Mode Coupling in Large 2D Complex Plasma Crystals

Knowledge for Tomorrow

John Meyer

Institut für Material Physik Deutsches Zentrum für Luft- und Raumfahrt

Weßling, Deutschland

Special thanks to:

I. Laut, S. Zhdanov, V. Nosenko, H. Thomas

Complex Plasma Research

- Space and lab based experiments
- In labs much research is done in GEC chambers or modified versions thereof
- Crystals limited in practical size to suspensions of ~6 cm diameter
- Minimum pressure of 0.40 Pa for crystals
- Generally around 6000 particles
- Inter-particle spacing varies with radius
- Edge effects
- Large diameter chamber should help improve many of these limitations

Large Chamber Setup at DLR

GEC

LC

Setup Diagram: Top View

Experimental Parameters

Polymer (MF) microspheres:

	LC	GEC
Diameter	<i>d</i> ≈ 9 µm	<i>d</i> ≈ 9 μm
Charge	$Q \approx -4^*10^4 e$	$Q \approx -2^*10^4 e$
Kappa	κ ≈ 1.7	к ≈ 1.3
Spacing	<i>a</i> ≈ 1.6 mm	<i>a</i> ≈ 0.6 mm
Number	≈15,000	≈6,000

Argon RF plasma:

Pressure	0.10-1.00 Pa	Те	1.5 - 7 eV
RF power	25-200 W	Ne	10 ¹⁴ - 10 ¹⁵ /m ³
Self Bias	-1040 V	Ni	10 ¹⁵ - 10 ¹⁶ /m ³

Complex Plasma Introduction

- The inter-particle spacing of the ideal crystal (right) is 1.41mm.
- The dust layer is approximately 1.5 cm above the electrode
- We see that for about 15 cm across the center of the cloud it is flat

Pair Correlation Function

- For the GEC chamber the best values of the first peak are about 8
- The first plot is of the LC experiment with the highest peak (~17), 150 W RF power and 0.40 Pa pressure
- The second is for the LC experiment at 150 W and 0.15 Pa which is analyzed in the rest of the talk

Mode Coupling: Wake Effects

Ion Current

S. Zhdanov, A. Ivlev, G. Morfill, POP 16, 083706

Mode Coupling: Dispersion Relations

S. Zhdanov, A. Ivlev, G. Morfill, POP 16, 083706

DLR

Previous Experiments

$$\begin{aligned} \mathbf{V}_{\mathbf{k},\omega} &= \frac{2}{L_0 T_0} \sum_{i=0}^{n_i} \sum_{j=0}^{n_i} \mathbf{v}(\mathbf{x},t) \exp(\mathbf{k} \cdot \mathbf{x} - \omega t) \Delta x \Delta t \\ \mathbf{I}_{k,\omega} &= < |FFT\{\mathbf{V}_k(t)\}|^2 > \\ C_0 &= \sqrt{\frac{Q_{eff}^2}{\varepsilon_0 m a}} \\ Q_{eff} &= Q_{sim} \sqrt{1 - \tilde{q}} \\ \tilde{q} &= |\frac{Q_{wake}}{Q_{sim}}| \end{aligned}$$

Nunomura et al, PRE 65, 066402

Experimental Spectra

Simulation Spectra

k [1/mm]

k [1/mm]

k [1/mm]

x

k [1/mm]

Mixed Polarization Ratio: Exp

Mixed Polarization Ratio: Sim

Mixed Polarization Ratio: Theory

Conclusions

- Increased diameter and number of particles in a crystal
 - Electrode diameter 4x
 - Particle number 3.5x
 - Crystal diameter 4x
- Low pressures reduce damping and allow more particle motion
 - 0.10 Pa for LC
 - 0.1 s⁻¹ damping rate
- High particle and wake charge
- Flat across the width of the crystal
- Mixed polarization between vertical and longitudinal modes far from mode crossing

Thank You

