software for modeling DC data center using
hybrid power sources that combines the utility grid with a renewable energy source (PV
system). The proposed design topology was first simulated before implementing the
design in the lab. The results from the simulation and the neural network model of the
system as elaborated in Chapter 4 demonstrate the accuracy in the operation of such mix
of energy sources and hence proved the possibility of combining different power sources.
However, the assumptions implemented when developing the software could be an
improvement in future work. Voltage and current sensors could be employed to the line
coming from the utility grid for monitoring the power. Then the measured power value
could be used as an input to the NN. In addition, the battery state of charge could be
measured and used as an input when developing the NN model. These additional
requirements consequently will demand the use of a different microcontroller with more

analog to digital ports.

Furthermore, the hardware design was constructed using two DC power supplies to
characterize each power source. The goal was to demonstrate a proof-of-concept lab-
scale system rather than testing the concept in a real system. When interfacing the
microcontroller with the sensors and the relay board, the result demonstrated accuracy
with the software. Also, the NN model worked very well as looked-for when developing
the model. However, further work could be done to achieve a much closer lab-scale
design to the real system. Instead of using DC power supplies to simulate the energy
sources, a solar panel, the utility grid, and lead-acid batteries could be used. Additionally,

the assumption that the battery bank could only be charged from the PV system may be
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improved by allowing the utility line to charge the battery, in case PV power is not

enough or not available.
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Appendix A: Neural Network Model Table

Input to the NN Target Values Output (NN Result)
Load in W |PVin W |PV On or Off|[AC On or OfflPV On or OffAC On or Off]
100 100 1 0 1 0
100 95 1 1 1 1
100 90 1 1 1 1
100 85 1 1 1 1
100 80 1 1 1 1
100 75 1 1 1 1
100 70 1 1 1 1
100 65 1 1 1 1
100 60 1 1 1 1
100 55 1 1 1 1
100 50 1 1 1 1
100 45 1 1 1 1
100 40 1 1 1 1
100 35 1 1 1 1
100 30 1 1 1 1
100 25 1 1 1 1
100 20 1 1 1 1
100 15 1 1 1 1
100 10 1 1 1 1
100 0.5 1 1 1 1
95 100 1 0 1 (0)
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95 95 0
95 90 1
95 85 1
95 80 1
95 75 1
95 70 1
95 65 1
95 60 1
95 55 1
95 50 1
95 45 1
95 40 1
95 35 1
95 30 1
95 25 1
95 20 1
95 15 1
95 10 1
95 0.5 1
90 100 0
90 95 (0)
90 90 0
90 85 1
90 80 1
90 75 1
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90 70 1
90 65 1
90 60 1
90 55 1
90 50 1
90 45 1
90 40 1
90 35 1
90 30 1
90 25 1
90 20 1
90 15 1
90 10 1
90 0.5 1
85 100 0
85 95 0
85 90 (0)
85 85 0
85 80 1
85 75 1
85 70 1
85 65 1
85 60 1
85 55 1
85 50 1
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85 45 1
85 40 1
85 35 1
85 30 1
85 25 1
85 20 1
85 15 1
85 10 1
85 0.5 1
80 100 (0)
80 95 0
80 90 0
80 85 (0)
80 80 0
80 75 1
80 70 1
80 65 1
80 60 1
80 55 1
80 50 1
80 45 1
80 40 1
80 35 1
80 30 1
80 25 1
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80 20 1
80 15 1
80 10 1
80 0.5 1
75 100 (0)
75 95 (0)
75 90 0
75 85 0
75 80 (0)
75 75 0
75 70 1
75 65 1
75 60 1
75 55 1
75 50 1
75 45 1
75 40 1
75 35 1
75 30 1
75 25 1
75 20 1
75 15 1
75 10 1
75 0.5 1
70 100 (0)
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70 95 (0)
70 90 (0)
70 85 0
70 80 0
70 75 (0)
70 70 0
70 65 1
70 60 1
70 55 1
70 50 1
70 45 1
70 40 1
70 35 1
70 30 1
70 25 1
70 20 1
70 15 1
70 10 1
70 0.5 1
65 100 (0)
65 95 (0)
65 90 (0)
65 85 (0)
65 80 0
65 75 0
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65 70 (0)
65 65 0
65 60 1
65 55 1
65 50 1
65 45 1
65 40 1
65 35 1
65 30 1
65 25 1
65 20 1
65 15 1
65 10 1
65 0.5 1
60 100 (0)
60 95 (0)
60 90 (0)
60 85 (0)
60 80 (0)
60 75 0
60 70 0
60 65 (0)
60 60 0
60 55 1
60 50 1
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60 45 1
60 40 1
60 35 1
60 30 1
60 25 1
60 20 1
60 15 1
60 10 1
60 0.5 1
55 100 (0)
55 95 (0)
55 90 (0)
55 85 (0)
55 80 (0)
55 75 (0)
55 70 0
55 65 0
55 60 (0)
55 55 0
55 50 1
55 45 1
55 40 1
55 35 1
55 30 1
55 25 1
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55 20 1
55 15 1
55 10 1
55 0.5 1
50 100 (0)
50 95 (0)
50 90 (0)
50 85 (0)
50 80 (0)
50 75 (0)
50 70 (0)
50 65 0
50 60 0
50 55 (0)
50 50 0
50 45 1
50 40 1
50 35 1
50 30 1
50 25 1
50 20 1
50 15 1
50 10 1
50 0.5 1
45 100 (0)
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45 95 (0)
45 90 (0)
45 85 (0)
45 80 (0)
45 75 (0)
45 70 (0)
45 65 (0)
45 60 0
45 55 0
45 50 (0)
45 45 0
45 40 1
45 35 1
45 30 1
45 25 1
45 20 1
45 15 1
45 10 1
45 0.5 1
40 100 0
40 95 (0)
40 90 (0)
40 85 (0)
40 80 (0)
40 75 (0)
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40 70 (0)
40 65 (0)
40 60 (0)
40 55 0
40 50 0
40 45 (0)
40 40 0
40 35 1
40 30 1
40 25 1
40 20 1
40 15 1
40 10 1
40 0.5 1
35 100 0
35 95 0
35 90 (0)
35 85 (0)
35 80 (0)
35 75 (0)
35 70 (0)
35 65 (0)
35 60 (0)
35 55 (0)
35 50 0
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35 45 0
35 40 (0)
35 35 0
35 30 1
35 25 1
35 20 1
35 15 1
35 10 1
35 0.5 1
30 100 0
30 95 0
30 90 0
30 85 (0)
30 80 (0)
30 75 (0)
30 70 (0)
30 65 (0)
30 60 (0)
30 55 (0)
30 50 (0)
30 45 0
30 40 0
30 35 (0)
30 30 0
30 25 1
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30 20 1
30 15 1
30 10 1
30 0.5 1
25 100 0
25 95 0
25 90 0
25 85 0
25 80 (0)
25 75 (0)
25 70 (0)
25 65 (0)
25 60 (0)
25 55 (0)
25 50 (0)
25 45 (0)
25 40 0
25 35 0
25 30 (0)
25 25 0
25 20 1
25 15 1
25 10 1
25 0.5 1
20 100 0
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20 95 0
20 90 0
20 85 0
20 80 0
20 75 (0)
20 70 (0)
20 65 (0)
20 60 (0)
20 55 (0)
20 50 (0)
20 45 (0)
20 40 (0)
20 35 0
20 30 0
20 25 (0)
20 20 0
20 15 1
20 10 1
20 0.5 1
15 100 0
15 95 0
15 90 0
15 85 0
15 80 0
15 75 0
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15 70 (0)
15 65 (0)
15 60 (0)
15 55 (0)
15 50 (0)
15 45 (0)
15 40 (0)
15 35 (0)
15 30 0
15 25 0
15 20 (0)
15 15 0
15 10 1
15 0.5 1
10 100 0
10 95 0
10 90 0
10 85 0
10 80 0
10 75 0
10 70 0
10 65 (0)
10 60 (0)
10 55 (0)
10 50 (0)
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10 45 (0)
10 40 (0)
10 35 (0)
10 30 (0)
10 25 0
10 20 0
10 15 (0)
10 10 0
10 0.5 1
0.5 100 0
0.5 95 0
0.5 90 0
0.5 85 0
0.5 80 0
0.5 75 0
0.5 70 0
0.5 65 0
0.5 60 0
0.5 55 (0)
0.5 50 (0)
0.5 45 (0)
0.5 40 (0)
0.5 35 (0)
0.5 30 (0)
0.5 25 (0)
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0.5 20 (0)
0.5 15 0
0.5 10 0
0.5 0.5 0
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Appendix B: STM32F7 C Code in Keil Software

C:\Users\Khalid\Desktop\Thesis\RealSystem\Src\main.c

1 J**

2 Hok ko kk ok ko k ko kA kA kA k k ok ok ok k ok kR kA Ak A Ak k ok kkkk ok Rk kk Rk Ak Ak kk ok kA k ok kR kA kR Ak Ak ko
3 * File Name : main.c

4 * Description : Main program body

5 ok ok e e ke sk ok sk ke ok ok ok ke ok ke ok ok ok ok ke ok ok ok ok ke ok sk ke ok ke e ke ke ok e ke ke e ok s ok ke ok ok ke e ok ok ok ok ok e sk sk ok ke ok ok sk ok ok e ok sk ok ok ok ke ok ok ok R ke ok

6 *

2 COPYRIGHT (c) 2016 STMicroelectronics

8

9 Redistribution and use in source and binary forms, with or without modification,

*
*
*
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
¥ this list of conditions and the following disclaimer.
% 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
# 3. Neither the name of STMicroelectronics nor the names of its contributors
17 & may be used to endorse or promote products derived from this software
* without specific prior written permission.

*

*

*

*

*

*

*

*

*

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GCODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

30 *

31 Ak k Ak kA Ak kk kA k kA k ok Ak kA kA Ak Ak Ak kA kR hk kA h ok kkhk ok khhk K kkhhd ok hkd Ak dh ok dhk Kk ok ke kkhkk ok
32 */

23 /* Includes
34 #include "stm32f7xx_hal.h"

36 /* USER CODE BEGIN Includes */
37 #include "stdbool.h"

40 #include "stm32746g_discovery_lcd.h"
41 #include <string.h>

42  #define RGB565 BYTE PER PIXEL 2 7

43  #define ARBG8888_BYTE PER PIXEL 4 //

44

45  #define LCD_FRAME BUFF1 SDRAM_DEVICE_ADDR

46 #define LCD_FRAME_BUFFZ ((uint32_t) (LCD_FRAME_BUFFl + (RKO43FN48H_WIDTH * RKO43FN48H_HEIGHT *
ARBG8888_BYTE_PER_PIXEL)))

47

48 #define LTDC_LAYER_1 ((uint32_t)1) /* Layer 1 */

49 #define LTDC_LAYER 2 ((uint32_t)2) /* Layer 2 */

50

51

52

53 /* USER CODE END Includes */

54

55 il T L o e e e e »

56 ADC_HandleTypeDef hadc3;
57 DMA_HandleTypeDef hdma_adc3;

:g DMA2D_HandleTypeDef hdma2d;

22 LTDC_HandleTypeDef hltdc;

2§ UART_HandleTypeDef huartl;

gg SDRAM HandleTypeDef hsdraml;

23 /* USER CODE BEGIN PV */

68 G o R e e >

69  #define STR_BUFFER_SIZE 128
70  char BUFFER_STR[STR_BUFFER_SIZE];
71  uintl6_t ADC_BUFFER[6];
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C:\Users\Khalid\Desktop\Thesis\RealSystem\Src\main.c

72 uint32_t nilaiX,nilaiy;
93 /* USER CODE END PV */
74
75 /% Private function prototypes ———————-———————orr—=—r——ror——rsorme o ®if;
76 void SystemClock_Config(void);
77 void Error_Handler (void);
78 static void MX_GPIO_Init (void);
79  static void MX_DMA Init (void):
80 static void MX_ADC3_Init (void);
81 static void MX_DMA2D_Init (void);
82 static void MX_FMC_Init (void);
83 static void MX_LTDC_Init (void);
84 static void MX_USART1 UART_Init (void);
85
86 /* USER CODE BEGIN PFP */
87 /* Private function prototypes ====—===--mmmem e e e xi
88
89 /* USER CODE END PFP */
90
91 /* USER CODE BEGIN 0 */
92 #include <stdio.h>
93 #include "SysIntgration.h" /* Model's header file */
94 #include "rtwtypes.h" /* MathWorks types */
95 float my Inpl,my_Inp2;
96 float my_Outl,my Out2,my OutlR,my_ Out2R;
97  double SW_MPPT, SW_AC;
98 double MPPTP, LOADP;
99 double LOADV, LOADI, MPPTV, MPPTI;
100  bool RLY MPPT, RLY BATT, RLY AC, STS_Day, STS_AC, STS_BAT;
101 double SW_MPPT, SW_AC;
102 double P_MPPT, P_LOAD, limit=0.5;
103 double STS_ACval,STS_BATval;
104  bool RLY MPPT, RLY_BATT, RLY AC, STS_Day, STS_AC, STS_BATT,STS_MPPT;
105
106
107
108
109
110 /* Real-time model */
111 extern RT_MODEL_SysIntgration *const SysIntgration M;
112
113 /* Set which subrates need to run this base step (base rate always runs).*/
114 /* Defined in SysIntgration.c file */
115 extern void SysIntgration SetEventsForThisBaseStep (boolean_T*);
116
L5 i /* Flags for taskOverrun */
118 static boolean_T OverrunFlags[1];
119
120 /* Number of auto reload timer rotation computed */
121 static uint32_t autoReloadTimerLoopVal S = 1;
122
123 /* Remaining number of auto reload timer rotation tec do */
124 static uint32_t remainAutoReloadTimerLoopval S = 1;
125
126 /* USER CODE END 0 */
127
128 int main(void)
129 §
130
131 /* USER CODE BEGIN 1 */
132 /* Data initialization */
133 int_T i;
134 uint8_t display0;
135
136 /* USER CODE END 1 */
137
138 /* MCU Configuration-—=——=—=——m=m e e e e e e e — e ]
139
140 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
141 HAL_Init();
142
143 /* Configure the system clock */
Page 2
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C:\Users\Khalid\Desktop\Thesis\RealSystem\Src\main.c

144 SystemClock_Config()
145
146 /* Initialize all configured peripherals */
147 MX_GPIO_Init();
148 MX_DMA_Init();
149 MX_ADC3_Init();
150 MX_DMA2D_Init();
LST MX_FMC_Init();
152 MX_LTDC_Init();
153 MX_USART1_UART_Init();
154
155 /* USER CODE BEGIN 2 */
156 /* Systick configuration and enable SysTickHandler interrupt */
157 if (SysTick_Config((uint32_t) (SystemCoreClock * 0.001))) {
158 autoReloadTimerLoopVal_ S = 1;
159 do {
160 autoReloadTimerLoopVal_S++;
161 } while ((uint32_t) (SystemCoreClock * 0.001) /autoRelcadTimerLoopVal_ S >
162 SysTick_LOAD_RELOAD_Msk) ;
163
164 SysTick_Config((uint32_t) (SystemCoreClock * 0.001)/autoReloadTimerLoopVal_s) ;
165 }
166
167 remainAutoReloadTimerLoopVal_S = autoReloadTimerLoopvVal_ sS;
168
169
170 BSP_I.CD_Init(); //Initialize the LCD
171 BSP_LCD_LayerDefaultInit (LTDC_LAYER_1, LCD_FRAME_BUFF1l); //apply the layer configuration
172 BSP_LCD_SelectLayer (LTDC_ILAYER 1) ; //select the LCD layer to be used
173 BSP_LCD_SetBackColor (LCD_COLOR_WHITE) ; //Set the background color
174 BSP_LCD_Clear (LCD_COLOR WHITE); // Clrear the whole LCD
175 BSP_LCD_DisplayOn(); // Enable the LCD display
176
177 BSP_LCD_SetFont (&Font20); //Set the font size
178 BSP_LCD_SetTextColor (LCD_COLOR_BLUE) ; //select the color of the text
179 BSP_LCD_DisplayStringAt (0, 10, (uint8_t *)"Power System Management", CENTER MODE ); //Display string
line
180
181
182 HAL DMA_Init (&hdma_adc3); // ADC
183 HAL ADC_Start DMA (¢hadc3, (uint32 t*)ADC_BUFFER, 6);
184
185 /* USER CODE END 2 */
186
187 /* Infinite loop */
188 /* USER CODE BEGIN WHILE */
189 for (i=0;i<l;i++) {
190 OverrunFlags[i] = 0;
191 }
192
193 /* Model initialization call */
194 SysIntgration_initialize(); //My NN
195
196 /* Imfinite: loop */
197 /* Real time from systickHandler */
198
199 RLY MPPT=SET;
200 HAL Delay(1000);
201
202 while (1) {
203 1 if (remainAutoReloadTimerLoopVal S == 0) {
204 1/ remainAutoReloadTimerLoopVal_S = autoReloadTimerLoopVal_S;
205
206 // /* Check base rate for overrun */
207 Il if (OverrunFlags[0]) (
208 Ll rtmSetErrorStatus (SysIntgration M, "Overrun");
209 2 }
210
211 Vi OverrunFlags[0] = true;
212
213 // /* Step the model for base rate */
214 L SysIntgration_step();
Page 3
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C:\Users\Khalid\Desktop\Thesis\RealSystem\Src\main.c

215
216 // /* Get model outputs here */
217
218 Vi /* Indicate task for base rate complete */
219 L7 OverrunFlags[0] = false;
220 b }
221
222 e e Read Power
223 //Power MPPT
224 for (i=0;i<1000;i++)
225 {
226
227 MPPTI= (float)ADC_BUFFER([0] *3.3/4096; //Analog Read
228 MPPTI= (MPPTI-2.5)/0.066;
229 MPPTV= (float) (ADC_BUFFER([1]*3.3/4096) *(7.8); //Analog Read
230 MPPTP=MPPTV*MPPTI;
231
232 if (MPPTV>=24) STS_MPPT=SET;
233 if (MPPTV<20) STS_MPPT=RESET;
234 17
235 // //Power LOAD
236 LOADV= (float) (ADC_BUFFER[2]%*3.3/4096)*7.8; //Analog Read
237 LOADI=(float)ADC_BUFFER[3]*(3.3/4096); //Analog Read
238 LOADI= (LOADI-2.5)/0.066;
239 LOADP=LOADV*LOADI ;
240 // Dsiplay to LCD
241
242 T e Read AC Status
243 STS_ACval=(float)ADC_BUFFER[4]*3.3/4096; //Analog Read
244 if (STS_ACval>=l)
245 {
246 STS_AC=SET;
247 }
248 if (STS_Acval<l)
249 {
250 STS_AC=RESET;
251 }
252 [l —mm=mmmmsmme Read Battery Status
253 STS_BATval=(float)ADC_BUFFER[5]*3.3/4095; //Bnalog Read
254 if (STS_BATval>=1)
255 {
256 STS_BAT=SET;
257 }
258 if (STS_BATval<l)
259 {
260 STS_BAT=RESET;
261 }
262 }
263 [/ —mmmmmm——————— Read DAY Status Digital Read
264 STS_Day=! (HAL_GPIO_ReadPin(GPIOI, STS_DAY Pin));
265
266
267 switch (STS_Day)
268 {
269 case SET:
270 {
271
272 if (STS_AC==SET && MPPTP>=limit)
273 {
274
275 SysIntgration U.Inl=LOADP;
276 SysIntgration U.In2=MPPTP;
277
278 SysIntgration_step();
279
280 my_Outl=SysIntgration_Y.Outl;
281 my Out2=SysIntgration_Y.Out2;
282
283 my_OutlR=round (my_Outl) ;
284 my_Out2R=round (my_Out2) ;
285
286 if (my_ OutlR==0) RLY MPPT=RESET;
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287 if (my_OutlR==1) RLY MPPT=SET;

288 // DISP on LCD

289

290 if (my_Out2R==0) RLY_AC=RESET:

291 if (my_Out2R==1) RLY_AC=SET;

292 // DISP on LCD

293 //NN end Plus delay......

294 }

295

296

297 if (STS_AC==SET && MPPTP<=limit)

298 {

299 RLY_AC=SET;

300 RLY MPPT=RESET;

301 RLY BATT=RESET;

302 }

303

304 if (STS_AC==RESET && MPPTP<=0 && STS_BAT==SET)

305 {

306 RLY AC=RESET;

307 RLY MPPT=RESET;

308 RLY BATT=SET;

309 //Disp on LCD

310 }

g i ) (STS_AC==RESET && MPPTP<=0 && STS_BAT==RESET)

312 {

313 RLY AC=RESET;

314 RLY_ MPPT=RESET;

315 RLY BATT=RESET;

316 //Disp on LCD

317 //No Source

318 }

319 break;

320 }

321

322 case RESET:

323 {

324 if (STS_AC==SET)

325 {

326 RLY_AC=SET;

329 RLY_MPPT=RESET;

328 RLY_BATT=RESET;

329 //Disp on LCD

330 }

331 if (STS_AC==RESET && STS_BAT==SET)

332 {

333 RLY AC=RESET;

334 RLY MPPT=RESET;

335 RLY BATT=SET;

336 //Disp on LCD

337 }

338 if (STS_AC==RESET && STS_BAT==RESET)

339 {

340 RLY AC=RESET;

341 RLY MPPT=RESET;

342 RLY BATT=RESET;

343 //Disp on LCD

344 //No SOurce

345 }

346

347 break;

348 }

349

350

351 [/ # R H RS PV System #H#FHHHHRHHHHARHHAAH SRS

352 for (display0=0;display0<=30;display0++)

353

354 BSP_LCD_SetFont (&Font16) ; // set font size

355 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; //Set text color

356 BSP_LCD DisplayStringAt (10, 50, (uint8_t *)"PV Sys", LEFT_MODE); //set the location in the screen

357

358 sprintf ((char *)BUFFER_STR,"POWER  [W]= %3.2£",MPPTP);
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359 BSP_LCD_SetFont (&Fontl12) ; 1/

360 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; //

361 BSP_LCD_DisplayStringAt (10, 75, (uint8_t *)BUFFER STR, LEFT_MODE) ;
362

363 sprintf ((char *)BUFFER_STR,"Voltage [V]= %2.2f",MPPTV);

364 BSP_LCD_SetFont (&Font12) ; 1/

365 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; //

366 BSP_LCD_DisplayStringAt (10, 95, (uint8_t *)BUFFER_STR, LEFT_MODE);
367

368 sprintf ((char *)BUFFER_STR,"Current [A]= %2.2f",MPPTI)

369 BSP_LCD_SetFont (&Fontl12); 17

370 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; 1/

371 BSP_LCD_DisplayStringAt (10, 115, (uint8_t *)BUFFER_STR, LEFT MODE)
372

373 BSP_LCD_SetFont (&Fontl12); 11

374 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; //

375 if (RLY_MPPT==RESET) {

376 BSP_LCD DisplayStringAt (10, 135, (uint8_t *)"STATUS:DISCONNECTED",
377 HAL GPIO WritePin (RLY MPPT GPIO Port, RLY MPPT Pin,GPIO_PIN_RESET)
378 }

379 if (RLY_MPPT==SET) {

380 BSP_LCD_DiSplayStringAt(10, 135; (uintS_t *) "STATUS: CONNECTTED",
381 HAL_GPIO_WritePin (RLY MPPT_GPIO_Port, RLY_MPPT Pin,GPIO_PIN_SET);
382 ¥ o

383 [/ # RS H RS AC Grid #EHHHFHHHFHHAHHREHHERESES

385 BSP_LCD_SetFont (&Font16) ; //

386 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; 1/

387 BSP_LCD DisplayStringAt (10, 160, (uint8_t *)"AC Grid", LEFT_MODE) ;
388

389

390 BSP_LCD_SetFont (&Fontl12); //

391 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; //

392 if (STS_AC==RESET)

393 BSP_LCD DisplayStringAt (10, 185, (uint8_t *)"STATUS:Unavailable",

394 if (STS_AC==SET)

395 BSP_LCD_DisplayStringAt (10, 185, (uint8_t *)"STATUS: Available",

396

397 BSP_LCD_sSetFont (&Fontl2) ; Vi

398 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; //

399 if (RLY_AC==RESET) {

400 BSP_LCD_DisplayStringAt(lO, 205, (uints_t *) "STATUS : DISCONNECTED",
401 HAL GPIO WritePin(GPIOG, RLY AC_Pin,GPIO_PIN_RESET) ;

402 i

403 if (RLY_AC==SET) {

404 BSP_LCD_DisplayStringAt(lO, 205, (uint8_t *) "STATUS : CONNECTED",
405 HAL GPIO WritePin (GPIOG, RLY AC_Pin,GPIO_PIN SET);

406 }

407 //

408 /77 #EhER S # S Battery HE#HHHHAFAHAHHSHHARAHRES
409 74

i

LEFT_MODE) ;

LEFT_MODE) ;

LEFT_MODE) ;

LEFT_MODE) ;

LEFT_MODE) ;

LEFT_MODE) ;

410 BSP_LCD_SetFont (&Fontl6) ; e
411 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; //
412 BSP_LCD_DisplayStringAt (175, 50, (uint8_t *)"Battery", LEFT_MODE);
413 BSP_LCD_SetFont (&Fontl2); Lt
414 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; Lt
415 if (STS_BAT==RESET)
416 BSP_LCD_DisplayStringAt (175, 75, (uint8_t *)"STATUS:Unavailable", LEFT_MODE);
417 if (STS_BAT==SET)
418 BSP_LCD_DisplayStringAt (175, 75, (uint8_t *)"STATUS: Available", LEFT_MODE)
419 BSP_LCD_sSetFont (&Fontl2); /7
420 BSP_LCD_SetTextColoxr (LCD_COLOR_BROWN) ; //
421 if (RLY_BATT==RESET) {
422 BSP_LCD_DisplayStringAt (175, 95, (uint8_t *)"STATUS:DISCONNECTED", LEFT_MODE) ;
423 HAL_GPIO_WritePin (GPIOG, RLY_ BATT_Pin,GPIO_PIN_RESET);
424 }
425 if (RLY_BATT==SET) {
426 HAL GPIO WritePin (GPIOG, RLY BATT Pin,GPIO_PIN_SET);
427 BSP_LCD_DisplayStringAt (175, 95, (uint8_t *)"STATUS: CONNECTED", LEFT_MODE) ;
428 }
429 /177 #######EEE Day or night ########FFHHHFRAHFHHEARES
430 BSP_LCD_SetFont (&Fontl16) ;
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431 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; //
432 BSP_LCD_DisplayStringAt (175, 115, (uint8_t *)"Time", LEFT_MODE);
433 BSP_LCD_SetFont (&Font12) ; L
434 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; 1/
435 if (STS_Day==SET)
436 BSP_LCD_DisplayStringAt (175, 135, (uint8_t *)"STATUS: DayTime", LEFT_MODE);
437 if (STS_Day==RESET)
438 BSP_LCD_DisplayStringAt (175, 135, (uint8_t *)"STATUS:NightTime", LEFT_MODE);
439
440
441 /777 #Eht SRS Load ###H#A#HFHEHHHHREHABHHHGHE
442 BSP_LCD_SetFont (&Font16); it
443 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; V%
444 BSP_LCD DisplayStringAt (350, 50, (uint8_t *)"LOAD", LEFT_MODE);
445
446 sprintf ((char *)BUFFER STR, "Power [W]= %3.2f",LOADP) ;
447 BSP_LCD_SetFont (&Font12); A
448 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; //
449 BSP_LCD_ DisplayStringAt (340, 75, (uint8_t *)BUFFER_STR, LEFT MODE) ;
450
451 sprintf ((char *)BUFFER_STR,"Voltage [V]= %2.2f",LOADV) ;
452 BSP_LCD_SetFont (&Fontl2) ; Lr
453 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; //
454 BSP_LCD_DisplayStringAt (340, 95, (uint8_t *)BUFFER_STR, LEFT_MODE) ;
455
456 sprintf ((char *)BUFFER_STR,"Current [A]= %2.2f",LOADI);
457 BSP_LCD_SetFont (&Font12); //
458 BSP_LCD_SetTextColor (LCD_COLOR_BROWN) ; 2
459 BSP_LCD DisplayStringAt (340, 115, (uint8_ t *)BUFFER _STR, LEFT_MODE) ;
460 }
461 }
462
463
464 /* USER CODE END WHILE */
465
466 /* USER CODE BEGIN 3 */
467 /* USER CODE END 3 */
468
469 }
470
471 /** System Clock Configuration
472 *f
473 void SystemClock_Config(void)
474 {
475
476 RCC_OscInitTypeDef RCC_OscInitStruct;
4717 RCC_ClkInitTypeDef RCC_ClkInitStruct;
478 RCC_PeriphCLKInitTypeDef PeriphClkInitStruct;
479
480 __HAL_RCC_PWR_CLK_ENABLE() ;
481
482 __HAL PWR_VOLTAGESCALING_ CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2) ;
483
484 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE HSI;
485 RCC_OscInitStruct.HSIState = RCC_HSI_ON;
486 RCC_OscInitStruct.HSICalibrationvValue = 16;
487 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
488 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
489 RCC_OscInitStruct.PLL.PLLM = 10;
490 RCC_OscInitStruct.PLL.PLLN = 210;
491 RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
492 RCC_OscInitStruct.PLL.PLLQ = 2;
493 if (HAL_RCC_OscConfig (&RCC_OscInitStruct) != HAL OK)
494 {
495 Error_ Handler():
496 }
497
498 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE HCLK|RCC_CLOCKTYPE_SYSCLK
499 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
500 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
501 RCC_ClkInitStruct.AHBCLKDiVider = RCC_SYSCLK_DIV1;
502 RCC_ClkInitStruct.APBICLKDivider = RCC_HCLK DIV4;
Page 7

90



C:\Users\Khalid\Desktop\Thesis\RealSystem\Src\main.c

503 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

504 if (HAL_RCC_ClockConfig (&RCC_ClkInitStruct, FLASH_LATENCY 5) != HAL_OK)
505 {

506 Error_ Handler():

507 }

508

509 PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC|RCC_PERIPHCLK_USART1;
510 PeriphClkInitStruct.PLLSAI.PLLSAIN = 192;

511 PeriphClkInitStruct.PLLSAI.PLLSAIR = 2;

512 PeriphClkInitStruct.PLLSAI.PLLSAIQ = 2;

513 PeriphClkInitStruct.PLLSAI.PLLSAIP = RCC_PLLSAIP_DIV2;

514 PeriphClkInitStruct.PLLSAIDivQ = 1;

515 PeriphClkInitStruct.PLLSAIDivR = RCC_PLLSAIDIVR_2;

516 PeriphClkInitStruct.UsartlClockSelection = RCC_USARTICLKSOURCE_PCLK2;
517 if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)

518 {

519 Error_ Handler():

520 }

521

522 HAL_SYSTICK Config(HAL RCC_GetHCLKFreq()/1000) ;

523

524 HAL SYSTICK CLKSourceConfig (SYSTICK_CLKSOURCE_HCLK) ;

525

526

527 HAL_NVIC_SetPriority(SysTick_IROn, 0, 0);

528 }

529

530 /* ADC3 init function */
531 static void MX_ADC3_Init (void)

532 {

533

534 ADC_ChannelConfTypeDef sConfig;

535

536 /**Confiqgure the global features of the ADC (Clock, Resolution, Data Alignment and number of
conversion)

537 4

538 hadc3.Instance = ADC3;

539 hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;

540 hadc3.Init.Resolution = ADC_RESOLUTION_12B;

541 hadc3.Init.ScanConvMode = ENABLE;

542 hadc3.Init.ContinuousConvMode = ENABLE;

543 hadc3.Init.DiscontinuousConvMode = DISABLE;

544 hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;

545 hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;

546 hadc3.Init.NbrofConversion = 6;

547 hadc3.Init.DMAContinuousRequests = ENABLE;

548 hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;

549 if (HAL_ADC_Init(shadc3) != HAL_ OK)

550 {

551 Error Handler();

552 }

553

554 /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its
sample time.

555 4

556 sConfig.Channel = ADC_CHANNEL_O;

557 sConfig.Rank = 1;

558 sConfig.SamplingTime = ADC_SAMPLETIME_144CYCLES;

559 if (HAL_ADC_ConfigChannel (¢hadc3, &sConfig) != HAL_OK)

560 {

561 Error_ Handler();

562 }

563

564 /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its
sample time.

565 %

566 sConfig.Channel = ADC_CHANNEL_8;

567 sConfig.Rank = 2;

568 if (HAL_ADC_ConfigChannel (¢hadc3, &sConfig) != HAL_OK)

569 {

570 Error_Handler();

571 }
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572

573 /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its
sample time.

574 74

575 sConfig.Channel = ADC_CHANNEL_7;

576 sConfig.Rank = 3;

5972 if (HAL_ADC_ConfigChannel (¢hadc3, &sConfig) != HAL OK)

578 {

579 Error Handler();

580 }

581

582 /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its
sample time.

583 Y

584 sConfig.Channel = ADC_CHANNEL_6;

585 sConfig.Rank = 4;

586 if (HAL_ADC_ConfigChannel (¢hadc3, &sConfig) != HAL_OK)

587 {

588 Error_Handler():

589 }

590

591 /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its
sample time.

592 %4

593 sConfig.Channel = ADC_CHANNEL_S;

594 sConfig.Rank = 5;

595 if (HAL_ADC_ConfigChannel (¢hadc3, &sConfig) != HAL OK)

596 {

597 Error Handler();

598 }

599

600 /**Confiqgure for the selected ADC regular channel its corresponding rank in the sequencer and its
sample time.

601 */

602 sConfig.Channel = ADC_CHANNEL_ 4;

603 sConfig.Rank = 6&;

604 if (HAL_ADC_ConfigChannel (&¢hadc3, &sConfig) != HAL_OK)

605 {

606 Error_Handler ()

607 }

608

609 }

610

611 /* DMA2D init function */

612 static void MX_DMA2D_Init (void)

613 {

614

615 hdma2d.Instance = DMA2D;

616 hdma2d.Init.Mode = DMA2D_M2M;

617 hdma2d.Init.ColorMode = DMAZD_OUTPUT_ARGBSBBS;

618 hdma2d.Init.OutputOffset = 0;

619 hdma2d.LayerCfg[1l] .InputOffset = 0;

620 hdma2d.LayerCfg[1l] .InputColorMode = DMA2D_INPUT_ ARGB8888;

621 hdma2d.LayerCfg[1l] .AlphaMode = DMA2D_NO_ MODIF ALPHA;

622 hdma2d.LayerCfg[1].InputAlpha = 0;

623 if (HAL_DMA2D_ Init (s&hdma2d) != HAL_OK)

624 {

625 Error_ Handler();

626 }

627

628 if (HAL_DMA2D ConfigLayer (¢hdma2d, 1) != HAL CK

629 {

630 Error Handler();

631 }

632

633 }

634

635 /% LIDE dnit funetion o/

636 static void MX_LTDC_Init (void)

637 {

638

639 LTDC_LayerCfgTypeDef pLayerCfg;
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640 LTDC_LayerCfgTypeDef pLayerCfgl;

641

642 hltdc.Instance = LTDC;

643 hltdc.Init.HSPolarity = LTDC_HSPOLARITY_ AL;

644 hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;

645 hltdc.Init.DEPolarity = LTDC_DEPOLARITY AL;

646 hltdc.Init.PCPolarity = LTDC_PCPOLARITY IPC;

647 hltdc.Init.HorizontalSync = 7;

648 hltdc.Init.VerticalSync = 3;

649 hltdc.Init.AccumulatedHBP = 14;

650 hltdc.Init.AccumulatedVBP = 5;

651 hltdec.Init.AccumulatedActiveW = 654;

652 hltdc.Init.AccumulatedActiveH = 485;

653 hltdc.Init.TotalWidth = 660;

654 hltdc.Init.TotalHeigh = 487;

655 hltdc.Init.Backcolor.Blue = 0;

656 hltdc.Init.Backcolor.Green = 0;

657 hltdc.Init.Backcolor.Red = 0;

658 if (HAL_LTDC_Init (&hltdc)

659 {

660 Error_ Handler();

661 }

662

663 pLayerCfg.WindowX0 = 0;

664 playerCfg.WindowXl = 0;

665 pLayerCfg.WindowY0 = 0;

666 playerCfg.WindowYl = 0;

667 playerCfg.PixelFormat = LTDC_PIXEL_FORMAT ARGB8888;
668 plLayerCfg.Alpha = 0;

669 pLayerCfg.Alphal = 0;

670 plLayerCfg.BlendingFactorl = LTDC_BLENDING_FACTORL_CA;
671 playerCfg.BlendingFactor2 = LTDC_BLENDING_ FACTOR2_CA;
672 playerCfg.FBStartAdress = 0;

673 playerCfg.ImageWidth = 0;

674 pLayerCfg.ImageHeight = 0;

675 playerCfg.Backcolor.Blue = 0;

676 pLayerCfg.Backcolor.Green = 0;

677 playerCfg.Backcolor.Red = 0;

678 if (HAL_LTDC_ConfigLayer (&hltdc, &pLayerCfg, 0) != HAL_OK)
679 {

680 Error_ Handler();

681 }

682

683 pLayerCfgl.WwindowX0 = 0;

684 pLayerCfgl.WindowXl = 0;

685 pLayerCfgl.WindowY0 = 0;

686 playerCfgl.WindowYl = 0;

687 playerCfgl.PixelFormat = LTDC_PIXEL_FORMAT ARGB8888;
688 playerCfgl.Alpha = 0;

689 pLayerCfgl.Alphal0 = 0;

690 pLayerCfgl.BlendingFactorl = LTDC_BLENDING_FACTOR1_CA;
691 playerCfgl.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA;
692 pLayerCfgl.FBStartAdress = 0;

693 pLayerCfgl.ImageWidth = 0;

694 pLayerCfgl.ImageHeight = 0;

695 pLayerCfgl.Backcolor.Blue = 0;

696 pLayerCfgl.Backcolor.Green = 0;

697 pLayerCfgl.Backcolor.Red = 0;

698 if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfgl, 1) != HAL_OK)
699 {

700 Error_ Handler();

701 }

702

703 }

704

705  /* USART1 init function */
706 static void MX_USART1 UART_ Init (void)

707 {

708

709 huartl.Instance = USARTI1;

710 huartl.Init.BaudRate = 115200;

711 huartl.Init.WordLength = UART_ WORDLENGTH_7B;
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712 huartl.Init.StopBits = UART_STOPBITS_1;
713 huartl.Init.Parity = UART_PARITY NONE;
714 huartl.Init.Mode = UART_MODE_TX_RX;
715 huartl.Init.HwFlowCtl = UART_ HWCONTROL_NONE;
716 huartl.Init.OverSampling = UART_OVERSAMPLING_16;
717 huartl.Init.OneBitSampling = UART_ONE_BIT_ SAMPLE_DISABLE;
718 huartl.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
719 if (HAL_UART_Init (&huartl) != HAL_OK)
720 {
721 Error_Handler();
722 }
723
724 }
725
726 (3
727 * Enable DMA controller clock
728 )
729 static void MX_DMA Init (void)
730 {
731 /* DMA controller clock enable */
732 __HAL_RCC_DMA2_CLK_ENABLE () ;
733
734 /* DMA interrupt init */
735 /* DMA2_Stream0_IRQn interrupt configuration */
736 HAL_NVIC_SetPriority(DMA2_ Stream0_IRQn, 0, 0);
737 HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
738
739 }
740 /* FMC initialization function */
741 static void MX_FMC_Init (void)
742 {
743 FMC_SDRAM TimingTypeDef SdramTiming;
744
745 /** Perform the SDRAMI1 memory initialization sequence
746 xf
747 hsdraml.Instance = FMC_SDRAM DEVICE;
748 /* hgdraml . Tnit. */
749 hsdraml.Init.SDBank = FMC_SDRAM BANKI1;
750 hsdraml.Init.ColumnBitsNumber = FMC_SDRAM COLUMN_BITS_NUM_8;
751 hsdraml.Init.RowBitsNumber = FMC_SDRAM ROW_BITS_NUM_11;
752 hsdraml.Init.MemoryDataWidth = FMC_SDRAM_MEM_ BUS_WIDTH_16;
753 hsdraml.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
754 hsdraml.Init.CASLatency = FMC_SDRAM CAS_LATENCY_ 1;
755 hsdraml.Init.WriteProtection = FMC_SDRAM WRITE_PROTECTION_DISABLE;
756 hsdraml.Init.SDClockPeriod = FMC_SDRAM CLOCK_DISABLE;
757 hsdraml.Init.ReadBurst = FMC_SDRAM_RBURST_ DISABLE;
758 hsdraml.Init.ReadPipeDelay = FMC_SDRAM RPIPE DELAY 0;
759 /* SdramTiming */
760 SdramTiming.LoadToActiveDelay = 16;
761 SdramTiming.ExitSelfRefreshDelay = 16;
762 SdramTiming.SelfRefreshTime = 16;
763 SdramTiming.RowCycleDelay = 16;
764 SdramTiming.WriteRecoveryTime = 16;
765 SdramTiming.RPDelay = 16;
766 SdramTiming.RCDDelay = 16;
767
768 if (HAL_SDRAM Init (&hsdraml, &SdramTiming) != HAL_OK)
769 {
770 Error_Handler() ;
771 }
JA2
773 }
774
775 /** Configure pins as
776 * Analog
777 * Input
778 * Output
779 * EVENT_OUT
780 # EXTT
781 &/
782 static void MX_GPIO_Init (void)
783 {
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784
785 GPIO_InitTypeDef GPIO_InitStruct;
786
787 /* GPIO Ports Clock Enable */
788 __HAL_RCC_GPIOE_CLK_ENABLE() ;
789 __HAL_RCC_GPIOB_CLK_ENABLE() ;
790 __HAL RCC_GPIOG_CLK_ENABLE() ;
791 __HAL_RCC_GPIOJ_CLK_ENABLE() ;
792 __HAL RCC_GPIOD_CLK_ENABLE() ;
793 __HAL_RCC_GPIOC_CLK_ENABLE () ;
794 __HAL_RCC_GPIOA_CLK_ENABLE() ;
795 __HAL RCC_GPIOI_CLK_ENABLE() ;
796 __HAL_RCC_GPIOK_CLK_ENABLE() ;
797 __HAL RCC_GPIOF CLK_ENABLE() ;
798 __HAL_RCC_GPIOH CLK_ENABLE() ;
799
800 /*Configure GPIO pin Output Level */
801 HAL GPIO WritePin (RLY MPPT GPIO Port, RLY MPPT Pin, GPIO_PIN RESET);
802
803 /*Configure GPIO pin Output Level */
804 HAL_GPIO_WritePin (USER_LED_GPIO_Port, USER_LED_Pin, GPIO_PIN_RESET) ;
805
806 /*Configure GPIO pin Output Level */
807 HAL_GPIO_WritePin(GPIOG, RLY_BATT Pin|RLY_AC_Pin, GPIO_PIN_RESET) ;
808
809 /*Configure GPIO pin : RLY MPPT_Pin */
810 GPIO_InitStruct.Pin = RLY_MPPT_Pin;
811 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
812 GPIO_InitStruct.Pull = GPIO_NOPULL;
813 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
814 HAL_GPIO_Init (RLY MPPT GPIO_Port, &GPIO_InitStruct);
815
816 /*Configure GPIO pins : STS_DAY Pin USER_BUTTON_Pin */
817 GPIO_InitStruct.Pin = STS_DAY Pin|USER_BUTTON_Pin;
818 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
819 GPIO_InitStruct.Pull = GPIO_PULLUP;
820 HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
821
822 /*Configure GPIO pin : USER_LED_Pin */
823 GPIO_InitStruct.Pin = USER_LED_Pin;
824 GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
825 GPIO_InitStruct.Pull = GPIO_NOPULL;
826 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
827 HAL_GPIO_Init (USER_LED_GPIO_Port, &GPIO_InitStruct);
828
829 /*Configure GPIO pins : RLY_BATT Pin RLY AC_Pin */
830 GPIO InitStruct.Pin = RLY BATT Pin|RLY AC_Pin;
831 GPIO InitStruct.Mode = GPIO_MODE_OUTPUT PP;
832 GPIO_InitStruct.Pull = GPIO_NOPULL;
833 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ LOW;
834 HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
835
836 }
837
838 /* USER CODE BEGIN 4 */
839 /****************************************************
840 SysTick_Handler callback function
841 This handler is called every tick and schedules tasks
842 ****ww*****w****w*****w*w****w****w****wt*w****w***wt/
843  void HAL_SYSTICK_Callback (void)
844 {
845 /* For TIME OUT processing */
846 HAL IncTick();
847
848 if (remainAutoReloadTimerLoopVal_S) {
849 remainAutoReloadTimerLoopVal_ S--;
850 }
851 }
852
853 /* USER CODE END 4 */
854
855 Vi
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856 * Q@brief This function is executed in case of error occurrence.
857 * @param None

858 * @retval None

859 .8

860 void Error_Handler (void)

861 g

862 /* USER CODE BEGIN Error_Handler */

863 /* User can add his own implementation to report the HAL error return state */
864 while (1)

865 {

866 }

867 /* USER CODE END Error_Handler */

868 }

869

870 #ifdef USE_FULL_ASSERT

871

872 ! e

873 * @brief Reports the name of the source file and the source line number
874 * where the assert_param error has occurred.

875 * @param file: pointer to the source file name

876 * @param line: assert_param error line source number

877 * @retval None

878 v

879 void assert_failed(uint8_t* file, uint32_t line)

880 {

881 /* USER CODE BEGIN 6 */

882 /* User can add his own implementation to report the file name and line number,
883 ex: printf ("Wrong parameters value: file %s on line %d\r\n", file, line) */
884 /* USER CODE END 6 */

885

886 }

887

888 #endif

889

890 i

891 * @}

892 ki

893

894 T

895 * @y

896 4

897

898 AXHFFFRFE K RER R TR KN RN E () COPYRIGHT STMicroeleétronics ¥ *AF*END OF FILE*WE%/

Page 13

96



