-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Institute of Transport Research:Publications

On the closed form computation of the
dynamic matrices and their differentiations

Gianluca Garofalo, Christian Ott and Alin Albu-Sdfex

Abstract—In this paper we review and extend some classic that Slotine and Li [18] proved the global asymptotic stiil
results on rigid body dynamics, in order to give a symbolic of their controller completely avoiding any information on
expression of the diferent derivatives of the matrices of the  yha cyrrent acceleration. An excellent algorithm to coreput

dynamic model of a general tree-structured robot. In what h tri ted in 1191 by Y d
follows the matrices are diferentiated with respect to time, ~SUCh regressor matrix was presented in [19] by Yuan an

state and dynamic parameters. Obviously from the derivaties Yuan.
of the single matrices it is possible to recover the derivaties More recently the introduction of flexible joints has risen

of the direct and inverse dynamic functions and classic redts  the need of computing the derivatives with respect to time of
like the regressor matrix. Moreover an iterative algonthm IS 41l the matrices of the dynamic model [20], [21], [22]. The
sketched which allows to compute all these derivatives as We . . : :
as the kinematics and dynamics of the robot. solu'_uon of_other proble_ms an_d analysis requires, instead,
to differentiate the matrices with respect to the state. The
|. INTRODUCTION controllability analysis of underactuated manipulata28]|
Because of the steady increase of the complexity ahotivated Muller [24] to provide anficient factorisation
robotic systems and their simulation and control, the dyinamfor the inverse of the inertia matrix, in order to compute
equations of motion of the robot have been analysed sinds partial derivatives. On the other hand for optimisation
decades. Both through the Lagrangian and the Newton-Eulgroblems the derivative with respect to the state of thectlire
approach these equations were derived and used by mamd inverse dynamic function were provided in [25] and [26].
authors with dfferent purposes and from ftérent points The linearisation of the dynamics is also useful in state
of view. Either for simulation or control both the directestimation problems and in general whenever the use of the
and inverse dynamic problem have been considered [Hxtended Kalman filter [27] is required.
Among the first works on inverse dynamics for serial chain From the discussion it follows that the problem of dif-
robots there are those of Uicker [2] and Stepanenko aridrentiating the direct aridr inverse dynamic functions is a
Vukobratovic [3] who formulated the recursive Newton-Eulewell known and analysed problem, however a summary and
algorithm. In order to obtain a mordheient computation, generalisation in which the derivative of each matrix of the
later Orin et al. [4] reformulated their work. Hollerbach [5 dynamic model is provided with respect to time, state and
showed that also the Lagrangian formulation could providdynamic parameters, it is still not present. This is the main
an equally éicient algorithm and finally Silver [6] provided contribution of our paper. To this end we first present in the
the equivalence of the two methods. Using also the results néxt section the formulation of the dynamics for a system
Vereshchagin [7], for both the inverse and the direct dywamlike the one sketched in Fig. 1, based on the works [6], [28],
problem algorithms are available wit(n) complexity. [29]. In this way we will provide the symbolic expression of
Other authors investigated the possibility of using moreach matrix of the dynamic equation, which in the following
elegant and fécient tools to write the dynamics. Importantsections will be dierentiated with respect to either time,
are the works of Featherstone [8], Rodriguez [9] and Park et state or dynamic parameters. Finally we will sketch an
al. [10], where spatial operator algebra and Lie groups afterative algorithm, totally analogue to the outward resoom
respectively used. On the other hand the necessity of gplviof the Newton-Euler algorithm, which will provide a simple
identification problems brought Atkeson et al. [11], Khoslavay to compute the derivatives. It is worth to notice that, as
and Kanade [12], as well as Kawasaki and Nishimura [13] ti will be clear from the following analysis, the computatio
introduce the regressor matrix. Later Gautier and Kha#l][1 of all the matrices and their derivatives is mainly solved
focused on the determination of the minimum set of inertiafter the computation of the direct kinematics an@edtential
parameters to reduce the computational cost and simpliginematics.
the identification. The linearity in the dynamic parameter For the reader not familiar with twists and wrenches we
suggested the development of adaptive controllers like theve collected in the appendix the expression of the matrice
first one in [15] by Craig et al. In order to avoid acceleratiorused in the rest of the paper. For the twist coordinates we
feedback, alternative algorithms were developed by Hsu Bave chosen the convention with the linear part for the top
al. [16] and Middleton and Goodwin [17], but it was espethree rows and the angular part for the bottom ones [28].
cially thanks to the introduction of a novel regressor nxatri All the other matrices are defined accordingly. Nevertheles
. . _ throughout the paper we avoid to write the explicit expr@ssi
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. the weight (which is linear iy = col(y,), beingy, the
body gravitational acceleration, i.i=.;(y = —-Ayi),
. all the other external forces (which after the projection
correspond tar, i.e J f, = 7).
Using Remark 2 we can writg, as the product of a configu-
ration dependent part and a constant part,jie= Adg’lk Yo
wherey, is the constant spatial gravitational acceleration
Equation (4) can be written in a more compact way as

Fig. 1. The mechanical systems considered in the paper arerae

branched connections of rigid bodies. M'q n cq +g=1, (5)

where

M =ZJIAKJK, (6a)

Il. THE NEWTON-EULER EQUATION IN BODY COORDINATES
Let us first consider a frame attached to a rigid body .
(which will be indicated with the indek) in movement with - ) - :
respect to a spatial frame (which will be indicated with the ~ © = Z Iy [(Aadpy — adiy A) i+ Adi| . (6b)
index 0). Using the body twist, and the body wrenchi,, K

the equation of motion can be written as 9= JeAAdgL Yo » (6¢)
k
d
I (Ada} Akvk) = Adgj Ty (1) k= 1,..,N. While A is constant, each of the matrices

) ) ) ) Jk, Adgi and adj, are state dependent and are the only
whereAy is the constant body inertia matrix and #ds the o antities that must be computed to use the formulas in (6).

adjoint matrix which uses an element of the Lie group (theé Remark 3: The vectorg is the mapping of the weight
homogeneous transformation matrix from the inertial to thﬁ/renchmyo in the configuration space, wheneis the total
body frame) as a linear mapping on the Lie algebra [28},555 since the weight wrench can always be thought to be
Computing the time derivative in (1) we obtain applied in the total centre of mass (CoM), it is clear that
Awvi — ad Av = fy (2) the transpose of the matrix mu_ItipI_yirpg, in (6¢) is rela'ged

. ’ to Jcom, Which maps the velocity into the CoM velocity.
where Adai = —adjo,kAda)}(, being adj, the Lie bracket Writing g in terms of stacking matrices, we derive
matrix which uses an element of the Lie algebra (the body 1
twist ) as a linear mapping on the Lie algebra itself [28]. Joom = EPTAJ , (7)
Finally using the property aglj vk = 0 we can add the term
Agadj v to (2) without changing the equation, so that i
can be rewritten as

twhereP is the matrix obtained taking only the columns of
col(Adg}), k = 1.....N which multiply the linear part of,.

Ill. PARAMETERS DIFFERENTIATION

Aki’k + ‘I’kvk = fk R (3)
In order to compute the derivative of (6) with the respect
where¥y = (Ak adjo)k—adjg,kAk). to the dynamic parameters, we will take advantage of the
Remark 1. Since'¥y is skew symmetric'¥y = —‘I’I) and linearity of the matrices in the parameters themselves.
Ay is constant, the propertyy = Wx + ‘I’I is satisfied. Proposition 1: If v andwy are the linear and angular part

Remark 2: Due to the important property ggjvx = 0we  of the twistyy respectively, then the momentuiyi can be
can conclude thaty = Adok v«, whereoy is the spatial twist. written as
Let us assume now to havé¢ bodies. TheN equations
of motions in the form of (3) can be written stacking the
twists in v = col(v), the wrenches inf = col(f,) and where
using the block diagonal matrice& = blkdiag(Ax) and T
¥ = blkdiag(¥,), wherek = 1. N. If the bodies are 7 =|M™ ML b Iy lz by b la| . (9)
constrained to each other, then it is possible to projedt 8¢ and r, is the position of the centre of mass of tke- th
the equations in the form of (3) in the space orthogonal to thgody with respect to its own frame (see Fig. 1). Moreover,
constraint reaction forces. Using a minimal set of coor#isa the rows of A(v) € R®1 for the linear momentum are
g to identify the configuration and assuming a mapping in

A = A(v)my (8)

— ~ 3x10
the formwy = Ji@, then this is possible throughy, so that A, = [Uk Wk O3x6] eR¥T, (10)
J7 [AJ'c'H (‘I’J + Aj)q] —r-1TAy ) and the ones for the angular momentum are
_ 5 o 3x10
where J = col(Ji) and eachf, = f_+ f, + f has been Au = [0 Uk “"‘] €RTT, (11)

Spllt n . ) . ) 1The angular part of is always zero, while assuming for exampI(Te that
« constraint reaction forces (which disappear after thge third axis is the vertical one, then the linear part wio 0 g,

projection, i.eJI fkC =0), where g is the gravitational acceleration constant.



where Oz € R¥® is a matrix of zerosa’is the skew
symmetric matrix such thab’'= ax b and

_|lax 0 0 a a 0
a=|0 a 0 ax 0 &, (12)
0O 0 a 0 ay

Proposition 2 (Parameters differentiation): Given the ex-
pression of the dynamic matrices in (6) and the factorisati

respect to the dynamic parameters are

oM

e =J A", (13a)

Qg (A(adiy I+ IYh— adf AQY" (13Db)

67Tkh k A k k .k k °

99 _ 37 A(Ad:L 5" 13
=J, A( o,k)’o) ) (13c¢)

(97Tkh

where, for example, with the superscripive indicate the
h — th column of the corresponding matrix.
Proof:

From (6) we can write

M= 3 JEA) (14)
k

0
presented in Proposition 1, then the derivatives of (6) with

Proposition 3: The matrix adj, can be factorised as the
product of a constant matAxV € R®36 and a block diagonal
matrix Vi € R366

adb’k = WVk 5 (17)

whereV = blkdiag(vx) andW selects the necessary entries
from the twistyvy to produce eitheiy or .

Proposition 4: Given the factorisation of aglj in Propo-
sition 3 and the identityyq = Xy, Jth, it follows that

9 Adgy , B

c’)qh’ = — adj; Adgy , (18)
dadpy )

5% adjy . (19)

where adjE is the matrix computed using{: € R, instead
of v € R®, while

(20)

Let us just consider the computation for thewhere in adﬂq this time vy € R® has been replaced by
inertia matrix, since the same can be repeated for the othegs,

g e RS. ”

o
Proof:

Let us start considering

OAdgy . .o L
c’)qQ q = Adoy = —adjy Ado,lk >

(21)

Applying the factorisation in Proposition 1 we can writeywhere, using Proposition 3, we can rewrite AdRs

Ad) = A(J))n. Differentiating the expression with respect ’

to m,, we prove the proposition. m  adj, =W blkdiag(J}a,) = ZW blkdiag(Jy) & - (22)
Remark 4: From (6) and Proposition 1 is also possible to h

easily compute the Slotine-Li regress06(q, g, ¢,, g,). Using  Substituting (22) in (21), we obtain an equality that, being

n = col(my), the identityMg, + Cq, + 9 =Y (0,0, ¢, G) 7
holds, where

Y= Z Ik (A(a’k) — adj A(J qu)) Tk (15)
K

ax = i@, +ad Jk@, + Ik, +7, andk = 1,..., N. Rewriting

truevq e R", leads us to
d Adgi
= = —W blkdiag(J") Ads1t |

aqh ( k) 0,k

which is equivalent to (18). On the other hand th&eten-
tiation of (22) with respect tay, results in (19), while the

(23)

(15) in terms of stacking matrices we obtain the expressiocl’r|e with_r_espect L@, “?S““S i_n .(20)' . u
of the regressor Proposition 5 (State differentiation): Given the expres-

sion of the dynamic matrices in (6) and the factorisation
presented in Proposition 4, then the derivatives of (6) with

Y = J7 blkdiag( A(ax) - adf), A(Jk&))
respect to the state are

(16)

k = 1,..,N. Given the Slotine-Li regressor, the classic oM 537 53
regressor can be obtained replacijg="g and ¢, = 4. =) KA+ JTAk_k , (24a)
' 90h Zk: 90h “oa,
[V. STATE DIFFERENTIATION oC —Z 8J1k- (‘I’ Jet AL )+ ITA AN
Although quite involved, the key point for the computation 94, N = 00, KT ek K ka%

of the derivatives with respect to the state is to find a

. . . . . . . T . T aJk
convenient factorisation for aglj; similarly to what we did + Jy [ Ak adJ%q _adjm_kqu Jk + ‘I’ka .
in Sec. lll for the momentum. From (6), we can conclude " o n (
that the derivatives oM, C and g can be computed if

24b)

the derivative ofJy, Jy, Ady} and adj, are available. The £ =Z ar (Ak adj;» — adf, Ak)Jk + Ak%] . (240)
computation ofJx and all its necessary derivatives is treated e K Tk 90h
in Sec. VI, so here we focus on the other two matrices. dg 4" T ) N

In this section (with an abuse of notation) we will use ¢ :Zk:(a—% Ak = Iy Ak adbp)Ado,kTO , (24d)

blkdiag(a) to indicate a block diagonal matrix with the

elementa repeated six times on the diagonal. 2In the appendix we give the expressionwf



wherek = 1, ..., N and C is the only matrix which depends these two bodies. In the following we ugkefor the current
on bothqg and g. link and p for its parent. Writing (26) in terms of Jacobians,
we obtain an equality that, being triyg € R", leads us to
V. TIME DIFFERENTIATION

Obviously the derivatives of (6) with respect to time could Ji = Adgi Jp + Bk, (27)
be computed using the chain rule and (24). Nevertheless jherez, is a constant matrix completely determined by the
the derivatives with respect to the state are not required f@/pe of interconnection between the bodiesuch that, =
the considered application, it is moréfieient to directly E.f. This concept, as discussed in [30], allows the joints
differentiate (6) with respect to time. This is quite cleafy pe completely general, with any number of degrees of

considering that the derivative of a matrix with respect t@reedom up to and including SixDifferentiating (27) with
a vector is an order three tensor, while the derivative witfespect to time, we have

respect to a scalar is also a matrix.

' 1 - -1
Proposition 6 (Time differentiation): Given the expres- Jik=Adyy Jp — adj, Ad ‘] P> (28)
sion of the dynamic matrices in (6), then the derivatives of Jx=Ad;} Jp - adj, Ady Jp (29)
(6) Wl.th respfe:t to the state. are — adj AdgL I, — adj, Jx
M =Z I Akd+ I Akdi (25a)  which is used for the computation of (6), (13), (24), (25).
k

Moreover, because of the property

~_\ 4T : TA 3 .
c_;Jk (Pidic+ Awdi) + If Arcdi o5t a3 _ i(%q) a3 .
+ JT [(Akédb - adj:)— Ak) Jk + ‘I’kjk] y 8q 6q 8q 8q
k K Lk . . .
. T T i 1 the needed derivatives with respect to the state are
9= (IxAk— IfAcady) Adgk o » (25c¢) 53 53
k a_qk =Ad-% 8—q” — ady Adg} Jp (31)

wherek = 1,...,N. n h
From (25) it is clear that the only additional necessary 9Jx =Ad,§}(% ~ adjg Ad-1 3, - adjpk% . (32
matrices areJy andadj,,. The latter can be easily computed 90 9 K " 00n

using v = Ji{ + Jk0, instead ofwg, as can be recognised which is used for the computation of (24).

taking the derivative of each entry of ggj The computation  The formulas derived so far can be collected in:

of Ji is treated in Sec. VI.
Remark 5: Notice that once again the passivity propertyAlgorithm Iterative computation of the kinematics

is satisfied. In fact, since eaclf (Ak adj, — adfj, Ak) Jkis  Givenq and its derivatives, for each body

a skew symmetric matrix, then . Compute the homogeneous transformation mafrix
C+CT = Z jIAka + JIAka =M. E;?Jrlatixample through the product of exponentials for-
k

el N . Compute Ay (throughT )

T S .« Compute adj, and adi» (throughé, and Ex

Regarding high order derivatives, we can conclude saying . Propggate ?%ke Jacogiiak\n( and gi]tsgéerivativ)es (eq. (27) -
that each additional fferentiation of the dynamic matrices (32)
with respect to time, requires the propagation of an adutio o 1 Ad-1 an-1
derivative of Jx according to the algorithm in Sec. VI and . E:)Ongggféeaa&t (Eﬁgodkga )’/A‘d_p,li]Ag)O,p)
the knowledge of an additional time derivative @& R". K KTk

_ VI TreRATIVE ALGORITHM ] o which provides the informations for
Here we will show how to computé&y and its derivatives, dynamic matrices (6),

which, as seen in the previous sections, are fundamental forz) CoM Jacobian (7),
the computation of all the matrices and their derivatives. 3) Slotine-Li regressor (16),
As already mentioned, the computation of the Jacobian 4) Parameters derivatives (13),
will be carried out with an iterative procedure which will State derivatives (24),
propagate the matrices from the root to the .Ieaves of the 6) Time derivatives (25).
tree structured robot. This is completely equivalent to thRIotice that, by definition, the parent of a frame attached

outward recursion of the Newton-Euler algorithm and, lik . . .
the latter, it is based on the coordinate transformatioritfer % a root body of the structure is the spatial frame. This

velocities, which can be formulated as 3|f the bodies are numbered according to a so called regutaibeting
1 scheme [8], it is guaranteed that during the iteration themis quantities
Vi = Adp’k Vp+ &k, (26)  are computed befere those of its children.

o 4Notice how in (27) we need only “local” informations, meapithat
where bothp andk are used to indicate a frame attachechd} and= are given by the connection between the link and its parent.

to a rigid body, while£, gives the relative velocity between SThis is particularly important to model floating base robots



means that for these bodiés andJ, are matrices of zeros,
while Ad § = Adyp is the identity. These are actually the
informations which trigger the propagation.

Before concluding the discussion of the necessary compu-
tations in the algorithm, two points are worth to be clarified

Remark 6: The last two steps are only necessary for the
computation ofg andC. In particular since Agi}( is only used
to computey,, whose angular part is always zero, the only P
information needed from Ag is Ry} (see the expression T
of the adjoint in the appendix). This suggest to replace the
propagation of Agy with the more @icientRf, = R, R .

Remark 7: The matrixEZy is clearly constant for revolute
and prismatic joints. For example, in case of a serial chail%
robot with revolute joints, only thk—th column ofEy is non
zero. Its linear part is given byecx cg, while the angular part
IS given pya<_, wherepk 's & point on the axis .Of the SCTeW vithm take an average of 244 ms each. For the derivatives,
whose direction is given by the unit v_ecte<rwh|le G 9Ives e compared the time necessary to compute the matrices
the amount_ of rotat|o_n around the axis (the screw coor(_jlna“g (6) at two diferent instants and the one necessary for an
of t_he rotational motion [28)). .Unfortunately usirgand g extended version of the code, where even the matrices in (25)
as input for the algorithmEg will not be constant for other

. . . . are provided as output. The average ratio between the two
types of joints (e.g. universal joints). Nevertheless,adiog P b 9

a different velocity inputv it is still possible to use a constant approaches is.1 in favour of the latter. The improvement
e yinp . P e would be even significantly higher when thefdrentiation
matrix E,. A clear example is the case of a free j6jnised

when modelling free floating base svstems. In this case v¥ith respect to the state is required. In this case each xnatri
) ng — "9 Y - Must be computed twice for each state variable and scales
w itself containsg,, thenZy is a selection matrix, such that

T £ this choica h . then with the number of joints.
Eic = 2KW. Because of t IS choicq = T(aw, w er_el"(q) IS As future application we also plan to use (16) and (24)
responsible for the mapping from angular velocity to rate of " e =~ optimisation and adaptive algorithms
change of Euler angles, which can introduce representation ' '
singularity [1]. MoreoverI'(q) will appear when applying

the chain rule in (21) and (30). For example (30) becomes

Fig. 2. TORO (TOrque controlled RObot) and its kinematics.

volute joints, each equipped with position and torque
sensors. Using a computer with an If&eXeon® Processor
W3530 (280 GHz, 4 physical cores), 100 runs of the algo-

VIII. ConcLusioN

In this paper we have considered the dynamic equations

0Jc _ 0 (%F(q)w) = %F(q) . (33) of a system of interconnected rigid bodies. The focus was
ow  ow\ dq aq essentially on the computation of the matrices of the dynami
V1. COMPARISONS AND PRACTICAL APPLICATIONS equations and their derivatives, even though more than this

The impl tati ts. th luati f th can be easily computed once a clear formulation of the
1€ Implementation aspects, the evaluation of he CorTEj'ynamic is available (for example the Slotine-Li regressor
plexity of the algorithm sketched in Sec. VI and the com-

i i h M ian). W ith a f lati f
parisons with dierent approaches are beyond the scope ﬁ?d the CoM Jacobian). We started with a formulation o

thi Th tati that motivated Pl ewton'’s third law in terms of twists and wrenches to obtain
thiS paper. The same argumentations that motivate O&fdsed form expressions for the matrices of a branched con-
in [29] to provide the single matrices, rather than the sotut

£ multiol teular i d i bl oal nection of rigid bodies. This results in the possibility ofhe-
of mulliple paEr cu ?rr] INverse ynamlcldprbo ems, a;pz yoals_ uting the derivatives in a straightforward way. Depending
In our case. tven the regressor could be computed Solvi application (control of elastic joint robots, optintisa,
multiple inverse dynamic problems, but an explicit analyti

; bles i i f the phvsical " f thidentification, etc. ), dferent types of dferentiation are
orm enables Inspection ot the physical properties of Mfgqqeq (time, state or dynamic parameters). A Newton-Euler

ma_1n|pu_lator, such as the determ|r_1at|on of the minimum S‘ﬁke outward recursion for the propagation of the Jacobian
of inertial parameters. The reader interested in alterestio matrices, together with the formulas and remarks in the

thed algofrlthm presgnttt;d n Sfec. \éltantﬂ o thi CO;nopar'SOEaper, allows the reader to easily implement a library where
and pertormances IS then reterred to the works of Orin ang o necessary informations for simulation and contesl ¢

Schrader [.31]’ Park [32] and Jain [33], where these topic&e computed. Although the complexity was not analysed, the
are extensively treated.

. o . computation is expected to be quit@&ent since it is based
As practical applications, we have implemented the co

MBn just the first step of the Newton-Euler algorithm.
putation of the matrices in (6) for the control algorithms : P g

of the robot shown in Fig. 2. TORO is a torque controlled
humanoid robot developed at the Institute of Robotics and
Mechatronics, German Aerospace Center (DLR). It has 25

APPENDIX

L . . Here we give the expression of the matrices used through-
8A free joint is a joint which allows the motion along and arduall 9 ] P T _— 9
the three directions. out the paper, in casg = [vk wk] .



Given the rotation matriR,x € SO(3) and the position [10]
vectorpy € R2 as in Fig. 1, the corresponding homogeneous
transformation matrix, adjoint and Lie bracket matrices ar ;y;

_ Rpxk Ppo.k
Tok = [ o 1| [12]
Rpk  PokRpx . o
Ad = P, p’k P, s ad = [13]
Pk [Osxs Rpx ok [Oaxa wk]
According to this convention [14]
A, = |MKEs  —mifk
K=| m 7 —mi2l
mFe T — mgf [15]
_|vxk @k Osse W, W, [16]
Al = [0 Uk Wk ] [O3><18 Ww]
o o of 0 e -g] [17]
0 e -g 0O 0 ©
_ 0 0 0 & 0 €x 18
Wo=le 0 e| "=lo o o %
0 0 0 e -& O [19]
g -e O 0 0 0

wherel is the inertia tensor with respect to a frame orienteé°!
as the body frame and with the origin in the CoM of the rigid

body,0 € R® ande,, &, e, are such thale, e, e|=Es [21]
being E3 € R*>® the identity matrix.
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