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ABSTRACT
Compounding Fire Disturbance History Encourages Coast Redwood (Sequoia
sempervirens) Regeneration and Community Dominance
Matthew R. Brousil
Disturbance is fundamental to forest ecosystem function and overall health, but

climate change is likely to increase both disturbance frequency and intensity in the future.
Forests subject to increasingly frequent and intense disturbances are more likely to
experience compounding disturbance effects. Compounding disturbances may exert
unpredicted, non-additive stresses on ecosystems, leading to novel conditions that may
exceed the capacity for local species to survive and regenerate. | further hypothesize that
compounding disturbances could create conditions misaligned with species’ adaptations
by altering physical and chemical growing conditions in forest soils, affecting forest
composition, structure, and, subsequently, function for many years following disturbance.
A better understanding of these remnant effects will be essential to managing and
conserving coast redwood forests, which are projected to see increased frequency of fire
under future climate scenarios. My objectives in this study were to quantify the effects of
time-since-fire and single vs. compounding disturbances on coast redwood forest
structure, composition, and regeneration dynamics and to evaluate the effects of abiotic
soil qualities on post-fire regeneration. | mapped and sampled coast redwood forests
burned in 1985, both 1985 and 1999, 2008, and 2013; modeled regeneration as a function
of burn history, understory light, and post-fire nutrient levels; and tested redwood seed
regeneration in post-fire soils in a greenhouse experiment. Forest structure, composition,

and regeneration following compounding disturbance were most similar to the



homogenous, redwood-dominated forest of the recent 2013 burn. There were no unique
effects of compounding disturbance on soil nutrient levels, although variations in nutrient
levels generally followed patterns seen in previous studies. Soil nitrate was positively
associated with coast redwood regeneration levels, showing that soil nutrients may be
influential in regeneration processes following disturbance. Time since burn and single
burn histories were negatively associated with regeneration levels in the field, and there
were no differences in seed germination in the greenhouse between soils from different
fire histories. Increases in coast redwood forest dominance accompanied declines in bay
laurel and tanoak presence, indicating a shift in post-fire forest structure and composition
resulting from compounding disturbance. These results illustrate a complex relationship
between regeneration dynamics, post-fire soil quality, and disturbance histories. Forest
homogenization from compounding disturbances may have negative implications for
ecosystem services and overall function if compounding disturbances are more frequent

as predicted under future climate conditions.

Keywords: coast redwood, Sequoia sempervirens, tanoak, compounding disturbance, fire,

disturbance return interval, climate change, disturbance interactions
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INTRODUCTION

Forest ecosystems are invaluable ecological and sociocultural resources, which are
shaped by historical disturbance regimes. While disturbance is a natural process in all
ecosystems, climate change will affect the frequency and intensity of disturbances in the
future, potentially leading to unpredictable disturbance regimes. Although ecosystems are
often able to maintain natural functioning and associated ecosystem services following a
disturbance to which they are adapted, altered disturbance conditions can lead to lowered
ecosystem tolerance to change (Johnstone et al. 2016). Therefore, increased frequency
and intensity in disturbance regimes may exert unpredictable, non-additive stresses on
ecosystems, leading to novel conditions that exceed an ecosystem’s capacity to survive
and regenerate (Buma and Wessman 2011, Metz et al. 2013). Understanding of the
effects of novel disturbance conditions requires a heightened emphasis on forest
resilience, the ability to absorb and adapt to ongoing change (Walker et al. 2004), and the
mechanisms that confer resilience (Johnstone et al. 2016). Long-term ecosystem function
is at increased risk when resilience mechanisms (e.g., seed dispersal or resprouting that
spur regeneration) have not yet recovered from previous disturbances before a subsequent
event occurs (Buma 2015). For example, human-driven decreases in time between fires
has led to compositional shifts in boreal (Weir and Johnson 1998) and tropical (Barlow
and Peres 2008) forests. In the western United States, coast redwood (Sequoia
sempervirens (D. Don) Endl.) forests can experience unexpectedly high mortality from
compounding disease and fire disturbances (Metz et al. 2013). Compounding
disturbances occur when multiple ecosystem perturbations are either concurrent (e.g.,

disease and fire) or occur closely enough in time that recovery from the first disturbance



is not complete before additional disturbances occur (e.g., two fires in rapid succession;
Paine et al. 1998). Research into the viability of resilience mechanisms over a sequence
of time since disturbance can inform management decisions under regimes of
increasingly frequent disturbance and higher mortality (Johnstone et al. 2016).
Regeneration is a key mechanism of post-disturbance forest resilience but can
decrease markedly following increased disturbance intensity and duration. For example,
stand-replacing wildfire in a non-serotinous mixed conifer southern Californian forest
decreased regeneration of several conifer species and extirpated three at the stand level,
resulting in changes to forest composition favoring oak species (Goforth and Minnich
2008). Conifer regeneration was reduced following high local wildfire severity
compounded by medium and high severity windthrow in a subalpine forest in Colorado
(Buma and Wessman 2011). Salvage logging following fire has also led to significantly
reduced conifer regeneration compared to burn-only areas (Donato et al., 2006). Drivers
of regeneration, such as climate (Gémez-Aparicio et al. 2005), viability of seed material
post-disturbance (Buma and Wessman 2011), nurse effects of established vegetation
(Castro et al. 2004, Gémez-Aparicio et al. 2005), soil moisture (Urbieta et al. 2011), and
seed source availability (Vacchiano et al. 2014) are current topics of research in the study
of forest resilience. However, attention to other controls on regeneration that would be
heightened by compounding disturbances, such as changes to soil quality from
belowground disturbance legacies, is less common. In one study, mineral soil black
carbon stocks decreased (but not significantly) in a Colorado subalpine forest with

increasing numbers (1-3) of compounding disturbances (Buma et al. 2014). Yet overall,



changes in regeneration controls following compounding disturbances remain a major
knowledge gap in understanding forest resilience to altered disturbance regimes.

Soil legacies, the functional modifications to soil that linger after disturbances, can
exert a strong influence over regeneration density (Vacchiano et al. 2014). The frequency
and severity of disturbances influences the production of soil legacies (Certini 2005),
including both surface and belowground properties such as mineral soil exposure,
aggregate stability, exchangeable K and Mg, CEC, total N, and long-term accumulation
of organic carbon (Johnson and Curtis 2001, Vacchiano et al. 2014). A better
understanding of soil legacies and their influences are especially relevant in coast
redwood forests, which are experiencing increased pressure from multiple types of
disturbance, including fire (Westerling et al. 2006), Sudden Oak Death (SOD; Ramage et
al. 2011), fog reduction (Johnstone and Dawson 2010), and compounding disturbances
(Metz et al. 2013). It follows that novel disturbance regimes could unpredictably alter
physical and chemical growing conditions in coast redwood forest soils and affect
regeneration patterns for years after disturbance events, leading to changes in forest
composition and structure.

Coast redwood forests are adapted to a historical low severity, high frequency fire
disturbance regime. Fire return interval ranged from 6-25 years prior to European
settlement (Lorimer et al. 2009), with more frequent fire in the southern subregion of the
range (south of Alameda County, CA; Noss 2000) as compared to the northern subregion
(north of Humboldt Bay, CA; Noss 2000) both historically and over the last century of
fire suppression (Oneal et al. 2006, Lorimer et al. 2009). Regeneration of coast redwood

after fire occurs largely via sprouting with sprouts outpacing associated forest species



(Ramage et al. 2010, Lazzeri-Aerts and Russell 2014), though coast redwood seedlings
may also represent a highly variable component of regeneration (Douhovnikoff et al.,
2004; Lazzeri-Aerts and Russell, 2014). The mechanisms underlying this variation in
regeneration strategy and success are poorly understood for coast redwood and many
additional temperate forest species (e.g., regeneration density in Douglas-fir
(Pseudotsuga menziesii), Donato et al. 2009a, Lazzeri-Aerts and Russell 2014) as are the
drivers of regeneration response to altered soil conditions and the factors contributing to
differential reproductive success following disturbance (Ramage et al. 2010, Vacchiano
et al. 2014). Additional research into the effects of compounding disturbances and
belowground disturbance legacies following fire can establish how these factors impact
coast redwood seed and sprout regeneration and stand dynamics (i.e., changes in structure
and composition) over time following historic and novel disturbance conditions. In
particular, regeneration response and long-term changes in community composition from
increasingly frequent fires are important but poorly understood topics in forest
disturbance ecology (Donato et al. 2009b, Lorimer et al. 2009). More broadly, this type
of research will contribute to the understanding of soil legacy influences on forest
regeneration following novel disturbance patterns under climate change.

To fill this knowledge gap, the objectives of this research were therefore to better
understand how fire disturbance history exerts controls on coast redwood regeneration,
stand structure, and forest composition by: 1) assessing differences in stand structure and
composition over varying times since fire disturbance and between single and
compounding fire disturbance histories; 2) quantifying the effect of time since fire and

single vs. compounding disturbance on nutrient levels in coast redwood forests; 3) by



modeling coast redwood seedling and sprout regeneration as a function of soil nutrient
levels, burn history, and understory light; and 4) testing for differences in seed
germination and seedling growth between burn histories using a greenhouse experiment.
Nutrients of interest (NOs", NH4*, PO4*, and Ca?*) were selected based on previous
studies (Hawkins and Robbins 2014, Trant et al. 2016) indicating their importance in the
Cupressaceae family (of which coast redwood is a member) or other temperate forest
ecosystems (Wardle et al. 2004, Binkley and Fisher 2013). For example, multiple species
in the Cupressaceae family establish well on calcareous soils or have high foliar Ca2*
concentrations (Hawkins and Robbins 2014), which is related to both the effects of Ca2*
on pH and Cupressaceae tolerance to the calcareous environment (Hawkins and Robbins
2014, Trant et al. 2016). Nitrogen (NOz", NHz") and PO4* supply are also important
factors in forest productivity across many species (Wardle et al. 2004, Binkley and Fisher
2013), and NOs" is of particular importance to western red cedar in the Cupressaceae
family (Bennett and Prescott 2004). In selecting these nutrients, | hypothesized that their
role in regeneration would include influencing germination by seed but additionally
influencing whether parent trees sprouted more or less prolifically. Understanding the
effects of altered fire disturbance regimes on soil nutrient levels and their roles in post-
fire regeneration will contribute to a better understanding of the less studied long-term
effects of variable or compounding fire disturbance on forest communities. Changes in
soil nutrient composition that influence the regeneration of one or more species would
have lasting effects on post-disturbance competition and ultimately the composition and

structure of forest communities following compounding disturbances.



MATERIALS AND METHODS

Study area
This study occurred at the southern end of the coast redwood range in the Big Sur

ecoregion of California’s Central Coast, stretching roughly from Carmel in the north (N
36.536072, W 121.92801) to San Simeon in the south (N 35.645379, W 121.1914797;
Henson and Usner 1993). Climate in Big Sur is Mediterranean with dry summers, wet
winters, and cooler summer temperatures than other Mediterranean climates due to
abundant summer fog (Henson and Usner 1993). Precipitation (Table 1) ranges from
67.61 to 99.29 average cm per year from the southern to northern portion of my study
range in Big Sur (Western Regional Climate Center 2016a, 2016b) and in general
throughout the region; it is highest in the coastal Santa Lucia Mountains (Davis and
Borchert 2006). The region supports a mosaic of ecosystems including coastal prairie and
maritime chaparral, oak woodlands, mixed evergreen forests, and mixed conifer forests
among others due to the varied topography of the coast and mountain terrain (Henson and
Usner 1993, Davis and Borchert 2006). Coast redwood forests are limited in Big Sur
compared to other forest types (Metz et al. 2012). In this southern extent of the coast
redwood range the species is often confined to canyons where fog settles and north-
facing, well-drained slopes due to moisture limitations (Henson and Usner 1993, Noss
2000). Here, coast redwood can co-occur with big leaf maple (Acer macrophyllum),
white alder (Alnus rhombifolia), tanoak (Lithocarpus densiflorus), western sycamore
(Platanus racemosa), bay laurel (Umbellularia californica), and Douglas-fir depending
on topography and associated moisture (Borchert et al. 1988, Henson and Usner 1993).
In coast redwood forests in this region, the Gamboa and Sur soil series are most common

(the Gamboa-Sur complex); the two are very similar, but the Gamboa series is deep and



productive while the Sur is considered to be less so (Borchert et al. 1988). These soils are
typically well-drained, gravelly or very gravelly loams with roughly neutral pH (Borchert
et al. 1988). These two series have been documented on sandstone, schist, granite,
marble, gneiss, and quartz parent materials in the area (Borchert et al. 1988).
Site descriptions

My primary goal in site selection was to identify locations with varying but evenly
spaced amounts of time since last fire disturbance in Big Sur. In the North Coastal Santa
Lucia Range, more than 50% of all land has been burned at least once since 1950 (Davis
and Borchert 2006). However, access to sites with burned coast redwood forest was my
primary limiting factor in selection, as 95% of the annual burn area in the Los Padres

National Forest where this study was located is chaparral rather than forest (USDA

e ve B v Landels-Hill Big Creek Reserve

Cover Type
B Redwood

Figure 1. Map of study areas in Big Sur, California.



1988). Additionally, I selected sites with as much similarity in aspect, elevation,
topography, and underlying soils as was possible given my geographic framework.

My final site selections included two burn events at Landels-Hill Big Creek Reserve
(Big Creek; N 36.0719782, W 121.6024008, Figure 1) and two burn events at Pfeiffer
Big Sur State Park (Pfeiffer; N 36.25, W 121.783333; Figure 1). Big Creek provided my
two oldest burn histories: one area burned in 1985 and a second burned both in 1985 and
1999 (Figure A.2; Mark Readdie, personal communication; Department of Forestry and
Fire Protection 2015). The 1985 Gorda-Rat fire consumed 22,662 hectares (United State
Forest Service 1986), burning the majority of the Big Creek property. I used this fire as
the earliest fire event in order to create a timeline from 1985 to present. The second burn
site at Big Creek was located in an area last burned in the 1999 Kirk fire but also burned
in the 1985 Gorda-Rat fire, making this a compounding burn history. The Kirk fire
consumed 35,086 ha and burned more than half of the Big Creek property (National
Interagency Fire Center, n.d.). Available fire perimeter data for Big Creek show that
fires have impacted the property roughly every 11 years since 1911 (Figure A.24;
Department of Forestry and Fire Protection 2015). Burned areas in Pfeiffer comprised my
two most recent burn events: one area burned in 2008 and a second burned in 2013
(Figure A.3; Department of Forestry and Fire Protection 2015). The 2008 Basin-Complex
fire burned 65,890 ha, including much of the northwestern portion of Pfeiffer (InciWeb
2008, Department of Forestry and Fire Protection 2015), whereas the 2013 Pfeiffer fire
burned 371 ha in a small portion of the park’s southwestern edge (Inciweb 2013).
Available fire perimeter data for Pfeiffer show that fires have impacted the property

roughly every 18 years since 1924 (Figure A.25; Department of Forestry and Fire



Protection 2015). The 1985, 2008, and 2013 burn histories corresponded to one soil type
in the NRCS Web Soil Survey (Figures A.4-6; Soil Survey Staff 2014): Gamboa-Sur
complex (Gamboa: Haploxerolls, Sur: Haploxerolls; Soil Survey Staff 2003). The
1985/1999 burn history was from the McCoy series and rock outcrop-Xerorthent
association (Figure A.4). Like Gamboa and Sur, the McCoy series is a moderately deep
and well-drained Mollisol (Argixerolls) but with a higher clay content (Soil Survey Staff
2003, Ludington et al. 2005). Soil pits at each burn site confirmed that underlying soils
were very similar across burn histories (see taxonomic classifications in Table 1; soil pit
results presented in Table 2). Additional site data are described in Table 1.

I selected two sampling locations from each burn history with similar aspect,
elevation, topography, and coarse soil designations. Within each sampling location, |
randomly placed ten 0.01 ha sampling plots (10 plots x 2 locations x 4 burn histories = 80
plots).

Plot selection and data collection

Within each 0.01 ha plot, | sampled and mapped all overstory trees and saplings (>2.5
cm diameter & >1.37m height). All overstory trees were tagged and sampled for species,
diameter at breast height, health status, relative height of tree burned, canopy class, decay
class (if applicable), and visual symptoms of pathogens. I also sampled and mapped a
subset (10%) of clumped sprouts and all seedlings. | defined sprouts and seedlings as
individuals < 1.37 m in height and </= 2.5 cm diameter at base; seedlings were
considered any stems meeting these height and width measurements that were also >/= 1
m away from a mature tree. Each sprout or seedling to be mapped was tagged and

sampled for species, diameter at base, health status, and visual symptoms of pathogens.
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In addition to sampling the forest community, I also quantified abiotic variables
relevant to tree regeneration, including understory light availability and soil nutrient
levels. | assessed total available light using hemispherical photography by taking a 180
degree hemispherical photograph at 1 m above the ground at the center of each 0.01 ha
subplot and under overcast or early morning conditions. | used Gap Light Analyzer
(version 2.0, Frazer et al. 1999) to process photos and calculate percent total transmitted
light (diffuse and direct) available at each subplot center. Soil samples were also
collected within each of the 80 0.01 ha plots. Sampling for chemical analysis and
detection of soil legacies from disturbance occurred over the course of a few days in May
2016 to control for inter- and intra-seasonal variation in nutrient availability. Litter and
duff layers were discarded from the soil surface, and soil samples were collected from the
A horizon (0-10 cm depth) to capture the rooting zone of early regeneration (sensu
Vacchiano et al. 2014). Twelve equally sized soil subsamples were collected in diagonals
running between corners in each plot: six were collected along each diagonal (for a total
of 12) and mixed for a composite sample.

I collected soil and seed samples from one area in each burn history in order to run a
greenhouse trial testing the strength of seedling regeneration and whether or not soil
legacies from burn history influenced growth rates of regeneration observed in my field
sampling. Approximately six gallons of soil were collected from 0-10 cm depth in an area
adjacent to my sampling subplots in each burn history (6 gallons x 4 burn histories = 24
gallons), which was representative of both overstory tree composition and belowground

soil characteristics. Seed samples were collected using permanent ~0.5 m? PVC traps
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with mesh netting to collect falling seed material. Traps were installed in early fall 2015
and emptied twice throughout the fall 2015 and winter 2016.
Lab and greenhouse studies

Soil samples for nutrient analysis were air dried to a constant weight, sieved prior to
analysis (using a 2mm screen), and sent to A&L Western Agricultural Labs (Modesto,
CA, USA\) for processing for NOs", NH4*, PO4>, and Ca?* concentrations.

Field-collected seed and soil from each of the burn histories was collected in large
enough volume to allow for 32 replicates of four burn histories (4 burn histories x 32
replicates = 128 samples). To increase the probability of capturing viable seed from each
location, seed collection began in the fall of 2015 during peak cone ripeness using five
randomly placed seed rain traps in both sampling locations of each burn history. A trial
run of seeds was processed using a float test in water to distinguish viable seeds from
unviable seeds (the specific gravity method; sensu Demelash et al., 2003). Seeds were
floated in DI water for 24 hours on a shaker table. Both floating and sinking seeds were
germinated in freezer bags, and the results of the float test showed no difference in
viability of seed that floated and seed that sank. Overall, germination was 6% (on average
6 +/- 5.2% (SD) of seeds per provenance germinating), with 2.5% of all floating seeds
germinating and 3.5% of all sinking seeds germinating. As a result of this, I did not
attempt to separate viable seed from unviable seed prior to my greenhouse study.

Soil from each burn history was air-dried to a constant weight and placed on top of a
layer of gravel in 655.48 cm?® seedling pots from Stuewe & Sons (Tangent, Oregon), and
each pot seeded with 20 coast redwood seeds for initial germination. One third of each

seedling pot was filled with gravel and two thirds were filled with soil. The total number
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of germinated seeds was recorded for each pot over the course of a three-month period.
During the growing period the pots were stored in a greenhouse set to maintain an
average temperature of 21.1 °C over the course of each day. Pots were not fertilized
during the course of the study and were watered by hand every other day to maintain a
consistently moist substrate just below the soil surface.
Methods of analysis

| tested for differences in average basal area per subplot, understory light, and soil
nutrient levels following burn events and then modeled coast redwood regeneration as a
function of soil qualities and abiotic site variables. I used Welch’s ANOVA to compare
average basal area per subplot, percent total understory light, and soil nutrient levels
between burn histories and employed Tukey’s HSD test to distinguish between burn
histories for instances where an ANOVA global F test was significant at the 5% level. |
used a generalized linear mixed model (GLMM) with a negative binomial distribution
and log link function to model counts of overdispersed coast redwood seedlings in each
random subplot as a function of burn history, levels of soil nutrients, and percent
available light (Bolker 2015). | tested a full model including the following fixed effects:
number of years since last burn (numeric), single vs. compounding burn history, percent
total understory light, Ca?*, PO4*, NOs", and NH4" to determine whether nutrient levels
across varying burn histories were drivers of redwood regeneration. | used a random
effect to control for variance due to differences in the two sampling locations used in
each burned area (eight levels). Analysis of residual plots revealed one outlying data
point (>3 times interquartile range) due to a high NOs~ measurement. This plot was

removed from my final modeling analysis. Statistical analyses were run in R statistical

13



programming software (R Core Team 2015), with the Ime4 package employed for
GLMM analysis (Bates et al. 2015).

I additionally assessed whether forest community composition differed between burn
histories using a multi-response permutation procedure (MRPP) in the vegan package for
R statistical programming software (R Core Team 2015, Oksanen et al. 2016). | used two
MRPPs to test the null hypothesis that there was no difference in species composition
between burn histories for mature trees (>/= 10 cm dbh) and the post-fire regeneration
community (< 10 cm dbh) (McCune and Grace 2002). Multi-response permutation
procedure is a multivariate, nonparametric technique that provides a chance-corrected
within-group agreement statistic (A) comparing the observed within-group distance to the
mean within-group distance of all partitions of the data and a probability of having the
observed mean within-group distance considering the distribution of possible within-
group distances (McCune and Grace 2002, Pidgen and Mallik 2013). I used the Sgrensen
(Bray-Curtis in vegan) dissimilarity index and default group weights in the vegan
package for my calculations. Data from several 0.01 ha subplots were removed prior to
analysis of the mature forest community due to the absence of mature trees from all
woody species. | also used the vegan package to produce a Nonmetric Multidimensional
Scaling (NMS) ordination with the Sgrensen dissimilarity index and 100 iterations to
visually assess differences in the forest community composition between burn histories.

Analysis of the greenhouse data was carried out using a Fisher’s exact test to
assess the null hypothesis that proportions of coast redwood seed germination were

independent of the burn history of the soil in which they were grown.
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RESULTS
Ecological conditions

Across all four of my burn histories, | encountered a total of four different tree
species: coast redwood, tanoak, bay laurel, and live oak (Quercus wislizenii). Coast
redwood was the most common of these species, accounting for 71.2% of living mature
stems in all subplots. The dominance of coast redwood was further emphasized by its
overrepresentation in basal area: it accounted for 95.6% of living mature basal area in my
study. Tanoak, bay laurel, and live oak accounted for 10.4%, 17.5%, and 0.9% of living
mature stems and 0.4%, 2.8%, and 1.2% of living mature basal area, respectively.
Regeneration was also dominated by coast redwood, with 75.5% of regeneration stems,

compared to 11.5%, 10.8%, and 2.2% for tanoak, bay laurel, and live oak, respectively.
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Figure 2. Distribution of overstory (> 5 cm diameter at 1.37 m height) tree diameter
size classes across four burn histories by average trees per hectare (TPH). The
1985/1999 burn history was burned twice and is considered a compounding disturbance.
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Live oak only showed up in seven subplots in the 2013 burn and one subplot in the 2008
burn. The 2013 burn and 1985/1999 compounding disturbance were the most similar
burn histories, having similar species compositions (Figure 2) and the two highest
average per-subplot basal areas. The 1985 and 2008 burn histories had the greatest
diversity of tree species, with tanoak and bay laurel almost entirely absent from 2013 and
the compounding disturbance and overall being very homogenous. Average basal area ha”
! plot! was greatest in the 1985/1999 compounding burn history (89.73 +/- 65.86 m? ha
1, followed by 2013 (73.20 +/- 55.10 m?ha), 2008 (72.63 +/- 112.14 m?ha'), and 1985
(63.24 +/- 94.20 m? ha'l); differences between years were not statistically significant (F =
0.4118; P = 0.7454). The results of soil pits I dug to verify published soil survey
information showed that the soils on my sites were mostly uniform and similar to my
expectations based on soil survey data (Table 2). Higher clay soils were generally more
common on my sites than predicted by the soil survey data (i.e., more Argixerolls than
Haploxerolls), but the predominant pattern was one of Mollisols with high levels of rock
fragments near the surface. Understory light content in four burns were significantly
different (F = 7.6030; P = 0.0002), with the 2013 and 2008 burns having significantly
more understory light than the 1985 burn but statistically similar levels to the 1985/1999

compounding burn.
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Stand structure and composition
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Figure 3. Species makeup for regeneration in the 0-2.5 cm diameter class
(diameter at 1.37 m height) across four burn histories by average trees per
hectare (TPH). The 1985/1999 burn history was burned twice and is considered a
compounding disturbance.

I mapped and sampled all overstory trees and saplings and understory tree
regeneration in order to assess whether amount of time since fire and compounding vs.
single fire disturbance histories had an influence on long-term stand structure and
composition in my forest plots. Diameter distribution plots (Figures 2 and 3) generated
from stem mapping in my stands showed distinct differences between the four burn
histories. In all burn histories, the average number of trees per hectare (TPH) was highest

in small sizes classes (0-2.5 cm and 2.6-10.0 cm dbh). However, in the two oldest single

disturbance histories (1985 and 2008), the diameter distributions show patterns typical of
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uneven-aged stands, compared with irregular uneven-aged stand characteristics in the
diameter distributions of the compounding disturbance (1985/1999) and even-aged in the
most recent single disturbance history (2013). The compounding disturbance history and
the 2013 single disturbance event had the highest levels of overall regeneration (0-2.5 cm
dbh stems) and were similar in that coast redwood was dominant in both histories.
Differences between burn histories were also borne out in the MRPP analysis and NMS
ordination for both mature (>/= 10 cm dbh; A =0.1232; P = 0.001) and immature (< 10
cm dbh; A =0.1595; P = 0.001) forest communities. These analyses indicated that there
were significant differences between the four post-burn communities, and that within-
group similarity (homogeneity) for the burn communities was higher than is often
expected in community ecology datasets (i.e., observed A values > 0.10; McCune and
Grace 2002). The 2013 and 1985/1999 compounding burn histories showed the smallest
amounts of dispersion based on the observed average within-group distances (Table 3)
indicating high levels of species similarity within these burn communities. The 2013,

2008, and compounding burn history overlapped the most in the NMS ordination plots
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(Figure 4), showing that these communities were the most similar to one another and

reinforcing the patterns of similarity between them from the diameter distribution plots.
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By contrast, 2013 and 1985 burn histories were the most separated from each other.
Nutrient levels

I collected soil samples from each of the four burn histories in order to determine
whether the amount of time since last fire disturbance or single vs. compounding fire
histories left measurable soil legacies in my study areas. The results of ANOVA between
burn histories for Ca*, POs*, NOs", and NH4* showed differences between burn histories
for these nutrients. Comparisons between burn histories for Ca?*showed significantly
higher levels in the 2013 burn history (F = 6.2395; P = 0.0014; Figure 5a). Phosphorus
levels were significantly highest in the 2008 burn, and lowest in the compounding
1985/1999 burn history (F = 8.6996; P = 0.0002; Figure 5b). For nitrogen, NO3" levels
did not significantly differ between burn histories (F = 2.0433; P = 0.1235) but NH4*
levels were significantly higher in the area burned once in 1985 (F = 4.2612; P = 0.0106;

Figure 5c and 5d). I did not observe any strong trends of soil legacy change over time in

Table 3. Output of MRPP analysis for community composition between four
burn histories, including a compounding fire history burned both in 1985 and
1999. Within-group distance refers to the level of clustering within burn history
communities. A compares the observed within-group distances to the mean within-
group distances of all possible partitions of the data.

Average within-group distance

1985  1985/1999 2008 2013

Mature community

A =0.1232; P = 0.001 0.701 0.3737 0.6138 0.4933

Regeneration
0.6821 0.5351 0.6199 0.5665
A =0.1595; P = 0.001
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Table 4. Fixed effect predictors of coast redwood regeneration from the final
GLMM model selection. Time since burn refers to number of years since last
fire disturbance. Single disturbance is part of a categorical variable in which
compounding (twice burned) history is the baseline value. NOs refers to nitrate
concentration at a subplot level.

Variable Coefficient P value

Time since burn -0.11639 <0.0001
Single disturbance -1.67798 <0.0001
NOs 0.64005 0.0009

my burn histories, but fire left a short-term peak in Ca?* and compounding disturbance
resulted in lower PO4* levels than single burn events.
Regeneration dynamics

Using a full GLMM | tested whether Ca?*, POs*, NOs", NH4*, percent total light,
burn, and single vs. compounding disturbance history were important predictors of coast
redwood regeneration. The results of my full model showed that percent total light, NH4",
Ca?*, and PO4+* were not significant predictors of the number of coast redwood seedlings
or sprouts my study plots. The final model indicated that levels of coast redwood
regeneration increased with increasing soil nitrate levels, and regeneration decreases were
associated with larger amounts of time since fire and once-burned site history (Table 4).
Greenhouse study

Germination in the greenhouse study was lower than in the pre-study float test. The
total number of seeds that germinated over three months was 41 out of a total of 2,560
(1.6%; Table 5). The two most recent single burn histories (2008 and 2013) had the
highest numbers of seeds germinate, but the results of the Fisher’s exact test showed that

there were no significant differences between burn histories (P = 0.309). These
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Table 5. Number of coast redwood seeds that either germinated or did not
germinate in soil from each of four burn histories. Includes a compounding fire
history burned both in 1985 and 1999.

Soil burn year Germinated Not Germinated
1985 7 633
1985/1999 8 632
2008 11 629
2013 15 625

germination results supported my decision to model all coast redwood regeneration as
one variable in my model, rather than dividing seedlings and sprouts into separate
models. The role of seed regeneration in my study areas is likely very small and does not

appear to be influenced by soil legacies from fire disturbance.
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Figure 5. Levels of selected soil nutrients sampled from 0-10 cm depth across
four burn histories. The 1985/1999 burn history was burned twice and is considered
a compounding disturbance. Panels refer to (a) calcium, (b) phosphorus, (c) nitrate,
and (d) ammonium concentration in the soil. Error bars are +/- 1 standard error.
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DISCUSSION

My results provide evidence that compounding fire disturbance resulted in more
homogenized forest structure and composition than recent once-burned areas in coast
redwood forests, leading to a unique forest community marked by greater dominance of
coast redwood compared with co-occurring species. Compounding fire disturbance in
these forests has created an environment that remains similar to more recently burned
areas, even 16 years following disturbance. The 1985/1999 compounding burn and the
2013 single burn were both characterized by the decline of tanoak and bay laurel in
mature and regeneration classes (Figures 2 and 3) coupled with an increase in coast
redwood, creating a distinct forest community from that of the once-burned 1985 and
2008 burn histories (Figure 4). Additionally, | found that Ca®* peaked in soil samples
taken within 2.5 years following fire disturbance and then dropped to a baseline, while
PO4>decreased in soils from the compounding fire disturbance (Figure 5a and b). Despite
changes to Ca?" and PO4* levels, NOs was the only nutrient that significantly predicted
coast redwood regeneration: increasing NOs™ concentration was associated with increased
levels of regeneration, while amount of time since burn and single disturbance history
were significantly negatively related to regeneration amounts. Thus, nutrient levels
influenced coast redwood regeneration post-fire, but there was not sufficient evidence
that soil legacies from fire were driving this relationship. These findings support the
hypothesis that the compounding disturbance drove a shift to a forest environment
dominated by fire-adapted coast redwood, with species like tanoak and bay laurel not
only experiencing higher mortality, but also failing to regenerate at levels comparable to

more recent, single disturbances. While previous work has documented increased
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mortality in coast redwood following compounding fire and disease disturbances (Metz et
al. 2013), | have found that coast redwood’s sprouting response to compounding fire
disturbances increases its relative dominance in the ecosystem and that species not
adapted to increased frequency of fire decline relative to coast redwood.
Stand structure and composition

I found that compounding disturbance history resulted in unique post-fire forest
communities distinguished by the loss of tanoak and bay laurel and increased dominance
of coast redwood. Contributing to this loss was the underrepresentation of both mature
tanoak and bay laurel trees compared with once-burned areas, underrepresentation of
tanoak and bay laurel sprouts and seedlings in the compounding disturbance, and the
significantly stronger regeneration of coast redwood even 16 years after fire in the
compounding disturbance (Figures 2 and 3). It has been proposed that fire reduces tanoak
dominance compared with coast redwood in recently burned areas due to higher coast
redwood survival in the overstory and reduced tanoak sprout dominance in burned
compared with unburned areas (Ramage et al. 2010). Yet, long-term studies of
community changes following compounding fire disturbance are not available for this
region. These observations and those from my study are similar to findings from the
Klamath-Siskiyou Mountains (Donato et al. 2009; Oregon, USA) and Valencia, Spain
(Delitti et al. 2005), which showed that broadleaved species were reduced in dominance
following recurring fires. One proposed mechanism for broadleaf decline after
compounding burns is the depletion of belowground carbohydrates. Several studies in
Mediterranean ecosystems with fire-adapted sprouting woody species have posited that

decreases in biomass or biomass increment rate after multiple recurring fires may be

26



related in part to depletion of carbohydrate reserves (Trabaud 1991, Delitti et al. 2005,
Enright et al. 2011). Coast redwood is more resistant to fire damage and mortality than
tanoak (Ramage et al. 2010), even in compounding disturbances (Metz et al. 2013), so
conceivably it would be less dependent on belowground reserves and less susceptible to
compounding fire disturbance. However, in this study, tanoak showed a regeneration
pattern similar to its response to sudden oak death (SOD), where at high levels of disease
severity its sprouting response (resilience mechanism) is not heightened (relative to low
severity levels) and the species can be replaced by coast redwood (Ramage et al. 2011).
Sudden oak death is a nonnative pathogen causing extensive mortality in coastal
California, especially in tanoak (Metz et al. 2012). | took note of the presence of
symptoms consistent with SOD in my plots (SOD has been identified at the study sites)
but explicitly identifying the disease was beyond the scope of this study. | was also
unable to obtain data on pre-fire stand composition at my sites. As a result, site-specific
variables such as SOD infection may be confounding factors driving community
compositional changes in this study.

The effects of increased burn frequency as a result of climate change are already felt
in the coast redwood forests of Big Sur (Westerling et al. 2006) and the possibility of
compounding fire disturbances in Big Sur forests will increase as the frequency of fires
increases this century (Westerling et al. 2011). The loss of a dominant species will
homogenize the forest community, leading to cascading losses in biodiversity throughout
the ecosystem (Dale et al. 2001), resulting in reduced ecological memory (Johnstone et
al. 2016) and the potential for a vacant niche to be filled by a species new to these forests

(Ramage et al. 2011). Disturbance alone often results in negative impacts to ecosystem
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services (Thom and Seidl 2015), but reduced diversity in coast redwood forests would
also result in less flexibility and response capacity for future disturbance stressors (Luck
et al. 2003). Ecosystem services, such as cultural recreational value (Seidl et al. 2016) of
the pre-disturbance forest community would be negatively affected by forest
homogenization from compounding fire disturbance. Resources for wildlife would also
be adversely affected: For example, the dusky-footed woodrat depends on tanoak
(Bowcutt 2014) and is a food source for predators like the spotted owl (Thome et al.
1999) and bobcat (Nussbaum and Maser 1975). Removal of tanoak resources would have
a negative impact on these and other food chains. Additionally, the long-term function
and health of the forest ecosystem could be compromised, as higher community diversity
can help to decrease the risk of disease through the “dilution effect” (Keesing et al.
2006). Big Sur forests with high levels of community diversity may have fewer
symptoms of SOD due to the presence of alternative, less susceptible hosts (Haas et al.
2011); a major reduction in abundance or diversity of the forest could provide footing for
a future outbreak or novel disease. The loss of one or more species in patches of coast
redwood forest affected by compounding fire disturbances could have negative biological
and cultural implications that would reverberate throughout these ecosystems.
Nutrient levels

The results of my nutrient analyses indicated that some nutrients of interest
underwent changes in availability following both single and compounding fire
disturbances. Soil Ca?*concentrations peaked following the most recent burn in my study,
but I did not detect changes to Ca?* concentrations longer than 2.5 years after fire or

between single and compounding disturbances (Figure 5a). My analysis supports the
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findings of previous work, in which soil Ca?*concentrations were elevated more than a
year following fire in a Canadian jack pine (Pinus banksiana) barren (Smith 1970). Other
studies have noted similar results with some variation: for example, increased Ca?* for up
to 21 years following wildfire in a boreal forest in Quebec (Simard et al. 2001), or for the
two-year duration of a study following slash burning in eucalyptus forest (Tomkins et al.
1991). However, my findings contrast with other work documenting pulses in Ca?* or Ca
+ Mg lasting two years or less (Khanna and Raison 1986, Alauzis et al. 2004), or one in
which wildfire had no effect on mineral soil Ca®* in a boreal forest (Brais et al. 2000).
Calcium contributes to cell wall construction and responses to environmental stimuli and
stressors in plants (Marschner 1995), and it is important to proper function and health of
forest ecosystems (McLaughlin and Wimmer 1999, Schaberg et al. 2001). Soil Ca?*
depletion is therefore an important risk to consider following disturbance. However, my
work shows that, with the exception of an ephemeral pulse, single and compounding fire
disturbances alone are not likely to have long-term consequences for calcium availability
to coast redwood forest species in the Big Sur region.

Phosphorus availability in the soil often increases within the first year following a fire
(Romanya et al. 1994), but it can be followed by a quicker, though more variable decline
than that of Ca?* (Macadam 1987, Certini 2005). In my study, PO4> was highest eight
years post-fire and lowest in the compounding 1985/1999 burn history, but the 2013 burn
and 1985 single burn were indistinguishable from one another (Figure 5b). Similarly to
my findings, Ferran et al. (2005) observed that PO4* levels initially peaked following one
fire, but decreased with each recurrent fire in a 16-year timeframe until reaching control

levels, though this was site-dependent. Phosphorus is made available to plants by
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combustion of its organic form (Cade-Menun et al. 2000), which is an exception to its
otherwise tightly closed cycle in forests (Cade-Menun et al. 2000, Binkley and Fisher
2013). Phosphorus is utilized by plants as a structural component in nucleic acids and for
metabolic energy transfer (Marschner 1995). Recent research has documented the role of
PO4* in the productivity of nutrient-limited western redcedar (Thuja plicata) in coastal
forests (Blevins et al. 2006, Trant et al. 2016). Although coast redwood is also a member
of the Cupressaceae family and shares a similar forest type to western redcedar, | did not
find similar evidence of PO4* limitation in my study sites. Considered with the findings
of Ferran et al. (2005), my work shows that compounding fire disturbances may leave a
lower PO4* legacy compared with once-burned areas, though it is not clear how this
compares to unburned patches in the coast redwood ecosystem. Additionally, my
sampling may have missed an early peak for the most recently burned sites.

| observed elevated (but not statistically significant) soil NOs™ levels in the most
recent burn event and statistically higher soil NH4" levels in the oldest single burn event
(Figure 5c and d). Nitrogen fluctuations in my burn histories generally followed the
pattern of past research. Previous studies have documented pulses in NH4* for a year or
more following fire with a lagged increase in NOs", but increases in one or both forms of
inorganic nitrogen may be gone within one to five years (Covington et al. 1991,
Covington and Sackett 1992, Grogan et al. 2000). Thus, my study may have missed the
period in which a pulse occurred by several months to a year. | did not measure potential
mineralizable nitrogen (PMN), but Ferran et al. (2005) found patterns of increasing PMN
with increasing number of compounding fire disturbances (only one site was significant).

By contrast, the same authors found that total nitrogen decreased on one site with
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increasing fire frequency. Moreover, increased nitrogen availability may be the exception
rather than the norm following recurring fire disturbances (Vance and Henderson 1984,
Neary et al. 1999), and my data do not show clear evidence of legacies in any form of
nitrogen from compounding disturbance. While there is no evidence of a nitrogen legacy
in this study, I did find evidence that coast redwood is influenced by nutrient levels in
this coastal forest — in this case by nitrogen availability. Nitrogen availability directly
influences aboveground net primary productivity in temperate forest ecosystems (Reich
et al. 1997), and particular attention should be given to investigating other disturbance
events that could impact NOs™ in nitrogen-influenced systems such as this one.
Regeneration dynamics

In this study, | found that coast redwood’s response patterns to compounding
disturbance and soil variables contradicted findings in other studies investigating
compounding disturbance and the post-fire influence of nutrients. Buma and Wessman
(2011) found that increased fire severity from compounding disturbance reduced conifer
regeneration by seed eight years after a fire, and Vacchiano et al. (2013, 2014) found
increased Scots pine (Pinus sylvestris) regeneration by seed in the Southern Alps
resulting from decreases in nutrient levels after fire. In this study, NOs" levels and
compounding disturbance were the primary determinants of coast redwood regeneration
abundance. Previous studies on forest productivity have generally investigated larger
changes in nitrogen availability than we observed between our sites (Van Den Driessche
1971, Bledsoe and Zasoski 1983, Devine and Harrington 2009). However, Will (1961)
found that ~0.5 ppm changes (equivalent to mg/kg) in nitrogen concentration for low-

nitrogen water culture of Pinus radiata were associated with differences in height,
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weight, and visual severity of deficiency symptoms. Coast redwood’s basal sprouts
respond favorably to increased light (O’Hara and Berrill 2010), but light was not a
determinant in coast redwood success in these post-fire communities. These results
highlight the important context of species-specific resilience mechanisms and responses
to disturbance history (Johnstone and Chapin 2006). Coast redwood’s sprouting
mechanism may enable it to immediately respond to the new conditions and available
resources, allowing it to compete well for resources in regeneration sites. Moreover, my
greenhouse study provided evidence to support sprouting as the primary regeneration
mechanism in my study sites. As a result of the extremely low germination rates in my
study, I am confident that the regeneration modeling was an accurate illustration of
drivers of sprouting response in coast redwood following fire disturbance.

At the southern end of its range, coast redwood is well adapted to persist in the short
term under the conditions expected with climate change. Trees in the northern extent of
the range have shown larger than expected rates of growth since the 1970s despite rising
temperatures, though this may be due to increased light availability (and trees at Big
Creek do not show this pattern; Sillett et al. 2015). Coast redwood is also better suited to
handle increasing fire frequencies expected from climate change than its broadleaved
counterparts (Waring and O’Hara 2008, Lorimer et al. 2009, Ramage et al. 2010, Metz et
al. 2013, Lazzeri-Aerts and Russell 2014). Because stand trajectory is dependent on
regeneration patterns (Dietze and Clark 2008), compounding fire disturbance will likely
contribute to altered trajectories in stand development, wherein coast redwood is retained
and regenerates more successfully than tanoak or bay laurel (whose resilience

mechanisms are inadequate to respond to compounding fire disturbance) (Waring and
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O’Hara 2008, Ramage et al. 2010). This will result in a different stand composition than
in pre-fire conditions. According to my findings, such ecosystems will likely have similar
structure and composition to more recently burned stands for long periods of time.

These forests are already under pressure from widespread SOD mortality to tanoak in
the region (Metz et al. 2012), and the additional decline of tanoak and/or bay laurel
following increased fire frequency and occurrences of compounding disturbance would
overcome ecosystem resilience by reducing material legacies of these species (Johnstone
et al. 2016). The loss of these species would affect leaf litter abundance (utilized by
species like the Coast Range newt; Henson and Usner 1993), overhead cover protection
for mammals (Noss 2000), forest structure for small mammals and birds (Henson and
Usner 1993), and food sources for invertebrates, birds, small mammals and deer (Burns
and Honkala 1990, Noss 2000, Bowcutt 2014), among other factors. Decline of tree
species has resulted in biodiversity losses at multiple ecosystem levels in other forests
(Tingley et al. 2002, Ellison et al. 2005, Kizlinski et al. 2002), foreshadowing the impacts
to ecosystem health and composition that could be felt in this region as well.

My findings support a larger body of research showing that altered fire regimes and
compounding disturbances from climate change negatively impact forest resilience by
altering long-term trajectories (Buma and Wessman 2011, Enright et al. 2015, Johnstone
et al. 2016). If such disturbances trends become widespread under increasing fire
frequency, better disturbance-adapted species will exert pressure in forest communities
leading to novel, homogenized forest composition (Millar and Stephenson 2015).
Ecosystem services and ecosystem resilience to future disturbance such as disease and

invasion will decline as a result (Enright et al. 2015). Additionally, my work contributes
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further evidence that certain species can accelerate changes in forest communities
through their encouragement by compounding disturbance (Buma 2015). Future research
should seek to evaluate the effects of compounding disturbances on tree survival,
community composition of regeneration pulses, and long-term compositional changes in
other ecosystems to determine additional species-specific responses to these challenges.

Greenhouse experiment

My greenhouse study results showed that coast redwood regeneration by seed is a
weak mechanism of post-fire resilience in coast redwood forests of Big Sur, and it is not
influenced by soil legacies from fire disturbance. Research in other plant species has
shown that fire-related soil components and properties such as biochar presence and
source (Solaiman et al. 2012), charcoal extract and vegetation leachate (Pierce and Moll
1994), and pH (Chidumayo 1994) can affect seed germination or seedling growth.
However, this study suggests that any legacies of fire disturbance remaining in coast
redwood forest soils multiple years post-fire do not variably influence coast redwood
germination over greater amounts of time since disturbance or with compounding vs.
single burn histories. It is known that coast redwood often regenerates weakly by seed
(Boe 1968), but other studies found that this regeneration was at times as strong as that of
vegetative sprouting (Douhovnikoff et al. 2004, Lazzeri-Aerts and Russell 2014). This
study indicates that regardless of whether fire occurs in a single instance or in a
compounding fire disturbance framework, sprouting will be the major means of
regeneration and will promote dominance of coast redwood in the post-fire community.
Future research should examine further controls on the sprout regeneration of this species

and compare germination in unburned soil to that of soil burned over a range of times
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since fire to test for other potential variable effects of fire in contrast to an unburned

control.
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CONCLUSION

In this study, compounding and recently disturbed forests were similar in stand
structure, homogenous in species composition, and dominated by coast redwood
individuals. However, compounding disturbance did not leave a detectable legacy in any
soil nutrients that were influential for coast redwood regeneration. Soil legacies specific
to compounding disturbances do not appear to be present, but nutrient levels appear to be
limiting factors on coast redwood sprout regeneration in these forests following fire. The
variable responses of coast redwood compared with other forest species show that
compounding disturbances may contribute to a redwood-dominated shift in stand
structure and composition in coast redwood forests due to its adaptations to fire.
However, there is a potential for the decline or loss in associated forest species that are
not as well adapted to these disturbances. My research supports other findings that altered
disturbance regimes disrupt resilience adaptations, leading to shifts in forest composition
(Enright et al. 2015). Shifts in composition may be indicative of increased vulnerability
due to changes in relative success of regeneration and survival among different species
(Johnstone et al. 2016). Homogenized forest structure and composition have negative
implications for ecosystem services and overall function (Seidl et al. 2016). Therefore, it
is important that future research examine how mechanisms of resilience respond to
compounding disturbance and alter forest trajectories in other ecosystems where future
disturbance may exert stronger pressure on competitively disadvantaged species.
Understanding whether homogenization is a typical outcome of compounding

disturbance in coast redwood and other temperate forests is necessary to predicting the
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implications of altered disturbance regimes’ effects on long-term function and persistence

of ecosystem services and resources.
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APPENDICES
APPENDIX A: METHODS OUTLINE
Site Selection
e On-the-ground visits with land managers to discuss disturbance history and
identify potential sites
o0 Select general plot locations using spatial analysis to identify areas
with similar elevation, aspect, slope, and coarse soil designations.
e Study areas stratified in ArcGIS 10.2.2 by:
O Vegetation type
o Disturbance history
= Singular fire disturbance
= Compounding fire disturbance
0 Redwood vegetation types of varying disturbance history identified.

o Local Environmental Factors

= Aspect

= Slope

= Elevation
= Soils

0 Once large areas of with similar site variables (above) identified, two
polygons created at each disturbance location.

e Stratified random selection in ArcGIS 10.2.2:
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0 15-meter buffers created in ArcGIS around each site to avoid selection of
plot corners along roads, trails, etc. In one case trail contact was
unavoidable.

o0 Plot Selection:

o 2-3randomly selected grid centers using the ArcGIS Sampling Design
Tool (add-on) for site installation. Use Sampling Design Tool to
randomly drop sample points with the “Create Point Samples” option

0 These points served as the NW plot corners for two 0.25 ha sampling

plots. 3" point can be used as a backup in case one doesn’t work out.

Detailed Sampling Protocols

e We established two 0.25 ha (50m x 50m) plots per sampling area

e Each plot will consist of 25 0.01 ha (10m x 10m) subplots

e Subplots were numbered in the following manner for consistency

0 Subplot 1 always falls at the NW corner of the plot and then from 1-25 so

that the 25" subplot fell in the SE corner.

e Plot layout

(0]

(0]

One plot corner randomly selected using ArcGIS (usually NW)

Specific corner (NW, NE, SW, SE) determined on the ground and dependent
upon proximity to roads/trails/etc. that may bisect plot.

Plot corner locations surveyed using Trimble GPS unit using 30 point
collections for each GPS location stored. Aim for <1m accuracy.

Plots broken down into 25 0.01ha subplots for ease of mapping.

First steps:
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= Setin rebar at four corners.
= Flag out 10m x 10m subplot centers with fluorescent fiber markers and
a piece of flagging giving subplot number.
= Found in 2016 season that it was easiest to map all stems from subplot
centers, using these as permanent reference points (GPS coord taken at
each subplot center).
= Re-check 0.25 ha plot boundaries while mapping from subplot centers
to ensure accuracy.
e Stem mapping
o All trees/regeneration falling with the plot were mapped, measured, and
tagged.
0 When clumps of sprouts are encountered, all individuals were counted, and
10% will be tagged and measured for baseline diameter.
o Definitions (USFS FIA Program):
= Mature tree >12.5 cm
= Sapling =2.5-12.5 cm (and >1.37m height).
= Seedling or sprout < 2.5 cm
o0 Reference points were established throughout the 0.25 ha plot for surveying
= High accuracy GPS coordinates will be taken at all plot corners
= Found that if subplot centers could be plotted ahead of time in ArcGIS
if 0.25 ha plot corners were known, allowing us to use the Trimble in
the field to find subplot centers rather than measuring out. Needed to

ensure proper sampling within main plot boundaries, though.
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= All trees within view were mapped with a logger’s tape and a handheld
compass to determine azimuth.
= Additional reference points were added as crews moved throughout
the stand and mapped each tree falling within the plot boundaries.
= Reference points in the first field season were mature trees identified
as needed; in the second season subplot centers were used exclusively.
= Reference points, distances, and azimuths were processed in R and
used to create tree-level coordinates and stand visualizations.
o0 As one crew member tagged, mapped, and measured each tree, a second crew
member recorded tree-specific data for the associated tag, including:
= Species, status (I1/d), life stage
(seedling/sprout/sapling/mature),diameter, crown class (D, C, I, S),
damage
= Damage notes included fire marks (their height relative to trunk of
tree), sudden oak death symptoms, obvious insect/fungal pathogens,
any goose pens from burns
= Seedlings and Sprouts
e Note seedling (SE) or sprout (SP) for baby trees
e Seedlings = individuals >1m from sprouts and/or trees
e Noted medium of establishment if not on ground (e.g., CWD)
o The following data were collected on a subset of trees:
= Number of trees (for sprouts ONLY - all others just 1 tree/data row)

= Decay Class (snags only)

54



0 Details on Tagging Trees & Taking DBH
= DBH
e Tree diameters were taken at a consistent point on the tree (50
cm below tag — one hammer length). Standardization was a
concern the first season, so we marked a PVC pole with the
appropriate heights and used this as a reference in the field.
e Diameters were always taken on the uphill side of the tree, with
the tape/caliper held level.
e Calipers were used for saplings and regeneration.
= Tagging
e Always tag AWAY from a road/trail to avoid vandalism/theft.
e Tagging occurred counterclockwise within subplots, starting
where the recorder was standing at the reference point and

looping toward the next subplot.

e Fisheye photos
o Pictures should be taken on overcast days or (if necessary) when the sun is
low in the sky. Any sun exposure in the image will overexpose pieces of
canopy and render that part of the image useless for processing.
0 We typically took two fisheye photos at the center of each subplot being
included in the subset for modeling. The second was for backup.

0 Recorded the image number(s) corresponding to each subplot for later record.
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0 Set up tripod so that the lens is exactly one-meter height off the ground.

o Take all pictures so top of image is facing north (geographic N at top).

0 Level camera in two directions — it is important that the camera is level.

0 Use manual control for taking picture. Can compensate for brightness by
adjusting film speed and/or f-stop (check camera manual).

0 Recorded date and time when photo was taken.

e Seed Rain Traps (See Figure A.23.)

o0 Materials used per trap:

Six meters of 0.5 inch diameter PVC pipe
e Cut into four 80-cm legs and four 70.7-cm sides
= Four PVC elbows/tees — forms corners and points of attachment
= Two meters of 0.25-inch diameter rebar
e Drove 0.5 m into ground to hold two legs in place
= One four foot by four foot (1.3 m by 1.3 m) piece of window screen
material (1-mm plastic coated fiberglass window screen)
= Zipties to fix PVC screen to frame
o Five 0.5m? PVC frames were randomly placed within each plot.
= Traps were squares with window screen zip-tied across the top to
create a net. We allowed the netting to sag a bit to hold onto seed catch
better.
= Two legs of each trap were mounted on lengths of rebar to ensure that

traps don’t move.
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0 We planned to empty these monthly but in reality only emptied them once or
twice during the season.
= Redwood cones were placed in a paper bag and labeled by location for

use in greenhouse study

Soils
o Soil samples were collected from ten random locations (the 0.01 ha subplots
used for modeling data) within each 0.25 ha plot.
= Samples were collected using a trowel down to ~10 cm depth. At each
0.25 ha plot we checked to make sure that the A horizon was deeper
than 10 cm before sampling to this depth, as the A horizon was our
target sampling depth.
e We walked the diagonals of each subplot, collecting 6 small
soil samples to ~10 cm depth with trowels along each diagonal
and using them to make a composite full-subplot sample in a 5-
gallon bucket. We brought back 0.5-1.0 gal of soil from each
subplot.
e Soil samples were air dried for 2+ days prior to analysis and
then sieved to remove rock fragments > 2mm.
e Samples were sent to A&L Labs in Modesto, CA for analysis
using the S1BN package and extra NH4" measurement. All
tests included: organic matter, estimated nitrogen release,

phosphorus (Weak Bray and sodium bicarbonate-P),
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extractable potassium, magnesium, calcium, sodium, hydrogen,
sulfate-S, pH, cation exchange capacity and percent cation
saturation (computed).

e Weran atotal C & N analysis with Craig Stubler using the
NRES Department’s CHN analyzer during the summer of
2016. This was done for all 80 samples using the same soil
collected for A&L Labs.

0 We collected bulk density samples from each of the subplots used for
modeling data between November 2015 and March 2016. These were
collected with a slide hammer setup provided by Craig Stubler.

= Two bulk density samples were collected at each subplot ~1m apart.
= Samples were oven dried for 48 hours and then bulk density was

calculated, including a correction for rock fragment volume and mass.

Greenhouse methods

e Soil was collected from just outside of a 0.25 ha plot in each burn history (only one
sample per burn history) and seed from seed traps was used with this soil to run a
greenhouse experiment.

e We collected enough soil from each burn history to fill 32 655 cm? seedling pots from
Stuewe & Sons. In the field the soil was run through a sieve with large openings to
remove the largest rock fragments.

o Intotal we used 128 seedling pots: we ran a full factorial experiment with 4

seed sources X 4 soil sources x 8 replicates of each source.
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Soil was air dried in a greenhouse until no longer moist. Pots and their holders were
cleaned with a 10% bleach solution and rinsed.

We glued redwood seeds to toothpicks (lightly; Figure A.1.) so that we could keep
track of seedling germination in each pot and ensure that germinants weren’t recruits
from the soil we collected. Two seeds were glued to each toothpick, and ten
toothpicks planted in each pot.

0 We lined up ~15 toothpicks per row in three rows on sheets of paper, taped
them down, and then glued seeds to them one by one. Seeds were lightly
deposited with forceps.

Pots were lined with extra window mesh from the seed traps, filled 1/3 with rinsed
pea gravel, then filled just short of final volume with soil (unsieved).

o Toothpicks were placed before fully full, then once all 10 were in the pot they
were covered with soil to the appropriate depth to prevent snapping off seeds
while pushing into the soil.

Water was provided to pots as needed to keep the soil just below the surface moist.
Pots were rotated once during the experiment, which ran for three months.

0 The largest seedling in each pot was allowed to live if multiple sprouted.

At the end of three months all seedlings were measured for above and belowground
height/length, air-dried in the greenhouse, and then measured for above and

belowground mass.
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APPENDIX B: SUPPLEMENTARY TABLES AND FIGURES

Table A.1. Soil classifications determined by profile description during June 2016. |
dug a soil pit and wrote a description for each 0.25 ha plot in our study. (Plot numbers
correspond to random point numbers used to determine each 0.25 ha plot location and do
not reflect that actual number of plots at each burn history.) Detailed classification sheets
are attached as Figures A.7 — A.22.

Location Plot Classification

Buzzard’s Roost #1  Clayey-skeletal, mesic Typic Argixeroll
Pfeiffer Big Sur Buzzard’s Roost #2  Clayey-skeletal, mesic Typic Haploxeroll

State Park Post Creek #1 Clayey-skeletal, mesic Typic Argixeroll
Post Creek #2 Fine-loamy, mesic Lithic Argixeroll
Whale Point #1 Loamy-skeletal, mesic Typic Haploxerept
Whale Point #3 Clayey-skeletal, mesic Typic Argixeroll

Big Creek Reserve | ierpretive Trail #0  Loamy-skeletal, mesic Typic Haploxerolls

Interpretive Trail #2  Loamy-skeletal, mesic Typic Haploxerolls

P LU

Figure A.1. Gluing redwood seeds to toothpicks. Glue was applied to each toothpick
and seeds were deposited lightly with forceps. Two seeds were glued to each toothpick
and ten toothpicks were deposited in each seedling tube at planting.
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Figure A.7. Front of soil pit classification sheet for Buzzard’s Roost # 1.
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Figure A.8. Back of soil pit classification sheet for Buzzard’s Roost # 1.
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Figure A.9. Front of soil pit classification sheet for Buzzard’s Roost # 2.
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Figure A.10. Back of soil pit classification sheet for Buzzard’s Roost # 2.
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Figure A.11. Front of soil pit classification sheet for Post Creek # 1.
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Figure A.12. Back of soil pit classification sheet for Post Creek # 1.
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Figure A.13. Front of soil pit classification sheet for Post Creek # 2.
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Figure A.14. Back of soil pit classification sheet for Post Creek # 2.
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Figure A.15. Front of soil pit classification sheet for Whale Point # 1.
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Figure A.16. Back of soil pit classification sheet for Whale Point # 1.
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Figure A.17. Front of soil pit classification sheet for Whale Point # 3.
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Figure A.18. Back of soil pit classification sheet for Whale Point # 3.
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Figure A.19. Front of soil pit classification sheet for Interpretive Trail # 0.
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Figure A.20. Back of soil pit classification sheet for Interpretive Trail # 0.
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Figure A.21. Front of soil pit classification sheet for Interpretive Trail # 2.
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Figure A.22. Back of soil pit classification sheet for Interpretive Trail # 2.

79



Figure A.23. A constructed seed rain trap. A PVC square was first constructed for the
top of the trap, then the legs were attached, then the square of window screen ziptied on
with some extra allowed to hang down in order to catch seeds and cones as they fell.
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Figure A.24. Map of available fire history at the Big Creek Reserve properties. Data
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from Department of Forestry and Fire Protection (2015).
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Figure A.25. Map of available fire history at Pfeiffer Big Sur State Park. Data from
Department of Forestry and Fire Protection (2015).
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