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ABSTRACT 

In this paper we present the ability to intrinsically and 

extrinsically calibrate a Time-of-Flight sensor, namely, 

a Photonic Mixer Device (PMD) camera, using the DLR 

CalDe and DLR CalLab camera calibration toolbox. 

This camera is intended as a visual sensor for pose 

estimation in the close rendezvous phase during future 

On-Orbit servicing. In order to test and verify the pose 

estimation algorithms on the ground, we conduct 

different rendezvous scenarios using the European 

Proximity Operation Simulator. It is necessary to 

accurately know intrinsic parameters like the focal 

length, the principal point, and the distortion 

parameters, as well as the extrinsic parameters, i.e., the 

position and orientation of the PMD camera relating to 

the mounting board, whenever it is fixed on the robot 

and involved in the process of target pose estimation. In 

this work we differentiate from state-of-the-art 

approaches for the calibration of PMD cameras in this 

context by making use of the motion of the mounting 

robotic manipulator alone, i.e., without the need for 

accurate positioning of the target calibration plate by a 

second robotic manipulator. 

 
1. INTRODUCTION 

Since the beginnings of outer space exploration, 

tremendous amount of waste rocket bodies, inactive 

satellites, and other fragmentation debris have been left 

on orbit. These objects represent a hazard to operative 

satellites, which in turn could lead to further increase of 

space debris. To overcome this problem, we conduct 

research in the simulation of On-Orbit Servicing 

scenarios on the ground, namely the Autonomous 

Rendezvous and Docking (RvD) setup with a vision 

unit, such as a Photonic Mixer Device (PMD) camera.  

The planned OOS activities include refueling, providing 

repairs, upgrading software and hardware of the 

satellite, and also deorbiting the satellite from the 

operative orbit [1]. We consider the following scenario: 

the visually guided robotic system, as a chaser, 

autonomously approaches the target, captures it (e.g. 

with a robotic arm) or docks on it and performs the 

necessary servicing tasks. The autonomous RvD 

approach uses only image information about the 

uncooperative target in order to estimate its pose 

(position and orientation) [2] with a consistent guidance 

of the robotic system approach the target [3].  
Usually, vision systems for the autonomous RvD in 

space are specified by the requirements of the operation. 

In general, the application of one or the other sensor 

depends on the relative position between the chaser and 

the target, e.g. optical sensors for far, middle, and close 

range. About one decade ago a new type of the ranging 

systems such as Photonic Mixer Device camera became 

available [2, 4]. This depth sensor can measure the 

distance to the target on every pixel of a sensor chip. 

We investigate the features and benefits of the usage of 

a PMD sensor for pose estimation of the target satellite 

during close-range approach (from 25 m to 1 m).  

 

1.2. EPOS facility 

The simulation activity is a crucially important part and 

in most cases mandatory as a pre-step for the planned 

missions. The European Proximity Operation Simulator 

(EPOS 2.0) [5], located at the German Space Operations 

Center (GSOC), German Aerospace Center (DLR), is 

used as a ground-based hardware-in-the-loop (HIL) 

testbed for simulation of RvD operations . Via the 

presented EPOS setup, see Fig.1, the usability, 

reliability and safety of the developed guidance, 

navigation and control (GNC) system, hardware sensors 

(cameras or lasers) or docking tools [5] can be tested.  

The EPOS facility consists of 2 standard 6 Degrees-of-

Freedom (DOF) industrial robots . 

 

  
 

Figure 1. Two industrial robots of the EPOS facility 

 

The Robot 1 (left on the Fig.1) is a KUKA KR100HA, 

which is mounted on a linear rail of 25m length and can 

be moved on along it in order to simulate an approach 

of the active satellite (chaser) to the passive one (target). 

The Robot 2 (right on the Fig.1), namely KUKA 

KR240-2, is fixed at the end of the rail system. Each 

robot has a breadboard attached to the flange, which can 

be used as a mounting board for the satellite mockups 

and RvD visual sensors. 

 

1.3. Prerequisites to the camera calibration 

 

By simulating the autonomous approach using the 

EPOS facility, the visual sensors (individually or by 

fusion of several sensors) and the developed pose 
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estimation algorithms can be tested. An accurately 

calibrated visual camera is a prerequisite in order to 

extract the information from 2D images and process it 

for the pose estimation of the target. Likewise usual 

mono- or stereo cameras, the PMD camera is required to 

be calibrated. In this paper we consider the camera 

calibration process as an estimation of the camera model 

(intrinsic calibration) and position and orientation of the 

PMD sensor frame in the camera housing (extrinsic 

calibration) with respect to (w.r.t.) the breadboard of the 

Robot 1. 

 

1.3. Overview of calibration techniques 

The well-known calibration toolboxes, such as Camera 

Calibration with OpenCV [12] or Camera Calibration 

Toolbox (CCT) for Matlab [11], are available in a 

public domain for estimation of the intrinsic and 

absolute extrinsic camera parameters. In the work of T. 

Tzschichholz [6], the author already calibrated the PMD 

sensor for using it with the EPOS facility. In his work, 

the CCT for Matlab is applied in order to estimate the 

intrinsic and absolute extrinsic parameters of the PMD 

camera. The transformation between the pose of the 

PMD camera and the Tool Center Point (TCP) of the 

robot’s breadboard was determined by involving the 

knowledge about the relative position and orientation of 

the other robot in the chain of transformations .  

The DLR CalDe and DLR CalLab calibration toolbox 

[7] is proposed in the present work as an alternative for 

the above mentioned methods. This calibration toolbox 

contains the well-known method of Zhang, Sturm and 

Maybank [9, 10] for the intrinsic calibration and the 

hand-eye calibration technique [19] for the extrinsic 

camera parameters. Critically, this toolbox does not 

require for the camera to perceive the whole calibration 

pattern in every image, which on the one hand is 

convenient for automated acquisition of images and on 

the other increases the accuracy of lens distortion 

estimation since features are more evenly spread in the 

images. Using the proposed toolbox we simplify the 

calibration procedures by working only with the robot, 

on which the camera is mounted. As far as we know, 

this is the first time that the designed setup for HIL for 

OOS Operations has been calibrated for such purposes. 

 

2. VISION BASED NAVIGATION SYSTEM WITH 

PMD CAMERA 

Vision based navigation is one of the proposed 

approaches in OOS missions for estimating the relative 

motion of the uncooperative target. To the best of our 

knowledge, the PMD camera has never been used in 

space application so far. Consequently, it is of great 

interest to conduct the image processing with this type 

of optical sensor on the ground in order to reveal its 

suitability for motion estimation in the close rendezvous 

phase.  

Since the appearance and up to these days, the PMD 

technologies have been improved in terms of the 

resolution of the PMD chip (it has enhanced up to 

352x288 pixels), measurement accuracy, and also 

robustness to the working condition. In this work we use 

a DLR-Argos3D - P320 camera, highlighted on the 

Fig.2 with a red frame. This camera contains two types 

of sensors: a 2D CMOS sensor and a 3D PMD sensor 

with resolution of 352x287 pixels  and a field of view 

28.91x23.45 degrees. As we are interested only in the 

PMD sensor, the details concerning the 2D sensor will 

be omitted. 

 

 

Figure 2. DLR-Argos3D - P320 camera fixed on the 

breadboard in the EPOS laboratory 

 

2.1. PMD camera working principle 

 

The depth measurement principle of the PMD sensor 

inside of the DLR-Argos3D - P320 camera is based on 

the computed phase shift of a periodical modulated 

signal. The phase shift is measured between the emitted 

modulated light from 12 IR-flash LEDs integrated in the 

camera and the reflected light from the observed 

surface. The distance to the target can be calculated 

pixelwise as follows: 

 

𝑑 =
𝑐𝜑

4𝜋𝑓𝑚𝑜𝑑
 . (1) 

 

In the equation 1, c is the speed of light 𝑐 = 3 × 108  

m/s, 𝜑 is the measured phase shift and 𝑓𝑚𝑜𝑑  is the 

modulation frequency of the emitted signal. 

Beside the distance information, usually a PMD sensor 

provides additional amplitude values by the same pixel 

array at the same time. The amplitude image 

corresponds to the amount of the returning active light 

and presents the quality of the measurements  [13]. The 

higher amplitude value of a pixel, the more reliable is 

the distance value. Since we get the amplitude image of 

the scene, we can handle it as a gray-scaled image 

described by the pinhole camera model [14]. 

Considering this fact, we can perform the calibration of 

the PMD sensor by the same techniques used for the 



calibration of the standard cameras and structured light 

depth cameras. 

 

2.2. Perspective Camera Model 

 

As we treat the amplitude image as a gray-scaled image, 

we can characterize the relationship between the 

coordinates of a 3D point of the scene and its projection 

onto the image plane (depth grid in our case) by the 

pinhole camera model [18]. 

A 2D point of the image plane is denoted as 𝑚 =
[𝑢, 𝑣]𝑇 and a 3D point is expressed as 𝑀 =
[𝑋, 𝑌, 𝑍]𝑇[9]. In homogeneous coordinates the vectors 

are presented by �̃� = [𝑢, 𝑣, 1]𝑇  and 𝑀 = [𝑋, 𝑌, 𝑍, 1]𝑇. 

The projection of a 3D point M onto the image plane is 

described by 

 

𝑠𝑚 = 𝐴[𝑅 𝑡]𝑀,     

 

(2) 

 

where s is an arbitrary scale factor, [R, t] are extrinsic 

parameters in form of rotation and translation, and A is a 

camera calibration matrix [9]. The calibration matrix A 

is presented by  

 

𝐴 = [

𝛼 𝛾 𝑢𝑥

0 𝛽 𝑣𝑦

0 0 1

] 
(3) 

  

and includes the following parameters: focal lengths  𝛼 

and 𝛽, coordinates of the principal point (𝑢0, 𝑣0) , and a 

skew factor 𝛾 between x and y axis. 

 

3. DLR CALDE AND DLR CALLAB 

CALIBRATION TOOLBOX 

3.1. Intrinsic camera calibration 

 

The proposed calibration toolbox outlines the intrinsic 

camera calibration approach, which was made by Zhang 

[9] and Sturm and Maybank [10]. They presented a 

closed-form solution by linear least-squares techniques 

for the initialization of the nonlinear optimization [15]. 

For the accurate camera calibration, one has to detect 

and identify the visible control point (corners) of the 

planar calibration pattern 𝑥𝑖0 = [𝑥 𝑖 𝑦𝑖 𝑧𝑖]
𝑇  

perspectively projected onto the image frame in every 

image 𝑛 ∈ {1, … , 𝑁} as �̃�𝑖𝑛 . These measured 

projections are corrupted with noise and are compared 

with the estimated ones  �̂�𝑖𝑛 = [ 𝑢𝑖𝑛 , 𝑣𝑖𝑛 ,1]𝑇 using the 

Euclidean decomposition of the perspective projection 

matrix P= 𝐴 𝑇𝑐
0 as follows:  

 

𝑠𝑚 = 𝐴 𝑇𝑐
0 𝑥0 =  [

𝛼 𝛾 𝑢𝑥

0 𝛽 𝑣𝑦

0 0 1

]  [𝑟1 𝑟2 𝑡] [
𝑥
𝑦
1

] 
 

(4) 

  

where s is an arbitrary scale factor, 𝑇 0
𝑐  the rigid body 

transformation from the camera frame to the 

object/world frame in the image n, and A is a camera 

calibration matrix. We assume that the model plane is 

on z=0, so that 𝑟3  disappears and the homography 

between the calibration plane and the image simplifies 

to the linear projective transformation 𝐻 = [ ℎ1 ℎ2 ℎ3 ]. 
The N homographies 𝐻𝑛 between image projections 

�̃�𝑖𝑛  and pattern features 𝑥𝑖0  can be estimated. We 

have 𝐻 = 𝜆𝐴[𝑟1  𝑟2𝑡] , where 𝜆 is an arbitrary scalar. 

Knowing that 𝑟1  and 𝑟2  are orthonormal, we get the 

following equations:  

 
(𝐴−1ℎ1

)𝑇 ∙ (𝐴−1ℎ2
) = 0

(𝐴−1ℎ1
)𝑇 ∙ (𝐴−1ℎ1

) = (𝐴−1ℎ2
)𝑇 ∙ (𝐴−1ℎ2

)
}  . 

(5) 

Note that 𝜔∞ = 𝐴−𝑇 𝐴−1 describes the image of the 

absolute conic and the system of equations transforms 

to:  

 

ℎ1
𝑇 𝜔∞ℎ2 = 0

ℎ1
𝑇 𝜔∞ℎ2 = ℎ2

𝑇 𝜔∞ℎ2
}.   

 

   

(6) 

  

These two equations are taken for every image N, 

leading to 2N constrains for 5 intrinsic unknowns. They 

can be solved by using a least-square criterion, if at least 

three different views (𝑁 ≥ 3) are available. 

Once the camera calibration matrix is known, the 

extrinsic parameters for image N are ready to compute: 

 

𝑟1 = 1/𝑠 ∙ 𝐴−1 ∙ ℎ1 

𝑟2 = 1/𝑠 ∙ 𝐴−1 ∙ ℎ2 

𝑟3 = 𝑟1 × 𝑟2  

𝑡 = 1/𝑠 ∙ 𝐴−1 ∙ ℎ3  

𝑠 = ‖𝐴−1 ∙ ℎ1
‖ = ‖𝐴−1 ∙ ℎ2

‖ . 
 

 

 

(7) 

 

 

 

 

3.2. Lens distortion 

Up to now we did not consider the lens distortion of the 

camera, which significantly spoils the linear projective 

formulation of the camera. Usually the lens systems of 

the real cameras are affected by the nonlinear 

aberrations. These distortions are mainly caused as a 

symmetric displacement along the radial direction from 

the principal point [17]. Taking in consideration the 

radial distortion, the pinhole camera model is extended 

by an additional distortion model, which is described by 

the polynomial formulation: 

 

𝛿𝑟
(𝜌) = 𝑘1𝜌3 + 𝑘2 𝜌5 + 𝑘3 𝜌7 + 𝑂(𝜌9) (8) 

where 𝜌 is the radial distance from the center of radial 

distortion to the expected normalized projection and 

𝑘1, 𝑘2 , 𝑘3  are the coefficients of the radial distortion. 

The optimal parameters estimation can be obtained by 

minimizing the following functional: 



 

Ω̂∗=argmin∑ ∑ ‖ �̃�𝑛 𝑖 − �̂�𝑖𝑛
𝑑 (Ω̂,𝜰  ( 𝑥𝑖0 ))‖

2

𝑖
𝑁
𝑛=1  (9) 

where �̂�𝑖𝑛
𝑑  are the distorted projections of the control 

points 𝑥𝑖0  expected in the image frame; Ω is a set of 

calibration parameters to be estimated (intrinsic, 

distortion, and absolute extrinsic);  𝜰 are the system 

models, which include the camera and lens distortion 

models as well as the calibration object model (e.g. 𝑥𝑖0 ) 

[9, 15,20]. 

 

3.3. Extrinsic camera calibration 

Whenever the sensor is mounted on a robot, it is 

important to define the rigid-body transformation of the 

PMD sensor (eye) frame 𝑆𝑆 relating to the TCP frame of 

the Robot 1 (hand) 𝑆𝑅 [16]. This problem is referred as a 

hand-eye calibration. Thanks to this transformation 𝑇𝑅
𝑆  

we are able to map the sensor’s measurements into the 

robot frame for further processing.  

The common solution of the hand-eye camera 

calibration is formulated as: move the hand of the robot 

and observe/perceive the movement of the eye. The 

mathematical representation is: 

 

𝐴𝑋 = 𝑍𝐵 (10) 

Here X is a desired homogeneous transformation 

relating the pose of the camera/sensor frame to the pose 

of the TCP frame of the robot 𝑇 𝑅
𝑆 ; A is a homogeneous 

transformation relating the pose of the object/world 

frame of the calibration object to the pose of the 

camera/sensor frame, which we obtain during the 

intrinsic calibration phase [9]; Z is the unknown (yet 

irrelevant) transformation between the object/world 

reference frame and the base frame of the robot; and B 

is a homogeneous transformation relating the base 

frame of the robot and the pose of the TCP frame. At 

least n=3 stations are required in order to uniquely 

determine the transformation 𝑇 𝑅
𝑆  [16]. In a nutshell, 

the rigid body transformation X can be retrieved by 

minimizing the discrepancies  between A and B. 

 

4. PMD CAMERA CALIBRATION PROCESS 

The intrinsic and hand-eye calibration techniques, 

which were described previously, are state-of-the art for 

monocular and stereo cameras. In this section we show 

a feasible use of them for the calibration of the PMD 

sensor within the DLR-Argos3D - P320 camera by 

using the DLR CalDe and DLR CalLab calibration 

toolbox.  The common brief tutorial how to use this 

calibration toolbox can be found in [7]. 

We used a rigid checkerboard pattern, which is defined 

by 𝑛𝑥 =18 and 𝑛𝑦=12 squares, where the dimension of 

every square is specified as 𝑢𝑥 ×  𝑢 𝑦 ≈ 30 × 30 𝑚𝑚 . 

Inaccuracies during the manufacture or printing of the 

pattern inherit regularly in the checkerboard and not 

every rectangle has the exactly mentioned size. 

Therefore, according to [16], we recalculated the 

estimated values of the rectangles with the aid of an 

electronic ruler and acquired the actual size as  29.91 ×
29.95 𝑚𝑚 . The calibration pattern was fixed in front of 

the robot with the mounted camera on the breadboard 

plane of the Robot 1, see Fig. 3.  

 

 

Figure 3. Setup of the calibration pattern and the camera 

 

The Robot 1 has been moved to 8 different positions in 

order to image the calibration pattern. Only the 

amplitude images of the PMD sensor were used in place 

of color images of the standard cameras. On Fig. 4 eight 

pictures (2 images from each side) of the amplitude 

channel are shown.  

 

Figure 4. Calibration images from the PMD sensor 

 

There was no need to get the whole pattern plate in the 

image, but getting the sharp images is one of the 

prerequisites for accurate calibration. Due to the 

limitation in the rotation of the robot axes, it is difficult 

to collect sharp images from above and below. During 

the acquisition of the calibration images, the robot pose 

w.r.t. the Global Laboratory Coordinate (GLC) frame 

was stored for every amplitude image respectively. On 

Fig. 5 the orientation of the X, Y, and Z axes is 

presented.   

The information about the robot pose is required in 

order to calculate the hand-eye-calibration. Having 

completed the image collection, we started DLR CalDe 



in order to localize landmarks and corners on the 

chessboard with sub-pixel accuracy. 

 

 

Figure 5. Global Laboratory Coordinate System 

 

It is important to fill up correctly the chessboard 

parameters on the right side of the main window of the 

DLR CalDe toolbox (Fig.6) in order to let the program 

detect the corner points precisely and automatically. On 

the Fig.6 one can observe the image with the accurately 

detected corners of the calibration plate. The recognized 

points were saved and further used as an initial basis in 

the DLR CalLab toolbox.  

To get the intrinsic and extrinsic parameters we run the 

calibration toolbox DLR CalLab. The user can choose 

and set numerical optimization algorithms and a variety 

of estimation methods. The calibration process is fully 

automatic and performed in one-button mode. On Fig.7 

the main window of the DLR CalLab application with 

the output results is depicted.  

 

 

Figure 6. DLR CalDe detects the corner points in the image 

 



 

Figure 7. DLR CalLab dialog window with output results  

 

 

4.1. Numerical results  

By running the calibration process we got the file with 

the following results for the PMD sensor inside of the 

DLR-Argos3D - P320 camera: 

a) Calibration matrix is presented as: 

𝐴 = [
705.748 0.581 143.578

0 704.082 184.228
0 0 1

] 

 

b) Distortion coefficients 𝑘1=-0.4973 and 

𝑘2 = 0.3251. 

c) The transformation matrix 𝑇 𝑅
𝑆 , which 

describes the pose of the sensor inside of the 

DLR-Argos3D - P320 camera relating to the   

chosen TCP point of the Robot 1: 

𝑇 𝑅
𝑆

= [
0.9999 −0.0043  −0.0022   − 42.874   
0.0043 0.9999 0.0134 − 186.912
0.0021 −0.0134 0.9999        145.847

] 

 

d) Root mean square (RMS) error after intrinsic 

calibration is 0.177 pixels; after extrinsic 

calibration it reads 1.192 pixels or 0.21° and 

2.92 mm. Note that we are not explicitly 

minimizing the former pixel RMS error but 

the latter position and orientational errors of 

the robot manipulator as detailed in [16]. In 

doing so, the reprojection error in pixels might 

be slightly worse, but the estimation of the 

hand-eye transformation is optimal since the 

actual, biggest errors in the system (viz. the 

positioning errors of the robotic manipulator) 

are being minimized. 

 

5. CONCLUSION 

In this paper we showed how the PMD sens or can be 

precisely calibrated before integrating it in HIL 

simulations of the OOS scenarios on the ground. 

Contrary to state-of-the-art methods, in doing so we 

only made use of the motion readings of the robot 

where the camera is mounted and not of the motion of 

the external calibration object (potentially mounted on 

a second manipulator robot). In order to obtain the 

intrinsic and hand-eye calibration parameters of the 

PMD sensor, we used the DLR CalDe and DLR 

CalLab calibration toolbox, which includes state-of-the 

art calibration techniques for regular cameras and was 

not originally developed for the PMD sensors.  
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