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ABSTRACT 
 

The Importance of the Multicomponent Display in Sexual Selection of Black Morph 
Girardinus metallicus (Pisces: Poeciliidae) 

 
Erin Marie Wojan  

 
Multicomponent displays are composed of traits, such as coloration, structural ornaments, 
and behavior, that become integrated and signal information to conspecifics. Estimation of 
multicomponent displays in fishes often involves measurement of color traits. Fish color 
measurements are often obtained following immobilization via chemical anesthesia; however, 
the anesthetics may alter the resulting measurements, for example by darkening the skin. 
Girardinus metallicus, a poeciliid fish endemic to Cuba, has a multicomponent courtship and 
aggressive display. Black morph males exhibit black ventral coloration including the 
gonopodium (copulatory organ) and yellow in the non-black areas of their bodies. I 
investigated the effects of common anesthetics on coloration measurements of G. metallicus. 
I measured the hue, saturation, and brightness of the anterior dorsal, posterior dorsal, 
posterior ventral, and caudal body regions, from digital images of the same males obtained 
without using anesthetic and anesthetized using tricaine methane sulfonate (MS222) and 
eugenol (clove oil). Because multicomponent displays are intriguing with respect to sexual 
selection, I investigated the importance of size and coloration traits in sexual selection via 
female choice and male-male competition in G. metallicus. 
 
I found that saturation and hue did not differ significantly across treatments (anesthetization 
using MS222, anesthetization using clove oil, and without anesthetic in a small glass 
chamber containing water). However, brightness was greater under the anesthetics, possibly 
due to photographing the fish behind water and glass in the Non-anesthetic treatment or due 
to reflectivity differences of the iridophores. The body regions varied in hue, saturation, and 
brightness. Most importantly, I found differences in the responses of different body regions 
to the anesthetic treatments, suggesting that anesthetics may affect coloration in 
unpredictable ways, and that multiple regions of fish should be measured when assessing 
overall coloration. My results suggest that photographing fish in a glass chamber without 
anesthetic may be an effective way to obtain digital images for color analysis without using 
anesthetics that may influence coloration. 
 
Having determined a good method for color measurement, I then investigated the role of the 
multicomponent display in sexual selection. Through direct interaction tests, I found that 
dominant males had brighter and more saturated yellow coloration than subordinate males, 
and that dominant males courted more than subordinate males. Within high yellow males, 
dominant males attempted more copulations than subordinate males. Interestingly, low 
yellow, subordinate males attempted more copulations than low yellow, dominant males, 
suggesting that subordinate males invested time into attempting copulations rather than 
engaging in potentially risky aggressive behavior. I observed a greater difference in body size 
between the males in pairs to which I could assign dominance status than pairs to which I 
could not assign dominance status, suggesting the importance of standard length in 
aggression in this species. I found that yellow saturation may serve to signal status without 
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the males resorting to aggressive interactions due to only half the pairs exhibiting aggression. 
Because aggression is key to mating success in G. metallicus, my findings that yellow 
coloration is correlated with aggression, in concert with previous studies showing the 
importance of ventral black area and body size for aggression, reinforce the idea that these 
males exhibit a multicomponent signal to conspecifics in the context of sexual selection. 
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GENERAL INTRODUCTION 

Honest Signaling 

Coloration, structural ornaments, and behavior are often integrated into multicomponent 

mating and aggressive displays (Møller & Pomiankowski 1993; Candolin 2003; Hebets & 

Papaj 2005; Bro-Jørgensen 2010). Display traits advertise an individual’s quality as a 

potential mate or competitor (e.g., Houde 1987, Grether 2000, Grether et al. 2004b, Price et 

al. 2008). Coloration, structural ornaments, and behavior can be an honest signal (Zahavi 

1975; Hasson 1990; Grether et al. 2004a), emphasizing signaler quality through the amount 

of energy needed to produce the signal or through tradeoffs between signal intensity and 

health (Svensson & Wong 2011). Honest signals are expensive to produce and the honesty is 

maintained through developmental, physiological, or social costs, thus ensuring that the 

signal often reflects signaler quality (Zahavi 1975).  

 

Coloration in Fishes 

Coloration in fish results from different wavelengths of light being absorbed by pigments in 

chromatophores, which consist of three layers: xanthophores, iridophores, and melanophores 

(Bagnara & Hadley 1973; Fox 1976; Endler 1980; Grether et al. 2004a). The three layers 

interact to produce a colored area from absorbed and reflected light through direct or indirect 

regulation of pigment-containing organelles (Grether et al. 2004a). For example, the 

darkening of skin is due to the dispersion of melanosomes inside the melanophore layer 

(Bagnara & Hadley 1973; Grether et al. 2004a; Price at al. 2008), which increases light 

absorption in melanophores and can the color intensity of a xanthophore patch (Grether et al. 

2004a).  
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Color measurement techniques commonly involve using either reflectance spectrophotometry 

of the animal itself (e.g., Stevens et al. 2007, Bergman & Beehner 2008, Kiere et al. 2009) or 

computer-based measurements taken using digital images of the animal (Stevens et al. 2007; 

Pike 2011). Although some digital cameras may have a bias towards particular wavelengths 

of light or the need of standard lighting conditions, they allow researchers to obtain data 

more quickly and inexpensively than spectrophotometers (Stevens et al. 2007; Bergman & 

Beehner 2008). 

 

When using either reflectance spectrophotometry or digital images, anesthetics such as 

tricaine methane sulfonate (MS222; Finquel; Argent Chemical Laboratories) or eugenol 

(clove oil) are used to immobilize fish (Coyle et al. 2004; Ross & Ross 1999; Yasir & Qin 

2009; Küçük 2010; Popovic et al. 2012). However, common anesthetics can change the 

saturation and hue of color patches (Gray et al. 2011). Specifically, MS222 has been known 

to increase color expression (Gumm et al. 2011) and clove oil can result in darkening due to 

the dispersion of pigment in melanosomes in fish skin (Metz et al. 2006; Price et al. 2008; 

Grether et al. 2004a; Sheets et al. 2007; Svensson & Sköld 2011; Kottler et al. 2014). 

 

The Study System 

Girardinus metallicus, a poeciliid fish endemic to Cuba (Farr 1980; Lorenzen 1996), is 

polymorphic for male coloration (Lorenzen 1996; Ponce de Léon & Rodriguez 2010; Kolluru 

et al. 2014). Two male morphs, normal and black, occur in the wild, and the normal morph is 

the most common (G.R. Kolluru, pers. comm.). Normal morph males are drably colored 
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(Farr 1980; Greven 2005) and coercively mate without courting (Farr 1980; Lorenzen 1996). 

Black morph males are sexually dimorphic with a yellow body and a black ventral surface 

including the gonopodium (copulatory organ), and black patches occasionally occurring 

elsewhere on the body (see Fig. 4.8; Lorenzen 1996; Greven 2005), and appear to always 

court females before attempting copulations (Kolluru et al. 2014, 2015). The multicomponent 

mating display of the black morph involves a dorsal fin spread, holding the gonopodium 

perpendicular to the body, and angling the body such that the head is raised and the yellow 

body coloration and ventral black coloration are visible (Lorenzen 1996; Kolluru et al. 2014). 

 

Previously, Kolluru et al. (2014, 2015) found a complex interaction among black coloration, 

dominance status and time on courtship and aggression in black morph males. Ventral black 

coloration and dominance status may together influence the ability of males to gain access to 

females, with the latter being most important (Kolluru et al. 2015). However, none of the 

previous studies have addressed another striking aspect of G. metallicus coloration: black 

morph males exhibit sexually dimorphic golden yellow skin coloration in the non-black areas 

of their bodies (Lorenzen 1996; Greven 2005), which fundamentally differs from that of 

males of the normal morph.  

 

Here I describe two complementary studies: Chapter 1 focuses on the effect of anesthetics on 

the hue, saturation, and brightness measurements obtained from digital images of male G. 

metallicus. I used this study to determine whether photographing fish in a glass chamber 

without anesthetic is a suitable method to obtain color measurements. This photography 

technique described in Chapter 1 is used in Chapter 2, which focuses on sexual selection of 
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the multicomponent mating and aggressive display of male black morph G. metallicus. Major 

tables and figures are included within the chapters, and I provide additional information and 

figures in an Appendix for reference. 
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1. Effect of Anesthetics on Color Measurements Obtained from Digital Images of Male 
Girardinus metallicus (Pisces: Poeciliidae) 

 
 
1.1 Introduction 

Coloration is intriguing in the context of sexual selection because it is particularly useful in 

advertising an individual’s quality as a potential mate or competitor (e.g., Houde 1987, 

Grether 2000; Grether et al. 2004b, Price et al. 2008). Because coloration is common in 

sexually selected displays, the characteristics of color traits are frequently measured. 

Anesthetics are typically required for immobilization when studying fish coloration; 

therefore I investigated whether the use of anesthetics affects the measurement of hue, 

saturation, and brightness in the poeciliid fish, Girardinus metallicus. 

 

Determining the best techniques to capture inter-individual variation in color displays is 

important because coloration can act as an honest signal of quality (Zahavi 1975; Hasson 

1990; Grether et al. 2004a) through the amount of energy needed to produce the signal 

(Zahavi 1975; Kodric-Brown & Brown 1984) or through tradeoffs between signal intensity 

and health (Lozano 1994; Svensson & Wong 2011). For example, the saturation (chroma) of 

orange spots reflects an ornament-health tradeoff in male guppies (Poecilia reticulata; Endler 

1980; Kodric-Brown 1989; Houde 1987, 1997; Grether 2000; Grether et al. 2004b; Svensson 

& Wong 2011), and that combined with female preference for a specific hue leads to intense 

sexual selection on male coloration (Endler 1984; Houde 1987, 1997; Grether 2001).  

 

Coloration in fish results from different wavelengths of light being absorbed by pigments 

inside chromatophores, which consist of three layers: xanthophores (containing carotenoid 
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and pteridine pigments responsible for yellow and red), iridophores (containing crystalline 

platelets that diffract light and produce structural colors responsible for iridescence), and 

melanophores (containing melanin pigments that result in brown and black) (Bagnara & 

Hadley 1973; Fox 1976; Endler 1980; Grether et al. 2004a). The three layers interact to 

produce a colored area from absorbed and reflected light through direct or indirect regulation 

of pigment-containing organelles (Grether et al. 2004a). For example, the darkening of skin 

is due to the dispersion of melanosomes inside the melanophore layer (Bagnara & Hadley 

1973; Grether et al. 2004a; Price at al. 2008). The dispersion increases light absorption in 

melanophores and can decrease the color intensity of a xanthophore patch (Grether et al. 

2004a). Dispersion and aggregation of the pigment-containing organelles in any layer can 

result in color change (Ali 1980; Price et al. 2008; Grether et al. 2004a; Svensson & Sköld 

2011). 

 

Color measurement techniques commonly involve using either reflectance spectrophotometry 

of the animal itself (e.g., Stevens et al. 2007, Bergman & Beehner 2008, Kiere et al. 2009) or 

computer-based measurements taken using digital images of the animal (Stevens et al. 2007; 

Pike 2011). Although it produces accurate measurements, spectrophotometry requires the 

subject to be placed within a few millimeters of the probe, and positioned exactly the same as 

other individuals; thus it is extremely stressful for the animal. For this reason, digital images 

may be preferable to spectrophotometry when minimally invasive sampling is required, such 

as when color measurements are taken prior to behavioral observations of the same animals 

(Stevens et al. 2007; Bergman & Beehner 2008; Pike 2011). Some drawbacks associated 

with the digital image technique, such as a bias towards particular wavelengths of light or the 
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need for standard lighting conditions, may be mitigated by using high-specification cameras 

and standardized lighting conditions. Typically, digital photography is followed by the use of 

computer software to calculate hue, saturation, and brightness (HSB; described below) or red, 

green, and blue (RGB) values (Stevens et al. 2007; Wollenberg et al. 2008; Yasir & Qin 

2009).  

 

Quantifying inter-individual differences in coloration in fish typically requires 

immobilization. Well-established techniques for fish immobilization involve using either the 

dissolved anesthetic tricaine methane sulfonate (MS222; Finquel; Argent Chemical 

Laboratories) or eugenol (clove oil). Both of these anesthetics are used to immobilize fish for 

the measurement of traits including coloration (Coyle et al. 2004; Ross & Ross 1999; Yasir 

& Qin 2009; Küçük 2010; Popovic et al. 2012) and to reduce transport stress and facilitate 

handling (Pramod et al. 2010; Popovic et al. 2012). Although anesthesia enables 

measurements that would otherwise be prohibitively difficult to obtain, anesthetic use can be 

problematic for measuring color (Price et al. 2008; Gumm et al. 2011). Common anesthetics 

can change the saturation and hue of color patches (Gray et al. 2011). Specifically, MS222 

has been known to increase color expression (Gumm et al. 2011) and clove oil can result in 

darkening due to the dispersion of pigment in melanosomes (Metz et al. 2006; Price et al. 

2008; Grether et al. 2004a; Sheets et al. 2007; Svensson & Sköld 2011; Kottler et al. 2014), 

an effect which intensifies the longer the fish is anesthetized (Marshall et al. 2003). Given 

that an altered state of the pigment-containing organelles can affect color measurements (Ali 

1980), techniques that are less likely to cause melanosome movement may lead to color 

measurements that more accurately reflect what is seen by receivers in nature.  
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Here I compared coloration measurements of homologous points on the same animals under 

three randomly ordered treatments: anesthetization using a weak concentration of MS222, 

anesthetization using clove oil, and without anesthetic in a small glass chamber containing 

water. I obtained digital images of mature G. metallicus males photographed in each of these 

treatments and compared the HSB values of homologous regions on each fish in all three 

treatments. Coloration can be described using the HSB model (Künzler & Bakker 2001; 

Wedekind et al. 2008; Yasir & Qin 2009; Montoya et al. 2014). Hue refers to the degree on a 

color wheel and ranges from 0° to 360°. The color red is defined as 0° and 360° whereas 

green is 120° and blue is 240° (See Fig. 4.1). Saturation is the purity of the hue (Yasir & Qin 

2009). For example, a red feather with 0% saturation appears gray, a red feather with 50% 

saturation may appear as a brick red color, and a red feather with 100% saturation would 

appear as fire engine red (for details see https://www.xrite.com/documents/literature/en/l10-

001_understand_color_en.pdf). Brightness refers to the relative lightness or darkness of a hue. 

At 0% brightness, any hue will appear black and at 100% brightness, any hue will appear 

white (Yasir & Qin 2009). Increased light absorption by melanophores reduces the saturation 

of the xanthophore layer of that area, changing the saturation measurement (Grether et al. 

2004a). Regardless of the measurement technique, darkening under anesthesia may result in 

lower saturation measurements (Svensson & Sköld 2011). The darkening from melanosome 

dispersal may also result in an increase in hue (Goda & Fujii 2001; Logan et al. 2006) and a 

decrease in brightness (Wucherer & Michiels 2014; Harant et al. 2016). 

 

Males of the poeciliid fish, Girardinus metallicus, have been described as polymorphic with 



 9 

3 morphs: normal, black, and yellow (Kolluru et al. 2014). Black morph males are yellow 

with black coloration on their ventral surface and gonopodium (copulatory organ; Lorenzen 

1996; Kolluru et al. 2014). The yellow morph has more intense yellow, rather than black, 

ventral coloration (Kolluru et al. 2014). For the present study, I used a mixed-morph 

population of males, which enabled me to also examine the coloration of hybrids. I 

hypothesized that the commonly used anesthetics MS222 and clove oil influence G. 

metallicus coloration measurements. I predicted that hue would be higher and brightness 

lower in the two anesthetic-involved treatments. The predicted effects on brightness could be 

due to the dispersion of pigments within melanosomes over the iridophores, such that they 

cover the crystalline platelets and thereby lower the reflectance (Bagnara et al. 1968; Harant 

et al. 2016). The lowering of reflectance would decrease the overall brightness measurement 

obtained from the fish by obscuring the light reflecting capacity of the iridophores (Bagnara 

et al. 1968). I also predicted that saturation would be higher in the two anesthesia-involved 

treatments because anesthetics can maximize the expression of dispersed melanin pigments, 

darkening the body coloration and leading to higher saturation (Svensson & Sköld 2011).  

 

1.2 Methods  

1.2.1 Animal Husbandry 

Fish stocks were maintained at the Kolluru laboratory at California Polytechnic State 

University. The fish were originally obtained from the lab of David N. Reznick at the 

University of California, Riverside, and have been housed in captivity for many generations. 

I fed the fish high quality flake food and housed them in a mixed sex 10-gallon stock tank 

under controlled temperature (25 ± 0.5 °C) and a 12:12 L:D lighting schedule using a mixture 
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of full-spectrum fluorescent and LED bulbs. The stock tank contained hybrids of black 

morph males and yellow morph males (Kolluru et al. 2014); however, for this study I aimed 

to use males with black ventral coloration, such that they most closely resembled black 

morph males found in the wild (Kolluru et al. 2014). On the day of photography, I 

individually isolated fish in 2-gallon tanks and returned to the same stock tank after all 

images were obtained. 

 

1.2.2 Digital Imagery 

I photographed 11 fish under three treatment conditions: a Non-anesthetic treatment in an 8 × 

8 × 2cm glass chamber (see below for details), anesthetization using MS222 (200mg/L of 

water; Finquel; Argent Chemical Laboratories), and anesthetization using a clove oil solution 

made of a 9:1 95% ethanol: clove oil (100 mg/mL of water; MCB; Neiffer & Stamper 2009; 

Fig. 4.4). I administered the treatments in a randomized order to each fish during an eight-

hour period. Two of the eleven fish were not photographed in the Non-anesthetic treatment 

because one died following a prior treatment and one was mistakenly returned prematurely to 

the stock tank. 

 

I obtained RAW digital images with a Nikon D800 camera using Adobe RGB color space. I 

used a NIKKOR AF 24-70mm f/2.8G ED AIS lens with a 24 mm extension tube for 

photography of the Non-anesthetic treatment and a NIKKOR AF 105mm f/2.8G Micro AIS 

lens for photography of the Anesthetic treatments. In photography of both the Non-anesthetic 

and Anesthetic treatments, the white balance was set to “Automatic” under four 14 W natural 

daylight color (5000 K) LED bulbs (Philips, 1500 lumen 100 W replacement), and the 
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“mirror up” mode was used with a remote release to minimize camera vibration. I placed the 

fish on a stage located in the middle of four securely fastened lamps (Fig. 4.2). The camera 

was stationed directly above the stage with a tripod during photography of the Anesthetic 

treatments and placed on a stationary ball head mount directly across from the stage during 

photography of the Non-anesthetic treatment (Fig. 4.2). For each fish, I allowed a 15-minute 

acclimation period in a home tank containing clean water, between treatments. 

 

For the Non-anesthetic treatment, I photographed each male in an 8 × 8 × 2cm glass chamber 

filled with pH-buffered water. I used glass spacers to minimize chamber size and reduce the 

depth of field. An 18% photography gray scale card with a ruler attached was placed in the 

chamber and used as the background of each image. I netted each male into the chamber and 

situated it on the photography stage. Following an acclimation period, the image was taken 

(Fig. 4.3). I used a sterile cotton swab and plastic pipet to gently nudge the male into position 

as needed. The left sides of all but one male were photographed. The remaining male could 

not be nudged into position so I photographed his right side. I added new water to the 

chamber for each fish. 

 

For the Anesthetic treatments, I immersed the male in either the MS222 or the clove oil 

solution until it listed to one side. I then removed the fish and placed him on an 18% gray 

scale card with ruler. I photographed the left lateral surface with the same lighting setup and 

camera settings described above (Fig. 4.3). In these treatments, there was no water or glass 

between the camera lens and the fish, in contrast to the Non-anesthetic treatment. 
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1.2.3 Image Analysis 

I save images in RAW format and analyzed them using Photoshop CS6 (Version 13.0.6). I 

measured the standard length of each fish as the distance from the tip of the snout to the 

caudal peduncle line. Lines were drawn to divide each fish into equal sections (see Fig. 4.4), 

and using the color sampler tool, a point sample of HSB values was recorded for fifteen 

homologous points from four body regions: four anterior dorsal measurements, four posterior 

dorsal measurements, four posterior ventral measurements, and three caudal peduncle 

measurements (Fig. 4.4A,B,C,D). The body regions varied in the yellow coloration such that 

the anterior and posterior body regions were thought to be more yellow to the human eye. 

The posterior ventral and caudal body regions were thought to be less yellow for they 

appeared to have a whiter coloration tint. A 5 × 5 average pixel measurement of the 18% 

gray scale was taken from each image as a control across images. 

 

To obtain homologous points to measure, I did the following. Starting in each body region 

near the center of the fish, I designated the first whole scale closest to the vertical guideline 

as “point one”. Moving laterally along this line of scales towards the head or tail, I obtained 

measurements from the center of each scale, skipping every two scales until four different 

point measurements were taken (Fig. 4.4A,B,C). If a black scale was encountered, I 

measured the scale preceding the black area. In addition to these body measurements, I 

obtained three homologous caudal peduncle measurements from the opaque region directly 

posterior to the caudal peduncle line (Fig. 4.4D). The first point was placed in the middle of 

the caudal region, establishing equal distances above and below the point. Two more points 

were then measured, one superior to and one inferior to the first point. 
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1.2.4 Data Analysis  

All tests were performed using JMP Pro 12.1.0 (SAS Institute, Inc. 2014). I averaged the 

values for the four points within each body region resulting in four averages (one anterior 

dorsal, one posterior dorsal, one posterior ventral, and one caudal). I performed a generalized 

linear mixed model (GLMM) with individual as the random effect, treatment and body 

region as fixed effects, and standard length as the covariate. HSB values were the dependent 

variables. I tested the residuals for normality using the Shapiro-Wilk goodness-of-fit test. 

Saturation (W = 0.98, P = 0.34) and brightness (W = 0.98, P = 0.21) were normally 

distributed and hue was Box-Cox transformed such that the residuals most closely 

approximated normality (W = 0.97, P = 0.01). I corrected for three tests using the false 

discovery rate (FDR, B-Y method; Bejamini & Yekutieli 2001), yielding an alpha corrected 

of 0.027.  

 

1.3 Results  

Variation among individuals represented 2.1% of hue, 32.7% of saturation, and 53.6% of 

brightness. There was no significant effect of treatment on hue (F2,105 = 1.7; P = 0.18; Fig. 

4.5; Table 3.1) or saturation (F2,103 = 2.4; P = 0.093; Fig. 4.6; Table 3.1). Brightness differed 

significantly among treatments (F2,102 = 63.3; P < 0.0001; Fig. 4.7; Table 3.1), such that the 

fish in the Non-anesthetic treatment were the least bright and the fish under the clove oil 

treatment were the brightest. Fish under MS222 treatment exhibited intermediate values 

(post-hoc Tukey’s HSD test, P < 0.05). There were significant differences among body 

regions in hue (F3,102 = 25.5; P < 0.0001; Fig. 4.5), saturation (F3,102 = 46.6; P < 0.0001; Fig. 
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4.6), and brightness (F3,102 = 28.7; P < 0.0001; Fig. 4.7; Table 3.1). The posterior ventral and 

caudal body regions exhibited significantly higher hue and lower saturation than the anterior 

and posterior dorsal body regions (post-hoc Tukey’s HSD test, P < 0.05). The posterior and 

anterior dorsal body regions also differed significantly in saturation from each other, such 

that anterior dorsal body regions had a higher saturation value (post-hoc Tukey’s HSD test, P 

< 0.05). The posterior ventral body region was significantly higher in brightness compared to 

the other regions (post-hoc Tukey’s HSD test, P < 0.05). There was a significant body region 

× treatment interaction for saturation (F6,102 = 3.9; P = 0.0013; Fig. 4.6), such that the 

differences in saturation of body regions were less pronounced in the Non-anesthetic 

treatment. This is largely driven by the two anesthetics causing a greater increase in 

saturation in the anterior dorsal body region and a greater decrease in saturation in caudal 

regions. There was also a significant body region × treatment interaction for brightness (F6,102 

= 4.6; P = 0.0003; Fig. 4.7), which was largely driven by the posterior ventral body region 

being brighter in the two anesthetic treatments, compared to the other body regions. There 

were no significant relationships between standard length and the three variables measured 

(Table 3.1).  

 

1.4 Discussion  

Anesthetics can be essential in obtaining digital images of fishes for the purpose of color 

measurements; however, concerns have been raised about the effects of anesthesia on fish 

coloration (e.g., Price et al. 2008, Gray et al. 2011). To my knowledge the effect of 

anesthetics on fish coloration measured via analysis of digital images has not been formally 

addressed. The HSB values of male poeciliid displays have all been shown to be important in 
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female choice (e.g., Endler 1984, Grether et al. 2001). However, hue and saturation are well-

studied (e.g., Houde 1987, Kodric-Brown 1989, 1993), most likely because they are more 

directly affected by pigment content than brightness (Grether et al. 2004a). I showed that 

neither eugenol (clove oil), nor tricaine methane sulfonate (MS222), affected the overall hue 

and saturation measurements of several body regions of G. metallicus males. However, I 

found that there were differential effects of anesthetics on the saturation and brightness of 

different body regions, suggesting that anesthetics may adversely affect color measurements 

of some areas, and that it is unpredictable how different anesthetics will affect the HSB of 

different areas (see Price et al. 2008 Fig. 1 for images showing differential darkening under 

MS222 in another poeciliid).  

 

Brightness values were higher when obtained from images of fish under anesthesia than from 

images of the same fish taken in a small chamber with water and glass between the camera 

lens and the fish. This may be explained by what was between the camera lens and the fish, 

rather than the influence of anesthetics per se. In the Non-anesthetic treatment, glass and 

water separated the fish from the camera lens, unlike in the Anesthetic treatments. 

Unfortunately, this potential confound was unavoidable, because immersing the anesthetized 

fish in water would have caused the fish to come out of anesthesia too quickly, whereas 

immersion in anesthetic solutions would have resulted in excessive anesthesia, potentially 

causing increased darkening (Marshall et al. 2003) and risk to fish health (Carter et al. 2011). 

The brightness differences among treatments may also be explained by differences in the 

reflectivity of the guanine crystalline platelets in the iridophore layer. The color of the 

reflected light is determined by the thickness, spacing and refractive index of the crystalline 
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platelets (Fujii 1993; Herring1994; Grether et al. 2004a). However, the position of the 

crystalline stacks can cause variation in where the light is reflected on the platelets, and if the 

platelets are not parallel to the body the reflectivity can either increase or decrease depending 

on the amount of light and viewing angle (Land 1972; Rowe & Denton 1997). Images in 

which the fish exhibited substantial yaw or roll were excluded to minimize effects due to 

position relative to the camera lens. However, when fish were placed on the stage for the 

Anesthetic treatments the crystalline stacks may have been angled differently, reflecting a 

different amount of light, than in the Non-anesthetic treatment. In any case, the objective of 

my study was to examine the effects of commonly used fish photography techniques, which 

typically involve anesthetized animals being photographed outside of water (e.g., Grether et 

al. 2001, Kodric-Brown & Johnson 2002, Marshall et al. 2003). 

 

G. metallicus black morph males are uniformly “lemon yellow” (Greven 2005) and black 

(Kolluru et al. 2014). For this study I examined the yellow regions of males from a stock that 

was hybridized with another morph (the yellow morph; Kolluru et al. 2014), and therefore 

varied in coloration from pure black morph males. Because I photographed the same 

individuals under all three treatments I did not consider it problematic that I made use of 

mixed-morph males. The two morphs have been described (Kolluru et al. 2014), but to my 

knowledge the coloration of hybrids has not been described outside of the hobbyist literature. 

I found that the anterior dorsal, posterior dorsal, posterior ventral, and caudal body regions 

differed in HSB values. The anterior dorsal region had the highest saturation value compared 

to the other regions, possibly due to countershading (Norman & Greenwood 1963). The 

posterior ventral and caudal regions had lower saturation and were a more greenish yellow 
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hue than the anterior and posterior dorsal regions, which were less greenish and more 

yellowish.  

 

Unstandardized light conditions are known to influence color measurements of digital images 

(Stevens et al. 2007; Bergman & Beehner 2008; Pike 2011). In this study, the camera and 

lights were identically positioned across treatments, to minimize differences in the amount of 

light captured in each image. The Non-anesthetic lens had an extra-low dispersion glass 

element, which controlled for chromatic aberrations that occur when lenses have different 

refractive angles from various wavelengths of light (Boult & Wolberg 1992). A nano crystal 

lens coating also enhanced light transmission and reduced glare 

(http://www.tucsoncamerarepair.com/lenses/#/nikon-af-s-nikkor-24-70mm-f28g-ed-lens/).  

 

The use of digital images to obtain color measurements is common, but the technique is also 

criticized when the camera’s mechanical response to varying light conditions is not 

controlled for (Stevens et al. 2007; Bergman & Beehner 2008; Pike 2011). The HSB 

measurements of color standards and color patches obtained from the images should 

demonstrate a linear relationship when plotted against the light reflectance value, which is 

the measure of visible and usable light that is reflected from a surface when illuminated 

(Lauziére et al. 1999; Stevens et al. 2007). Stevens et al. (2007) noted that variation in light 

intensity might cause color measurements to differ among images, resulting in the 

nonlinearity of color models such as HSB and others, including RGB. In the present study, I 

used a high quality camera and standardized light conditions across all images. This resulted 

in consistent HSB values of the 18% gray color standard, and therefore no attempt to 
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linearize the relationship was made. The camera’s ability to manually change white balance 

and photograph in high resolution meant that I attained a more “natural color balance” 

(Stevens et al. 2007) and depicted more details in smaller color patches than a camera with a 

nonlinear response. I used RAW images because they do not degrade in quality when copied 

and because they display a wider variety of color than JPEG and TIFF image files (Stevens et 

al. 2007). The lens I used corrected for chromatic aberrations and glare (as stated above). The 

aperture was constant across all photographs and allowed me to lower the depth of field 

while photographing the focal fish. 

 

In summary, my results suggest that photographing fish in a glass chamber without 

anesthetics may be an effective way to obtain digital images for color analysis, especially 

when hue and saturation are likely to be the variables of interest. Photographing without 

anesthetic under standardized light conditions is a minimally invasive process that can be 

used to obtain measurements of animals prior to behavioral observations and may give a 

more accurate measurement of natural color based on how fish appear to conspecifics. Future 

studies of fish coloration should involve sampling multiple body regions even if the fish 

appear uniformly colored. Additionally, my results encourage either obtaining measurements 

without the use of anesthetics or the use of a camera lens submerged in water when using 

anesthetics, to accurately assess brightness.  
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2. Aggressive Males Get Lucky: The Importance of the Multicomponent Display of the 
Black Morph Girardinus metallicus (Pisces: Poeciliidae) 

 
 
2.1 Introduction  

Courtship and aggressive displays can include coloration, structural ornaments, and behavior, 

which are typically integrated into multicomponent displays (Møller & Pomiankowski 1993; 

Candolin 2003; Hebets & Papaj 2005; Bro-Jørgensen 2010). When various traits are 

combined in a multifaceted display, selection can coevolve to enhance expression of each 

other (Endler 1992; Rosenthal et al. 1996; Gumm & Mendelson 2011). In contrast, the 

selection of morphological traits and behavior can be uncoupled (Gumm & Mendelson 2011), 

such that the traits are independently used to signal information about signaler quality (Suk & 

Choe 2008). Inter- and intrasexual selection may simultaneously operate on multicomponent 

displays (Miller & Svensson 2014), by selecting for different traits (Wong & Candolin 2005; 

Pryke et al. 2001a; Andersson et al. 2002; Johnson & Fuller 2014) or working in unison to 

favor the same traits, such that the traits signal quality to potential mates and rivals (Berglund 

et al. 1996; Hunt et al. 2009; Miller & Svensson 2014). Several hypotheses have been put 

forth to explain the evolution of multicomponent displays, including that they send multiple 

messages, such that each trait signifies a different aspect of quality to receivers (Møller & 

Pomiankowski 1993), that they are redundant signals, such that traits function together to 

signal quality (Møller & Pomiankowski 1993), or that different traits signal to different 

receivers (e.g., potential mates and rivals; Pryke et al. 2001a; Andersson et al. 2002). Here I 

investigated the multicomponent display of male black morph G. metallicus by examining 

the importance of individual traits in the context of female choice and male-male 

competition. 



 20 

 

Male-male aggression can disrupt female choice when it promotes forced copulations, 

reduces courtship, or decreases the ability of females to view courtship displays (Wong & 

Candolin 2005; Miller & Svensson 2014; Wang et al. 2015). Furthermore, preferred males 

may be less successful in male-male competition, which can reduce their access to females 

(Jennions & Petrie 1997; Miller & Svensson 2014). If competition hampers female choice, 

females may rely on multicomponent displays to identify preferred high quality mates (Wong 

& Candolin 2005; Miller & Svensson 2014; Candolin & Reynolds 2001; Suk & Choe 2008) 

and prioritize different signals to focus on different aspects of mate quality (reviewed in 

Jennions and Petrie 1997; Candolin 2003). 

 

Poeciliid species range from those whose males use only coercive mating attempts to those 

whose males exhibit a courtship display before mating attempts (reviewed in Cummings & 

Ramsey 2015). In species with only coercive males, such as Gambusia holbrooki (Bisazza et 

al. 2001; Cummings 2015), mating success is largely influenced by male-male competition 

(Farr 1984, 1989; Bisazza 1993); however, recent studies have shown that females may 

demonstrate choice based on size and familiarity in such species (Kahn et al. 2012; Vega-

Trejo et al. 2014). In species with displaying males, such as Poecilia reticulata, the 

interaction between behavioral displays and morphology can influence the traits that are 

preferred by females (Kodric-Brown & Nicoletto 2001; Wong et al. 2011). Females can then 

assess quality of potential mates and benefit from mating with the high quality male (Wang 

et al. 2015). 
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Girardinus metallicus, a poeciliid fish endemic to Cuba, is polymorphic for male coloration 

and behavior (Lorenzen 1996; Ponce de Léon & Rodriguez 2010; Kolluru et al. 2014). Two 

male morphs, normal and black, occur in the wild, and the normal morph is the most 

common (G.R. Kolluru, pers. comm.). Normal morph males occur at a predictably high 

frequency in mixed-morph captive populations, suggesting a balanced genetic polymorphism 

(Lorenzen 1996). Normal morph males are drably colored (Farr 1980; Greven 2005) and 

coercively mate without courting (Farr 1980; Lorenzen 1996). Black morph males are 

sexually dimorphic with a yellow body and a black ventral surface including the gonopodium 

(copulatory organ), and black patches occasionally occurring elsewhere on the body (see Fig. 

4.8; Lorenzen 1996; Greven 2005). Black morph males appear to always court females 

before attempting copulations (Kolluru et al. 2014, 2015) by swimming behind, beside, and 

below the female, while holding the gonopodium away from the body and raising the head 

(Lorenzen 1996; Kolluru et al. 2014). 

 

Although it is known that black morph males display to females, previous studies have not 

been able to determine the traits that females use to assess male quality. Kolluru et al. (2014) 

found that male size and gonopodium length are positively correlated with mating activity. 

Males with greater ventral black area were more aggressive, and more aggressive males had 

greater mating activity (Kolluru et al. 2014). Under conditions likely to generate more 

competition, Kolluru et al. (2015) found that although dominant males had greater mating 

activity, longer interaction time may allow females to influence intermale interactions or 

dominance relationships may have already become established. Interestingly, Kolluru et al. 

(2015) found a complex interaction among black coloration, dominance status and time spent 
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on courtship and aggression, suggesting that females were either able to assess dominance 

status based on cues they didn’t measure and associate with dominant males, or that females 

influenced male dominance status. Alternatively, cues exchanged between males during the 

dichotomous choice tests contributed to dominance status establishment prior to direct 

interactions. In general, dominance status appears to be key to gaining access to females in 

both the black and normal morphs (Farr 1980; Kolluru et al. 2014, 2015).  

 

G. metallicus multicomponent mating display involves a dorsal fin spread, holding the 

gonopodium perpendicular to the body, and angling the body such that the head is raised and 

the yellow body coloration and ventral black coloration are visible (Lorenzen 1996; Kolluru 

et al. 2014). However, previous studies have not addressed the importance yellow body 

coloration in sexual selection of the black morph G. metallicus (Lorenzen 1996; Greven 

2005). The intensity of yellow coloration varies among males (Fig. 4.8A,B) and possibly also 

temporally (H.M. Neldner, pers. comm.). As in other poeciliids (Endler 1984), yellow may 

be produced using carotenoid pigments, which can be honest signals of male quality (see 

Appendix; Endler 1980; Goodwin 1984). The yellow and black coloration of black morph 

males may therefore be sexually selected independently or because black amplifies yellow 

(Hasson 1989, 1990), facilitating the assessment of quality by enhancing the visibility of the 

yellow coloration to conspecifics (Hasson 1989, 1990; Grether et al. 2004a).  

 

Thus, given the lack of information about how morphological traits and behavior serve as a 

multicomponent display, I investigated the multicomponent mating and aggressive display of 

male black morph G. metallicus by examining how integrated traits influence female choice 
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and male-male competition. I paired size-matched, low and high yellow males and subjected 

them to an aggressive context over a defensible food source to establish baseline dominance 

status relationships. The same pairs were then tested in dichotomous choice and direct 

interaction tests with females, to investigate sexual selection on behavioral and 

morphological traits. Under the hypothesis that female choice and male-male competition 

favor the same traits, I predicted that yellow body saturation, ventral black area, body size, 

and gonopodium size are targets of sexual selection. Specifically, I predicted that when 

presented with size-matched males in dichotomous choice tests, females would spend more 

time associating with males with greater values of these morphological traits, and that these 

same males would be more likely to be dominant and exhibit greater mating activity in the 

direct interaction tests.  

 

2.2 Methods  

2.2.1 Animal Husbandry 

G. metallicus stocks have been maintained in captivity for many generations in the Kolluru 

laboratory at California Polytechnic State University. I housed the fish in mixed-sex 38-liter 

stock tanks under controlled temperature (25 ± 0.5 °C) and a 12:12 L:D lighting schedule 

using a mixture of full-spectrum fluorescent and LED bulbs. I fed the fish high-quality flake 

food (TetraMin Plus Tropical Flakes ®, Tetra, Spectrum Brands, Inc.) before the experiment 

and frozen brine shrimp (Artemia sp.) during isolation. I isolated males (n = 48) in 7.5-liter 

tanks for between 2 and 25 days before photography (see below for details). Home tanks 

contained gravel and plant material and were visually separated from each other. I isolated 

females in similar tanks for 11 to 49 days prior to the start of behavior trials.  
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2.2.2 General Overview 

Isolation, photography, and behavior trials occurred over a seven-week period in 2015. All 

trials were performed in a black-curtained area lit by full-spectrum fluorescent and LED 

lights, and new conditioned water was added to all observation tanks after each pair was 

tested. I covered three sides of the observation tanks in brown paper to provide a uniform 

background and to decrease the chance of distractions. Observers within the curtained area 

called out behaviors to recorders sitting outside the curtain area. Trials were performed blind 

with respect to the yellow saturation status of the males. Video recordings were used as a 

backup in cases where behavior was not readily visible in real time. 

 

2.2.3 Photography and Image Analysis 

I photographed males over a three-day period in an 8 × 8 × 2cm glass chamber filled with 

fresh pH-buffered water (see Chapter 1 for details). Each image contained a 90% white color 

standard as the background, a ruler for scale, and an 18% gray and yellow color standard to 

ensure that lighting and camera conditions were consistent among photographs.  

 

I obtained RAW digital images using Adobe RGB color space with a Nikon D800 camera. I 

used a NIKKOR AF 24-70mm f/2.8G ED AIS lens with a 24 mm extension tube while the 

white balance was set to “Automatic” under four 14 W natural daylight color (5000 K) LED 

bulbs (Philips, 1500 lumen 100 W replacement). The “mirror up” mode was used with a 

remote release to minimize camera vibration. I netted each male into the chamber and 

situated it on the photography stage located in the middle of four securely fastened lamps. 
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The camera was placed on a stationary ball head mount directly across from the stage. I used 

a sterile cotton swab to gently nudge the male into position and the image was taken. Each 

male was photographed again, this time under sedation using tricaine methane sulfonate 

(MS222; 200 mg/L of water; Finquel; Argent Chemical Laboratories), to allow for 

positioning of the gonopodium and body for morphological measurements. I placed males on 

a stage with a ruler for scale, and photographed them on their right lateral surface with the 

gonopodium angled away from the body. 

 

I saved the images in RAW format and determined the HSB values using Photoshop CS6 

(Version 13.0.6). I drew two lines, one parallel and one perpendicular to the length of the 

body, to divide each fish into equal sections (see Figure 4.4A,B,C,D). Using the color 

sampler tool, I recorded a point sample of hue, saturation, and brightness (or HSB) values for 

fifteen homologous points for each body region of the lateral surface of the fish: four anterior 

dorsal measurements, four posterior dorsal measurements, four posterior ventral 

measurements, and three caudal peduncle measurements (see below; Fig. 4.4A,B,C,D). I took 

a 3 × 3 average pixel point measurement of the yellow color standard from each image as a 

control across images. The HSB values of the yellow color standard were consistent among 

images; therefore, the data obtained from the color standard measurements were not used in 

analysis. 

 

I obtained homologous points to measure by starting in each body region near the center of 

the fish and designating the first whole scale closest to the vertical guideline as “point one”. 

Moving laterally along this line of scales towards the head or tail, I obtained measurements 
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from the center of each scale, skipping every two scales until four different point 

measurements were obtained. If a black scale was encountered, I measured the scale 

immediately anterior to the black area. In addition to these body measurements, I obtained 

three homologous caudal peduncle measurements from the opaque region directly posterior 

to the caudal peduncle line. The first point was placed in the middle of the caudal region, 

establishing equal distances above and below the point. Two more points were then measured, 

one superior to and one inferior to the first point. 

 

I used Image J software (1.49v) to measure body area, standard length, ventral black area, 

gonopodium black area, gonopodium length, and gonopodium area (previously described in 

Kolluru et al. 2014, 2015; see Table 3.2 for details). 

 

I used a factor analysis to extract latent factors from the morphological data. I included 

standard length, gonopodium length, gonopodium area, body area, ventral black area, mass, 

and average hue, average saturation, and average brightness of the anterior dorsal, posterior 

dorsal, posterior ventral, and caudal body regions. I obtained three components with 

eigenvalue > 1 and interpreted loadings with an absolute value > 0.50 (Table 3.3). Based on 

the saturation factor scores, I assigned males a “yellow saturation status” such that males 

with the higher saturation value within a pair were classified as high yellow and males with 

the lower saturation value were classified as low yellow (Fig. 4.9). Males were paired such 

that I maximized the difference in yellow saturation for the two males in each pair (range = 

0.56 - 2.78 saturation factor scores) and minimized the differences in standard length (range 
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= 0.06 – 1.8 mm). I assigned females to a pair based on a body size estimate. All three paired 

test fish came from different housing tanks. 

 

2.2.4 Foraging Context  

To evaluate a dominance status of each male prior to female exposure, I performed contest 

competition tests in which each pair of males competed over a defensible food source 

(Tetra Veggie Algae Wafers ®, Spectrum Brands, Inc.). To increase hunger levels, the 

morning feeding was withheld on the day of testing. After I was certain I could individually 

identify each male within a pair based on subtle differences in black coloration, I gently 

netted both males into a 19-liter tank at the same time. Following a three-minute acclimation 

period, I dropped an algae wafer in the center of the tank and let it sink to the bottom. I then 

performed a five-minute trial, which was started when at least one of the males pecked either 

at the wafer or pecked within a two-cm radius around the wafer (hereafter referred to as “the 

wafer zone”). I scored chases, bites, and pecks in the wafer zone or on the wafer itself (Table 

3.4). For the first 10 pairs tested, pecks at the wafer were rare and males displayed some 

behaviors not listed above. Therefore, I amended the protocol for the subsequent 13 pairs to a 

20-minute trial, during which the observer noted gonopodial jabs, follow duration and male-

male display, in addition to the behaviors listed above (all described in Table 3.4). Following 

the foraging context, males were returned to their home tanks, fed flake food (TetraMin Plus 

Tropical Flakes ®, Tetra, Spectrum Brands, Inc.), and allowed to acclimate for 20-30 

minutes before the dichotomous choice tests.  

 

  



 28 

2.2.5 Dichotomous Choice Tests 

I used dichotomous choice tests to measure the association time of females with each male in 

a pair. The testing arena consisted of three separate, rimless aquaria, to exclude chemical and 

tactile cues among fish (Fig. 4.10; Houde 1997; Jeswiet & Godin 2011). The female was in a 

38-liter glass aquarium with choice and neutral zones demarcated. Males were in 19-liter 

glass aquaria situated directly against the back of the female aquaria, creating a “U” shape 

(Fig. 4.10). My arena had a larger neutral zone relative to the choice zones, compared to 

typical dichotomous choice arenas (e.g., Plath et al. 2008, Jeswiet & Godin 2011, Kolluru et 

al. 2014, 2015). This increased the chances that a female’s time in a choice zone represented 

a choice favoring that male. All aquaria contained gravel and were covered with brown 

butcher paper, ensuring that the two males could not see each other. This arena excluded 

male-male communication and consequently male-male competition, and allowed females to 

associate with males based solely on visual cues (Gowaty et al. 2003; Moore et al. 2003).  

 

Males were randomly assigned to each aquarium for the first trial. I netted the two males and 

female into their aquaria and allowed a five-minute acclimation period during which all three 

fish could swim freely. I ensured that the female appeared to see each male before the start of 

each trial; occasionally this required extension of the acclimation period to 10 minutes.  

 

Following the acclimation period, I gently herded the female into a cylindrical, clear plastic 

acclimation chamber and placed the chamber in the middle of the neutral zone. The trial 

began upon the release of the female and removal of the chamber. I recorded time spent by 

the female in the choice and neutral zones for 10 minutes. Immediately following the first 
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trial, the males were switched between aquaria, the female was herded into the acclimation 

chamber, and the process was repeated for another 10-minute trial. 

 

2.2.6 Direct Interaction Tests  

Dichotomous choice tests may only indirectly measure mate choice and female preferences 

may be different when the sexes are allowed to interact (Shackleton et al. 2005). Therefore, I 

performed direct interaction tests, where all three fish could interact, to assess female choice 

when chemical and tactile cues were present, and to examine male-male competition 

simultaneously. Immediately following the dichotomous choice tests, the two males were 

netted into the female aquarium. I allowed a five-minute acclimation period during which all 

three fish could swim freely. I then performed a 10-minute focal observation on both males 

simultaneously, during which I recorded the behaviors described below (Table 3.5). After 

this trial, I allowed for a 20-minute intermission, during which the fish continued to interact 

and the observers left the curtained area. Following the intermission the observers reentered 

the curtained area and a second acclimation and trial were performed as described above. The 

fish were then lightly sedated with MS222, weighed to the nearest 0.1g, and returned to their 

home tanks. 

 

2.2.7 Data Analysis 

All statistical tests were performed using JMP Pro 12.1.0 (SAS Institute, Inc. 2014). For 

direct interaction tests, I corrected for four tests using the false discovery rate (FDR B-Y 

method; Bejamini & Yekutieli 2001), yielding an alpha-corrected of 0.024. 
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To address the relationship between aggression and morphology in the foraging context, I 

performed a generalized mixed model (GLMM) analysis of covariance (ANCOVA) with 

male nested within pair as a random effect, yellow saturation status as a fixed effect, and the 

yellow brightness and body size and ventral black factor scores as continuous covariates in 

the model. I summed chases, bites, and gonopodial jabs to obtain a composite aggression 

score, which was used as the dependent variable. I transformed composite aggression score 

by taking the square root (X + 0.5) because this most closely approximated normality of 

residuals. 

 

For dichotomous choice trials, I performed a GLMM ANCOVA with male nested within pair 

as a random effect and yellow saturation status, trial number, and side (referring to which 

aquaria the male was in) as fixed effects. The body size and ventral black area factor score, 

yellow brightness factor score, and female mass were continuous covariates. The dependent 

variable was female association time with each male. I took the square root of the dependent 

variable to normalize residuals. 

 

To address whether the males the female associated with more in the dichotomous choice 

tests were also more successful at gaining access to females in the direct interaction tests, I 

performed a GLMM ANCOVA with male nested within pair as a random effect and 

association time and female mass as continuous covariates. The dependent variables were 

following duration, courtship duration, copulation attempts with contact, and copulation 

attempts without contact. Following duration, courtship duration, copulation attempt with 

contact, and copulation attempt without contact were Box-Cox transformed to closely 
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approximate normality of residuals. 

 

I calculated dominance index scores from behaviors in the direct interaction tests, following 

Kolluru et al. (2014, 2015) as (chases delivered + bites delivered) / (chases delivered + bites 

delivered + chases received + bites received). I used the dominance index scores to designate 

each male within a pair as subordinate or dominant, such that the male with the higher 

dominance index score was assigned as the dominant male. I assigned dominance status to 

males in 12 of 23 pairs. The remaining 11 pairs did not exhibit any chases or bites.  

 

To determine whether pairs that exhibited aggression (12/23) differed from pairs that did not 

(11/23) I compared standard length differences and saturation factor score differences within 

a pair and the ability to assign dominance status. I used these variables because they were the 

morphological variables used to pair males initially. I performed two paired t tests with the 

ability to assign dominance status as the independent categorical variable and standard length 

differences or saturation factor score differences as continuous dependent variables. 

 

To ascertain the relationship between morphology and dominance index scores in direct 

interaction test, I performed a GLMM ANCOVA with male nested within pair as a random 

effect, yellow saturation status as a fixed effect, and yellow brightness, body size and ventral 

black factor scores as continuous covariates in the model. Dominance index, a continuous 

variable, was the dependent variable. I Box-Cox transformed dominance index because this 

most closely approximated normality of residuals. 
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To examine mating behavior in the direct interaction tests, I performed a GLMM ANCOVA 

with male nested within pair as a random effect and trial number, yellow saturation status, 

and dominance status as fixed effects. The yellow brightness factor score, body size and 

ventral black factor score, and female mass were continuous covariates. The dependent 

variables were following duration, courtship duration, copulation attempt with female with 

contact, and copulation attempt with female without contact. Courtship display and 

copulation attempt without contact were transformed using log10 (X + 0.5), and following 

duration was Box-Cox transformed, such that the residuals of all three variables were 

normally distributed. A Box-Cox transformation was used to approximate normality of 

residuals of copulation attempt with contact.  

 

The relationship between aggression composite scores and mating behavior in the direct 

interaction test was determined using a GLMM ANCOVA with male nested within pair as a 

random effect and yellow saturation status and dominance status as fixed effects. The yellow 

brightness factor score, body size and ventral black factor score, composite aggression score 

from the foraging context, and female mass were continuous covariates. The dependent 

variables were following duration, courtship duration, copulation attempts with contact, and 

copulation attempts without contact. The residuals of follow duration, courtship duration, and 

copulation attempts with contact were normally distributed and copulation attempts without 

contact was Box-Cox transformed to normalize the residuals for that variable. 
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2.3 Results  

2.3.1 Foraging Context 

Yellow saturation status, the yellow brightness factor score, and the body size and ventral 

black factor score did not influence the composite aggression scores (all P > 0.26). 

Furthermore, there was no relationship between composite aggression scores and mating 

behaviors in the direct interaction tests (all P > 0.21).  

 

2.3.2 Dichotomous Choice Tests 

Female association time was not dependent on yellow saturation status, trial number, side 

(referring to which aquaria the male was in), the body size and ventral black area factor score, 

the yellow brightness factor score, or female mass (all P > 0.16). 

 

2.3.3 Direct Interaction Tests 

Pairs that engaged in aggression, such that were assigned a dominance status, had a greater 

difference in standard length between the males than pairs that were not assigned a 

dominance status, due to a lack of aggression (mean ± SE = able to assign status: 0.68 ± 0.1, 

unable to assign status: 0.42 ± 0.1; t = -1.84, P = 0.08). Differences in saturation factor scores 

between males within each pair had no effect on that ability to assign dominance status 

(mean ± SE = able to assign status: 1.56 ± 0.18, unable to assign status: 1.3 ± 0.18; t = -1.02, 

P = 0.32). 

 

Males with a high yellow saturation had a higher average dominance index scores than low 

yellow saturation males (Fig. 4.11; F1,20 = 6.4, P = 0.019), suggesting more saturated males 
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instigated a greater proportion of aggression within a pair. There was a positive relationship 

between dominance index scores and yellow brightness factor scores (Fig. 4.12; F1,20 = 10.4, 

P = 0.004). Therefore, males with brighter, more saturated yellow skin were more likely to be 

dominant within pairs.  

 

Males that the female associated with more in the dichotomous choice tests did not follow 

(F1,63 = 2.4, P = 0.13), court (F1,73 = 1.4, P = 0.24), attempt copulations with contact (F1,66 = 

0.7, P = 0.4) or attempt copulations without contact (F1,58 = 1.5, P = 0.23) more than their 

rivals.  

 

Dominant males courted significantly more than subordinate males (Fig. 4.13; Table 3.6; F1,17 

= 10, P = 0.006). The relationship between dominance status and the number of copulation 

attempts without contact was marginally nonsignificant when corrected for multiple tests 

(Table 3.6; F1,17 = 5.3, P = 0.035); however, there was a trend towards more dominant males 

attempting copulations without contact more often than subordinate males (mean ± SE = 

dominant: 0.81 ± 0.17, subordinate: 0.16 ± 0.18). Body size and ventral black area were also 

positively related to the number of copulation attempts without contact (Table 3.6; F1,17 = 6.5, 

P = 0.02). There was a significant yellow saturation status × dominance status interaction for 

copulation attempts with contact, such that high yellow, dominant males attempted more 

copulations with contact than high yellow, subordinate males (Fig. 4.14; Table 3.6; F1,17 = 

8.23, P = 0.011, post-hoc Tukey’s HSD test). The opposite effect was seen in low yellow 

males, such that low yellow, subordinate males attempted more copulations than low yellow, 
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dominant males (Fig. 4.14). None of the factors in the model explained follow duration (all P 

> 0.14). 

 

2.4 Discussion  

G. metallicus black morph males are “lemon yellow” and black (Greven 2005), and exhibit 

the ventral surface and gonopodium as part of a multicomponent mating and aggressive 

display (Lorenzen 1996; Kolluru et al. 2014, 2015). I showed that males with brighter and 

more saturated yellow coloration instigated a greater proportion of aggressive interactions, 

consistent with studies on a range of taxa showing that dominance status is communicated 

through color ornaments (e.g., Kodric-Brown 1993, Pryke et al. 2001b, Senar 2006). 

Consistent with previous studies on this system (Kolluru et al. 2014, 2015), I also found that 

dominant males courted females more frequently than subordinate males. Although yellow 

saturation was not directly correlated with mating activity, my results suggest that yellow 

saturation may nonetheless be involved in sexual selection, because of the interaction 

between yellow saturation status and dominance on copulation attempts with contact. Within 

the high yellow males, dominant males attempted more copulations with contact than 

subordinate males. Within low yellow males, however, subordinate males attempted more 

copulations with contact than dominant males, albeit with less of a difference than in the high 

yellow males. Low yellow males who were dominant may have gained more access to 

females through courtship, but invested more time into being aggressive at the expense of 

attempting copulations. Low yellow, subordinate males performed less courtship, but may 

have attempted more copulations rather than engaging in potentially risky aggressive 

behavior.   
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Inter- and intrasexual selection can simultaneously operate on multicomponent displays 

(Miller & Svensson 2014) and may favor the same individual traits (Berglund et al. 1996; 

Hunt et al. 2009; Miller & Svensson 2014) or different individual traits (Pryke et al. 2001a; 

Andersson et al. 2002; Johnson & Fuller 2014) within the multifaceted phenotype. I found no 

evidence that females use yellowness to assess quality, but I did find that it is related to 

aggression, suggesting that yellow coloration is primarily used as a signal to other males. 

Although neither Kolluru et al. (2015) nor I found evidence for female choice favoring 

specific male traits, those authors found a positive relationship between female preference for 

a male and his subsequent mating activity. In contrast, in the present study I found no such 

relationship. In other words, females were not able to “spot a winner” in the dichotomous 

choice tests as they did in Kolluru et al. (2015). The difference in results is likely because my 

dichotomous choice test arena did not allow the males to see or chemically signal to each 

other, or chemically signal to the female, during the trials, as they could in Kolluru et al. 

(2015). My results indicate that female preference and male-male competition select for 

different traits within the multicomponent display.  

 

Despite the findings of the present study and Kolluru et al. (2014, 2015), the significance of 

the courtship display has yet to be elucidated. Females do not appear to directly prefer any of 

the traits we have measured thus far (Kolluru et al. 2014, 2015; present study). It is possible 

that the display serves to signal morph rather than individual quality to females, because 

black morph males do not appear to force copulations, as do normal morph males (Farr 1980; 

Lorenzen 1996). In some species, coercion is selected against because it decreases both male 
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and female fecundity (Parker 1979, 2006; Wang et al. 2015). Langerhans (2011) suggested 

that actively displaying the gonopodium during courtship might be a signal used by females. 

Females may prefer courtship displays because males can adjust the rate or intensity of the 

display in response to a female’s reaction, which can avoid startling females and thereby 

enhance mating success (Patricelli et a. 2006, 2016). Although males of other poeciliids 

commonly display by placing the lateral body surface in front of the female (Endler 1984; 

Farr 1989; reviewed in Plath et al. 2007), black morph G. metallicus males display by 

orienting themselves below females, tilting up the chin and lowering the gonopodium 

(described in Lorenzen 1996 and Kolluru et al. 2014). Previous authors have suggested that 

the display served to make the gonopodium visible (Lorenzen 1996; Kolluru et al. 2014, 

2015; Dadda 2015); however if the courtship display serves to pacify females wary of 

coercive mating attempts, then males may angle themselves beneath the female so that the 

gonopodium is hidden (M.E. Cummings, pers. comm.). Kolluru et al. (2014) showed that 

gonopodium size was important in female choice; however, that finding could be due to its 

function in male-male aggression. Indeed, the lowering of the gonopodium may 

simultaneously hide the gonopodium from females and signal quality to other males. Studies 

in which the two morphs (black and normal) are pitted against each other in tests 

investigating female choice and male-male competition are essential in identifying the 

functional significance of the black morph courtship display.  

 

Potential rivals use traits that communicate resource holding potential (RHP) to estimate 

fighting capacity (Parker 1974) and thereby settle disputes without direct physical contest 

(Rohwer 1975; Barlow & Wallach 1976). I found that yellow is correlated with aggression, 
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suggesting males may use this trait to in assessing RHP. Interestingly, Kolluru et al. (2015) 

size-matched males without consideration for yellow coloration and found higher levels of 

aggression, possibly because the males were more closely matched in yellow saturation and 

yellow brightness than in the present study.  

 

Body size is a predictor of dominance status in a variety of taxa (Qvarnström & Forsgren 

1998) and usually influences the outcome of both male-male competition and female choice 

(Hunt et al. 2009). Whereas larger males have been shown to be more dominant in some 

poeciliids (Belonesox belizanus and G. falcatus; Bisazza et al. 1996), Farr (1980) found that 

in the normal morph of G. metallicus, smaller males were more aggressive. He demonstrated 

that this occurred because aggressive juvenile males matured earlier, and were consequently 

smaller but more aggressive as adults. Whereas Kolluru et al. (2014) found that larger, 

blacker males attempted more copulations, I found that smaller, less black males attempted 

more copulations (albeit without contact). My results are consistent with Farr (1980), 

suggesting that smaller males are more sexually vigorous than larger males. Farr (1980) also 

found that if males were isolated and reintroduced to each other, juvenile social status had no 

effect on dominance status; furthermore, the larger males were dominant to the smaller males, 

a reversal of what happens when they are reared together. Therefore, the relationship 

between male body size and aggression is complex in this species. Despite size matching, I 

observed a greater difference in standard length between the males in pairs to which I could 

assign dominance status, due to sufficient aggression in mating tests, than pairs to which I 

could not assign dominance status, due to lack of aggression in mating tests. This result 

suggests that the relationship between body size and dominance may be fueled by complex 
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interactions between the rearing environment and the test environment. I did not collect 

information on dominance status of my fish in the rearing environment. When two novel 

males are placed in a test environment, the social hierarchy dynamic may be challenged due 

to each male’s developmental history and experience. Prior exposure in foraging contexts 

and isolation before mating tests may have affected hormone levels of each male. The 

varying hormone levels may have altered aggression levels, and caused males in pairs that 

were less size matched to reassess the importance of size differences on dominance status, 

during the mating tests. The dominance hierarchy may have been shifting more between 

males in pairs with greater size differences than males in pairs with smaller size differences, 

resulting in the sufficient amount of aggression used to assign dominance status. 

 

Although both sexes of G. metallicus are aggressive over food and mates (Farr 1980; Y.J. 

Akky & G.R. Kolluru, unpublished data; Kolluru et al. 2014, 2015), I observed low levels of 

aggression both contexts. In the food context, this may have resulted because the food source 

used in the trials (algae wafer) was not a sufficiently valuable resource (prior to the trials, 

males were fed frozen brine shrimp). I chose to use a fixed design approach, such that all 

males experienced a foraging context prior to mating tests, to ensure that the males had 

similar aggressive experiences. This approach may have introduced order effects (Bell 2012), 

which could have led to the reduced aggression in the mating context trials because the males 

had already interacted with each other. 

 

Though low levels of aggression occurred, males participated in aggressive behavior 

involving the gonopodium, suggesting it may function as a weapon. I observed a novel, 
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aggressive behavior, termed gonopodial jab, which involves physical contact between a 

male’s gonopodium and another male. Interestingly, G. metallicus aggressive encounters also 

sometimes involve biting the rival’s gonopodium (J.M. Budke, pers. comm.). In addition to 

reinforcing or resolving dominance hierarchies (Bailey & Zuk 2009) by influencing levels of 

aggression (Lane et al. 2016), gonopodial jabs and bites may increase attractiveness to 

potential mates (Bierbach et al. 2012). For example, in the Atlantic molly (P. mexicana), 

female preference increases after observing a male initiate a “sexual interaction” with another 

male, suggesting that females may exhibit a general preference for increased male activity 

(Bierbach et al. 2012).  

 

In summary, my results are consistent with previous studies in showing that aggression is key 

to mating success in this species, G. metallicus (Farr 1980; Kolluru et al. 2014, 2015). I 

found that yellow body coloration is positively correlated with dominance status. 

Manipulating ventral black area and yellow coloration simultaneously will provide us with 

more information about the role of coloration in sexual selection in the black morph G. 

metallicus. A broader investigation with the two morphs (normal and black) competing 

against each other may allow researchers to determine the functional significance of the 

black morph courtship display. It is possible that males may use the display to signal morph 

so that females can avoid coercive mating attempts (Wang et al. 2015) or that males may be 

hiding the gonopodium from females (M.E. Cummings, pers. comm.) and aggressively 

signaling other males while courting, maintaining the courtship display in the black morph.  
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3. TABLES 

 

Table 3.1. Results of general linear mixed model for HSB variables. Boldface p-values 
indicate significance after correction for multiple tests (alpha-corrected = 0.027).  

Trait Term DF F P 
Hue (°) Treatment 105 1.7 0.18 
 Body Region 102 25.5 < 0.001 
 Standard Length 9 2.8 0.13 
 Body Region × Treatment 102 1.6 0.16 
Saturation  Treatment 103 2.43 0.093 
(%) Body Region 102 46.6 < .0001 
 Standard Length 13 1.2 0.29 
 Body Region × Treatment 102 3.9 0.0013 
Brightness  Treatment 102 63.2 < .0001 
(%) Body Region 102 28.7 < .0001 
 Standard Length 18 2.2 0.15 
 Body Region × Treatment 102 4.6 0.0003 
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Table 3.2. Description of morphological traits measured in ImageJ. 
 
 

Behavior Description 
Body area Outline of the body, excluding the gonopodium 

Standard length (mm) Distance from the tip of the snout to the caudal 
peduncle line 

Ventral black area Black area starting superior to the middle of the 
eye or anterior to the edge of the eye to the 
insertion point of the gonopodium 

Gonopodium black area Black area in the region from the insertion point 
of the gonopodium to the tip of the palps 

Gonopodium length Distance from the insertion point of the 
gonopodium to the distal tip of the palps 

Gonopodium area Outline of the gonopodium from the insertion 
point of the gonopodium to the tip of the palps 
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Table 3.3. Results of the factor analysis on morphological traits. Factor loadings greater than 
0.50, which were used in interpreting the factors, are shown in boldface.  
 

Morphological Traits 

Factor 1 
Body Size and 
Ventral Black 

Area 
Factor 2 

Saturation 
Factor 3 

Brightness 
Standard Length (mm) 0.974 0.173 -0.087 
Body Area 0.977 0.181 -0.080 
Gonopodium Length (mm) 0.879 -0.068 -0.107 
Ventral Black Area 0.705 -0.015 0.087 
Gonopodium Area 0.845 0.036 -0.008 
Male mass (g) 0.927 0.173 -0.026 
Anterior Dorsal Hue -0.348 0.324 -0.087 
Anterior Dorsal Saturation 0.019 0.904 0.007 
Anterior Dorsal Brightness -0.033 -0.066 0.760 
Posterior Dorsal Hue -0.423 0.103 0.167 
Posterior Dorsal Saturation 0.138 0.984 -0.114 
Posterior Dorsal Brightness -0.105 -0.062 0.993 
Posterior Ventral Hue -0.249 0.202 0.216 
Posterior Ventral Saturation 0.231 0.740 0.051 
Posterior Ventral Brightness -0.157 -0.049 0.827 
Caudal Hue -0.086 0.133 0.064 
Caudal Saturation 0.025 0.644 -0.224 
Caudal Brightness 0.077 -0.009 0.614 
Eigenvalue 5.92 3.54 2.93 
Percent Explained 32.88 19.67 16.27 
Cumulative Percent 32.88 52.55 68.82 
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Table 3.4. Description of aggressive behaviors recorded in the foraging contest. 
 
 

 
Behavior 

 
Description 

Chase male Quick movement by the focal male toward the 
other male 

Bite male Visible contact between the mouth of the focal 
male and a part of the other male 

Gonopodial jab Movement of the gonopodium toward the other 
male, in attempt to make physical contact with a 
part of the other male aggressively 

Male-male display Following stance of focal male that shows of his 
gonopodium to other male 

Following duration Time spent by the focal male following the other 
male, with his gonopodium folded (i.e., not a 
display) 
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Table 3.5. Description of behaviors recorded in the direct interaction mating behavior tests. 
 

Behavior Description 
Following duration Time spent by the focal male following the 

female without performing a characteristic 
courtship display 

Courtship duration Time spent courting the female in the 
characteristic display stance, which involves 
tilting up of the chin and lowering of the 
gonopodium (described in Lorenzen 1996 and 
Kolluru et al. 2014) 

Copulation attempt with contact Movement of gonopodium toward the female, 
such that the gonopodium makes visible contact 
with the female 

Copulation attempt without 
contact 

Movement of gonopodium toward the female 
without visible contact with the female 

Chase male Quick movement by the focal male toward the 
other male 

Bite male Contact between the mouth of the focal male and 
a part of the other male 
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Table 3.6. Results of the generalized linear mixed models from the direct interaction tests. 
Boldface p-values indicate significance (alpha-corrected = 0.024). 

Behavior Term DF  F P 
Following  Trial Number 20 2.17 0.16 
duration Yellow Saturation Status 17 0.26 0.61 

 
Trial Number × Yellow Saturation Status 20 0.003 0.96 

 
Dominance Status 17 1.96 0.18 

 
Trial Number × Dominance Status  20 0.32 0.58 

 
Yellow Saturation Status × Dominance Status 17 2.36 0.14 

 

Trial Number × Yellow Saturation Status × 
Dominance Status 20 0.81 0.38 

 
Body Size and Ventral Black Area 17 4.36 0.05 

 Brightness 17 0.55 0.47 
  Female Mass (g) 17 1.77 0.20 
Courtship  Trial Number 20 0.13 0.72 
duration Yellow Saturation Status 17 0.15 0.70 

 
Trial Number × Yellow Saturation Status 20 0.06 0.81 

 
Dominance Status 17 9.98 0.006 

 
Trial Number × Dominance Status  20 0.06 0.81 

 
Yellow Saturation Status × Dominance Status 17 2.48 0.13 

 

Trial Number × Yellow Saturation Status × 
Dominance Status 20 0.03 0.87 

 
Body Size and Ventral Black Area 17 2.14 0.16 

  Brightness 17 0.83 0.37 
 Female Mass (g) 17 0.55 0.47 
Copulation Trial Number 20 0.26 0.62 
attempt 
with Yellow Saturation Status 17 0.14 0.71 
contact  Trial Number × Yellow Saturation Status 20 0.79 0.39 

 
Dominance Status 17 2.94 0.10 

 
Trial Number × Dominance Status 20 1.40 0.25 

 
Yellow Saturation Status × Dominance Status  17 8.23 0.011 

 

Trial Number × Yellow Saturation Status × 
Dominance Status 20 0.64 0.43 

 
Body Size and Ventral Black Area 17 1.9 0.19 

  Brightness 17 0.97 0.34 
 Female Mass (g) 17 2.32 0.15 
Copulation  Trial Number 20 3.0 0.09 
attempt  Yellow Saturation Status 17 0.08 0.78 
without  Trial Number × Yellow Saturation Status 20 0.02 0.87 
contact Dominance Status 17 5.3 0.035 

 
Trial Number × Dominance Status 20 0.28 0.60 

 
Yellow Saturation Status × Dominance Status 17 3.1 0.09 

 
Trial Number × Yellow Saturation Status × 20 0.25 0.62 
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Dominance Status 

 
Body Size and Ventral Black Area 17 6.5 0.02 

  Brightness 17 0.24 0.63 
 Female Mass (g) 17 0.29 0.11 
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4. FIGURES 

 

 

 

 

Figure 4.1. A lateral view (A) and top view (B) of the HSB color model which demonstrates 

the relationship of the three variables (Yasir, I. & Qin, J. G. 2009. Effect of light intensity on 

color performance of false clownfish, Amphiprion ocellaris Cuvier. Journal of the World 

Aquaculture Society, 40, 337-350; Copyright © 2009 by John Wiley Sons, Inc. Reprinted by 

permission of John Wiley & Sons, Inc.). 
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Figure 4.2. Males under the Non-anesthetic treatment were photographed with the camera 

placed on a stationary ball head mount directly across from the stage under securely fastened 

lamps. 
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Figure 4.3. The photographs of the eleven male G. metallicus in the three treatments: clove 

oil, Non-anesthetic, and MS222. The left rather than right side of male 2 was accidently 

photographed, and two males (males 7 and 11) were not photographed in the Non-Anesthetic 

treatment (see methods for details). 
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Figure 4.4A,B,C,D. Images of the 15 homologous HSB measurements of the same fish: four 

anterior dorsal measurements (A), four posterior dorsal measurements (B), four posterior 

ventral measurements (C), and three caudal peduncle measurements (D). Lines were drawn 

to divide each fish into equal sections 

  

A 

C 

B 
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Figure 4.5. The average hue of the four body regions in the three treatments: clove oil, glass, 

MS222. The graph is showing the untransformed values because they are a more meaningful 

indication the position on the color wheel. The interaction was not significant. Bars show 

least-squares means ± SE. 
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Figure 4.6. The average saturation of the four body regions in the three treatments: clove oil, 

glass, MS222. The interaction was significant. Bars show least-squares means ± SE. 
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Figure 4.7. The average brightness of the 4 body regions in the three treatments: clove oil, 

glass, MS222. The interaction was significant. Bars show least-squares means ± SE. 
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Figure 4.8. Two male black morph G. metallicus demonstrating the variance in yellow body 

coloration: “high yellow” male (A) and “low yellow” male (B). These males were paired for 

behavioral tests.  

  

A B 
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Figure 4.9. Mean saturation factor scores of males assigned to low or high yellow saturation 

status. Bars show least-squared means ± SE.  
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Figure 4.10. Dichotomous choice experimental set up consisting of three separate aquaria. 

Neutral and no choice zones are demarcated in the female aquarium. Photo: H.M. Neldner. 
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Figure 4.11. The relationship between yellow saturation status and dominance index. 

Dominance index refers to the proportion of aggressive interactions instigated by a male. 

Bars show least-squares means ± SE. 
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Figure 4.12. The relationship between dominance index and yellow brightness. The 

relationship is a leverage plot, revealing the impact of adding this effect to the model, given 

the other effects already in the model.  
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Figure 4.13. The interaction between yellow saturation status and dominance status on 

courtship. The interaction is not significant. Bars show least-squares means ± SE. 
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Figure 4.14. The interaction between yellow saturation status and dominance status on 

copulation attempts with contact. Bars show least-squares means ± SE. 
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APPENDIX 

A.1 Elucidating the Pigment Basis of Yellow Coloration 

I hypothesized that the yellow coloration of black morph males contains carotenoid pigments, 

given the prevalence of carotenoids in yellowish coloration in other poeciliids (Endler 1984; 

Goodwin 1984).  

 

I performed a chemical extraction to detect the presence of carotenoid pigments described by 

McGraw et al. (2005) using a sample of fish separate from those described above. This 

method uses both a thermochemical extraction technique to free carotenoid pigments from 

sample tissue and a solvent transfer to confirm the presence of carotenoids in animal tissues. 

I increased the tissue amount from the recommended 3-5mg to 32.5mg, reduced the 

recommended amount of DI water from 2mL to 1mL, and added 1mL of TBME to the 

solution before the 1:1 ratio of hexane: TBME in attempt to obtain a distinct separation. I 

extracted pigments from the yellow portions of skin of 10 Girardinus metallicus males 

(32.5mg), excluding black areas, fins, and the head. I also used two positive controls known 

to have carotenoids: one vial with the dissected skin of 10 guppies (49.8mg, P. reticulata; 

Endler 1980) and one vial with shavings of a carrot (85mg; Britton 1992). I extracted lipid-

soluble pigments from the skin with heated acidified pyridine and later combined the solution 

with a hexane: tert-butyl methyl ether (TBME) mixture to address whether coloration could 

be a result of pteridine pigments instead of carotenoids. If a tissue sample has carotenoid 

pigments then they will leach out of the tissue and color the heated pyridine solution. 

Furthermore, carotenoid pigments, unlike pteridine pigments, will transfer to non-polar 

organic solvents such as hexane (for the non-polar carotenoids) and TBME (for polar 
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carotenoids), suggesting that if carotenoids are present then when the hexane:TBME is added 

to the pyridine solution and centrifuged, the hexane: TBME phase will be colored, instead of 

the pyridine phase. 

 

I found that the heated pyridine solution leached color from the tissue samples of G. 

metallicus, P. reticulata, and the carrot, suggesting that carotenoid pigments may be present 

in all samples (Fig.A1). When performing the additional procedure using hexane:TBME to 

address whether the coloration is due to carotenoids per se, rather than pteridines, my results 

were not consistent with those outlined by McGraw et al. (2005). The separation between the 

hexane:TBME layer and the pyridine layer was evident; however, both phases contained 

pigment, suggesting that the coloration may be due to multiple pigment types (Fig. A1; 

McGraw et al. 2005). Furthermore, both the pyridine and hexane:TBME phase for both 

positive controls were only slightly colored, implying that the separation failed, because both 

guppy skin (Endler 1980) and carrots (Britton 1992) are known to contain concentrated 

carotenoid pigments. I repeated the extraction three times; however, all attempts resulted in 

inconclusive results. Regardless, these results suggest that there may be multiple pigments 

responsible for the coloration and more rigorous tests need to be performed.  

 

The yellow body coloration may be a dynamic trait, changing temporally, as opposed to a 

static trait, as it was assumed here. The yellow coloration could be affected by the dispersion 

of melanosomes in melanophores, which can mask the yellow pigment-containing 

xanthophores and the interaction of light and iridophores, which can change appearance 

(Grether et al. 2004; Price et al. 2008). Although I was not able to determine the pigmentary 
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source of the yellow coloration, there is variation in yellow saturation and yellow brightness 

among males and more detailed tests (outlined in Grether et al. 2001) are needed to 

determine whether carotenoids are present in G. metallicus skin. 
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Figure A.1.1 Heated pyridine solution with coloration as a result of pigments leached from 

tissue samples (left) and separation between the hexane:TBME layer and the pyridine layer 

(right) of (A) pyridine control (B) black morph G. metallicus (C) guppy (P. reticulata) and 

(D) carrot. 
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