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In practice it is common to estimate site effects using a single proxy, or single variable such as 30 m shear wave 
velocity (VS30) or site period. Many studies have investigated merits of proposed proxies with contradicting 
recommendations. Yet, most studies indicate the single proxy approach is less than ideal, resulting in large 
uncertainty. To provide a better understanding of components that drive site response, we performed a 
parameterized study on 19 shallow soil profiles with VS ranging from 150 m/s to 400 m/s. We propagated 74 
input motions through each soil column using one-dimensional equivalent-linear method to produce 1406 site 
response analyses. The resulting amplification factors (the ratio of surface to base motion) were then analyzed 
statistically to identify trends. The mean amplification factor, averaged from 74 records, was used to isolate and 
quantify the effects of VS on site response. Based on analysis of record-to-record trends, we identified two 
separate mechanisms through which nonlinearity affects site response including “damping increase” and “site 
period shift”. The interaction of these two mechanisms makes amplification-shaking intensity models highly 
depth-dependent. The residual standard deviation of amplification factor based on depth-independent models 
was found to be up to three times larger than the corresponding standard deviation based on depth-specific 
models. We found strain compatible site period a promising site parameter that complements the predictive 
information obtained from VS. Finally, a simplified procedure providing a five-point estimate of site transfer 
function is outlined. The proposed procedure can fill the gap in current practice for an intermediate solution 
between the numerically rigorous solution and the single proxy approach. Implementation of this procedure is 
demonstrated in an example. 

1. Introduction 

Two general approaches are used to estimate site effects on ground 
motion. A “site-specific” analysis is usually performed for sensitive 
buildings and large infrastructure like highway or railroad bridges, 
underground subway stations, lifelines, and dams. The site-specific 
analysis can be conducted using nonlinear or equivalent-linear meth­
ods to propagate shear waves from basement rock to the ground 
surface. Although three dimensional solutions are available for site 
response, in most cases a one dimensional (1-D) solution based on 
assumption of polarized upward/downward shear waves and infinite 
horizontal layers is practiced. Implementation of site-specific analysis 
requires resources that may not be readily available for small to 
medium size projects or in conceptual/bid phase of large projects. 
Alternatively, generic site factors are used for final design of typical 
buildings, a wide range of small infrastructure, and in conceptual phase 
design of large infrastructure. Developing site factors has been done by 
compiling ground motion data recorded at soil and rock sites during 
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past earthquakes and examining dependence of amplification factor on 
certain site parameter, also known as site proxy, using multivariable 
regression techniques (e.g., [1,3,5,6,13,16,26]. 

The most commonly used site proxies include descriptive geotech­
nical or geological classification, shear wave velocity (VS) averaged in 
top 30 m (VS30), or site period (TN). Borcherdt [5] analyzed site 
response data from 1989 Loma Prieta earthquake and suggested a 
linear relationship between amplification factor and VS30 in natural 
log scale at short and mid periods for two ranges of peak ground 
acceleration (PGA) of < 0.2g and > 0.2g. Accordingly, a site classifica­
tion was proposed based on VS30 to estimate site factors which were 
later adopted by the UBC1997 Code [27] and NEHRP Provisions 
(2009) [17]. Probabilistic seismic hazard analysis (PSHA) practice has 
gradually evolved to adopt the VS30-based approach by incorporating 
VS30 and various depth-related terms, (e. g. depth to VS =1000 m/s) in 
ground motion prediction equations (GMPE) including Next 
Generation of Attenuation (NGA) models (eg. [2,7,8,12]. 

The single proxy approach is simple to use but omits several key 
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components of site response which leads to large uncertainty of the 
results. For example, site factors developed from 1989 Loma Prieta 
earthquake data by Borcherdt [5] have an standard error of regression 
of 0.5–0.65 in natural log scale. Choi and Stewart [13] developed 
amplification factors as a continuous function of VS30 and shaking 
intensity with a regression error ranged from 0.45 to 0.69 in natural log 
scale. Estimation of amplification factor with an error of such 
magnitude makes the applicability of the developed transfer functions 
limited. 

There have been numerous studies focusing on merits of various 
site proxies with contradicting recommendations. Rodriguez et al. [20] 
used site response data from 1989 Loma Prieta and 1994 Northridge 
earthquakes to examine the accuracy of various site classification 
systems. They compared the VS30-based classification and a site 
period-based classification and found the two systems provide similar 
accuracy in prediction of site response. Stewart et al. [23] used 1828 
records from 154 shallow crustal earthquakes and found that a 
detailed-surface geology classification provides a more accurate pre­
diction of site amplification than either the VS30-based or a site period-
based classification system for soil sites. Abrahamson [2] favored VS30 

as a less subjective site parameter to be used in GMPE for deep soil 
sites common in California and suggested other site parameters can be 
added to GMPEs. Site period has been found an adequate site 
parameter by a handful of scholars (e.g. [29,10,19]). Zhao [30] used 
3018 KiK-net downhole array record pairs (surface and borehole) from 
95 earthquakes in Japan and developed a model for surface/borehole 
amplification factors. Based on this study, site period was found a 
better site proxy with lower standard deviation of inter-site residuals of 
amplification ratios compared to VS30 for spectral periods > 0.6 s. 
McVerry [19] analyzed the strong ground motion data that was used in 
developing New Zealand GMPEs and found site period is a more 
adequate predictor of site effects than VS30, in particular, for deep/stiff 
sites. Castellaro [9] ran one dimensional equivalent-linear site re­
sponse simulations for a suite of 585 soil profiles and two simple 
records including a Ricker wavelet with frequency of 1 Hz and 0.5 Hz 
and showed a matrix consisting of shear wave velocity of shallower 
softer layer, site period, and site impedance ratio predicts amplification 
factor better than VS30. 

Although a large number of studies suggested the inadequacy of the 
single proxy approach in general, and VS30 as the single site proxy in 
particular, no consensus has emerged for an alternative approach. The 
inconclusive research may be attributed to complexity of site response 
problem which is inherently unresolvable to a single predictor. This 
paper presents a parametric study of multiple components that are 
omitted in single proxy approach. The methodology includes perform­
ing 1-D site response analysis by propagating 74 ground motions 
through a suite of hypothetical soil profiles. The resulting suite of 
amplification factors is analyzed statistically to identify trends. This 
study attempts to provide some perspective on “which single proxy? ” 
through a better understanding of the contribution of shear wave 
velocity, site period, and site period shift due to nonlinear soil behavior. 

2. Methodology 

The general methodology used here is similar to the approach used 
by [4], [28], and Castellaro [9]. In particular, this study was performed 
to build upon findings of [4]. The set of soil profiles used in this study 
covers a broader condition than the set used in [4]. This study includes 
19 soil profiles, with VS ranging from 150 m/s to 400 m/s and the 
depth to bedrock ranging from 10 m to 75 m. Two soil types, a generic 
sand and a generic clay (with plasticity index of 40–80) were used. The 
shear stiffness degradation and damping versus shear strain mod­
els [14,21,22,24] for these materials are plotted in Fig. 1. A summary of 
soil profiles along with the material type, VS, and site periods are 
presented in the Table 1. Bedrock was assumed to have a VS of 760 m/s 
to match the boundary between NEHRP B and C classes. 

Fig. 1. Stiffness degradation and damping curves for materials used in this study. 

Table 1 
Hypothetical soil profiles used in this study. 

Profile Soil Type Depth to bedrock (m) VS (m/s) TN (s) 

S−75–400 Sand 75 400 0.75 
S−75–316 Sand 75 316 0.95 
S−75–200 Sand 75 200 1.50 
S−50–400 Sand 50 400 0.50 
S−50–316 Sand 50 316 0.63 
S−50–200 Sand 50 200 1.00 
S−25–400 Sand 25 400 0.25 
S−25–316 Sand 25 316 0.32 
S−25–200 Sand 25 200 0.50 
C−75–400 Clay 75 400 0.75 
C−75–316 Clay 75 316 0.95 
C−75–200 Clay 75 200 1.50 
C−50–400 Clay 50 400 0.50 
C−50–316 Clay 50 316 0.63 
C−50–200 Clay 50 200 1.00 
C−25–400 Clay 25 400 0.25 
C−25–316 Clay 25 316 0.32 
C−25–200 Clay 25 200 0.50 
S−10–150 Sand 10 150 0.27 

A total number of 74 records from 27 earthquakes after [4] were 
run through each soil profile. Most of the ground motions were 
recorded at rock sites with average VS of 760 m/s. The recording at 
the bedrock level is not equal to the recording at a nearby rock outcrop 
due to reflections and weathering of surficial rock. Following [4], we  
did not perform deconvolution for two reasons, (1) the main objective 
of this study is not to provide the best estimate of amplification factor 
but to investigate parameters and procedures that will lead to better 
estimate of amplification factor, (2) deconvolution is expected to 
impact site response at very short period range. Such period range is 
not usually of interest for infrastructure projects like bridges and tall 
buildings. 

A list of records used in this study and the corresponding spectral 
accelerations are provided in the electronic supplement. The earth­
quake magnitudes range from M5.0 to M7.4 with a median value of 
M6.7, and PGA ranges from 0.01 g to 1.5 g, with median and geometric 
mean values 0.11 g. The ground motion database used in this study is 
available at Pacific Earthquake Engineering Research Center website 
(www.peer. Berkeley.edu; accessed November 2010). 

We performed equivalent-linear 1-D site response analysis on each 
soil profile using SHAKE2000 [18]. The appropriate shear strain range 
for application of equivalent linear method is investigated in several 
past studies. Bolisetti et al. [11] conclude that the equivalent linear 
response is inappropriate when shear strain is greater than 1%. 
Kaklamnous et al. [15] recommended nonlinear method be used for 
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Table 2 
Standard deviation of amplification facto,σLn AF( ). 

Profile Depth-independent model Depth-specific model 

Peak 0.1 s 0.6 s 1.0 s 3.0 s Peak 0.1 s 0.6 s 1.0 s 3.0 s 

S−75–400 0.062 0.254 0.222 0.212 0.087 0.056 0.189 0.088 0.115 0.073 
S−50–400 0.062 0.162 0.123 0.089 0.052 
S−25–400 0.060 0.136 0.086 0.083 0.034 
S−75–316 0.083 0.279 0.263 0.250 0.140 0.079 0.238 0.095 0.140 0.111 
S−50–316 0.081 0.204 0.115 0.145 0.082 
S−25–316 0.074 0.155 0.139 0.108 0.051 
S−75–200 0.123 0.427 0.364 0.348 0.240 0.104 0.341 0.231 0.131 0.126 
S−50–200 0.097 0.285 0.119 0.169 0.139 
S−25–200 0.116 0.220 0.173 0.188 0.099 
C−75–400 0.051 0.186 0.160 0.181 0.061 0.044 0.167 0.069 0.068 0.055 
C−50–400 0.055 0.114 0.073 0.068 0.047 
C−25–400 0.054 0.100 0.062 0.049 0.026 
C−75–316 0.070 0.221 0.210 0.230 0.100 0.074 0.217 0.095 0.096 0.084 
C−50–316 0.071 0.188 0.100 0.081 0.067 
C−25–316 0.062 0.112 0.089 0.084 0.039 
C−75–200 0.110 0.355 0.335 0.268 0.206 0.104 0.290 0.120 0.112 0.121 
C−50–200 0.108 0.236 0.123 0.116 0.123 
C−25–200 0.115 0.177 0.144 0.105 0.076 
S−10–150 Not Calculated 0.119 0.241 0.166 0.154 0.069 

shear strain greater than 0.4% at short periods, and suggested both 
equivalent-linear and non-linear methods provide similar results at 
long period. For the purpose of this study, for each profile, records that 
induce shear strain values of greater than 0.8% were excluded from our 
analysis. The number of ground motion records that were excluded 
ranged from 0 to 8 of the 74 records for different profiles. We also 
considered setting a lower threshold of 0.5% for shear strain to comply 
with findings of Kaklamnous et al. [15] This lower threshold would 
have resulted in exclusion of 0–3 more records from our analysis for 
some of the softer profiles. We proceeded with a threshold shear strain 
of 0.8% as it would not affect our key findings. 

3. Limitations 

We recognize that site response is a complex problem and several 
contributing components including 3-D effects, topography effects, 
spatial variability of soil properties and ground motion, incidence 
angles, primary wave effects, and integrity of bedrock, among others, 
are excluded from the scope of this study. The idealized conditions of a 
uniform soil layer over bedrock limits the applicability of our findings. 
However, this approach reduces the number of contributing compo­
nents on site response. Such idealization was necessary for tracking the 
impact of individual components like VS, site period, and site period 
shift which could be masked when using more complicated soil profiles 
based on empirical data. Applicability of our findings is limited to low 
and medium strain range where use of equivalent-linear method is 
justified. The impact of nonlinear soil behavior on site response is 
expected to be more pronounced in very short period range. This 
period range is of less interest for major infrastructure for which a site-
specific site response analysis is sought. Finally, our results do not 
apply when ground failure including liquefaction, cyclic softening, and 
excessive seismic deformations take place. 

4. Results 

It is helpful to define several terms that we use frequently from this 
point forward. Site period, TN, is the period at which soil column would 
resonate with harmonic loading and can be computed as: TN =4 H/VS, 
where H is depth to bedrock. Strain compatible shear wave velocity, 
VS 

*, is computed from strain compatible shear stiffness, G*, through 
G* =ρ. (VS 

*)2 where ρ is density. G* is a function of shear strain and is 
determined from the stiffness degradation curve. Strain compatible site 

period, TN 
*, is computed as TN 

*=4 H/VS 
* . The analysis results are 

first presented for the mean response for each profile averaged from 74 
records, followed by the results from individual records. 

4.1. Dependence of amplification factor on VS 

Amplification factor for 5% damped response spectral acceleration, 
AF, was computed for each ground motion. We then averaged the 
amplification factor from the 74 records at any given period, AFm. 
Plotted in Fig. 2(a), b, and c are AFm for generic clay with VS =400 m/ 
s, 316 m/s, and 200 m/s, respectively. Similar graphs for generic sand 
are provided in the electronic supplement. Peak amplification factor 
[maximum amplification factor across the period range] is denoted by 
AFPm. Note that AFpm increases as VS reduces but remains approxi­
mately constant as depth to bedrock increases. Also, note the period at 
which AFpm occurs increases as depth to bedrock increases. This 
period for each soil profile is the strain compatible site period (TN 

*). 
AFPm, is plotted versus VS in Fig. 3 with each data point representing 
peak amplification factor averaged from 74 records for one soil profile. 
We found a strong linear correlation between AFPm and VS with 
coefficients of determination R2 greater than 0.96. AFPm can be 
estimated from the following equations where VS is in m/s: 

Generic Sand Ln ( Pm (AF ) = −0.40 Ln V S) + 3.07 (1) 

Generic Clay Pm (Ln AF ( ) = −0.54 Ln V S) + 3.81 (2) 

Since AFPm is averaged from 74 records it has minimal representa­
tion of “shaking intensity” and “record-to-record” variability. Also, it 
was shown AFPm is independent from depth to bedrock. This would 
make AFPm a good parameter to use for tracking and quantifying the 
impact of VS on site response. Therefore, Eqs. (1) and (2) provide a 
useful tool to characterize the isolated impact of VS on amplification 
factor. 

4.2. Amplification factor vs shaking intensity 

In this section we investigate the relationship between amplification 
factor and shaking intensity, also known as nonlinearity model. We 
examined various shaking intensity parameters, and similar to 
Bazzurro and Cornell [4], found amplification at any period is best 
correlated with response spectral acceleration of bedrock at corre­
sponding period, Sa. Peak amplification factor across the period range 
for an individual record, AFP was found best correlated with spectral 



Fig. 2. Amplification transfer functions averaged from 74 records for gneric clay (a) VS 

=400 m/s, (b) VS =316 m/s, (c) VS =200 m/s. 

Fig. 3. Peak amplification factors averaged from 74 records versus shear wave velocity. 

acceleration of bedrock at site period, Sa 
F. Plotted in Fig. 4(a) to (d) 

are amplification factors at periods of 0.5 s, 1.0 s and 1.5 s, and peak 
amplification, AFP, versus spectral acceleration of input motion for 
generic sand with VS=316 m/s, depth to bedrock of 50 m and site 
period of 0.63 s (=4×50 m/316 m/s). Each data point shown in Fig. 4 
represents an individual record. The following distinct trends for 
nonlinearity were identified: 

• AF0.5 shows a strong negative correlation with Sa, 

• AF1.0 first increases with Sa and then drops as Sa increases, 

• AF1.5 shows a mild positive correlation with Sa, and 

• AFP shows a mild negative correlation with Sa. 

To explain these trends, two major mechanisms through which 
nonlinearity operates, should be recognized: 

A. Damping increase which de-amplifies the motion as acceleration 
increases, 

B. Stiffness decrease and migration of site period which may amplify or 
de-amplify the motion due to resonance effects. 

For AF0.5, the designated period of 0.5 s is smaller than the small 
strain site period, TN, of 0.63 s. As Sa increases, strain compatible site 
period, TN 

* , migrates away from designated period of 0.5 s and 
resonance effects diminish resulting in amplification reduction. 
Concurrently, as Sa and shear strain increase, higher damping tends 
to de-amplify the motion. For AF0.5 mechanisms A and B act in 
parallel leading to strong negative correlation between amplification 
and Sa. For amplification at period of 1.0 s and within the range of 
approximately Sa < 0.2 g, as Sa increases, amplification increases. In 
this range, strain compatible site period, TN 

*, falls between 0.63 s and 
1.0 s; as Sa increases, TN 

* shifts towards resonance period of 1.0 s 
which results in amplification increase. In this range mechanism A and 
B operate in opposite, but, mechanism B controls. For Sa > 0.2 g, TN 

* 

is greater than resonance period of 1.0. In this range, as Sa increases, 
site period shifts away from designated period of 1.0 s, combined with 
increased damping effects, results in sharp reduction of amplification. 
For AF1.5, TN 

* for all records is less than the designated period of 
1.5 s. Therefore, as Sa and TN 

* increase, amplification mildly increase 
due to resonance indicating mechanism B is controlling. Finally peak 
amplification, AFP always occurs at TN 

* and migration of site period is 
not relevant. For AFP nonlinearity is controlled only by mechanism A. 
As a result, amplification mildly reduces as Sa increases. The widely 
accepted notion, incorporated in building codes, suggests amplification 
factor reduces with shaking intensity due to nonlinear soil behavior. 
Different trends described above indicate the impact of “shaking 
intensity” is complex; amplification may increase with shaking inten­
sity when site period shifts toward period of interest. 

4.3. Depth-dependency of amplification-shaking intensity (AF-Sa) 
Models 

Plotted in Fig. 5(a), (b) and (c) are amplification factor, AF, at  
periods of 0.1 s, 0.6 s, and 1.0 s, respectively, versus bedrock spectral 
acceleration, Sa, at corresponding periods for sand profiles with VS 

=200 m/s and depths to bedrock of 25 m, 50 m, and 75 m. Peak 
amplification factor, AFP, is plotted versus bedrock spectral accelera­
tion at site fundamental period, Sa 

F, in  Fig. 5(d). Note that while data 
point clusters corresponding to different depths are visually separated 
in Fig. 5(a), (b) and (c), data points of different depths for peak 
amplification are intermixed in Fig. 5(d). For each soil profile, the best 
fitted quadratic or bi-linear function (in log scale) is also plotted 
following Bazzurro and Cornell (2004). Fitted curves for depth to 
bedrock of 25 m, 50 m and 75 m are distinct in Fig. 5(a), (b) and (c) 
suggesting amplification versus shaking intensity (AF-Sa) models are 
depth-dependent at periods of 0.1 s, 0.6 s and 1.0 s. Note; however, a 
depth-independent model seems appropriate for peak amplification. 

To statistically test this observation, we computed the residual 
standard deviation of amplification factor, σLn AF , after accounting for ( )
its dependence on Sa. σLn AF( ) represents the random “record-to-record” 
variability of amplification factor and can be computed using the 
following equation: 

2σLn AF (  )  = 1−R  σ′ Ln AF (3)( ) 

where σ′ Ln AF( ) is the standard deviation of amplification factor calcu­
lated from 74 records for each profile at designated period and, R2 is 



Fig. 4. Amplification versus spectral acceleration for generic sand, depth to bedrock 50 m, VS=316 m/s, (a) 0.5 s, (b) 1.0 s, (c) 1.5 s, (d) Peak. 

the coefficient of determination computed for AF versus Sa. Presented 
in Table 2 are σLn AF) values based on using two sets of R2 values( 
obtained from depth-specific and depth-independent AF-Sa models. 
Note the following trends: 

• σLn AF) based on depth-independent model is larger than the( 
corresponding value computed using the depth-specific models. 
For example, for sand with Vs =200 m/s, σLn AF) for depth-indepen­( 
dent model is 1.5–3 times larger than σLn AF) based on depth-specific( 
models. Depth-independent models generate a large uncertainty 
which is epistemic in nature, that is, can be removed if model takes 
into account the depth effects. 

• σLn AF) for peak amplification is similar using either models ranging ( 
from 0.04 to 0.12. 

• Similar to findings of Bazzurro and Cornell (2004), σLn AF) at long ( 
period is relatively small ranging from 0.03 to 0.13. 

• σLn AF) ranges from 0.06 to 0.34 at short and mid periods which ( 
generally agrees with σLn AF( ) range of less than 0.3 reported by 
Bazzurro and Cornell [4]. 

• Bazzurro and Cornell’ [4] study was performed on two specific sites. 
These results verify and extend their findings to a broader range of 
soil and site conditions. 

4.4. Strain compatible site period, a prospective parameter 

It was shown that site period shift in nonlinear strain range can 
have a critical impact on site response. None of the currently proposed 
site or motion parameters in the scope of single proxy approach 
properly captures this effect. In our search, we found strain compatible 
site period, TN 

* , a promising parameter that holds key predictive 
information including “shaking intensity”, “site period” and “site period 
shift”. 

SHAKE2000 computes strain compatible shear wave velocity, VS 
* , 

for each sub-layer from calculated shear strain at the end of iteration in 
equivalent-linear method and using G/Gmax curves. VS 

* is then 
averaged from sublayers to compute VS 

* and TN 
* [=4 H/ VS 

*] for 
soil column. For the purpose of this study, TN 

*, was provided for each 
record by SHAKE2000. Plotted in Fig. 6(a) through (d) are amplifica­
tion factors at periods of 0.1 s, 0.6 s, 1.0 s and 3.0 s versus TN 

*. Each 
plot includes data from 19 profiles excited by 74 motions producing 

1406 data points. Also are plotted mean amplification factors for each 
soil profile averaged from 74 records, AFm, using red solid circle 
marker. These plots put various components that contribute in site 
response in a holistic prospective. Three major components drive site 
response including TN 

* , VS, and damping. The following trends can be 
identified based on these components: 

4.5. VS -based trend 

A visual examination of data clusters of different profiles at 0.1 s, 
0.6 s, and 1.0 s shows that for a similar TN 

* data points corresponding 
to profiles with lower VS tend to fall above data clusters with higher VS. 
This observation is another expression of the trend identified for 
amplification factor as a function of VS in Eqs. (1) and (2). 

4.6. TN 
*-based Trend 

Note that in each plot amplification factor peaks when site period 
matches period of interest. Amplification at 0.1 s steadily decreases as 
TN 

* shifts away from 0.1 s. Amplification at 0.6 s shows two peaks at 
0.6 s and 1.8 s corresponding to the first and the second fundamental 
site period. Amplification at 1.0 s peaks at 1.0 s. Amplification at 3.0 s 
steadily increases as TN 

* approaches 3.0 s. These trends can be 
explained by resonance. 

We used the mean amplification factors, AFm, each representing 
the average site response from 74 records for a single site to generate 
amplification factor versus TN 

* trend curves. Before generating trend 
curve, AFm values were normalized to remove VS effects by applying a 
correction factor based on Eqs. (1) and (2). For example, AFm at 0.6 s 
for profile S-75–400 (Vs=400 m/s) is 1.20. To compute amplification 
factor for Vs=300 m/s, we used Eq. (2) (generic sand) which provides 
AFm equal to 1.96 and 2.20 for Vs=400 m/s and Vs=300 m/s, 
respectively. The conversion factor (in natural log scale) is calculated 
as Ln (2.20) –Ln (1.96) =0.12. The corrected amplification factor for Vs 
=300 m/s is then computed as Exp[Ln(1.2)+0.12] =1.35. Using similar 
method, three sets of AFm values for VS =200 m/s, 300 m/s, and 
400 m/s were generated. A trend curve was then manually drawn for 
each AFm set. Amplification factors at 3.0 s do not show a clear 
dependency on VS, therefore, a single curve was plotted without 
adjusting for VS. However, our relatively shallow soil profiles may 

Fig. 5. Amplification factor versus spectral acceleration for generic sand with VS =200 m/s at (a) 0.1 s, (b) 0.6 s, (c) 1.0 s, (d) peak amplification factor. 
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Fig. 6. Amplification factor versus strain compatible site period at (a) 0.1 s, (b) 0.6 s, (c) 1.0 s, (d) 3.0 s. 

not allow seeing the dependency of long-period amplification on VS. It  
is likely that amplification at long period would show dependency on 
VS in deep sites where depth is large compared to wave length. 

Amplification factors from individual records also follow similar 
trend lines set by mean amplification factors; for each soil profile, AF 
increase as TN 

* approaches period of interest, and decrease as TN 
* 

shifts away from period of interest. This indicates TN 
* not only holds 

predictive information about average response of different soil profiles 
but also record-to-record variation of response for a given soil profile. 

4.7. Damping-based trend 

In each plot a damping-controlled zone is identified in which data 
points show a larger scatter around TN *-based trend line set by mean 
amplification factors. This zone includes the range of TN 

* > period of 
interest in each plot; that is, 0.1 s < TN 

* in Fig. 6(a), 0.6 s < TN 
* in 

Fig. 6(b), and 1.0 s < TN 
* in Fig. 6(c). In damping control zone, AF 

reduces as TN 
* increases following a steeper slope than the slope of the 

TN *-based curve set by mean amplification factors. In damping-
controlled zone as TN * shifts away from resonance period, damping 
increase and site period shift [nonlinearity mechanisms A and B 
discussed in previous section] concurrently de-amplify the motion 

resulting in a sharp reduction of amplification factor. 
We used a method that is schematically illustrated in Fig. 7 to 

quantify damping effects. According to this method, when TN * < 
period of interest, amplification factor can be directly read from TN *­
based trend line. When TN * > period of interest; first, the mean 
amplification factor for soil profile, AFm, is computed by the TN *­
based curve, then, amplification factor for a specific record is corrected 
for damping using amplification-shaking intensity (AF-Sa) relation­
ships. We plotted AF versus Sa at periods of 0.1 s, 0.6 s, and 1.0 s 
period (similar to Fig. 5). The best fitted model is quadratic [4] and can 
alternatively be modeled as bilinear with two distinct slopes b1 for Sa 

< Sam, and b2 for Sa > Sam where Sam is the spectral acceleration 
averaged from 74 records. For records included in our dataset Sam is 
0.1g, 0.12g, and 0.09g, for periods of 0.0 s (PGA), 0.6 s, and 1.0 s, 
respectively. We assumed the mean amplification factor, AFm, ob­
tained from TN *-based curve corresponds to Sam of approximately 
0.1g. For Sa greater or smaller than Sam, AF should be corrected to 
account for damping using the following equations: 

Ln A Sa) = L ( Fm)  +  Δ Ln AFSa( F  n A ( ) (4) 

where AFSa is the amplification factor corresponding to specific record 
with shaking intensity of Sa. Mean amplification, AFm, is computed 

Fig. 7. Schematic illustration of simplified procedure to correct amplification factor for damping effects. 



Table 3 
Calculated b1 and b2 for soil profiles. 

Period Peak 0.1 s 0.6 s 1.0 s 

Profile b1 =b2 b1 b2 b1 b2 b1 b2 

A−75–400 01 −0.113 −0.579 −0.083 −0.238 NC2 −0.315 
A−75–316 −0.048 −0.213 −0.613 NC2 NC2 NC2 −0.398 
A−75–200 −0.125 −0.380 −0.725 −0.302 −0.553 −0.222 −0.218 
A−50–400 01 −0.156 −0.555 −0.030 −0.251 NC2 NC2 

A−50–316 −0.066 −0.111 −0.666 −0.138 −0.402 NC2 NC2 

A−50–200 −0.089 −0.370 −0.603 NC2 NC2 −0.317 −0.342 
A−25–400 01 −0.156 −0.423 NC2 NC2 NC2 NC2 

A−25–316 −0.057 −0.150 −0.557 NC2 NC2 NC2 NC2 

A−25–200 −0.130 −0.292 −0.631 −0.208 −0.686 NC2 NC2 

B−75–400 01 −0.032 −0.259 0.000 −0.090 NC2 NC2 

B−75–316 −0.014 −0.047 −0.259 NC2 NC2 NC2 −0.073 
B−75–200 −0.057 −0.180 −0.403 −0.140 −0.138 −0.097 −0.197 
B−50–400 01 −0.101 −0.203 −0.050 0.000 NC2 NC2 

B−50–316 −0.026 −0.047 −0.299 −0.054 −0.112 NC2 NC2 

B−50–200 −0.067 −0.137 −0.394 NC2 NC2 −0.075 −0.227 
B−25–400 01 −0.047 −0.069 NC2 NC2 NC2 NC2 

B−25–316 −0.032 −0.094 −0.228 NC2 NC2 NC2 NC2 

B−25–200 −0.056 −0.167 −0.386 −0.106 −0.098 NC2 NC2 

NC2 Not calculated 
3Not sufficient data to compute b values 

1 For AFP, and for VS=400 m/s, AF-Sa relationships show a very weak correlation 
resulting in approximately b1=b2 =0. 

from TN 
*-based curve for Sam =0.1g in Fig. 6, and: 

Δ Ln AF ) = b.  [  Ln S (  )  −  Ln S (5)( Sa a ( am )] 

where 

b = b1 for  Sa < Sam  ,  and  b = b2 for  Sa > Sam  (6) 

b1 and b2 were computed for peak amplification and amplification 
factors at periods of 0.1 s, 0.6 s, and 1.0 s for soil profiles in this study 
and listed in Table 3. We only included profiles with data points that 
fell on right side of the peak amplification in Fig. 6 to ensure they are in 
damping-controlled zone. Values of b1 and b2 should be treated with 
discretion as they are developed based on a limited data. 

4.8. Simplified procedure 

There is a need in current state of practice for an intermediate 
solution between rigorous site response analysis based on nonlinear or 
equivalent-linear solutions in one end and the single proxy approach 
used to estimate generic site factors on the other end. An intermediate 
approach would be very useful to provide a preliminary estimate of 
seismic demands in conceptual/bid design of large infrastructures as 
well as final design of small critical structures which exclusively rely on 
NEHRP site factors to account for site response. In absence of an 
intermediate solution practitioners may apply arbitrary factors of 
safety on seismic demand estimated from GMPEs. For example, 84 
percentile spectral accelerations may be used (mean spectral accelera­
tion plus one standard deviation of approximately 0.35 in natural log 

scale). Such factor of safety implies a uniform amplification factor 
across the period range. This approximation does not maintain the 
rigor of PSHA practice so that consistency is lost between the PSHA 
and the site response. Our findings presented in this study were used to 
develop a simplified procedure including the following steps: 

Step 1: Determine site parameters including VS, depth to 
bedrock (H), and site period, TN (=4 H/VS). 

Step 2: Determine motion parameters including spectral 
acceleration of ground motion at 0.0 s (PGA), 0.6 s, and 1.0 s 

Step 3: Estimate strain compatible site period, TN 
*. It was 

mentioned that SHAKE2000 provided TN 
* for each profile and each 

record. For profiles included in our dataset, we found VS 
* and spectral 

acceleration at site period, Sa 
F, are strongly correlated with coefficients 

of determination R2 mostly above 0.8. Plotted in Fig. 8 are VS 
* versus 

Sa 
F for generic sand and clay and VS =400 m/s and 200 m/s. Use 

interpolation to estimate VS 
* for other values of depth to bedrock and 

VS. Note two sets of strain compatible site period should be computed: 

• Use Fig. 8 and Sa =0.1g to estimate mean strain compatible site 
period, TNm 

* 

• Use Fig. 8 and Sa =Sa 
F (spectral acceleration at site period for 

ground motion of interest) to compute strain compatible site period, 
TN 

* 

Step 4: Compute amplification factor at periods of 0.1 s, 
0.6 s, 1.0 s and 3.0 s Use Fig. 6 to first estimate mean amplification 
factor. Use method shown in Fig. 7 to correct for damping. If TN 

* < 
period of interest, no damping correction is required. 

Step 5: Compute peak amplification factor. Maximum am­
plification factor across period range, AFP, which occurs at site period, 
TN 

*, can be estimated in two steps: 1) use Eqs. (1) and (2) to predict 
the mean value of peak amplification factor (averaged from 74 records), 
2) use Table 3 to find b1 or b2, use Eq. (4) through 6 to correct for 
damping effects. This procedure is schematically shown in Fig. 9. Note 
the input spectral acceleration in Fig. 9(b) is spectral acceleration of 
bedrock at site period. 

This procedure provides amplification factors at periods of 0.1 s, 
0.6 s, 1.0 s, 3.0 s, and also peak amplification factor to create a five-
point estimate of transfer function. Interpolation can be used to 
compute amplification at intermediate periods. The proposed proce­
dure can be conveniently implemented in spreadsheet. The application 
of proposed procedure would be subject to limitations of the metho­
dology and range of soil conditions used in this study. 

4.9. Example 

Strong amplification of ground motion due to underlying thick clay 
deposits was widely observed in city of Oakland during the 1989 Loma 
Prieta earthquake [25]. The proposed procedure was tested for the case 
of Oakland 2-story building site [25]. We used the outcrop rock motion 
recorded at the nearby Yerba Buena Island station (90 deg) as input 
motion. The 5% damped response spectra of the outcrop motion and 

Fig. 8. Strain compatible shear wave velocity versus spectral acceleration, (a) Sand, depth to bedrock 25 m, (b) Sand, depth to bedrock 75 m, (c) Clay, depth to bedrock 25 m, (d) Clay, 
depth to bedrock 75 m. 



Fig. 9. Schematic illustration to compute peak amplification factor. 

Fig. 10. Verification of proposed simplified method for case of 2-Story Oakland Building 

shaken by Loma Prieta (1989) earthquake. 

Table 4 
Soil Profile at Oakland 2-Story Building Site [23]. 

Layer No. Soil Type Depth (m) Thickness (m) Average VS (m/s) 

From To 

1 
2 
3 
4 
5 
6 
7 
8 

Sand 
Sandy Clay 
Sandy Gravel 
Sandy Clay 
Gravelly Sand 
Old Bay Clay 
Alluvium 
Bedrock 

0.0 
1.2 
14.6 
18.9 
27.8 
32.3 
86 
152.4 

1.2 
14.6 
18.9 
27.8 
32.3 
86 
152.4 
– 

1.2 
13.4 
4.3 
8.9 
4.5 
53.7 
66.4 
– 

140 
168 
305 
230 
381 
338 
695 
1070 

two components of surface motions recorded for this site (200 deg and 
290 deg) are plotted in Fig. 10. The subsurface layers and average VS 

values are presented in Table 4. Note a sharp contrast in VS profile 
between layers 4 and 5. For the purpose of applying the simplified 
procedure we created an idealized soil profile consisting of two layers: 

•	 Upper softer layer from 0 to 27.8 m with average VS=197 m/s, 

•	 Lower stiffer layer from 27.8 to 86 m with average VS=340 m/s. 

The proposed simplified procedure was implemented twice in the 
following order: Analysis I: the rock outcrop motion was applied on top 
of layer No.7 (VS=695 m/s) and propagated through sublayers 5 and 6 
(assuming average VS=340 m/s), Analysis II: the calculated response 

on top of layer 5 from Analysis I was applied as input motion to base of 
layer No. 4 and propagated through sublayers 1 through 4 (assuming 
average VS=197 m/s) to calculate response at the ground surface. 
Considering majority of underlying soils consist of clay or sandy clay, 
we used the generic clay model. 

The detailed calculation steps and intermediate parameters com­
puted in simplified procedure are summarized in Table 5. The 
calculated response using simplified procedure along with the calcu­
lated response using SHAKE by Sun et al. [25] are plotted in Fig. 10. 
The surface response spectra estimated based on simplified procedure 
agrees well with SHAKE results and both methods generally provide a 
reasonable estimation of surface response represented by two recorded 
surface motions. The simplified procedure underestimates the response 
at very short period which can be attributed to over-simplification of 
soil profile. Also note that the simplified procedure provides a better 
estimate of amplification than SHAKE at proximity of 1.0 s. In general, 
the discrepancy between simplified procedure and recorded motions 
can be a result of the selection of input rock motions, limitations of the 
one-dimensional model, limitation of equivalent-linear method, idea­
lization of soil profile, and unaccounted soil-structure interaction 
effects. 

5. Conclusions 

1. Single proxy approach is widely used to estimate the effect of near 
surface soils on seismic demand. Numerous studies have investi­
gated merits of proposed proxies including shear wave velocity (VS) 
averaged in top 30 m and site period with some contradicting 
results. This has left the debate over selecting the best “site proxy” 
unsettled. 

2. We used	 a methodology that allowed isolating and tracking the 
impact of components that drive site response including VS, site 
period, and shaking intensity. We performed a parametric study on 
19 hypothetical shallow profiles each shaken by 74 records from 27 
earthquakes using one-dimensional equivalent-linear method. The 
results were analyzed to identify trends. 

3. The	 effect of VS on site response was quantified by tracking 
maximum amplification factor across the period range, averaged 
from 74 records for each soil profile. Soil type-specific relationships 
were developed for amplification as a function of VS. 

4. Nonlinear soil behavior impacts site response through two mechan­
isms: “damping increase” which de-amplifies the motion; and 
“migration of site period” which may amplify or de-amplify the 
motion depending on the direction of site period shift with respect to 
period of interest. Amplification factor at a given period increases 
with shaking intensity when site period migrates towards period of 
interest. 



Table 5 6. σLn (AF), ranges from 0.06 to 0.34 at short and mid periods, 0.03–0.13 
Calculation Steps for Oakland 2-story Building following Simplified Procedure. at long period, and 0.04–0.12 for peak amplification factor. These 

Analysis No. I II 
Calculation Steps Layers #5, 6 to #4, 3, 2, 1 to 

included in compute compute motion 
soil column motion at top at top of layer 

of layer #5 #1 
Base level Top of layer #7 Top of layer #5 

Step 1: Determine Site VS (m/s) 341 197 
Parameters H(m) 58 28 

TN (s) 0.68 0.56 
Step 2: Determine PGA (g) 0.08 0.08 
Motion Parameters Sa 0.6 s (g 0.24 0.35 

Sa 1.0 s (g) 0.09 0.16 
Sa 

F (g) 0.25 0.34 
Step 3: Determine VS 

*/VS 0.91 0.86 
Strain Compatible TN 

* (s) 0.76 0.62 
Site Period VSm 

*/VS 0.96 0.95 
TNm 

* (s) 0.71 0.59 
Step 4: Determine Mean AF0.1 1.0 1.5 
Amplification factor Δ Ln (AF0.1) 0.01 0.04 
at periods of 0.1 s, AF0.1 1.01 1.56 

0.6 s, 1.0 s	 Mean AF0.6 1.6 2.1 
Δ Ln (AF0.6) 0.1 0.13 

AF0.6 1.45 1.85 
b values for damping Mean AF1.0 1.7 2.1 

correction:	 Δ Ln (AF1.0) 0 0 
AF1.0 1.7 2.1 
AF3.0 1.2 1.1 

0.1 s 

b1 = −0.05 for Analysis No.1 

b1 = −0.17 for Analysis No.2 

0.6 s 

b2 = −0.11 for Analysis No.1 

b2 = −0.10 for Analysis No.2 

1.0 s 

Damping correction not
 
required
 

*because TN < 1.0 s 
Step 5: Compute Peak AFPm 1.94 2.61 

Amplification Factor Δ Ln (AFP) 0.02 0.06 
AFP 1.90 2.45 

b values for damping
 
correction:
 

b1 = −0.02 for Analysis No.1 

b1 = −0.05 for Analysis No. 2 

5. Depth-specific and depth-independent models were analyzed for 
amplification versus shaking intensity. We found the residual 
standard deviation of amplification factor, σLn (AF), using a depth-
independent model are up to three times larger than σLn (AF) based on 
depth-specific model. Using a depth-independent model generates 
additional uncertainty which is epistemic in nature, that is, can be 
removed provided that suitable models are used. 

results generally match the σLn (AF) range of less than 0.3 reported by 
Bazzurro and Cornell [4] based on two soil profiles. 

7. Plots of amplification versus strain compatible site period provide a 
holistic prospective of how VS, strain compatible site period, and 
damping contribute in site response. These three components 
contain mutually exclusive predictive information regarding site 
response. Trend lines were presented for different VS values to 
estimate amplification factor as a function of strain compatible site 
period at different periods. A method was presented to correct 
amplification factor for damping effects. 

8. A simplified procedure is proposed to address the need in current 
state of practice for an intermediate site response solution between 
the rigorous numerical solutions on one end and the generic site 
factors on the other end. We applied the proposed procedure to a 
building site shaken by Loma Prieta (1989) earthquake. The 
predicted amplification factors match reasonably well with recorded 
motion at the surface and also one-dimensional site response 
analysis by SHAKE. 
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