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Toward fully autonomous mobile
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Abstract
This work presents a concept for autonomous mobile manipulation in industrial environments. Utilizing autonomy enables
an unskilled human worker to easily configure a complex robotics system in a setup phase before carrying out fetch and
carry operations in the execution phase. In order to perform the given tasks in real industrial production sites, we propose
a robotic system consisting of a mobile platform, a torque-controlled manipulator, and an additional sensor head. Multiple
sensors are attached which allow for perception of the environment and the objects to be manipulated. This is essential
for coping with uncertainties in real-world application. In order to provide an easy-to-use and flexible system, we present
a modular software concept which is handled and organized by a hierarchical flow control depending on the given task and
environmental requirements. The presented concept for autonomous mobile manipulation is implemented exemplary for
industrial manipulation tasks and proven by real-world application in a water pump production site. Furthermore, the
concept has also been applied to other robotic systems and other domains for planetary exploration with a rover.
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Introduction

The remarkable progresses in developing and interconnect-

ing sensors, machines and people in the past years led to the

idea of fusing high-tech networking know-how with state-

of-the-art robot and automation technology into a smart

manufacturing solution. This kind of advanced interoper-

ability—an Internet of Things—is not just about connect-

ing smart devices with the obvious goal of improving

manufacturing execution systems or enterprise resource

planning. It enables higher levels of automated interaction

such as approaching product development from a new per-

spective and permitting the customer to self tailor products.

Currently, it is a frequent practice to custom design

part feeding, robot programming, and process setup for

each production step. This requires a major effort and is

only possible by employing human experts to develop a

specialized solution for each problem. Large quantity

production allows for a considerable large amount of

money to invest. With respect to marginal return in

limited lots, setting up an expensive single production

line may not be profitable.

Along with altered surrounding conditions, the system

design priorities change. The critical factors shift from the

robot’s execution speed to the system’s flexibility and
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usability due to the following reasons. First, the robot’s

environment is not static and there are no fences and no

part suppliers which guarantee for a clearly defined setup.

Hence, the robot’s surroundings are considered not to be

extremely dynamic—they tend to change slightly each time

the robot approaches a station. Second, having a mobile

robot is crucial in order to work at different stations and

tasks. Clearly, coping with this problem requires sophisti-

cated sensor data processing and perception capabilities as

vital component of the system. This in turn raises the com-

plexity of the system to a much higher level in comparison

to a traditional robotic system in industrial applications. As

flexibility may be the unique selling point of a small busi-

ness, new tasks and changes in the production are part of

the usual work flow. In vastly automated facilities, those

adaptations are done by system integrators and engineers

providing the expertise to handle a complex system. In a

small company, an employed robotic expert may not be

cost-efficient, so any adept blue-collar worker should be

able to set up the system. As depicted in Figure 1, there are

highly complex systems such as the PR21 or DLR Justin2

which could solve complex tasks, but programming those

systems is challenging even for robotic experts. On the

other hand, there are systems which can be used by an

unskilled worker such as the iRobot Roomba or the Bosch

APAS but those systems are not able to solve, for example,

fetch and carry tasks.

In our work, ease-of-use of a complex robotic system is

achieved by increasing the system’s autonomy. However,

the autonomy needed in the industrial domain differs from

autonomy, for example, in service robotics. In production,

automated or manual, two clearly separated phases (see

Figure 2) can be identified.

In the setup phase, workers are trained for their job or

robots are programmed for their tasks. In the industrial

domain, tasks are well documented in detail. Thus, human

workers have to follow detailed working descriptions and

they are trained to do each step exactly the way it is

documented. The second phase is the execution phase in

which goods are produced by workers or robots. Usually

the tasks are executed repetitively.

The goal of our approach is to reduce the effort in setup

phase of the robot to the level of a human worker’s training

for a comparable task and to raise the robustness of task

execution to a comparable level of a human worker.

In case of a very user-friendly system, any unskilled

worker is able to program the robot for a new task. This

worker knows the task but has no expertise in robotics.

Therefore, we propose using this information during task

training instead of utilizing complex reasoning

approaches. In this case, the worker has to be supported

by the system, solving the robotic part of the problems

itself, which requires a superior level of autonomy. Then,

during execution phase, the robotic system is operating

fully autonomously. The task is fixed but the system has

to cope with uncertainties and changes in the environ-

ment. Therefore, perception and path planning are vital

components of our system.

We present a concept toward fully autonomous mobile

manipulation focusing on fetch and carry operations as

important representative of industrial tasks. Keypoints of

our approach are:

� modularization: break down of the system’s func-

tionality into small functional units;

� hierarchical flow control: coordination of modules

for implementing complex behaviors;

� perception: sensing the environment to cope with

uncertainties and changes;

� knowledge representation: abstract representation of

the state of the task, the environment, and the sys-

tem; and

� two phase approach: application of the given char-

acteristics of tasks in the industrial domain.

To describe the concept for autonomous mobile

manipulators, we refer exemplary to the DLR omniRob

system (see Figure 3, top). Nevertheless, the concept has

been applied to different platforms such as in Figure 3

(bottom).

This article is organized as follows. In the next section,

we give an overview of the related work. Then, we describe

the hardware and software concept of the robotic system. In

the following section, modules which enable the robot to

generate knowledge about its environment and tasks during

the setup phase are introduced. These modules are partially

very time-consuming but they are not needed during task

execution. Most of the setup phase is covered by these

knowledge-generating modules. During execution, mod-

ules for perception and cognition are utilized and presented.

Keeping track of the current world state and reacting to

changes requires efficient algorithms to keep the execution

time acceptable. Then, the application of the methods

described in the previous chapters is presented. The system

Figure 1. Overcoming the contradiction of system complexity
and simple usability requires autonomy.
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was evaluated in laboratory setup and in real-world appli-

cation. Finally, conclusions and an outlook on future work

are given.

Related work

Autonomous mobile manipulation has been an actively

researched topic for many years. Recently, interest in the

field has increased and several commercial systems such as

the Willow Garage PR2,1 Robotnik RB-1 (http://www.

robotnik.eu/manipulators/rb-one/, 2015), PAL Robotics

Tiago (http://www.tiago.pal-robotics.com/, 2015), KUKA

omniRob III, a predecessor of the KUKA KMR iiwa (http://

www.kuka-robotics.com/en/products/mobility/KMR_iiwa/,

2015), Fraunhofer Care-O-bot,3 and rob@work4 have

become available mostly for researchers but also for indus-

trial customers.

Nevertheless, in literature, only very few publications

can be found describing the system concepts and applica-

tion in the industrial domain. Furthermore, only few

researchers have carried out experiments with mobile

manipulators in real industrial environments.5 Most of the

well-published autonomous mobile manipulation systems

are from the service robotics domain. However, both

domains have to overcome similar challenges. Here, a brief

overview of the current state of the art in autonomous

mobile manipulation (both, industrial, as well as service

robotics) will be presented. A thorough review of past

research in the field of autonomous industrial mobile

manipulation can be found in Bøgh et al.6 and Hvilshøj

et al.7

In the service robot domain, the PR2 is applied to per-

form manipulation tasks in a real home by Ciocarlie et al.8

The authors state that mobile robots are not able to achieve

the level or reliability needed in real living environments.

Thus, teleoperating the robot by a human is a vital compo-

nent of the system concept. In Beetz et al.,9 the PR2 fetches

and carries pancake mix, plates, and cutlery from drawers

and cupboards based on perception for making and serving

pancakes.

Figure 3. The DLR omniRob, an autonomous mobile manipula-
tor for fetch and carry operations in industrial environments
(top). Further systems applying the proposed concept (bottom).

Figure 2. Modules of an autonomous mobile manipulator in the two phases of industrial tasks: setup (left) and execution phase (right).
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The rob@work is a prototype of an autonomous mobile

manipulator to support human workers in an industrial

environment. It consists of a mobile omnidirectional base

and can optionally be equipped with various commercially

available lightweight arm systems.4 Although not many

recent publications concerning rob@work are available, its

technology (both hardware and software) is based on the

Care-o-bot3 service robot family. The Care-o-bot robots are

capable of environment modeling, indoor navigation, and

executing fetch and carry tasks in a service robotics setting.

However, the rob@work system has not carried out indus-

trial tasks in a real factory setting autonomously.

Furthermore, a concept for an autonomous industrial

manipulator called “Little Helper” was presented in Hvil-

shøj et al.,10 and later improved in Hvilshøj and Bøgh11 and

Madsen et al.5 The robot is mainly composed of commer-

cial off-the-shelf components which are accessible over a

graphical user interface (GUI) for programming the robot.

In contrast to our approach, the robot is programmed in the

setup phase using a skill-based approach still requiring

expert knowledge over the system. The “Little Helper 3”

robot took part in two cooperative demonstrations with the

system presented in this work. At a demonstration in a

Grundfos factory, described by Bøgh et al.,12 the two sys-

tems successfully demonstrated the collaborative produc-

tion of a component of a pump. In the experiment, the

“Little Helper” assembled the rotor pumps based on known

object locations.

Another autonomous mobile manipulator focused on

service robotics is HERB 2.0 by Srinivasa et al.13 The

authors propose a modular software concept which is orga-

nized by a behavior engine. In contrast to our hierarchical

approach, the behavior is encapsulated into three distinct

layers. The robot was applied to perform different tasks

such as manipulation of a bottle and object recognition of

scenes. Caused by the different application domain, there is

no distinction between setup and execution phase.

A very similar mobile manipulator was introduced in

Zhou et al.,14 using the same platform, the KUKA

omniRob, in an industrial environment, the aerospace

industry. This mobile manipulator is programmed employ-

ing a GUI allowing the user to select high-level tasks, like

sealing and inspection tasks. To assure safety, various sen-

sors for workspace surveillance are integrated in a safety

controller. Nevertheless, the contribution of that work is

complementary to ours since they focus on human–robot

interaction and safety aspects.

System architecture

One of the conclusions from the Amazon Picking Chal-

lenge was that system integration and development

remain fundamental challenges in robotics.15 Thus, the

system architecture of the robotic platform is described

in detail in this section. The first subsection describes the

general requirements of a mobile manipulator and our

choice of hardware components. The second subsection

shows our approach for the software architecture of the

mobile manipulator.

Hardware architecture

The robotic system (Figure 4) developed for our approach

toward an autonomous mobile manipulator in industrial

environments can be subdivided into different classes.

These are actuators, consisting of the platform and the arm,

sensors, computers, and interfaces to the human worker.

Mobile platform with manipulator. In order to carry out manip-

ulation at different places without the need of a fence around

the robot and also in proximity of humans, a mobile platform

is required that allows for safe navigation. Further, a torque-

controlled manipulator is needed for peg-in-hole operations

and for overcoming uncertainties in the perception. The

mobile platform, utilized for our work, is a KUKA omniRob.

However, the concept is applicable to other platforms as

shown in the application section. On top of the KUKA

omniRob, a KUKA Lightweight Robot (LWR) 4þ is

mounted. This arm is a 7 Degrees of Freedom (DoF)

torque-controlled robot with 7 kg payload at full speed. For

manipulation, a two-finger parallel gripper from Schunk

(PG70) was mounted on the flange of the LWR. The platform

has a height of 0.65 m and its surface can be used as work-

space or cargo area for transportation tasks. The width and

length of the robot are about the same as for Euro-pallets.

Therefore, the dimensions of the robot allow for access to

most industrial production sites. The Mecanum wheels of the

robot are enabling high-precision omnidirectional move-

ments. Power supply is realized by lead batteries allowing for

up to 8 h of driving without the need of charging.

Sensor concept. A robotic system needs to perceive its envi-

ronment in order to fulfill tasks autonomously. Therefore,

Figure 4. DLR omniRob: KUKA omniRob extended with various
sensors, IT components, and human–robot interfaces.
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the sensor concept is designed based on the demands aris-

ing from the perceptive abilities of the system. In order to

meet these requirements, three sensor subsystems are iden-

tified. The main sensors are integrated into the sensor head

of the system (see Figure 4). Additional sensors are placed

on the hand of the robot. For navigation, a set of sensors are

positioned around the platform.

Head sensors. The main sensors of the system are placed on

a pan-tilt unit (PTU) which is mounted on a separate pole.

This setup is similar to the biological solution of putting the

sensors into a head and has several benefits. Due to the

independence of the perception from the manipulators, a

flexible, task depending, and closing of the action–percep-

tion loop is possible. For high-dynamic or high-precision

tasks, a short loop closure is possible by observing the

manipulation. In static environment or for simple tasks, the

perception can prepare for the next step while manipulation

is executed on previously sensed information. For manip-

ulation tasks, the coverage of the workspace by the sensor

system is fundamental. Putting the sensors on a pole and

combining it with a PTU leads to the best possible coverage

of the robot’s workspace from a single pose. In order to

optimize the position of the sensor head on the mobile

platform, workspace analysis for various common tasks

was carried out. A reachability map of the robot was cre-

ated using the capability map workspace representation of

Zacharias.16 The map (see Figures 5 and 6) is the result of

sampling the robot’s working range in terms of possible

Tool Center Point orientations. Blue areas represent a

favorable working region (WR) or area for manipulation

and deposit. Figure 5 shows the platform, the robot base,

and the reachability map at the height of a standardized

work bench from a top view. The position of the favorable

WRs and manipulation areas are marked. Further, the five

evaluated positions for the PTU pole are marked (A to E).

The sensor characteristics are important for the pose of the

sensor system. Taking into account all these factors, we

found the most suitable position of the pole at A with a

height above ground of 1:4 m. The sensor head is flexible

in its sensor equipment due to the use of a standard optical

bench. Our standard sensor setup is a high-resolution

(1620 � 1220) stereo camera system which is supported

by a structured light projector to add texture on surfaces

without natural features. In the configuration with a base-

line of 8 cm, this setup has a horizontal field of view of 60�.
In ideal conditions (highly and non-repetitive textured sur-

face), the expected depth error in a distance of 1 m is

5 mm. The head sensors are used for modeling the envi-

ronment, object recognition, and referencing the mobile

robot to workstations.

Hand sensors. Since the head sensors cannot closely inspect

objects, the minimum size of perceivable object is limited.

Therefore, an additional, identical, stereo camera pair is

mounted on the gripper of the robot arm. The eye-in-

hand cameras allow for additional perspectives, and due

to the static transform to the gripper calibration, errors are

less critical. To employ the sensors for object in hand loca-

lization, wide aperture angles were chosen.

Navigation sensors. Due to the holonomic platform, there is

no dedicated motion direction in which sensors for naviga-

tion should point. Instead the sensors have to cover the

complete proximity of the robot. This design goal is ful-

filled by two SICK S300 laser rangefinders mounted on

opposing corners of the vehicle, realizing a full 360� view

around. However, the laser rangefinders, which are part of

the basic KUKA omniRob, only obtain a line scan at a

certain height above the floor. Thus, obstacles such as

fences or tables cannot be detected. Consequently, addi-

tional 3-D sensors, in this case time-of-flight (ToF) cam-

eras, are required that are mounted all around the platform.

IT hardware. The IT hardware has to provide sufficient net-

work bandwidth and computational resources to process

the available data of all sensors. Furthermore, to avoid

problems with unreliable wireless network, all software

Figure 5. Top view of the platform with reachability evaluation.
The platform sizes 0.7 m � 1.2 m. The diameter of a sphere is
0.05 m. Blue spheres indicate best reachability of the robot in
terms of the number of possible orientations. Red spheres indi-
cate poor reachability. Resulting suitable WR I/II are highlighted.
WR: working regions.

Figure 6. Side view of the platform with reachability evaluation in
a shelf scenario. The red shelf is at a height of 1 m.
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modules have to be executed on the system. Thus, in addi-

tion to the robot controller and the navigation computer,

which come with the basic system from KUKA, the com-

puting capacity of the platform is increased by adding four

computers (mITX, i7, Linux) and the necessary network

facilities. In Figure 7, the major IT components and the

network connection between them are sketched. One of

the computers acts as server for keeping the computers

on the same software level. Two parallel networks are used:

one for the remote access to the server and one for other

communication. The second computer is equipped with

four additional network ports connected to the sensors of

the system. By providing multiple ports for the sensors, a

higher data throughput can be achieved. Collecting all sen-

sor and actuator data on one computer simplifies time

stamping. The other two computers are used for computa-

tionally costly algorithms. One of these boards is equipped

with an additional graphic card which is employed for GPU

implementations of algorithms. For stereo processing, a

dedicated field-programmable gate array (FPGA) board is

installed which provides an implementation of the semi-

global matching algorithm from Hirschmüller.17

Human robot interfaces. An autonomous robotic system in

an industrial environment has to interact with the human

workers at the site. Many interaction procedures are needed

during the training of the robot. The objective is an intuitive

interface which enables a natural training similar to that of

human workers. There is also the possibility that for some

tasks, a cooperation between robot and human worker is

necessary. Another important issue is that human workers

need to perceive what the robot is currently doing in order

to predict what the robot will do next. Therefore, we have

multiple hardware devices for human robot interfaces. The

compliant robot arm allows for physical interaction

between humans and robot. Additionally, to the basic

robotic system, we mounted a tablet computer close to the

arm. On this display, the state of the robot is visualized to

the human worker and buttons for interaction are provided.

Furthermore, for simple messages to the humans, like

error state, driving direction, and so on, stripes of RGB

LEDs were mounted around the robotic platform, the sensor

head, and the robot arm (see Figure 4). However, in this work,

the interfaces of the robots are used by robotic experts. How to

design such interfaces for unskilled workers in an industrial

application is beyond the scope of our work.

Software architecture

An autonomous mobile manipulator has to solve different

tasks under different conditions involving the robot’s hard-

ware and diverse algorithms. Depending on the major

impact factors, the environment and the task, different soft-

ware components have to work together in an appropriate

manner. In Figure 8, we depict the major software compo-

nent classes and their relations.

To meet the flexibility requirements, we propose a fine-

grained modular concept. This design enables the robot to

solve a wide variety of tasks by reconfiguring the software

for the current task.

In the next sections, the major software module cate-

gories are introduced, then the communication frameworks

between the different modules are described, and finally,

the flow control unit orchestrating the different modules in

a requirement aware manner is presented.

Module classes. An autonomous robotic system needs a large

set of modules to operate in a real industrial environment.

These modules can be categorized in module classes (see

Figure 8) regarding their functionality.

Interfaces to sensors and actuators. These software mod-

ules are the interfaces to the hardware components of the

robot. The sensor modules provide the data of the sensors

and the functions to configure the sensor. The actuator

modules provide access to the actions of the hardware and

the information which is provided by the hardware. For

instance, the PTU module provides functions to set the pan

and the tilt of the unit, and streams the current position of

these two DoFs.

Perception. The processing of the sensor data is done in

this class of modules. Low-level sensor data processing

Figure 7. Network structure of the mobile manipulator.

Sensor
and

actuator 

interface

Perception

Planner

Knowledge
representation

Human
robot

interface

Figure 8. Software module classes of an autonomous mobile
manipulator and their relation.
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modules, such as stereo processing, work directly on the

sensor data stream and require only few parameters to

work. Usually, they again provide the processed data as

stream. Other important modules of the perception class

are modelers and object detectors. These more high-level

modules deliver different data on a higher abstraction level,

for instance, poses of objects or geometric representations

of the environment. These modules need a context to

deliver reasonable results. Even actions of the whole sys-

tem can be necessary. These modules usually solve a task

and are therefore the central component in their subcompo-

nent of the flow control system.

Knowledge representations. To act autonomously, per-

ception of the environment is not sufficient. For solving

tasks, additional information is needed. Therefore, mod-

ules are holding, for example, information about the

world state, objects, and processes, and are providing

them to the system.

Planner. These modules use the knowledge of the

robotic system to solve complex tasks. Typical represen-

tatives of this module class are global path planners or

viewpoint planners for exploration. Usually, the computa-

tion effort for these algorithms is very high. Therefore, a

common approach is to do preprocessing to speed up the

online algorithms.

Human robot interfaces. These modules are used to com-

municate with humans in the same environment. The basic

interface is a status display to show in which state the robot

is. For teaching the system, an interactive interface is

needed, which can be realized by a GUI. Complex interac-

tion between robot and human worker for working coop-

erative to solve together a task needs more sophisticated

interfaces, including intent detection, for example.

Middleware. To provide a flexible system and keep it usable,

we extensively use a modular concept. To establish the

connection between these modules, we need a flexible and

efficient framework. Due to the different requirements of

the modules and especially their interfaces, we decided to

use two different middleware. To handle the big data flows

from the sensors of the system, we use a shared memory–

based approach called SensorNet explained below. For the

less data driven and not time critical communication

between the higher level modules, we use ROS.18

SensorNet. All sensors are connected via a middleware

denoted SensorNet developed at the DLR. The SensorNet

library is designed to provide a small and fast mechanism

for distributing streaming data from different sensors such

as cameras, pose sensors, and accelerometers. The data are

concurrently streamed to different separate applications in

real time. SensorNet allows for remote configuration of

these devices. The streaming data are provided via a shared

memory interface from server to clients (e.g. from the sen-

sor to the applications). Currently, FireWire-, GigE-, and

ToF cameras can easily be integrated into SensorNet. The

interface to the application provides time-synchronized

sensor data calibrated as well as non-calibrated. Further-

more, pose information of the PTU or robot arm can be

provided. The client can also configure the server via a

configuration channel. The SensorNet is easily configur-

able and new data channels are easily implemented.

Flow control. To solve a task, the robot has to combine its

modules and keep track of the state of the task execution.

Depending on the task and the environment, the sense–

reason–act loop has to be closed on three different layers

which are continuously interconnected. In Figure 9, the

correlation between task complexity, speed and different

loop closing approaches is depicted.

Some behaviors of the system are implemented on the

controller layer. For example, reacting on contact forces

has to be solved on that layer to ensure safe interaction

with the environment. On this level, only very simple tasks

can be solved. The reason part of the loop is realized only

by the control algorithm.

More complex but still time critical tasks, for instance,

visual servoing or sensor-based collision avoidance, are

solved on the reactive layer. In this layer, functionality such

as perception or motion generation might be performed in

different modules and some cognition has to be done, but

each sensor message leads to a resulting action.

Within a very complex task, this direct connection does

not exist. The flow control system has to orchestrate up to

several thousands of module functionalities. Therefore, a

concept similar to a state machine is applied in this layer.

Each call of a module functionality can be abstracted as

state of the flow. To avoid code duplication and to keep the

structure of the state machine manageable, a hierarchical

structure is used. This means every state of the state

machine can be a state machine itself and can be used in

multiple instances in a parent state machine. In addition to

the pure state machine, also a data flow between the dif-

ferent states is possible. For some tasks also, parallel exe-

cution of states is necessary. For the implementation of this

flow control state machine, the SMACH19 tool available in

the ROS frame work is used.

Switching the layer of the sense–reason–act loop

approach is realized by encapsulating the closed loops in

modules which can be used as states in the more abstract

approaches. For example, a position controller is used as

Figure 9. Approaches to close the sense–reason–act loop.

Dömel et al. 7



module in the visual servoing module which itself can be

used in a state machine to grasp a moving object.

Setup phase: Generating and representing
knowledge for industrial manipulation

Nowadays, human experts are needed during the setup

phase of a robot. In traditional automation, the robot is

programmed to fulfill its task. The programming is increas-

ing in complexity with uncertainties and variations of the

task. Programming a robotic system in such a surrounding

is very challenging for robotic experts and therefore impos-

sible for an unskilled worker. Thus, as mentioned in the

previous chapters, the autonomy of the system should solve

this contradiction.

Nevertheless, in the industrial domain, we can benefit

from the working routines and the structure of tasks aris-

ing. Namely there is, even for human workers, a setup

phase in which the worker gets information about how

and where to carry out a task. One goal of our approach

is to develop a system which allows for training by a

standard shop-floor worker. Therefore, multiple modules

were developed for acquiring knowledge which is needed

during operation of the autonomous mobile manipulator

(see the next section) and enables the system to solve its

task autonomously. The key point of these modules is that

no robotic expert knowledge and no additional hardware

is needed to generate the data.

Sensor calibration

In order to combine different measurements in the same

coordinate system, knowledge about the positions of the

various sensors with respect to each other needs be

obtained. As described in detail in the previous section, the

current sensor concept of the mobile manipulator includes

two pairs of stereo cameras: one mounted on top of the PTU

and one attached to the end effector of the robot arm. Fig-

ure 10 presents an overview of the resulting spatial

transformations.

In order to be able to calculate depth images, the relative

poses between the cameras of each stereo pair, as well as

the intrinsic parameters of all involved cameras need to be

known. Furthermore, to transform all depth measurements

into a common coordinate system, the remaining static

transforms marked in green have to be estimated. To this

end, a calibration pattern was fixed on the working surface

of the mobile manipulator (see Figure 11).

Since the workspace of the PTU is extremely limited, it

is not possible to acquire images sufficient for stereo cali-

bration only using this pattern. Therefore, a second calibra-

tion pattern can be mounted to the end effector of the robot

arm (see Figure 11). Thus, for the cameras mounted on the

PTU, images for estimating the intrinsic camera para-

meters, the relative pose of the cameras and the pan/tilt

flange to pan/tilt stereo left transformation are acquired

by positioning the pattern in predefined poses in front of

the pan/tilt stereo system. All remaining images (for the

hand mounted stereo cameras and the transformations

between PTU and LWR base) are taken from the desktop

pattern. Apart from switching between mounting of the

cameras and checkerboard on the robot arm, the process

of image acquisition is completely automated. The check-

erboard detection and parameter estimation itself is done

with the DLR CalDe/CalLab toolbox of Strobl et al.20

Object modeling

To carry out manipulation in industrial environments

autonomously, a mobile manipulator requires knowledge

about the objects to be manipulated. Here, geometric as

well as appearance-based object model representations are

Figure 10. The relevant transformations of the DLR omniRob.
Orange: transformations that are retrieved from external mea-
surement systems; blue: static transforms given by CAD data;
green: static transformations that need to be estimated during
calibration.

Figure 11. The surface and in-hand calibration pattern used for
estimating the remaining static transformations and cameras’
intrinsic parameters.
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utilized. The different representations are needed as differ-

ent recognition modules (see the next section) are used

depending on the characteristics of the object such as size,

shininess, and texture. In this section, we describe how the

object models are acquired using the mobile manipulator

itself in contrast to modeling the object with a hand-guided

scanner system, which requires a human expert and an

additional system.

During the robot setup phase, the human worker shows

the robot the object of interest which is initially unknown

and the robot obtains the required object model fully auton-

omously without the need of an expert using the approach

presented by Kriegel et al.21 With the utilized mobile robot,

there are two possibilities: either the human places the

object onto the robot’s working surface and the object is

scanned with the stereo cameras on the robot arm or into

the gripper and the stereo cameras on the PTU are used

(see Figure 12). For the second option, in order to acquire

the object models autonomously, the next-best-view

(NBV) algorithm as described by Kriegel et al.21 is

adapted, so that the object is moved instead of the sensor.

An NBV represents a sensor viewpoint which provides the

best sensory input concerning processing time and model

quality for modeling the unknown object (see Scott et al.22

for a good overview). However, this option only works for

objects the gripper can actually grasp. For the appearance-

based model generation, color images under different

lighting conditions are obtained, whereas for the geo-

metric model, depth images under optimal conditions

are acquired.

Geometry. In order to autonomously acquire a geometric

3-D object model, NBVs are planned based on the current

model in each iteration. Thus, the geometric model gener-

ation is tightly coupled with the NBV planning. For

instance, once the object is placed onto the robot’s working

surface or into the gripper and a bounding box is defined,

the method of Kriegel et al.21 iteratively generates a

triangle mesh from the range images, registers the scans,

plans an NBV, and moves the robot. The process terminates

when model coverage and quality required by the 3-D

object detection module (see the next section) are reached.

In contrast to autonomous object modeling with an

industrial robot and a laser striper,21 both the range images

and robot poses are significantly noisier resulting in lower

quality object models. Additionally, for the second option,

some of the objects cannot be firmly grasped with the two-

finger gripper, causing the object to drift. Tracking articu-

lated models with a defined kinematic tree as suggested by

Schmidt et al.23does not work satisfactory as for the last

element of the tree, namely the unknown object, no model

is given resulting in mismatches and tracking errors. Also,

improving local registration by adding color matching as

carried out by Krainin et al.24 is not possible for untextured

objects as is the case for industrial objects. Furthermore,

KinectFusion25 would not perform well as one cannot guar-

antee that the sensor will always see the object due to robot

configuration changes and additionally for the option two

where the object is gripped, the only part that changes in the

depth image is the object.

Figure 13 shows the model results exemplary for a

pneumatic filter. The resulting triangle mesh acquired

with the mobile robot proved to be much noisier than with

the industrial robot and laser striper system as presented in

Kriegel et al.21 Note that with the mobile robot, the top of

the object cannot be modeled as it is occluded by the

gripper. The model errors �e are 4.68 mm with the mobile

robot and 0.77 mm for the industrial robot compared to a

ground truth reference model. However, the model quality

obtained with the mobile manipulator was still sufficient

for object detection.

Appearance. Our appearance-based detection process takes

advantage of the fact that many objects (or their parts) show

similarities when slightly shifting distance, angle and/or

Figure 12. Autonomous object modeling: a pneumatic filter is
modeled by grasping the object and perceiving it with the stereo
camera on PTU. PTU: pan-tilt unit.

Figure 13. A pneumatic filter (left) is modeled when gripped with
the mobile robot (middle) and with industrial robot and laser
striper (right).
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lighting conditions. In practice, such a recognition module

is well applicable where background and lighting condi-

tions are changing within reasonable limits, however, view-

ing angle and distance should not be exceedingly variable.

The detection algorithm for rotor caps (depicted in Figure

14) is based upon (but not limited to) grayscale and mono-

cular camera images and provides a 6-D pose-estimation.

Our 2-D object data is represented on the one hand by an

image template and on the other hand by a response of

patches fed to a Bayes classifier. This twofold approach was

adopted because a template matching algorithm is a practical

way to cope with statistical inferior observations that none-

theless describe significant parts of the object. These excep-

tions and anomalies are due to seldom occurring

environmental changes like flashes from welders or flicker-

ing lights. In those cases, an image of an object may look quite

saturated, has odd reflections or simply shows a small irre-

gular area of an object that is very regular everywhere else.

Those tweaks have to be applied manually at the moment.

The main idea to collect the data is to take many pictures

under different lighting and from varying viewpoints. In the

resulting images, we identify keypoints (i.e. AGAST from

Mair et al.,26 KLT-corners from Shi and Tomasi,27 centers of

Hough transform circles from Kerbyson and Atherton28) and

sample patches around them. Since we want to apply a nor-

mal Bayes classifier, we need to find appropriate classes and

examples accordingly. Thus, we pass the patches through a

clustering process in the k-means29 fashion. In an initial

state, we treat all patches as single clusters. With a

correlation-like measure (in our case the normalized cross-

correlation, NCC), we compare all clusters to each other,

find the closest similarity with respect to a given threshold

and merge the clusters. This results in a set of classes with

respect to a threshold as shown in Figure 15. About 10,000

samples are required for our rotor cap object model. The 3-D

object model to bind features to patches is preferably pro-

vided as a CAD file from the geometric object modeling

module (see previous section).

Scene modeling

In order to perform collision-free motion planning with the

robot arm (see the next section), a probabilistic voxel space

representation is generated for each scene. Obtaining a

complete 3-D map of the environment is very costly as a

high-resolution model would be required for the complete

site, and more importantly, in real production environ-

ments, many workstations are movable and might not be

exactly in the same position as last time. Thus, we suggest

to autonomously create a 3-D model of each scene sepa-

rately by exploration with the mobile platform as in Krie-

gel,30 and to register the model to the scene each time

interaction is required (see the next section for details on

the scene registration).

For scene modeling, we use the stereo camera system on

the PTU since it is a lot faster to move the PTU than the

robot arm to view in different directions. Before modeling

the scene, a human worker needs to attach fiducial markers

onto the scene which can later be used for scene registra-

tion, remove all objects not relevant for the scene model

and teach a platform position in front of each unknown

scene. The position teaching can either be done by manu-

ally moving the platform to a position in front of the scene

or by marking the position on a 2-D map. The position

should be selected, so that the robot is approximately cen-

tered in front of the scene along the long side with the PTU

facing the scene. In contrast to object modeling (see above),

due to the use of the PTU without the robot arm, the view-

point space is very restricted. Thus, NBV candidate gener-

ation as suggested for object modeling is not reasonable.

For scene modeling, we define the viewpoint space by pan

and tilt angles of the PTU and platform movements.

Furthermore, a triangle mesh is not a suitable representa-

tion as it does not consider sensor uncertainties, and not all

parts of the workstation can be modeled due to the limited

sensor workspace and could lead to collisions with the

robot arm. Therefore, we utilized a probabilistic voxel

space (PVS) as described by Kriegel.30 The utilized PVS

is needed to identify safe-for-motion areas into which the

robot arm can safely move.

Figure 14. Rotor caps, which are used in the real application
(see the application section), from different viewpoints.

Figure 15. Visualization of clusters: patches of 16� 16 pixel
were added according to a similarity measure (NCC) and result
in depicted examples of clusters. NCC: normalized cross-
correlation.
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During the autonomous scene modeling, the platform

and PTU are moved to the selected NBV and a range

image is obtained with the stereo system on the PTU.

Additionally, for each fiducial marker which is visible

in an acquired range image, its position and orientation

are saved if the incidence angle is less than 60�. For too

high incidence angles, the marker detection does not per-

form well.31 This procedure is repeated until the number

of voxels which are free in the space does not change

significantly anymore. As the scene is viewed from sev-

eral positions, the fiducial markers are also viewed mul-

tiple times. Therefore, after the NBV algorithm aborts, the

positions and orientations of each detected marker are

optimized by averaging over all measurements with same

marker type. Figure 16 shows two workstations (left), a

conveyor belt and a shelf, and the final scene models

which were obtained (right). These are two examples of

several workstations the mobile robot needed to interact

with in a real industrial environment and at a public

demonstration (see the application section). The time for

autonomous modeling of the workstations, which was per-

formed in a preprocessing step, was between 5 min and 20

min depending on the size of the workstations.

World model

To solve tasks autonomously, the robotic system needs a

representation of the environment and itself to keep track of

the current world state. The representation of our approach

does not provide a detailed geometric description of the

environment, but on a topological level describes the rela-

tion between different kinds of world items storing the

relevant state of the world. The world model is based on

a tree structure, which means that each item has to have a

parent item. This structure leads to a natural representation

of how manipulations are affecting the world. For instance,

if an object is moved, all children of this object are auto-

matically moved with respect to the world frame due to the

changed parent frame. There are different types of items in

this world representation, which are as follows:

� The most obvious item type is the physical object.

This is a representation of an object, holding infor-

mation such as geometric shape, weight, texture, and

orientation constraints to avoid losing parts which

are stored in a container.

� Grasps are items which are usually used as children

of physical objects storing the grasp-specific para-

meters such as approach frame, grasp force, and

grasp width.

� Bounding box items define a box in the environ-

ment. That item type can be used for different pur-

poses, for example, for defining a search volume for

an object detection module.

� Obstacle items are regions in the environment where

obstacles occur. In industrial applications, some ele-

ments of the environment are static and some are

dynamic. For instance, the work desk is static, but

on its surface, different objects appear. The obstacle

items allow for defining such regions which require

scene modeling for safe-for-motion path planning.

� Transformation items only hold a transformation.

Usually, this item type is used for storing locations

or viewpoints in the world representation.

� Semantic items are used to represent item relations.

For instance, if an object consists of different parts

such as a structure built from different metal pro-

files, in the assembly process, each profile is added

as child to the semantic item assembled part.

� Robot items provide the representation of the

robot in the world module. In our approach,

two robot items are defined, the robot base and

the robot flange.

The world representation is used by various modules

which depend on the information of the world state. A

computational expensive operation is the generation of the

geometric model of the environment from the world repre-

sentation needed for the geometric planners. To reduce the

cost of this step and get a scalable approach, the concept of

scenes was introduced. The world representation holds

information of the world that the robot needs to know.

However, for the geometric planner (see the next section),

only the local information is important. Hence, a subset of

the world tree is defined as scene in this case, and only this

Figure 16. For two exemplary scenes (left), a conveyor belt (top)
and a shelf (bottom), 3-D scene models are created. The final
scene models (right) show that the modeling is able to cope even
with the very shiny shelf or conveyor belt. Note the fiducial
markers that are attached to the scenes.
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branch of the tree is passed to the geometric planner. To

switch between different scenes, the navigation module of

the robot is used. Thus, every branch that is used as scene

contains a transformation item which corresponds to a loca-

tion in the navigation map of the robot. It is used as entry

point for the scene switching. After navigating to the loca-

tion in the navigation map, the robot item including chil-

dren is set to this entry transformation of the scene, and the

geometric planners can load the geometric information of

the scene branch. All modules working with geometric data

utilize this local scene representation.

During the setup phase, the structure of the world

module has to be defined. Therefore, the trainer is

guided to collect the necessary data without the need

to edit the world model manually. For example, the

human worker can add a workstation. This is done by

adding a new scene in the world model, teaching a

navigation location, and modeling the static environment

as described above. If the robot should manipulate an

object, all relevant data are collected utilizing the mod-

ules described in the previous sections.

Task control

To solve a task such as a pick and place operation, more

than one hundred functions from various modules have to

be called. Most of these functions are not related to the task

instance, but to the general task structure and the robot. As

described in the system architecture section, our approach

is to organize the complex flow control in a hierarchical

manor. The robot-specific problems can be solved on the

lower levels of the flow control by a robotic expert. This

knowledge is encapsulated into state machines which need

few additional information to solve a task. During the setup

phase, these high-level state machines are used. This

ensures that only the information about the task has to be

trained, which is comparable to the training of a human

worker. All robot-specific issues are handled by the robotic

system itself. For pick and place operations, the following

high-level state machines are used:

� goToWorkstation(workstation),

� pickObjectFrom(object_to_pick, object_to_pick_

from), and

� placeObjectOn(object_to_place,

object_to_place_on).

By sequencing these high-level modules, an unskilled

worker could program new tasks for the robot within the

fetch and carry domain. It is obvious that a very intuitive

interface for such simple task parameters can be found. Of

course more complex tasks would need more sophisticated

interfaces to program tasks which are beyond the scope of

our work. Nevertheless, at the moment, we focus on the

fetch and carry task domain, which is one of the most

import domains in real industrial application.

Execution phase: Perception and planning
for industrial manipulation

Based on the information gained in the previous chapter,

the mobile manipulator is able to perform its task fully

autonomous during execution phase. Various modules

enable the system to be robust with respect to uncertainties

and variations in the task and environment. In this chapter,

the main components which are needed for the execution of

the industrial task are described. First, the modules we

employ to detect the task-relevant objects are introduced.

Second, the use of the generated knowledge of the environ-

ment by local registration to the scene is presented which

allows for motion planning to pick or place objects. Finally,

keeping the world model of the robot updated ensures cor-

rect parametrization of all utilized modules.

Object recognition

A common problem for almost all autonomous manipulat-

ing robotic systems is to identify the objects to interact

within the vast amount of sensor data from the cameras.

Some of the objects of interest in an industrial scenario can

be very challenging for camera-based object recognition.

Common properties complicating recognition are a lack of

texture, shiny surfaces, and insufficient object size. Since

there is no single best algorithm, two methods were imple-

mented that cover a broad range of possible object types.

The first one is a depth image–based recognition algorithm,

that has the advantage of working with any given 3-D Mesh

or CAD model of an object without training.32 However, it

cannot handle cases in which the possible object cannot be

segmented in 3-D data, or when the acquired depth data is

too noisy (as in the case of untextured objects or specula-

rities). In such cases, an intensity image–based algorithm

proved superior.

3-D object detection and pose estimation. In an industrial

environment, it can be assumed that, for a certain task, only

a limited number of different objects are relevant. Further-

more, certain knowledge about the environment is pre-

sumed in order to enable segmentation of the point cloud

data. This prior knowledge can be obtained from plant

layouts, CAD models of workstations or be generated by

autonomous scene modeling (see previous section).

The developed geometry-based object recognition

method is based on the work of Drost et al.33 A global

model for each object is built using a feature similar to the

surflet pair features.34 The features are calculated from

multiple combinations of model surface point pairs and

their corresponding normals. The extracted features are

then used as keys in per object hash tables to quickly find

similar point pairs with respect to a given candidate pair.

Acquired depth images are segmented using the prior

knowledge of the environment. Then for each data, cluster

candidate point pairs are sampled randomly and similar
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model point pairs are retrieved from the hash tables. For

each combination of candidate and model point pairs, a

rigid transformation can be calculated when considering

the corresponding normals. Since the hash table key is not

very descriptive, a multitude of possibly conflicting

hypotheses will be generated. Therefore, another process-

ing step is necessary, in which hypotheses are clustered and

only ones that are supported by a sufficient amount of

candidate/model pairs are further processed.

In a last step, quality values for the remaining hypoth-

eses are calculated by rendering the objects in their corre-

sponding poses and pixel wise comparing the resulting

depth buffer with the acquired depth data, similar as in

Zabulis et al.35 Finally, if the quality of the highest rated

hypothesis surpasses a threshold, it is considered to suffi-

ciently explain the data cluster.

Monocular object detection and pose estimation. Sensors and

camera setups have different assets. Both 3-D and mono-

cular approaches have comparable qualities regarding the

localization of contours, corners, and edges at the XY-plane,

but stereo algorithms have a tendency to fail at monochro-

matic, uniform, and especially reflecting surfaces. In gen-

eral, object recognition and pose estimation is a highly

computationally intensive task. Particularly, fitting a model

to a point cloud can be challenging in cluttered scenes.

When it comes to detecting reflecting metal parts, it is

advantageous to prepend a reliable 2-D-preparation step

in order to find a region of interest.

The general approach consists of two major phases. As a

first step, camera images are analyzed in order to detect the

object. This is performed by sampling patches around key-

points, comparing those patches with a predefined set of

those using suitable classifiers or lookup procedures in data

structures. The result is a region of interest with a high

probability of an object in it.

As the major next step, the resulting region of interest is

inspected for characteristic points (“features”) to determine

the objects pose. In the typical case, at least three features

have to be visible; however, some object properties

including symmetry and a regular shape may reduce the

requirements. The methods used are vision-based GPS

(VGPS)36 and an implementation of the approach from Gao

et al.37 The pose estimation for more complex objects than

rotor caps demands supplementary random sample consen-

sus (RANSAC)38 and verification (minimizing reprojection

error) steps for robustness. Concerning the rotor caps, an

edge-based fitting of an ellipse shape already provided a

dependable estimation of the object’s center. The result is a

reliable detection and pose-estimation for such a group of

objects (see Figure 17 for an example).

Scene registration

The mobile platform autonomously navigates within its

environment based on a previously recorded 2-D map

utilizing the laser rangefinders. The navigation approach

has been described and evaluated by Röwekamper et al.39

For manipulation, a 2-D projection of the environment is

not sufficient. Therefore, each time the robotic system exe-

cutes a manipulation tasks, the mobile platform registers

itself to the 3-D scene models, which are autonomously

acquired in the setup phase (see previous section). In order

to estimate the pose of the platform with respect to the

scene, we suggest the use of fiducial markers which are

placed on the workstation. In this case, we use AprilTags

presented by Olson.31 AprilTags are similar to quick

response codes but are designed to encode smaller data

allowing for precise detection of its 3-D position with

respect to the camera. During the autonomous scene mod-

eling, all observed markers and their pose in the worksta-

tion’s coordinate frame are added to the model as described

in the previous section. When docking to a scene, the PTU

camera is aimed in the direction of the expected markers. If

necessary, multiple views of the target area are acquired .

Each observed marker is assigned a weight, taking into

account the estimated distance to the camera and the angle

between camera and marker plane. In order to calculate the

rigid transformation between the model and the actual

scene, each observed marker is represented by three 3-D

points on the corners of its surface and each point is asso-

ciated with the corresponding marker’s weight. Finally, a

weighted minimum least squares solution can be calculated

using the method presented by Challis.40

Geometric planner

Here, the geometric planner is described which can be

utilized for collision-free motion planning with the robot

arm (see Figure 18) based on the scene registration and the

autonomously acquired scene model (see previous section).

A basic capability of an autonomous robotic system is a

module for planning motions. These motions have to meet

several hard requirements such as collision-free planning

Figure 17. For a rotor cap, viewed from above while on a con-
veyor belt, the region of interest (green) and subsequently the
object’s center (yellow) are detected.

Dömel et al. 13



and holding of end effector constraints. Further, important

features of the motion planner module are planning dura-

tion’s path quality and execution time. Here, we have a

robotic system with 10 DoF. For motion planning in such

high-dimensional configuration spaces, sampling-based

path planners have been successfully applied.41 Due to the

fact that motions of the platform are much more expensive

and less accurate than the arm movements, 10 DoF motions

are not used for pick and place operations. If an object is

out of reach of the arm, a pure platform movement is per-

formed based on the reachability map of the robot. Thus,

the planning problem can be reduced to the 7 DoF config-

uration space of the robot arm which still demands

sampling-based path planning. To pick an object, we can

acquire the desired goal transformation of the gripper with

respect to the arm by utilizing the world model. By employ-

ing an inverse kinematic solver, a goal configuration can be

selected. The redundant kinematic of the 7 DoF robot arm

can be used to select a configuration which maximizes the

distance to joint limits while avoiding obstacles. Every

motion of the platform leads to a different occupation of

the configuration space and a grasped object leads to a

different robot shape depending on the grasp which was

selected. Thus, we use single query methods based on rap-

idly exploring random trees as in Lavalle et al.,41 namely an

RRT-Connect variation by Kuffner and LaValle,42 to solve

motion planning problems.

World state tracking

The world model introduced in the previous section stores

the state of the world. During a pick and place operation,

this state is changed by robot actions or perceptions. There-

fore, each operation which changes the world’s state has to

be tracked by the world model in order to keep the model

coherent with the real world. The following operations and

their effects on the world state are handled during execution

of pick and place tasks:

� Object recognition: When an object is localized in

the scene, there are different possible effects on the

world state. If the detected object is already tracked

in the world model, only the object’s pose has to be

updated. If no corresponding object exists in the

world model, a new object has to be added. In this

case, a decision has to be made about which parent

object should be selected. Usually, a bounding box is

used to limit the search space for the object detection

module. The parent of this box is a good choice for

the object’s parent. If no such bounding box exists

and the parent cannot be selected task-specific, the

scene root has to be selected as object’s parent.

� Scene registration: The registration to the environ-

ment measures the transformation between the robot

and the scene root (see above). In the world model,

the robot is added as child object to the reference

scene, and the measured transformation to the scene

is stored.

� Pick up object: When an object is grasped, the parent

of the object has to be changed to the robot flange in

the world model. The transformation to the robot

flange is given by the applied grasp.

� Place object: When an object is placed onto an

object in the scene, the parent of the object changes

from the robot flange to the object on which the item

was placed.

� Scene modeling: When an obstacle item (scene) is

explored, the transformation and the structure of the

world model tree are unchanged. However, the geo-

metrical information stored in the item is changed,

and therefore an environment update of the geo-

metric planner has to be triggered.

Besides these robot operations, the environment can

be changed by other robots, machines, or human work-

ers. Depending on the scene, it is reasonable to reset the

scene each time the robot enters, since other not tracked

changes usually occur and the nominal case is the most

likely one.

Application in industrial scenarios

The presented mobile manipulator has been applied to dif-

ferent industrial scenarios: in the lab, at a real production

facility at Grundfos A/S in Bjerringbro, Denmark and at a

public fair, the Automatica 2014 exhibition. Furthermore,

the system concept described in this work was applied to

two other platforms, the KUKA KMR iiwa and the DLR

Leightweight Rover Unit (LRU).43 The following sections

describe these experiments and applications, their goals,

and our lessons learned.

Figure 18. After the platform registers itself with respect to a
shelf (see Figure 16 bottom), collision-free motions during
manipulation with the robot arm are planned utilizing the safe-for-
motion scene model.
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Lab experiments

In production environments, small objects such as screws

and nuts are usually transported in a so-called small load

carrier (SLC). By manipulating and transporting these

SLCs autonomously, the robot is enabled to assist human

workers with various tasks. SLCs are often stored in gravity

shelves (see Figure 19, right) from which the worker can

take the required parts for assembly. For instance, the uti-

lized gravity shelves are used for the manufacturing pro-

cess of the KUKA LWR iiwa to allow for sufficient supply

of parts at any time. Restocking these shelves with filled

SLCs from the warehouse and returning the empty SLCs is

currently carried out by workers. For the lab experiment as

in Dömel et al.,44 which was derived from the LWR iiwa

production site at KUKA, at the warehouse a human worker

placed full SLCs onto the robot’s working surface (see

Figure 19, left), the robot transported them to a gravity

shelf, placed them into the shelf, retrieved empty SLCs

from the shelf, and returned these to a human worker at the

warehouse fully autonomously. A full SLC refers to an

SLC filled with parts. During the autonomous navigation

to the shelf, the robot stopped and detected the position of

the SLCs on the robot’s working surface, and also created

an environment model of the space above the working area

to ensure collision-free motion planning. The distance

between warehouse and gravity shelf was very low in com-

parison to the actual production site. At an actual produc-

tion site, the SLC detection could also be carried out during

the navigation for higher efficiency but was not possible

due to the smaller lab environment. For retrieving the

empty SLCs, which were in the bottom of the shelf, due

to the restricted workspace of the robot arm, the platform

had to be moved to pull out an SLC (see Figure 19, right)

and the arm was switched to low stiffness impedance

control mode.

In these first experiments in a controlled lab setting, we

were able to show that the modular concept for the system

architecture is functional. We also benefit from the hier-

archical approach for the flow control system by reusing

parts and keeping the task description structured. During

the experiments, we learned some lessons for the further

development of the system concept: For grasping the SLCs

with the parallel gripper in the restricted space of the grav-

ity shelf, we had to design special fingers. Grasping arbi-

trary objects with a parallel gripper is not possible. To

extend the range of graspable objects, we suggest to utilize

a system which allows to exchange the fingers from a set of

specialized fingers during operation. In the lab, we could

control the lighting conditions of the experiment. Never-

theless, changing lightning conditions were identified as

critical point for our perception system, which was

stereo-based. Therefore, we decided to integrate different

object recognition modules which are better suitable for

distinct object classes (shiny, not textured). Through the

modularity of our approach, these modules are easily

exchangeable to fit the requirement of each task.

Real industrial application

At the pump manufacturer Grundfos A/S in Denmark, the

presented mobile manipulator carried out various tasks

such as part retrieval from multiple workstations, conveyor

handling, part transportation, and delivery of finished parts

to the warehouse in order to aid the assembly of a rotor.

Figure 20 (left) gives an overview of the 25� 15 meter

area at Grundfos where the omniRob carried out the logis-

tics tasks.

The omniRob picked up rotor caps from a conveyor belt

(spin cell) and a warehouse, and rotor shafts from a ware-

house. At the spin cell, the omniRob needed to operate a

switch in order to deactivate the conveyor belt (see Figure

20, bottom middle) for picking up parts. If not enough rotor

caps were available at the spin cell, the robot picked up

missing caps at the warehouse. For transportation, all

the parts were stored on a fixture on top of the omniRob.

The rotor caps and shafts are delivered to another robot, the

Little Helper, which performs the assembly task. For

details on the experiment, the parts, and the Little Helper,

see Bøgh et al.12 After picking up the parts, the omniRob

collaborated with the Little Helper by delivering them and

picking up SLCs which contain the rotors that the Little

Helper had already assembled. The full SLCs were then

delivered to the rotor warehouse (Station 4) and an empty

SLC was passed to the Little Helper. The average cycle

time for the omniRob’s task was 22 min.

The time schedule for this experiment was a setup phase

of 3 days followed by a 1-day execution phase. From the

experiments on the real shop floor, we learned that the

presented mobile manipulator with the proposed system

concept allows for autonomous handling of the parts and

carriers in real industrial environments, solving tasks which

could not be automated so far.

We also learned some lessons for future improvements

of the system. During setup phase, a lot of the time was

spent for manual design of the scene models. Despite of the

time factor, expert knowledge is needed to create useful

Figure 19. Lab experiments. Left: human worker places SLCs
onto robot’s working surface. Right: for retrieving empty SLCs
from a gravity shelf, the robot platform needs to be moved.
SLC: small load carrier.
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scene models. Therefore, the scene modeling was auto-

mated as described in the setup phase section. Even though

the omniRob was used only in the logistic domain, the real

application showed that the high-level state machines pro-

posed above are not sufficient to solve fetch and carry tasks

in real world. In the experiment, the robot has to press a switch

before the objects could be picked. Without a robotic expert,

another high-level state machine for pressing switches would

be necessary. For future work, the set of available skills has to

be increased. During the execution phase, errors occurred

which could not be handled by the system itself and user

interaction was necessary. Specifically, during the 8 h of the

experiment, 30 such errors were encountered. See Figure 21

for an overview of their frequency. The three most common

error sources were as follows:

� manipulation (10),

� navigation (9), and

� object recognition (2).

For future development, two issues have to be taken into

account. First, the execution has to improve its robustness,

and second, the system’s ability to recover errors has to be

improved. At Grundfos, the area where the robot was work-

ing was marked and not accessible to the factory workers.

For robot–robot or even real human–robot interaction, fur-

ther safety measures are needed. The mobile manipulator is

able to detect humans in the proximity and stop accordingly

based on a 2-D plane (from the laser rangefinders) but

currently no safety concept exists for humans outside the

2-D plane or for interaction during manipulation with the

robot arm. Furthermore, the execution time was signifi-

cantly longer than it would take a human to perform the

same logistics tasks. During the 8-h shift, the robots pro-

duced 10 rotor cores. For a human worker, this task only

takes several minutes. In contrast to human workers, one

could argue that multiple robots could be applied and a

robot could work 24 h a day without breaks. Nevertheless,

we are still not able to achieve a performance which is

comparable to a human worker.

Public demonstration

For the Automatica 2014 exhibition, the scenario from the

industrial application at Grundfos A/S in Denmark was

mapped to a smaller setup. The part suppliers from the

factory were replaced by tables and the press was replaced

Figure 20. Industrial production site scenario and example stations. Left: map of the production area at Grundfos where the omniRob
picks up parts at different workstations, delivers the parts to the Little Helper for assembly, and returns the finished parts to the
warehouse, a task which is usually carried out by human workers. The approximate navigation path of the omniRob is indicated by black
dashed lines and relevant stations by green circles. Top middle: the robot localizes itself with the stereo camera on the PTU to the Rotor
cap warehouse station. Bottom middle: in order to pick up parts from a Spin cell station, the omniRob needs to operate a switch for
deactivating the conveyor belt. Top right: the Grundfos scenario has been scaled to a smaller setup at the Automatica 2014 exhibition.
Bottom right: parts are delivered to the assembly station. PTU: pan-tilt unit.

Figure 21. Timeline of the experiment at Grundfos A/S. Blue
stands for normal operation, red for downtimes, and green for
time spent charging the batteries. Overall, the system spent 87%
of the non-charging time in normal operation.
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by a mock-up (see Figure 20, right top). The tasks for the

robots were not changed by these simplifications of the

environment. Therefore, the demonstration at the Automa-

tica is comparable with the experiment in the real factory.

For the demonstration at the exhibition, the autonomous

scene modeling module was used which reduced the setup

time to less than a few hours. Furthermore, the system was

improved regarding the execution speed and made more

reliable. During the exhibition, the task was executed in

an endless loop during the opening times. The only error

that occurred in this full 4-day demonstration, which

caused an intervention by humans, was a broken wire inside

the robotic arm. The execution duration could be speed up

by a factor of three with respect to the previous experiment,

only partially caused by the shorter travel distances.

Transfer to other mobile robots and domains

The hardware and software concept and design presented in

this work have been transferred to other mobile robots and

also to other domains (see Figure 22). It has been applied to

the successor of the KUKA omniRob, namely the KUKA

KMR iiwa for carrying out and hosting the Shop Floor

Logistics and Manipulation challenge of the European

Robotics Challenges (http://www.euroc-project.eu/, 2015)

(FP7-ICT-608849-EUROC) at the German Aerospace Cen-

ter (DLR). Five challenger teams from all over Europe are

using the mobile manipulator to carry out various tasks

ranging from robot–human logistics for aircraft assembly

to maintenance operations in hazardous environments and

automotive logistics at a car assembly line.

The concept has also been transferred to the DLR LRU

for semi-autonomous exploration of moon or mars.43 The

LRU succeeded at the SpaceBot Camp 2015 where 10

teams were given the objective to explore an unknown

environment with a moon-like planetary surface, locate and

fetch two different objects and transport them to a third

object for assembly (see Figure 22, right).

The hardware design of the KMR iiwa and the DLR

LRU is similar to the mobile manipulator presented in

this work. All systems consist of a mobile base to which

a force-controlled robot arm with gripper and a PTU are

mounted. Additional stereo camera systems are attached

to the PTU and the robot arm. Further, the modular

software architecture is integrated on computers running

on the system. Due to the integration of the same con-

cept on different systems, the administration is reduced

and new modules can easily be integrated on different

systems.

Conclusion and future work

In this article, the concept of an autonomous mobile

manipulator for the industrial domain is presented. In con-

trast to the service robotics domain, industrial tasks are

well defined and the environment is more structured.

These characteristics of the domain are exploited by

applying a two-phase approach. In the setup phase, knowl-

edge about the task and the environment is generated

either autonomously or by the help of a standard shop-

floor worker. In the execution phase, an error-prone

autonomous execution of the trained task is performed.

For both phases, the paradigm of modularization into

small functional units is proposed. Combining these mod-

ules with a hierarchical flow control system leads to a

flexible and still easily usable system. Although we did

not completely reach our goals of developing a system

comparable to a human worker in the fetch and carry

domain, we demonstrated that our system is able to solve

problems which have not be automated so far in several

experiments and on a real production site. In contrast to

traditional robots, the presented mobile manipulator is

flexible in its application and is able to perform multiple

tasks in a new industrial environment after a short setup

phase. To achieve this flexibility and robustness during

execution, perception, and planning modules present vital

components of the mobile manipulator.

Future work will target the error handling of the sys-

tem. In the current system design, all uncertainties and

errors have to be either solved by the modules or by

dedicated fallback strategies. To cope with unforesee-

able problems and to detect errors as early as possible,

a dedicated instance which detects deviations from the

nominal case would be necessary. Ideally, this instance

could also recover the systems state to get back to the

nominal case. Moreover, an issue raised by the real-

world application is the safety of the system while shar-

ing the workspace with human workers. Identifying and

more importantly also certifying methods how to colla-

borate with humans in the workspace in a safe way is

one of the key points for bringing autonomous mobile

robots to real industrial application. For applications in a

real production process, optimizing the execution speed

is mandatory.

Figure 22. The presented system concept has been transferred
to the KUKA KMR iiwa (left) for hosting the Shop Floor Logistics
and Manipulation challenge and to the DLR LRU (right) for
succeeding at the SpaceBot Camp 2015 for lunar exploration.
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