
Pedestrian detection in front of the ego vehicle

using (stereo) camera in the urban scene: Deep

versus Shallow learning approaches

Master Thesis

for
the fulfillment of the academic degree

Master of Science in Information and Communication Systems

Faculty of Electrical Engineering and Information Technology
Professorship of Communications Engineering

Technische Universität Chemnitz
November 2016

Submitted by:
Gurucharan Srinivas
Matr Nr.:357634

Supervisors:

Univ.-Prof.Dr.Gerd Wanielik
(Technische Universität Chemnitz)

M.Sc.Paulin Pekezou Fouopi
(Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verkehrssytemtechnik)

Acknowledgement

This master thesis work has been carried out at the Institute of Transportation
Systems, Deutsches Zentrum für Luft- und Raumfahrt e.V (DLR) and at the de-
partment of Electrical Engineering and Information Technology at TU Chemnitz,
Germany.

In the first place, I thank M.Sc.Paulin Pekezou Fouopi, Wissenschaftlicher Mitar-
beiter at DLR e.V for providing me this wonderful opportunity and for his constant
guidance and support during my thesis work. I would like to acknowledge and extend
my heartfelt gratitude to Prof.Dr.-Ing.Gerd Wanielik and Dr.-Ing.Ulrich Neubert for
their valuable support to accomplish my thesis at Professorship of Communication
Engineering, TU Chemnitz.

I express my gratitude to many colleagues and friends who have supported me
with new ideas and suggestions to make my work better. I am grateful to my family
for their best wishes which helped me to overcome all the hurdles during the entire
thesis work.

Thank you

Selbst

¨

andigkeitserkl

¨

arung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit mit dem Thema “ Pe-
destrian detection in front of the ego vehicle using (stereo) camera in the urban
scene: Deep versus Shallow learning approaches “ selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe. Weiter erkläre
ich wörtliche und sinngemäße Zitate als solche gekennzeichnet zu haben.

Ort, Datum

Vorname, Name

Abstract

Object detection is crucial in the environment of autonomous driving and advance
driver assistance systems for safely maneuvring vehicle in the urban tra�c. Among
the tra�c participants we find pedestrians are the one who are most vulnerable
and their safety is also crucial. Therefore, this work focuses on pedestrian detec-
tion in urban environment using the camera mounted on ego vehicle. The thesis
aims at understanding and comparison of shallow and deep learning approaches
for pedestrian detection, and two ensemble methods are proposed that combines
the chosen deep and shallow method with the context-based classifier respectively.
Firstly, an pre-trained deep architecture for object detection is combined with the
context-based classifier. Whereas, in second method shallow approach is combined
with context-based classifier. Further in the outlook of this work stereo data is used
to minimize the detected false positives form the proposed ensemble deep approach.
Prototyping of first proposed method is achieved using the CAFFE deep learning
framework with Python interface, and the second shallow method is achieved using
the well known computer vision library OpenCV with C++. The proposed method
is trained, tested and evaluated on Caltech pedestrian dataset with di↵erent metric.

Contents

List of Figures iii

List of Tables v

1 Introduction 1

2 Literature review 3

2.1 Deep learning approaches for object detection 3
2.2 Conventional methods for pedestrian detection 5
2.3 Dataset . 6

3 Fundamentals 7

3.1 Feature engineering . 7
3.1.1 Hand-coded Features . 7

3.1.1.1 Histogram of Oriented Gradients(HOG) 7
3.1.1.2 Visualization of HOG-descriptor computed features . 11

3.1.2 Deep Learning . 12
3.1.2.1 Convolutional Neural Networks(CNN, ConvNet) . . . 12
3.1.2.2 Visualizing the features learnt by ConvNet 18

3.2 Image classifiers . 20
3.2.1 Linear Support Vector Machine 22

3.2.1.1 Hard-Margin case . 22
3.2.1.2 Soft-Margine case . 24

3.2.2 Softmax . 26
3.2.2.1 Score function . 26
3.2.2.2 Loss function . 27

3.3 Maximum Likelihood Estimation . 28
3.3.1 The Likelihood Function . 28
3.3.2 Maximum Likelihood Estimator(MLE) 29

4 Overview of methods 32

4.1 Fast-RCNN and Bayesian classifier fusion 32
4.1.1 Stereo information for contextual modelling 33

4.2 SVM-HOG and Bayesian classifier fusion 34

i

CONTENTS

5 Evaluation methodology 36

6 Implementation and performance study 38

6.1 Region hypothesis generation . 38
6.1.1 Brute force method . 38
6.1.2 Multi-scale scanning window method 38

6.2 Feature extraction and classification 40
6.2.1 Fast-RCNN architecture . 40
6.2.2 HOG-SVM Pedestrian detector pipeline 42
6.2.3 Context-Based classifier . 45

6.3 Calssifier’s fusion . 48
6.3.1 Fast-RCNN (FastRCNN) + Context based Classifier (AR)

fusion . 48
6.3.2 SVM-HOG (SVM�HOG) + Aspect ratio classifier (AR) fusion 53

7 Results and Discussion 56

7.1 Deep learning . 56
7.2 Shallow approach . 66
7.3 Comparison of deep and shallow approach 69

8 Conclusion and Future work 72

Bibliography 74

ii

List of Figures

1 Graphical description of HOG descriptor feature extraction steps [2] . 8
2 Illustration of HOG descriptor and subsequent activations by the

SVM weights [28] . 11
3 Basic biological neuron unit [31] . 12
4 Mathematical model of neuron unit [31] 13
5 Rectified Linear Unit(ReLU) activation function [31] 13
6 A threee layer Regular Neural Network [31] 14
7 ConvNet arrangement of neurons in 3D [31] 15
8 Layers involved in VGG16 ConvNet 15
9 Neuron looking at the small spatial block of the before layer, this

region is termed to be Receptive field of the neuron [31] 17
10 Illustration of feature activations and corresponding image patches . . 20
11 Separable SVM case, linear hyperplane can be drawn [36] 21
12 Non-separable SVM case, linear hyperplane cannot be drawn [36] . . 24

13 An overview of followed approach for person detection using deep
learning, Bayes context based classifier and fusion classifier. 33

14 An overview of thresholding detections using stereo based contextual
information . 34

15 An overview of followed approach for person detection using SVM-
HOG detector, Bayes context based classifier and decision fusion clas-
sifier. 35

16 Heat map of pedestrian position in the Caltech dataset 39
17 Visualizing the proposed ROIs using brute force method 39
18 Detection window generation over scale-space pyramid 40
19 Architecture of Fast Region-based Convolutional Neural Network (Fast

RCNN) [9] . 41
20 VGGNet from [10] transformed with accordance to Fast RCNN object

detection architecture. 43
21 Shallow learning detection overview, HOG-SVM detector pipeline. . . 44
22 Histogram/distribution of aspect ratio’s of pedestrian object in set 05

of Caltech pedestrian dataset . 46
23 Gaussian distribution for aspect ratio values over Caltech pedestrian

dataset . 47

iii

LIST OF FIGURES

24 Gaussian distribution of scores from Fast RCNN FastRCNN 51
25 Gaussian distribution of scores from context-based classifier AR . . . 52

26 Visualizing the e↵ect of fusion. 57
27 continued.... 58
27 Overview of detection from Fast-RCNN, Context-based(aspect-ratio)

classifier and Fusion classifier at di↵erent 59
28 Histogram of true positives and false positives over test dataset . . . 61
29 Fusion based detection on sample DLR image 64
31 Elemination of false positives obtained from fusion classifier using

stereo information . 66
32 Metric curve’s obtained by evaluating designed deep learning method 67
33 Histogram of true positives and false positives over training dataset . 68
34 Sample Detection image from SVM�HOG and decision fusion classifier

 H . 69

iv

List of Tables

1 Confusion Matrix . 36

2 The Object Classes on which Fast RCNN was fine-tunned on. 42
3 OpenCV function for defining the HOG-descriptor setting 44
4 OpenCV function for setting SVM detector with pre-trained SVM

weights on [44] dataset. 45
5 Eight likelihood values computed on decisions made from the dynamic

classifiers SVM�HOG, AR. 54
6 Class priors obtained on the set 05 of Caltech pedestrian data set . . 54

7 Camera intrinsic parameter of DLR dataset 63
8 Comparison of F1 scores on basis of PR-curve for di↵erent classifiers

models used in the designed procedure 70
9 Comparison of Precision and Recall on basis of PR-curve for classifiers

used in the designed procedure . 70
10 Comparison of area under ROC curve and average precision for clas-

sifiers used in the design procedure 70
11 Comparison of time consumed . 71

v

Chapter 1

Introduction

In the recent times extensive progress in development of advance driver assistance
systems is noticed and a camera sensor can be found in every car that is produced
in last few years. Computer vision provides cost e↵ective solution in developing
Autonomous Emergency Braking (AEB) for vulnerable road users. Pedestrians are
the one who are most prone to tra�c accidents in urban environment. Detecting
pedestrian will not only improve the safety, but also increase the ability to achieve
fully autonomous self-driving car. Pedestrian in the urban environment appear with
huge variance in pose, clutter background and distortion due to illumination e↵ect.
Recent advancement in Convolutional Neural Networks (CNN) has shown the ability
to learn features inherently that tackle the pedestrian appearance variance. Several
Shallow Learning (SL) approaches have been proposed that involves complex hand-
coded feature engineering task to encode the pedestrian into discriminant features
that enables to detect pedestrian in the scene. CNNs fail to capture inherently the
contextual information that are relative to object, unless they are modelled explic-
itly during training procedure. Recent focus of work in deep learning is towards
developing architectures that make use of context-information implicitly or model
explicitly at the post-processing stage of the detector.

The main focus of this work is to combine the contextual information of pedes-
trian with chosen CNN object detector and shallow approach for detecting pedes-
trian in realistic and challenging onboard dataset [1]. First, a näıve Bayesian context-
based classifier is learnt using training dataset. Secondly, two classifier fusion tech-
niques are proposed. In the first fusion technique context-based classifier is combined
with pre-trained CNN object detector. Whereas, in the second fusion technique
context-based classifier is combined with SVM-HOG [2] detector pipeline. Finally,
an outlook work is shown that uses stereo information to eliminate the false positives
produced by fusing context-based classifier with CNN object detector. Training and
evaluation of proposed methods is done on real tra�c data [1].

1

CHAPTER 1. INTRODUCTION

Outline of the Thesis

Several essential aspects that are relevant to thesis work are discussed in each chapter
separately. This section provides outline of thesis structure.

• Chapter 2: Related work towards pedestrian detection using deep and shal-
low Learning are discussed. Also a brief overview regarding available pedes-
trian datasets and used frameworks are given.

• Chapter 3: Explains the prerequisite knowledge on feature engineering task
and classification procedure involved in deep learning and shallow learning. It
provides the foundation to understand the proposed thesis work.

• Chapter 4: Explains the proposed concepts briefly.

• Chapter 5: This chapter describes the evaluation method employed to weight
the proposed work.

• Chapter 6: Implementation details of the proposed methods are explained
in detail with relevant graphical representations.

• Chapter 7: Obtained results of the proposed method are summarized with
reference to evaluation metrics.

• Chapter 8: Finally, this chapter concludes the thesis work and provides
proposal of future work that is based on this thesis.

2

Chapter 2

Literature review

2.1 Deep learning approaches for object detection

Popularity of pedestrian detection using the deep neural networks methods has been
focused in recent years, their is lot of research work that needs to be addressed in
this area.

ConvNet [3] was the first paper that made use of convolutional neural network
to address the pedestrian detection problem. Convolutional sparse coding was used
to initialize each layer of the designed network and the perform fine-tuning of en-
tire network to perform detection. Last and second last layers features where used
for detection. ConvNet [3] where trained on limited dataset and the length of the
network was very small. Later AlexNet [4] an large convolutional neural network
(CNN, ConvNet) was proposed which showed outstanding performance on classifica-
tion and localization task on ImageNet 2012 competition. The details of localization
task by AlexNet [4] was not described. Many authors have used sliding window ap-
proach to generate region hypothesis for detection and localization of given object
in the image. In ImageNet 2013 competition challenge, Overfeat [5] addressed the
multi-scale sliding window approach to detect and localize the object instance that
appear at di↵erent scales buy wining 1st in that years of challenge. This work emp-
hazised the capabilities of ConvNets further in solving the task of object detection
and localization.

The R-CNN: Regions with CNN features [6], neural network method addressed
the detection and localization pipeline by over throwing the design of Overfeat [5]
for object detection. The R-CNN used large ImageNet data set to pre-train the
convolutional layers and then it was fine-tuned on PASCAL VOC [7]. A selective
search [8] region proposal method was used to propose 2000 region hypothesis. High-
capacity CNNs was applied to these proposed regions. Later a class-specific linear
SVMs would classify the computed CNN features of each proposed regions. This
allowed R-CNN to achieve a mean Average Precision (mAP) of 53.3% on PASCAL
VOC detection dataset. R-CNN included a multi-stage training pipeline, it included
three stage of training. In the first stage a ConvNet on object proposals is fine-tuned

3

CHAPTER 2. LITERATURE REVIEW

using log-loss, in second stage the fine-tuned softmax layer is replaced with SVMs
which act as object detector. In the last stage a bounding-box regressors is learnt.
This training procedure is expensive in memory and even in time. Also, for each
region proposed a CNN features are extracted which make object detection slow.

A revised Fast R-CNN [9] was proposed which eliminated the drawback of R-
CNN [6]. Fast-RCNN detector pipeline accepts input image and region proposals
generated using selective search [8]. Sequence of convolutional (conv) layer and max
pooling layers produces conv feature map by acting on the input image. A region
of interest (RoI) pooling layer is appended in between the first final conv layer and
fully connected (fc) layer. This RoI pooling layer accepts proposed object proposals
and extracts the dedicated feature vector from the conv feature map. Further each
feature vector of proposed regions are fed into a series of fc layers which brach out
at last into two output layers. One produces a softmax probability of the region
and another layer acts as bounding box regressor. This redesigned pipeline allows
Fast-RCNN (with VGG16 [10]) to train the network 10x faster than R-CNN. During
testing the image is processed much faster and producing mAP 0f 66% on PASCAL
VOC detection dataset.

The bottle neck included in region proposal task would limit the Fast-RCNN to
work in real time. Region Proposal Network (RPN) is proposed in Faster-RCNN
[11] that works on the computed convolutional features of the image for proposing
regions. The RPN produces is trained end-to-end to produce potential object pro-
posals. This significantly solves the bottle neck included in Fast-RCNN and R-CNN
detector pipeline. Fast-RCNN using the RPN works at 5fps on a GPU. In ImageNet
2015 challenge task, Faster-RCNN achieved the 1st place. In the recent times many
CNN methods [12, 13] are proposed that eliminate the requirement of external region
hypothesis generation. The YOLO [12] has very less recall on pedestrian detection
and fails to detect objects that appear in dense.

Chosen method: CNNs require high end GPUs to train and inference them
on the real platform. Therefore, this work focuses on employing pre-trained Fast-
RCNN [9] detector pipeline to design proposed deep method. The pre-trained deep
model of Fast-RCNN is available under the open-source with MIT License [14].
This available model is first trained on ImageNet dataset and later fine-tuned on
PASCAL VOC dataset. Even though Faster-RCNN [11] perform better compared
to Fast-RCNN [9], the Faster-RCNN includes end-to-end Region Proposal Network
(RPN) that should be fine-tuned for our specific task. Due to unavailability of re-
quired GPU hardware for fine-tuning RPN and to have high degree of control over
proposed regions, this work selects Fast-RCNN.

Frameworks: Handful of deep learning libraries are available under the BSD
license. Ca↵e [15], Theano [16], and Torch [17] are some of the prominent deep
learning libraries. Ca↵e [15] is the widely used framework when dealing on CNNs.

4

CHAPTER 2. LITERATURE REVIEW

Core implementation of this framework is in C++ and provides binding to Python
and MATLAB. Out of the existing deep framework Ca↵e is the most stable especially
for image processing task. Ca↵e is highly modular framework and allows us to work
in both CPU mode and GPU mode. It contains many o↵-the-shelf pre-trained base
models like AlexNet [4], VGGnet [10], GoogleNet [18]. These pre-trained models
allows to design and model detectors that eliminate costly procedure of training the
deep models. The chosen Fast-RCNN [9] is implemented using Ca↵e framework,
hence this work make use of Ca↵e with Python biding for prototyping proposed
ensemble deep approach.

2.2 Conventional methods for pedestrian detection

Within the last years a number of several shallow approaches where proposed to
tackle the problem of detecting pedestrian detection in automotive environment us-
ing the camera sensor. Histogram of Oriented Gradients (HOG) has a input feature
descriptor as proven its ability to encode the pedestrian e↵ectively. Using HOG
directly as a input along with linear Support Vector Machine (SVM) as shown sig-
nificant performance in detecting pedestrian on INRIA dataset [2]. After this work
many variants of HOG have been proposed. Deformable parts model [19] also make
use of HOG as input. The integral channel features [20] linearly transforms input
channel resulting in multiple registered image channels; features such as HOG, Haar
wavelets are computed using the integral channels. Colour provides essential tex-
ture information regarding the pedestrian, hence LBP [21] a variant of HOG feature
captures texture information along with gradient information. These captured LBP
features are provide as input to linear SVM for detection. The filtered channel fea-
tures [22] transforms the input image into set of feature maps using filters. These
feature maps are sum pooled into feature vector and fed into decision forest, which
are learnt via Adaboost. Multi-cue onboard pedestrian detection [23] uses features
like HOG, Haar, Oriented Histogram of Flow; cue-components are L2-normalized
and concatenated, then MLPBoost classifier is learnt on these features to provide
strong classification.

Chosen method and Framework: Considering the ambiguity in feature rep-
resentation and complexity involved in shallow methods for pedestrian detection. A
classic detector pipeline as in [2], which make use of HOG descriptor (with normal-
izing and pooling) as direct input for linear SVM [2] to perform pedestrian detection
is consider in prototyping the proposed ensemble shallow approach. OpenCV [24]
with C++ interface is used in this context of work for prototyping proposed shallow
method for pedestrian detection. OpenCV is the widely available open source under
BSD license.

5

CHAPTER 2. LITERATURE REVIEW

2.3 Dataset

In supervised learning data is very crucial. In urban scene pedestrian appear in
wide variety of pose and also they are influenced by many environmental variations.
It is necessary to look in to openly available pedestrian datasets that capture these
variations in large scale with additional features. Caltech [1], TUD-Brussels [23],
ETH [25],Daimler pedestrian detection dataset [26] and INRIA [2] are some of the
openly available pedestrian dataset. Among these datasets only INRIA pedestrian
dataset is acquired using point and shoot camera which su↵er from selection bias,
whereas other mentioned datasets are acquired by means of camera mounted on the
moving mobile platform.

The size of the Caltech dataset is twice large as compared to the other dataset
that are mentioned (Table 1 from [1]). It contains approximately 250,0000 frames
of video sequence recorded with 640 ⇤ 480 resolution at 30Hz while driving through
urban tra�c environment. Caltech dataset is completely annotated with 350,000
bounding boxes and 23000 unique pedestrians. Temporal correspondence between
annotated bounding boxes and occlusion labels are provided. The ETH [25] pedes-
trian dataset are recorded on a chariot with 640 ⇤ 480 resolution at ⇡ 14 frames per
second. The dataset consists of single frame annotation, depth map for each image,
and the calibration files. Size of the annotated training and test data is combined
of ⇡ 15k. TUD-Brussels data is acquired from onboard camera mounted on driving
car with resolution of 640 ⇤ 480. The total dataset corresponds to 1776 annotated
training and 1498 test pedestrians dataset. The Daimler [26] is the only dataset
with non-colour images among all, and is only ⇡10% magnitude of that of Caltech
dataset.

The scale of pedestrians in the INRIA dataset is having median height ranging
between 100-250 pixels. While most of the datasets (Caltech, ETH, TUD-Brussels
and Daimler-DB) collected with the camera mounted on the mobile platform in driv-
ing environment has median height from 50-100 pixels. It accentuates the necessity
to consider the detection of low resolution pedestrians in the driving environment.

Caltech dataset is the only dataset that has high detailed annotations with fea-
tures including like colour image, video data and temporal correspondence between
annotated bounding boxes and occlusion labels. Table 1 from [1] provides in depth
details of Caltech dataset. Only Set 05 of training dataset, and Set 09 of testing
dataset from Caltech pedestrian dataset is chosen for training, testing and evaluating
the proposed pedestrian detectors. All pedestrian ranges (far, near and medium)
with full visible region are taken into consideration during designing and testing
the proposed methods. This work does not focus on occlusion handling, hence the
occluded pedestrian regions are not taken into account.

6

Chapter 3

Fundamentals

3.1 Feature engineering

Feature representation are critical in object classification problem, there is a need
for structuring the raw information into a distinctive features (like HOG, SHIFT,
BOW....etc). A high level detail description of a features are necessary for classifi-
cation and detection problems, this high level detailing comes at the cost of dealing
with more data and complex design procedures. Feature engineering reasons this
procedure of essential feature selection and generation that is necessity for the par-
ticular detection or classification problem. In the further subsection of this section,
an procedure of generic featuring engineering process involved in shallow learning
and inherent feature engineering involved in deep learning approaches are discussed.

3.1.1 Hand-coded Features

In shallow learning approach the feature engineering is a process that involves com-
puter vision algorithms which indeed involves hand-coded procedure for feature rep-
resentation. Selection and generation of features of a particular object is crucial as
it describes the distinctive structure of the object during classification stage. De-
tecting human in the image is challenging because of the wide range of dynamic
appearance and poses that they adapt. There is a need for robust feature set which
counters the e↵ects of dynamic illumination e↵ects and cluttered background in the
detection environment. From the work done by [2] it has been noticed Histogram
of Oriented Gradients (HOG) descriptors can e↵ectively generate features that are
e�cient to classify persons.

3.1.1.1 Histogram of Oriented Gradients(HOG)

HOG as a feature descriptor have proven its e�ciency in the pedestrian classifica-
tion in computer vision problems, hence this work utilizes the HOG descriptor as
designed in [2] for pedestrian detection . Features are computed on the dense and
overlapping grid of equi-spaced cells. Fig.1 gives us the ground explanation about
HOG features that are generated. HOG descriptor defines the distribution of local
intensity gradients and edges that characterises the shape and appearance of an

7

CHAPTER 3. FUNDAMENTALS

object in an image. In practice features using HOG descriptor is accomplished by
dividing the image into small spatial regions called cells. Cells accumulates a gra-
dient direction or edge orientation over the pixels in 1-Dimension histogram. Then
the representation of features is given by the combined histogram entries of all cells.
For the generated features to have the ability to counter illumination, shadowing
..etc, contrast-normalizing the local response is essential. Therefore ”energy” (which
is the local histogram) is accumulated over larger spatial regions called blocks and
obtained energy is utilized to normalize all the cells in that particular block.

Figure 1: Graphical description of HOG descriptor feature extraction steps [2]

Normalizing gamma/colour : Usually working on the RGB and LAB colour
space provides colour information which results in performance improvement of the
overall detector, however as per the [2] showed using the grayscale had reduced in
the performance. And performing gamma normalization with square root compres-
sion improves the detection performance by slight margin. This step in generation

8

CHAPTER 3. FUNDAMENTALS

of the features of an object had no significance because of the subsequent descriptor
normalization.

Gradient computation, for grey images gradient is computed at each pixel.
Whereas, for colour images gradient of a pixel is computed on all the three channels,
and the gradient with highest norm is selected. Features that are computed with
di↵erent masks and smoothing will results in significance performance of the detec-
tor. The work done by [2] suggest using the mask [-1,0,+1] and Gaussian smoothing
�=0 results in better performance of the detector. Therefore using smaller mask
on the image results in finer details which are important and smoothing decrease
the contrast of the edges in the image. Gradients provide information regarding the
intensity of particular pixel changing in the given direction. This allows in finding
the strong edges in that direction in which the gradient is computed. The gradient
vector of a pixel at a particular location in the image can be computed by taking
the partial derivative in x and y direction as given in below equation [27]:

rI = (
@I

@x
,
@I

@y
)

Using the partial derivative function the gradient along x and y direction are com-
puted as:

@I

@x
=

I(x+ 1, y)� I(x� 1, y)

2
and

@I

@y
=

I(x, y + 1)� I(x, y � 1)

2

By using this gradient maps of an image, magnitude and orientation of a pixel (edge)
is given as:

S =
q

S2
x + S2

y (3.1)

and

✓ = arctan(
Sy

Sx
) (3.2)

Spatial/Orientation Binning : Each pixel based on its orientation of the gra-
dient element contributes for its weighted vote for orientation. As noticed from fig.1,
along the local spatial region called cells these votes are grouped into the orientation
bins. The cells have the rectangular shape and the orientation binning are evenly
spaced over 0�-180�, therefore these votes are function of the gradient magnitude.
Hence only the magnitude is considered for better results, and also the number of
orientation bins used are 9. According to [2] it shows increasing the number of ori-
entation bins about 9 shows increase in performance and further increase has little

9

CHAPTER 3. FUNDAMENTALS

e↵ect on the performance of the detector.

Block normalization and Descriptor Overlap: Grouping cells into large
spatial regions called blocks and contrast normalising each block separately turns
out to be e↵ective to counter the local variations in illuminations and foreground-
background contrast. Typically blocks are overlapped, hence each cell response con-
tributes several components to the final feature vector (descriptor vector), therefore
cells are normalized with respect to a di↵erent block. This leads to redundant infor-
mation contribution of each cell, but as shown by [2] block normalization increases
performance. Let v be a descriptor vector/feature vector that is unnormalized, kvkk
be its k-norm and to avoid division by zero a small normalization constant ✏ is used.
The L2-norm is given in equation (3.3) [28].

v vp
kvk22+✏2

(3.3)

we use the L2-Hys ; L2-norm followed by clipping and renormalizing from [29]. Using
this for person class has been e↵ective it can bee seen from the evaluation from [2].

Descriptor window size : The size of the descriptor is further discussed in
the implementation chapter.

The above process depicts the operation and function involved in the HOG de-
scriptor for feature generation and these generated features are used to train the
classifier. In this work we use default linear SVM soft calssifer which is trained with
SVMLight [30]. In the further sections of this chapter we explain the principle of
Linear Support Vector Machine and their cases.

10

CHAPTER 3. FUNDAMENTALS

3.1.1.2 Visualization of HOG-descriptor computed features

(a) Average gradient for positive images over
INRIA dataset

(b) Positive SVM weights, where the block is
centred on the pixel

(c) The negative SVM weights (d) positive test image INRIA dataset

(e) Computed HOG descriptor on test image (f) positive SVM weighted HOG descriptor

(g) HOG descriptor weighted by the negative
SVM weights

Figure 2: Illustration of HOG descriptor and subsequent activations by the SVM weights
[28]

11

CHAPTER 3. FUNDAMENTALS

The fig.2 gives an sample visualization of HOG descriptor computation on an INRIA
dataset [2]. When an average gradient is taken on set of pedestrian, it is observed
from the fig.2a it gives out the contour of pedestrian object. As noticed from the
fig.2e, when an HOG is computed on the test image fig.10i the gradients of the edges
are captured into orientation bins which in-turn encodes the contour of an specific
object. Further as the computed HOG is weighted using the positive SVM weights
it reveals the encoded object as noticed from the fig.2f.

3.1.2 Deep Learning

Deep learning is inspired by working principle of the biological neural network exiting
in our human brains. The fig.3 shows the basic unit of the neuron. The input signal
is brought by dendrites and the processed output signal is carried out by axon.
The axons further branches out and connects to other dendrites via the synapses
to other neuron unit. Fig.4 is the mathematical model of basic neuron unit. When
looked into computations involved in the mathematical model, has the signal (e.g
x0) travels along the axon it will interact with strength (e.g w0) of the synapses
and then based on the influence of the synapses the product (w0 ⇤ x0) is carried by
the dendrites to the cell body. Several other dendrites connected to cell body will
carry this information to the cell, where they all get summed up. When the sum
is greater than certain threshold the neuron will fire and send a spike along axon.
The firing rate is modelled by the activation function f . The activation function
that is employed in the VGGnet [10] (used base convolutional neural network model
in the work) is the ReLU Rectified Linear Unit. The graphical representation of
ReLU activation function is shown in fig.5, this activation function just thresholds
at zero. The activation function [31] is given as, gather f(x)= max(0,x) gather

Figure 3: Basic biological neuron unit [31]

3.1.2.1 Convolutional Neural Networks(CNN, ConvNet)

Its important to understand the inherent feature engineering process that is involved
in end-to-end CNNs. CNNs are the subclass of the deep learning, where to due it’s

12

CHAPTER 3. FUNDAMENTALS

Figure 4: Mathematical model of neuron unit [31]

Figure 5: Rectified Linear Unit(ReLU) activation function [31]

13

CHAPTER 3. FUNDAMENTALS

significant mathematical operation convolution it derives the name Convolutional
Neural Networks. The Regular Neural Networks take input as a single vector and
transform it through the hidden layers. Each hidden layer is made up of a set of
neurons and each neuron is connected to all the neurons in the previous layer, but
is not connected to the neurons in the same layer which can be visualized in fig.6.
The number of neurons in each layer corresponds to the number of weights in each
layer. The final layer in the architecture is also fully connected and its responsible
for the class score, this layers is also termed as output layer. Regular Neural Network
does not scale well when dealing input as full images. Consider an image of size
600 ⇤ 500 ⇤ 3 this would lead to a neurons of size 600 ⇤ 500 ⇤ 3 = 900000 weights at
each layer, eventually through the network architecture it adds up to large number of
weights. Cleary it is visual that large number of parameters can results in overfitting.

3D volumes of neurons: Convolution Neural Network (see fig.7) modify the archi-
tecture of the regular neural network by having neurons arranged in 3 dimensions:
width, height, depth (depth corresponds to third dimension of activation volume
in each layer, not to the depth of the neural network architecture which can refer
to total number of activation layers.) In CNNs each neuron is not connected in
fully connected manner as seen in regular neural network, it is connected to just
small region of the layer before. This modification in the architecture will signifi-
cantly reduce the number of parameters needed to be learnt and reduce the risk of
overfitting.

Figure 6: A threee layer Regular Neural Network [31]

Lets have a look into 16 layer VGG network architecture from [10], to understand
the feature engineering process and classification process involved (classification pro-
cess involved will be explained in next section). This work employes Fast-Region
based Convolution Neural Network (Fast-RCNN) from [9] which make use of VG-
Gnet architecture as the base network for object detection. The fig.8 gives the
visualisation of general VGG-16 ConvNet model, based on required operation the
final fully connected layer can have di↵erent dimension. For the purpose of explana-

14

CHAPTER 3. FUNDAMENTALS

Figure 7: ConvNet arrangement of neurons in 3D [31]

tion general VGG-16 model is considered, which is trained and tested on Imagenet
data set[32]. Therefore the output layer is reduce to 1*1*1000 = 1000. 1000 because
the Imagnet has 1000 classes for classification challenge.

Figure 8: Layers involved in VGG16 ConvNet
Notes: In this thesis work a slightly modified VGG model is used which is available in [9], The

VGG16 is consider to showcase the general used layers in ConvNet model.

General layers used to build ConvNet

As observed from fig.8 the ConvNet is made up of sequence of layers, where each layer
will be responsible for transforming the volume of activations into another through
a di↵erential function. Main layers that are used in the building the ConvNet

15

CHAPTER 3. FUNDAMENTALS

are Convolution layer, Pooling layer and Fully-Connected layer. Before
explaining the feature extraction process that is involved inherently in CNNs. It is
important to understand the operation of di↵erent layers that are used repeatedly
in building the ConvNet architecture.

Convolution Layer

Convolution layer parameter consists of a learnable filter or kernels, these kernels
are small spatially (width and height) and perform operation over the depth of the
input volume. In convolutional network terminology the first argument is referred
to as input and the second argument is know as kernel or filter and the output is
termed as feature map. Convolution operation over the image is 2-Dimension and
can be given as (3.4) [33, 31].

S(i, j) = (I ⇤K)(i, j) =
X

m

X

n

I(m,n)K(i�m, j � n) (3.4)

In VGG-16 CNN model uses the filter (K) size of 3*3, they use small spatial filed.
During the forward pass, sliding of each filter across the width and height of the in-
put volume is performed, and also dot products between the entries of the filter and
the input at every position is computed. This gives rise to responses of that filter
at every spatial position. Intuitively, filters get activated when they see some type
of visual feature such as an edge of some orientation or a blotch of some colour on
the first layer, or eventually entire patterns on higher layers of the network. These
filter weights are learned over the training procedure to look for specific activations.
This allows to have an entire set of filters in each CONV layer (e.g.64 filters in VGG
Conv1 layer), and each of them will produce a separate 2-dimensional activation
map. These activation maps will be stacked along the depth dimension to produce
the output volume.

The neurons in the regular neural network will be connected fully with all other
neurons of the before layer, but as the dimensionality of the input increases (incase
of images) it is impossible to have full connection of the neurons with the previous
layer neurons, therefore CNNs pocess only local connectivity. That is, the neurons
look at particular region of the before input volume called Receptive field. The
fig.9 gives the visual understanding about receptive field. The output volume spatial
arrangements are define by the hyperparameters: depth, stride, zero-padding.

Depth is usually an hyper-parameter that is defined by the number of filters or
kernels that are used. Each filter looks at di↵erent characteristics of input. Stride
specifies amount of sliding kernel across input, if larger the stride then it results in
smaller the spatial size (width and height) of the output volume. To have the con-
trol over the spatial size (width and height excluding the depth dimension) we use
the hyperparameter Zero-padding. Zero’s are padded around the input volume
border, by doing this it allows to have the same spatial size of the input volume so

16

CHAPTER 3. FUNDAMENTALS

Figure 9: Neuron looking at the small spatial block of the before layer, this region is
termed to be Receptive field of the neuron [31]

.

that height and width of the inout and output results in same.

Parameter Sharing reduces the number of parameters. For example consider
the Conv1 layer with input Image size of [224*224*3], the kernel size f=3 (i.e 3 ⇤ 3),
stride S=2, depth K=64 and padding P=0 then the number of neurons are given
by (W�f+2P

2 + 1) [31] which gives rise to ((224� 3)/2) + 1 = 112. Then the output
of the convolution layer have 112 ⇤ 112 ⇤ 64 = 802, 816 neurons and each neuron
as 3 ⇤ 3 ⇤ 3 = 27 weights and 1 bias. Altogether, this sums up to 802, 816 ⇤ 28 =
22, 478, 848 parameters on the Conv1 layer of the ConvNet alone. It is clear that
the number is very high. To reduce the number of parameters, one reasonable
assumption is made use: the neurons are constrained in each depth slice to use the
same weights and bias. By using this concept of parameter sharing the Conv layer
has only 64 unique set of weights, this gives rise to a total of 96 ⇤ 3 ⇤ 3 ⇤ 3 = 2, 592
unique weights, or 2,656 parameters (+64 biases).

Pooling Layer

This layer functionality is to progressively reduce the spatial size of the representa-
tion of input and even reduce the number of parameters which also assist in control-
ling overfitting. Usually Max operation is employed independently over each depth
slice of the input and gradually resizes it spatially. Pooling layer down-samples ev-
ery depth slice in the input both in height and width, hence discarding redundant
activations.

Normalization

To have some sort of inhibition scheme in CNN architecture normalization layers are
used. From neurobiology we have the concept called ”Lateral Inhibition”. Lateral
inhibition is the capacity of the excited neuron to suppress its neighbour so that local

17

CHAPTER 3. FUNDAMENTALS

maxima are enhanced. In the VGG architecture they make use of Local Response
Normalization(LRN) layer to employe the concept of inhibition. When we have
ReLU neurons, using LRN normalization scheme is advantageous because ReLU
neurons have unbounded activation and we need LRN to normalize that. This make
feasible to have high frequency features with a large response. Performing normal-
ization around the local space of the excited neuron makes it more sensitive and it
will subdue the response that are uniformly large in any given local neighbourhood.
LRN basically boost the neurons with relatively large activations by employing the
concepts of lateral inhibition across the channels . Section 3.3 in [4] gives in-depth
understanding regarding the operation of LRN when using the ReLU neurons.

Fully connected layer

This layer is similar to the layers in the Regular Neural Network, where a single
neuron in the layer is connected to all the. From the fig.8 the final fully-connected
layer (fc layer) reduces to 1⇤1⇤1000, because the number of classes that we have in
ImageNet [32] is 1000 classes. On top of this layer, from the fig.8 we see the softmax
layer which is responsible for probabilistic score for each class that is relative to the
given input data.
The Linear classification of features into subsequent classes by ConvNets is ex-
plained in the subsequent sections. In the next subsection visualization of the fea-
tures that the ConvNets learn inherently is discussed.

3.1.2.2 Visualizing the features learnt by ConvNet

Its very important to know why the deep learning outperforms the shallow approach,
the main advantage of deep learning is they learn the features that are required for
the task inherently over the training. The visualization technique proposed by [34],
helps us to have a look at the input stimuli that fires the feature maps at di↵erent
layer in the chosen ConvNet model. The visualization technique proposed by [34]
is with the Deconvnet, the approach maps the feature activities back to pixel space.
In the paper they use the popular model by [4] and perform training on ImageNet
2012 training set, fig.10 shows feature visualized on train model at di↵erent layers.
Top nine activations in a feature map at each layer is shown, alongside the feature
maps you can find the corresponding image patches. In Layer 1 we notice that the
feature map gets exited for a particular edge orientation. Layer 2 excites for com-
plex edge/colour conjunctions and corners. As you the layer 3 responds for more
complex invariance, firing for similar structures in the patches. In layer 4 you can
find it activates for more significant class specific variations like dog faces; birds
legs. In the last layer feature maps visualized we see the feature map responds for
significant pose variations.

Deep visualization toolbox by [35] provides for better understanding and visual-
izing of learnt features by ConvNet model, and also it allows for better development
of further CNN architecture.

18

CHAPTER 3. FUNDAMENTALS

(a) corresponding image patch Layer 1 (b) Layer 1 Feature map

(c) corresponding image patch Layer 2 (d) Layer 2 Feature map

(e) corresponding image patch Layer 3 (f) Layer 3 Feature map

(g) corresponding image patch Layer 4 (h) Layer 4 Feature map

19

CHAPTER 3. FUNDAMENTALS

(i) corresponding image patch Layer 5 (j) Layer 5 Feature map

Figure 10: Illustration of feature activations and corresponding image patches
Notes: all the figures are taken from the work done by [34]. The images are best appeared when
viewed in electronic form.

3.2 Image classifiers

The task of classifiers in the image classification problem is to map the given image
to a single label from pool of fixed set of categories. Some of the linear classifiers
are k-NN, SVM and softmax. The k-Nearest Neighbour (kNN) classifier labels test
images by comparing them to the images from the training set. The disadvantage
of the k-NN is it must remember all the training data to make comparison with
the test data, this leads to downside of k-NN because its space ine�cient and it
could be seen that the dataset ranges to gigabytes in size. Secondly classifying is
expensive because it needs to make comparison with all training data. Due to the
downside of the k-NN we just focus on how a SVM and softmax classifiers are used in
shallow learning and deep learning approaches. Unlike the k-NN most of the linear
classifiers need not retain training data they just learn the parameters which does
the classification task. In the further subsection we find out how Support Vector
Machines (SVM) and softmax are used to formulate score function and loss function.

Support Vector Machines (SVM)

Classification of the given data is a common task in machine learning. In a classifi-
cation problem, the learner approximates a function which can map a given vector

20

CHAPTER 3. FUNDAMENTALS

data into one of the various class labels. In supervised setting, it is done by looking
at a set of input-output examples of the function. The finite input-output example
data known as training data is used for learning the classification function. Support
Vector Machines (SVM) is one of the successful supervised learning methods that
have strong theoretical foundations in solving classification problem in. The trained
SVM decision function would classify the unseen example data accurately. High
generalization capability and simple linear classification ability are the main reasons
for the success of SVMs. Linear classification of a two-class case (+ve class and -ve
class) is considered unless specified. Given a set of a d-dimensional vectors, linear
classifier tries to separate them with a Rd dimensional hyperplane this is the basic
idea behind SVM. There exists many hyperplanes that classify the data. Margin is
defined as the distance between the nearest samples on both sides of the hyperplane,
SVM are designed to choose the hyperplane that has the largest margin between the
two classes. Basic theory of SVMs for di↵erent cases is discussed in the following
sections [36, 37, 38].

Notations: To describe the task in mathematical terms, we introduce the fol-
lowing notations

• an example data point is denoted by x 2 Rd,

• class membership for a data point is denoted by y 2 {+1,�1},

• the set of training examples is denoted by X = {x1, x2, ...xn},

• class labels for the training set is denoted by Y = {y1, ...y2}

Figure 11: Separable SVM case, linear hyperplane can be drawn [36]

21

CHAPTER 3. FUNDAMENTALS

3.2.1 Linear Support Vector Machine

3.2.1.1 Hard-Margin case

SVM is the knowledge inherited from the statistical theory. In machine learning,
classification of the given data into a specific class out of many very important.
When dealing with classification problem, a learnable function F : Rd ! {�1,+1}
is required that defines the class of a given example x. F [36] in the SVMs is given
as a linear function i,e.

F = sign(f(x)) (3.5)

The decision function f : Rd! R, which is responsible for transforming d dimension
data to class label. This transformation is defined by the hyperplane separating the
two classes. An hyperplane separating the two classes is having the form:

w1x1 + w2x2 ++ wdxd + b = 0 (3.6)

where x1,x2,....,xd are the components of x , w1,w2,....,wd are the components of
the weight vector w and b is the bias. Decision function f can be written as:

f(x) = w · x+ b (3.7)

w·xi + b = 0 is satisfied when the points xi lie on the hyperplane, where w is
normal to the hyperplane, b

kwk is the perpendicular distance from the hyperplane

to the origin, and kwk is the Euclidean norm of w. The minimum distance from
the separating hyperplane to the closest positive and negative example is given
by d+ and d� respectively. Therefore, d++d� defines the margin of a separating
hyperplane. In case of linearly separable data, the support vector algorithm simply
looks for the separating hyperplane with largest margin. As the data is linearly
separable in this case, we can select two hyperplanes in a way that there are no
points between them and maximize the distance between them. These hyperplanes
can be written as follows:

w · x+ b = 1

w · x+ b = �1

The margin which is the distance between those hyperplanes will be equal to 2
kwk . As

we want to maximize the margin, we want to minimize the term kwk. It would be
di�cult to solve minkwk because of the square root involved in calculation of kwk.
Therefore, minkwk2 is used as the optimization problem to make it easier. Also,
as we do not want any data points falling into the margin, we add the following
constraints:

w · x+ b � 18 xi with yi = 1,

and

w · x+ b 18 xi with yi = �1

22

CHAPTER 3. FUNDAMENTALS

After combining the above inequality constraints into a single constraint, we will
have the following primal optimization problem. This is a quadratic programming
problem.

min
w,b

1

2
kwk2 (3.8)

with reference to,

yi(w · x+ b � 1) (3.9)

Note that factor 1
2 is used for mathematical convenience. The Lagrangian formula-

tion [36, 37, 38] of the above problem which replaces the inequality constraints with
equality constraints.

LP =
1

2
kwk2�

nX

i=1

↵i[yi(w · x+ b)� 1] (3.10)

where ↵i � 0, 8i are lagrangian multipliers for each of the inequality constraints in
equation(3.9). The above Lagrangian is maximized with respect to ↵i, and mini-
mized with respect to w and b. Consequently,at this saddle point, the derivatives of
L with respect to primal variables must vanish,

@

@b
LP (w, b,↵) = 0

@

@w
LP (w, b,↵) = 0

↵[yi(w · x+ b)� 1] = 0 8 i

↵i � 0

which leads to

nX

i=1

↵iyi = 0 (3.11)

and

w =
nX

i=1

↵iyixi (3.12)

This problem is solved by using standard quadratic programming techniques. It
can also be solved by solving its dual problem, which is easier and gives the same
solutions as the one obtained by solving the primal version. Due to the convexity of
the primal optimization problem, the solution is unique but the coe�cients ↵i need
not be unique. The points for which ↵i are non-zero are called as support vectors.
Fig. 11 summarizes the situation for a 2-dimensional data, plotting support vector

23

CHAPTER 3. FUNDAMENTALS

points with extra circles around them. Dual form of the optimization problem is
written as

LD = max
↵2Rn

{
nX

i=1

↵i �
1

2

nX

i,j=1

↵i↵jyiyj(xi · xj)} (3.13)

w.r.t↵i � 0, i = 1, ..., n (3.14)

and
nX

i=1

↵iyi = 0 (3.15)

If we substitute the Equation (3.12) in the original decision function Equation(3.7),
then we have

f(x) =
nX

i=1

↵1yix
T
1 x+ b (3.16)

Figure 12: Non-separable SVM case, linear hyperplane cannot be drawn [36]

3.2.1.2 Soft-Margine case

Till now, we showed how SVMs are designed when that the training data is linearly
separable. When the data is not linearly separable, there is no feasible solution and
hard-margin SVM is unsolvable. An example of this can be found in the fig.12. This
section shows how hard SVMs are modified to apply them in inseparable case. In
order to assign the penalty on the errors, non-negative slack variables ⇠i � 0, i =
1,n are introduced in the equation (3.9) as follows

(yi(w · xi) + b) � 1� ⇠i for i = 1, ..., n (3.17)

⇠i � 0 8 i (3.18)

For any point in the training data xi (Fig. 12), if 0 < ⇠ < 1, the data do not
have the maximum margin but are still correctly classified. But if ⇠ � 1, the data

24

CHAPTER 3. FUNDAMENTALS

are misclassified by the optimal hyperplane. Therefore, we have
P

i ⇠i as an upper
bound on the number of training errors. In order to assign an extra cost for these
errors, the objective function to be minimized will be

Q(w, b, ⇠) = kwk2+C(
X

i

⇠ki) (3.19)

subject to yi(w · xi + b) � 1� ⇠i for i = 1, ..., n (3.20)

In the above equations, C is the margin-parameter to be chosen by the user, which
determines the trade-o↵ between the maximization of the margin and minimization
of the classification error. This is a convex programming problem for any positive
integer k for k = 2 and k = 1 it is also a quadratic programming problem, and the
choice k = 1 has the further advantage that neither the ⇠i , nor their Lagrange mul-
tipliers, appear in the dual optimization problem. We call the obtained hyperplane
the soft-margin hyperplane. When k = 1, we call the support vector machine as the
L1 soft-margin support vector machine and when k = 2, the L2 soft-margin sup-
port vector machine. First we shall discuss L1 soft-margin support vector machines.
Similar to the case of separable case, at first lagrangian multipliers are introduced
in the optimization function as follows

LP (w, b, ⇠,↵, �) ⌘
1

2
kwk2+C

nX

i=1

⇠i �
nX

i=1

↵i(yi(w · x1) + b)� 1 + ⇠i)�
nX

i=1

�1⇠i

(3.21)

where ↵i,�i,8i are non-negative Lagrangian multipliers. For optimal solution, the
following KarushKuhn-Tucker (KKT) [36, 37] conditions should be satisfied

@LP (w, b, ⇠,↵, �)

@w
= 0 (3.22)

@LP (w, b, ⇠,↵, �)

@b
= 0 (3.23)

@LP (w, b, ⇠,↵, �)

@⇠
= 0 (3.24)

↵(yi((w · xi) + b)� 1 + ⇠i) = 0 for i = 1, ..., n (3.25)

�i⇠i = 0 8i (3.26)

↵i � 0, �i � 0, ⇠i � 0 for i = 1, ..., n (3.27)

Using equations (3.22) to (3.24) on equation (3.21), we arrive at the following

w =
nX

i=1

↵iyixi (3.28)

nX

i=1

↵iyi = 0 (3.29)

↵i + �i = c for i = 1, ..., n (3.30)

25

CHAPTER 3. FUNDAMENTALS

substituting equation (3.21), we obtain the following dual problem

LD9↵ ⌘ max
X

i

↵i �
1

2

X

i,j

↵i↵j(xi, xj)yiyj (3.31)

subject to the constraints; 0 ↵i C (3.32)
X

i

↵iyi = 0 for i = 1, ..., n (3.33)

Not that the main di↵erence now is that the ↵i is now bounded by C. Substituting
equation (3.28) in equation (3.27) now the decision function becomes,

f(x) =
nX

i=0

↵iyi(xi · x) + b (3.34)

where n is the number of training samples out of which the feature vectors for xi,for
which ↵i is non-zero are called as support vectors [36, 37, 38].

3.2.2 Softmax

CNNs for image classification includes two major functions known to be score func-

tion and loss function. Score function and loss function are responsible for map-
ping the raw data into class scores and quantifying the class score with the ground
truth labels respectively. The loss function is minimized with respect to the parame-
ters of the score function and this event of minimization in supervised deep learning
is termed as optimization problem [31, 33].

3.2.2.1 Score function

Linear classifier is a score function which maps the raw data into the class scores.
Consider the training dataset consisting of images xi 2 RD, with each image bounded
to an label yi. Here i = 1, 2, 3, ...N and yi = 1, 2,K. That is, there are N examples
and K discrete categories. The linear score function can be defined as f : RD ! RK ,
which maps the raw data to the class scores. A simplest function can be a linear
classifier, i.e;

f(xi,W, b) = Wxi + b (3.35)

Parameters W is called as weight, and b is often to be called as bias vector

beacuse it influence the output class scores without interacting with the input data
xi. Several key points in process of image classification using CNNs are to be noted:

• Usually the input data (xi, yi) are consider to be fixed and given, hence we
have no authority over them. During training of CNN we learn the weights

interchangeably also termed as parameters W,b are learnt. We learn the
parameters such a way that the class score and the ground truth label has
minimum error.

26

CHAPTER 3. FUNDAMENTALS

• Advantage of this approach is, the training data is used to learn the parameters
W,b and during testing we just need the learnt parameters W,b and we
discard the necessity of complete training data to be known.

• Classifying an image is just involved with matrix multiplication and addition,
which results in faster classification when compared to methods that involve
comparing test image with all of the training data [31, 33].

3.2.2.2 Loss function

As from the previous section we know that we don’t have control over the input
data(xi, yi), the only control we have is on the parameters W,b. The loss function
is responsible to minimize the error between the predicted score and ground truth
label of training image. The loss will be high if we are performing a poor job of
classifying the training data, and it will be minimum when performing better. There
are several ways to define the loss function but we consider only limited types [31].

Multiclass Support Vector Machine loss

Multiclass support Vector Machine loss also termed as SVM loss wants the correct
class score for each image to have a higher score compared to the incorrect class with
an degree of some fixed margin �. Consider we are given an ith image with class
label yi which specifies the index of the correct class. The score function f(xi,W, b)
gives the class scores (class scores are abbreviated as s). For our understanding the
class score of jth class is the jth element: sj = f(xi,W, b)j. The Multi-class SVM
loss for the ith image is formalized as:

Li =
X

j 6=yi

max(0, sj � syi +�) (3.36)

You can notice in the formal (3.36) [31, 33], we perform thresholding at zeromax(0,�)
this is often termed as hinge loss. People also use the squared hinge loss SVM or
L2-SVM , which has the form max(0,�)2. But most of the time we find standard
SVM loss function used [31, 33].

Softmax classifier

Gives intuitive output has a probabilistic interpretation, where as the the SVM
outputs scores for each class. The score function f(xi,W, b) remains unchanged
likewise that is used in the SVM classifier, but the scores are interpreted as the
unnormalized log probabilities for each class and the hinge loss is replaced with the
cross-entropy loss, that takes the form:

Li = �log(
efyi

P
j e

fyj
) (3.37)

or equivalently

27

CHAPTER 3. FUNDAMENTALS

Li = �fyi + log
X

j

efyj

where, fj is the jth element of the vector of class scores f . In the earlier case SVM
loss function the full loss for the dataset is the mean of Li (even including the
regularization term) over the training dataset. The fraction inside the log function
in (3.37) [33, 31] is the softmax function, it squashes the real-valued scores to a
vector of values between zero and one the sum of the vector sum ups to one [31, 33].

3.3 Maximum Likelihood Estimation

3.3.1 The Likelihood Function

Lets consider some notations for defining the Likelihood function, the probability
distribution that we choose is represented by f(·). The probability distribution is
characterized by the parameter ✓(✓ is vector of parameter, ✓ = ✓1, ✓2, ...✓k). The
parameter space is given by ⌦, it is the set of all possible vector of parameters.
Inference is made using observed data to make an statement about the parameter
that governs the model, observation of data from the distribution is given by:

X ⇠ f(x|✓)

The observed variables are random X1, X2,, Xn which are independent and iden-
tically distributed (iid) due to that they are drawn independently. The parameter ✓
is learnt by observing the data x. Inferencing using the Bayes’ Rule; as the aim of
the inference is to estimate the probability that the parameter governing the distri-
bution i.e ✓ is conditional on the samples that were observed, which is denoted as
x. The probability that is to be estimated is denoted as ⇠(✓|x). We can define this
probability using the Bayes’ Rule [39, 40]:

⇠(✓|x) = f(x|✓)⇠✓
gn(x)

=
fn(x|✓)⇠✓R
⌦ fn(x|✓)⇠✓

(3.38)

for ✓ 2 ⌦

In (3.38) the denominator is just the constant in the pdf of ✓, The (3.38) can be
rewritten as:

⇠(✓|x)| {z }
posterior

/ fn(x|✓)| {z }
likelihood

⇠(✓)|{z}
prior

(3.39)

According to R.A Fisher [39, 40] the likelihood is termed as:

L(✓|x) / fn(x|✓) (3.40)

Knowledge regarding the parameter based on the observed data is summarized in the
Likelihood function. From equation (3.40) [40, 39] it is noticed that the likelihood

28

CHAPTER 3. FUNDAMENTALS

function is the function of ✓. usually the Bayesian inference aims at estimating the
posterior probability of the parameter distribution, ⇠(✓|x). We can conclude that,
the data is featured as the joint density function which is conditional dependent on
the parameters of the hypothesis model, i.e fn(x1, x2, ..., xn) = fn(x|✓). When we
consider the samples to be iid, we get f(x1|✓) · f(x2|✓) · · · ·f(xn|✓). The function
fn(x|✓) is known as likelihood [39, 40].

3.3.2 Maximum Likelihood Estimator(MLE)

Lets consider the same n iid samples which are characterized by the parameter ✓o,
MLE finds the ✓̂ that is the best estimator of ✓o. The main focus of MLE [39, 40] is
to find the best ✓ that maximizes the likelihood function, it can also be stated that
the MLE finds ✓ that is likely to have generated the vector of observed data, x. Each
point in the parameter space ⌦ is assigned a value to indicated how likely is the point
in the space to have generated the observed vector of data. We saw in subsection
3.3.1 the likelihood function is proportional to joint probability distribution of the
data. All the information that we have about the parameters given the observed
data is summarized by the likelihood function. The method of maximum likelihood
obtains the values for the model parameter that define a distribution that is most
likely to have resulted in the observed data. The likelihood is not a probability
of the data defined upon some conditional parameter. Instead it is a measure of
relative uncertainty about the probable values of ✓, given by ⌦. The likelihood as
proportional to the joint probability of the data conditional on the parameter can
be formally define as:

L(✓|x) / f(x|✓) =
nY

i=1

f(xi|✓)

As we discussed the MLE estimates ✓, which we denote as ✓̂MLE that maximizes the
likelihood function. That particular value of ✓ is most likely to have generated the
data. We can write the MLE mathematically as:

✓̂MLE = max
✓2⌦

L(✓|x) = max
✓2⌦

nY

i=1

f(xi|✓)

It is possible to work with the log-likelihood function because maximizing the loga-
rithm of the likelihood is same as maximizing the likelihood (due to monotonicity):

✓̂MLE = max
✓2⌦

logL(✓|x) = max
✓2⌦

l(✓|x)
nX

i=1

log(f(xi|✓))

Finding analytically the MLE involves taking the first derivatives of the log-likelihood,
setting it to zero and solving for the parameter ✓. Later checking that we have in-
deed obtained a maximum by calculating the second derivative at the critical value
and checking that it is negative. Let us define score as the first derivative of the

29

CHAPTER 3. FUNDAMENTALS

log-likelihood function with respect to each of the parameters(gradient). For a single
parameter:

S(✓) =
@l(✓)

@✓

Then the first order score is to zero and solved for ✓. When there are multiple
parameters (a vector ✓ pf length k), the score is defined as [39, 40]:

S(✓) = rl(✓) =

0

BBBBBBB@

@l(✓)
@✓1
@l(✓)
@✓2
·
·
·

@l(✓)
@✓k

1

CCCCCCCA

MLE Estimation of Mean and Variance for Sampling from Normal Dis-

tribution

The vector of samples x1, x2, x3,, xn form the normal distribution the parameter
that define this distribution are unknown, ✓ = (µ, �2). MLE focus to find estimator
for ✓.
Likelihood for this distribution is given as:

L(✓|x1, ..., xn) = fn(x|µ, �2) =
1

(2⇡�2)n/2
exp[� 1

2�2

X

i=1

n(xi � µ)2]

Applying log of the likelihood function, we get:

`(✓|x1, x2, ...xn) = �
n

2
log(2⇡)� n

2
log(�2)� 1

2�2

X

i=1

n(xi � µ)2 (3.41)

The likelihood function needs to be optimized with respect to paramteres µ and �2,
where �1 < µ <1 and �2 > 0.
At first we assume that we know �2 as known and lets find µ̂(�2). Now, take the
partial derivative of the log-likelihood with respect to the µ parameter and set it
equal to zero:

@`(✓)

@µ
=

1

�2

X

i=1

n(x1 � µ) = 0

µ̂ =

Pn
i=1 xi

n
= x̄n

We check the achieved estimator is the maximum by taking the second derivative:

@`(✓)

@µ
=
�n
�2

< 0 8 n, �2 > 0

30

CHAPTER 3. FUNDAMENTALS

Now lets estimate for the variance. We know from above results µ̂ = x̄n, now lets
substitute this condition for µ in the (3.41) and taking the derivative with respect
to �2:

@2`(✓)

@�2
= �n

2

1

�2
+

1

2(�2)2

X

i=1

n(xi � x̄n)
2 = 0

Solving for �2, we arrive at:

�̂2 =
1

n

X

i=1

n(xi � x̄n)
2

The Maximum Likelihood Estimators [39, 40] for µ and �2 are:

µ̂ = X̄ and �̂2 =
1

n

X

i=1

n(Xi � X̄n)
2 (3.42)

31

Chapter 4

Overview of methods

4.1 Fast-RCNN and Bayesian classifier fusion

This section provides design procedure followed for pedestrian detection using the
concepts of a deep learning, naive Bayes classifier, and fusion of both the classifiers
scores at the post processing stage. Fig.13 provides an visual overview of the ap-
proach used to achieve the task. The classifier FastRCNN is a convolutional neural
network for object detection. Keeping in mind the timing constrain for the thesis,
development of the state-of-art ConvNet for the person detection is out of scope
of this work. The utilized ConvNet architecture is the work done by [9] for object
detection on Pascal VOC dataset [7]. The architecture of the used Fast RCNN [9]
model and other relevant information regarding model will be discussed in the up-
coming chapters.

Classifier AR which is a simply a naive Bayes classifier that provides the score
for each region hypothesis based on the simple context feature; aspect ratio(AR) of
person class.

Scores ⇠FastRCNN , ⇠cbc given by classifiers FastRCNN , AR is a non-linear func-
tion, that attaches the confidence value to each of the generated region hypothesis.
At the post processing stage the output scores ⇠FastRCNN , ⇠AR from two di↵erent
classifiers are fused inside a supervisory classifier H . Fusion of scores by the super-
visory classifier H results in override of the earlier classifiers scores resulting in new
score ⇠H . This additional information incorporation at the post processing stage of
CNNs results in performance increase. Further information regarding the operation
of scores fusion method and override utility will be discussed in later chapters.

32

CHAPTER 4. OVERVIEW OF METHODS

Figure 13: An overview of followed approach for person detection using deep learning,
Bayes context based classifier and fusion classifier.
Notes: Classifier FastRCNN is a deep learning method for object detection and classifier AR is
context based Bayesian Classifier, the score for each region hypothesis; ⇠FastRCNN and ⇠cbc are
given from two classifiers respectively. Final score ⇠H is obtained by fusing the score’s from the

classifiers FastRCNN and AR.

4.1.1 Stereo information for contextual modelling

This part of the work is an outlook to show, how the stereo information will be
e↵ective for achieving better precision of the object detector. As you see from the
fig.14 the classifier fusion F operation is similar to that of the model explained
in above section. The classifier f gives the score ⇠F for each of the generated
region hypothesis. The region hypothesis are thresholded by a specific confidence
THS score to obtain detected regions with greater fusion scores than the threshold
THS. The detected regions consists of many false positive that can be eliminated by
using the stereo information. detected regions are projected on to the ground plane,
that is estimated using the computed disparity map, camera intrinsic and extrinsic
parameters. The height between the regions and ground plane is computed, those
height greater than certain threshold THH are eliminated. This reduces many false
positives, and further the filtered detection regions are subjected to another stage of
thresholding. Where the regions real height and width in meters are computed using
average disparity value of the image. Those regions with height and width greater
than the thresholds THh and THw are discarded. Finally we have the detections
that hold no false positives or less number of false positives which are not possible
to eliminate using stereo information.

33

CHAPTER 4. OVERVIEW OF METHODS

Figure 14: An overview of thresholding detections using stereo based contextual informa-
tion
Notes: THS : Threshold value for obtaining regions having fusion score greater or equal to the
specified value; THH : Threshold value specifying acceptable height in meters between detected
regions and estimated ground plane; THw and THh: are the acceptable height and width(in

meters) of the detected regions.

4.2 SVM-HOG and Bayesian classifier fusion

In the earlier subsection the scores from two di↵erent classifiers were fused to obtain
the new score. This section make use of decisions made by the marginal classifiers
for obtaining new decision from the supervisory classifier. Fig.15 provides an visual
overview of the shallow approach used for detecting pedestrian in the given envi-
ronment. The classifier SVM�HOG is the followed pipeline for pedestrian detection
that uses shallow approach procedure. This classifier is responsible for mapping
each region’s HOG descriptor to a discrete decision �SVM�HOG using linear SVM.

Classifier AR which is a simple naive Bayes classifier provides the decision
based on the simple context features of pedestrian class. Context feature of the ob-
ject class used in modelling the Bayes classifier is a aspect ratio(AR) of pedestrian.
The modelling details will be explained in detailed in the upcoming chapters.

Decisions �SVM�HOG, �AR made by the classifiers SVM�HOG, AR respectively
is a non-linear function of mapping from the feature space ⇧ to discrete decision
space �. Approached method by [41] is followed to fuse the decisions made from
 SVM�HOG, AR using the supervisory classifier H . Fusion of decisions by the
supervisory classifier H will result in override of the decision made by the marginal
classifier SVM�HOG, AR. The details of implementation will be discussed in the
later chapters.

34

CHAPTER 4. OVERVIEW OF METHODS

Figure 15: An overview of followed approach for person detection using SVM-HOG detec-
tor, Bayes context based classifier and decision fusion classifier.
Notes: Classifier SVM�HOG and classifier AR are shallow approach for pedestrian detection,
the decisions for each region hypothesis; �SVM�HOG ' �1 and �AR ' �2 are given from two

classifiers respectively. Final decision �H is obtained by fusing the decisions from the classifiers
 SVM�HOG and AR.

35

Chapter 5

Evaluation methodology

The same scheme laid out in the PASCAL object detection challenges [7] is used,
where it is based on per-image evaluation. The detector takes in an image and
returns a bounding box BB with its score or decision based on di↵erent followed
approach. We threshold these BBs with the threshold confidence to get detected
BBdt with confidence greater than the threshold. Each BBdt are matched once with
the ground truth boxes BBgt as per the given equation in (5.1) [7]. The match is
accounted if the overlapping area is greater than the specified value Amatch.

a0 =
area(BBdt

T
BBgt)

area(BBdt

S
BBgt)

> Amatch (5.1)

Unmatched BBdt are accounted as false positives(TN) and unmatched BBgt are
taken into count as false negative(FN), where as the matched BBdt are counted to
be true positives (TP). True negatives (TN) correspond to negatives that are not
detected by the detectors as potential object. These decisions made by the detector
can be represented in a structure known as a confusion matrix or contingency table.
A confusion matrix is shown in Table 1.

Table 1: Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

In machine learning, its not su�cient to state the algorithm or detector perfor-
mance by presenting the accuracy. For having better empirical validation of the
detector their is necessity to consider the Receiver Operator Characteristic (ROC)
curves, Precision-Recall curves and very important in automotive applications is
to use the plot with miss rate (MR) against false positives per-image (FPPI). The
generic di↵erence between these curves is the visual representation of the curves.

Given the confusion matrix it is possible to have all the plots that were stated
earlier. The plot miss rate against false positives is obtained by varying the threshold
on the detection confidence. With the confusion matrix as the reference it is possible

36

CHAPTER 5. EVALUATION METHODOLOGY

to construct a point in the ROC space and PR space. Equation.(5.2) to (5.7)
[42] are made use to define point in each space. In ROC space, one plots the
False Positive Rate (FPR) on the x�axis and the True Positive Rate (TPR) on the
y�axis. The FPR measures the fraction of negative examples that missed classified
as positive. The TPR measures the fraction of positive examples that are correctly
labelled. In PR space, one plots Recall on the x�axis and Precision on the y�axis.
Recall is the same as TPR, whereas Precision measures that fraction of examples
classified as positive that are truly positive. In MR against FPPI plot, one plots the
x�axis with the miss rate and the y�axis with the FPPI. The MR is the measure
of true positives that were undetected and FFPI is the measure of FP per image at
particular confidence threshold. As stated earlier the MR against FPPI is preferred
in automotive applications, as there is typical upper limit on the acceptable false
positive per-image rate independent of the pedestrian density.

Recall =
TP

TP + FN
(5.2)

Precision =
TP

TP + FP
(5.3)

True Positive Rate =
TP

TP + FN
or TPR = Recall (5.4)

Specificity =
TN

TP + FP
(5.5)

False Positive Rate =
FP

FP + TN
or FPR = 1� Specificity (5.6)

Missrate =
FN

FN + TP
(5.7)

37

Chapter 6

Implementation and performance study

6.1 Region hypothesis generation

Region of Interest (ROI) are crucial for pedestrian detection for localizing pedestrian
along with the classification. With the given image many regions are generated for
the classifier for classifying them as the object candidate.

6.1.1 Brute force method

This technique generate random set of regions with the help of distribution of pedes-
trian in Caltech pedestrian Dataset [1]. The heat map in the fig.16 points to dis-
tribution of the pedestrian in the Caltech dataset. In the developed brute force
method we made sure to have large count of negative regions in the proposed ROI
for detections. Several windows of di↵erent size (width,height) were scanned along
the dimension of the input image relative to ground truth. The large count of neg-
ative regions is to study the e�ciency of the used detector, mainly to study the
reason for misclassifying the proposed regions. The red boxes on Fig.17a are the
pedestrian ground truth where as the image is the sample from Caltech pedestrian
dataset. The blue boxes on fig.17b visualize the regions proposed using brute force
method (the proposed regions are restricted while plotting on the image to have
better appearance). This region proposal system is incorporated in the Fast RCNN
pipeline. In the upcoming section the complete architecture about Fast RCNN ob-
ject detector from [9] is discussed. The large number of negative regions in the
proposals will account to downside of the precision of the detector. The obtained
results justifies this reason.

6.1.2 Multi-scale scanning window method

Pedestrian in the image occur in di↵erent scales. To have high recall, i.e the gener-
ated regions should overlap on maximum pedestrians (ground truths) in the given
image. Therefore it is necessary to scan the image at di↵erent scales. In the pro-
posed method by [2] a fixed size (width,height) detection windows/ROI are scanned
over the spatial dimension of the image at di↵erent scale, so that it ensure that the
percentage of recall is considerably very high. This can be visualized as image scale

38

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

Figure 16: Heat map of pedestrian position in the Caltech dataset
Note: Figure courtesy from [1]

(a) A sample image from the Caltech pedes-
trian dataset[1]

(b) Regions proposed using the brute force
method relative to ground truth data

Figure 17: Visualizing the proposed ROIs using brute force method

39

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

space pyramid, see fig.18. For implementation of this method we use the OpenCV
libraries[24]. The function void detecMultiscale() allows us to specify the input
parameter to specific required number of scales and window size of the ROI. The
size of the ROI/detection window was set to bet (48 ⇤ 96). The reason behind con-
sidering the mentioned window size will be discussed in the upcoming sections of
this chapter. This approach is used as a region proposal system in shallow learning
method (SVM-HOG detector pipeline).

Figure 18: Detection window generation over scale-space pyramid
Note: Figure courtesy from [2]

6.2 Feature extraction and classification

6.2.1 Fast-RCNN architecture

Fast Region-based Convolutional Neural Network (Fast R-CNN) from [9] is a object
detector which uses the principle of Convolution Neural Network(CNN). The fig.19
is the architecture of Fast R-CNN. The detector takes image and corresponding
region proposals/ region of interest (ROIs) as the input. As you see from the figure
the first process involves Conv-feature map (its the feature at the last convolution
layer before RoI pooling layer in this architecture) computation. The responsibility
for computation of Conv-feature map is Deep ConvNet that process the image with
several basic layers as seen in section 3.1.2. The proposed ROIs are then projected
on to the computed Conv-feature map. The region of interest pooling layer (RoI-
pooling-layer) extracts fixed length feature vector for each of the proposed ROIs.
The extracted feature vector by the RoI-pooling-layer for each of the proposed ROIs
are forwarded through sequence of fully connected layers (fc layer). Then the fc layer
branches into two parallel layers: One of the layer presents the softmax probability
for each proposed ROIs over K+1 class (+1 class is indicates the background class)
and the other output layer gives redefine position of the corresponding proposed
ROIs as a tuple (x1,y1,h,w); Where point (x1,y1) defines top-left corner and (h,w)
are the height and width of the redefined ROI.

The architecture is dependent on the external ROI proposals. In the default Fast
RCNN architecture pipeline the region proposal method used was the selective search

40

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

Figure 19: Architecture of Fast Region-based Convolutional Neural Network (Fast RCNN)
[9]

method from [8]. The selective search method takes 3.79 seconds on an average for
⇠ 2K ROI proposals, hence due to its limitations we make use of brute force method
for generating region proposals. Approximately ⇠ 2.5K ROI are proposed using
brute force method. Lets look briefly about training procedure and other aspects
involved in Fast R-CNN detector. As stated earlier the Fast R-CNN uses Deep
ConvNet to process the image for learning Conv-feature map and fc layers outputs
for each proposed regions the class scores (K+1) and redefined ROI position (tuple
of four real values (r,c,h,w)) for each class. The Conv feature map and bounding box
regressor are trained over data which enables inherently to perform object detection
task. The pre-trained classification network on ImageNet [32] were used to initialize
Fast R-CNN, these pre-trained networks undergo few transformations. Pre-trained
Conv-nets are those deep networks that are designed for general image classification
task [4, 10, 18, 43].

1. An extra ROI-pooling-layer is inserted after the last convolution layer, which
is made compatible with the first fc layer.

2. The pre-trained network on ImageNet are trained for 1000-way ImageNet cat-
egories, hence the networks’ last fc layer and softmax are replaced with two
sibling layers; as seen from the fig. 19, one brach with fc layer and softmax over
(K + 1) categories and other for class-specific/category-specific bounding-box
regressors.

3. The input to the pre-trained network was just an image, it has been modified
to accept input data to be image and the corresponding region proposals.

The pre-trained classification networks from [10] was used to initialize the Fast R-
CNN network that was responsible for classification over 1000-category classes on
ImageNet challenge 2014. After initialization and transformation of the utilized pre-
trained classification network fig.20, the Fast R-CNN is subjected to fine-tunning

41

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

Table 2: The Object Classes on which Fast RCNN was fine-tunned on.

PASCAL VOC Detection Classes
’ background ’,’aeroplane’, ’bicycle’, ’bird’, ’boat’,’bottle’, ’bus’, ’car’, ’cat’, ’chair’,’cow’,

’diningtable’, ’dog’, ’horse’,,’motorbike’, ’person’, ’pottedplant’,’sheep’, ’sofa’, ’train’,’tvmonitor

for detection over K+1 = 21 categories on PASCAL VOC dataset [7] (K=20 object
categories and 1 extra category for background class). The fine-tunning is a stream-
lined training procedure that jointly optimizes a softmax classifier and bounding-
box regressors. During this training process a Multi-task loss function was used
to compute loss jointly for ROI classification and bounding-box regression. The
architecture is designed with e�cient streamlined training procedure which allows
to back-propagate the computed loss through the ROI-pooling-layer to minimize
the loss function, the main advantage of streamlined training is that it eliminates
the requirement of multistage training strategies followed in RCNN [6]. Stochastic
gradient descent (SGD) is used to minimize the cost function during training. The
work does not focus on retraining the network or fine tunning the network further on
the specific data set. Training the detector has hardware and time constrains, hence
it is focused in the future work. The complete information regarding the followed
training procedure is provided in [9].

In the work we are interested only in pedestrian and background categories out of
21 categories that the Fast RCNN is trained over. The table 2 shows the PASCAL
VOC 21 detection classes that the Fast RCNN was fine tuned over. The probability
for pedestrian is given by the softmax probability for person class from the Fast
RCNN detector and for background category the class probability is 1 - probability
of pedestrian.

The Results of the used Fast RCNN on Caltech pedestrian dataset is discussed
in the next chapter. Further we fuse the Fast RCNN with an context based classifier
for improving the detector performance. For fusing the Fast RCNN with an context
based classifier we learn the scores of Fast RCNN for pedestrian and background
class. The part of learning the scores will be discussed in next section.

6.2.2 HOG-SVM Pedestrian detector pipeline

Complete shallow learning implementation is achieved using OpenCV computer vi-
sion library [24]. The fig.21 gives an overview of the followed method for people
detection using HOG-SVM pipeline. The followed approach is in accordance to the
work from [2]. HOG descriptors capture a robust features that encode the pedestrian
image so that a classifier can be trained to classify an object e�ciently. As known
many variants of HOG descriptors have been proposed from the date a original
HOG-SVM pedestrian pipeline was published. The same original approach followed
by [2] to perform pedestrian detection is followed, but with linear SVM trained on
HOG descriptor that was captured on Daimler monocular dataset [44].

42

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

Figure 20: VGGNet from [10] transformed with accordance to Fast RCNN object detection
architecture.

Note: This diagram was possible with the help of Ca↵e Framework Utility scripts.

43

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

Lets look in to the properties of the HOG descriptor used. The below line code
explains the parameter setting to compute HOG descriptor;

Table 3: OpenCV function for defining the HOG-descriptor setting

cv::HOGDescriptor::HOGDescriptor(Size win size=Size(48,96), Size block size=Size(16, 16), Size block stride=Size(8, 8),
Size cell size=Size(8, 8), int nbins=9, double win sigma=DEFAULT WIN SIGMA,

double threshold L2hys=0.2, bool gamma correction=true, int nlevels=DEFAULT NLEVELS

• win size: defines the size of the window for which the HOG descriptor should
process on in other way it is the detection window size. We set the size to be
(48,96), because of the cropped image size of the object samples in Daimler
dataset [44]

• block size: defines the size of the block, which is collection of cells. This
is used to perform local normalization to compensate for the gradient energy
variation over wide range.

• block stride: it tells how the block overlaps with other blocks so that it
benefits the cell response with contribution of several components tot he final
descriptor vector.

• cell size: the default cell size supported is (8,8)

• nbins: it defines the number orientation bins used to capture the gradient
direction, Increasing the bins over 9 does not have any e↵ect on results hence
we use 9 bins.

• win sigma , threshold L2hys, and gamma correction are used to perform
image preprocessing before to achieve counter action to image noise e↵ects.

Figure 21: Shallow learning detection overview, HOG-SVM detector pipeline.
Note: Figure courtesy from [2]

The brief explanation of the followed detection pipeline is stated in section 3.1.1.
The scanning window detection approach is explained in the section 3.1.1. In the
earlier paragraph we saw the properties of the HOG descriptor that is used to encode
the given image sample, each of this descriptor accounts to feature vector for linear
SVM. The linear SVM is trained to learn positive and negative weight. In our work
we use the pre-trained SVM weights, which is trained on the Daimler mono pedes-
trian dataset [44] rather than the default dataset INRIA pedestrian dataset used in

44

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

[2].We use of-the-shelf trained linear SVM weights on Daimler Mono dataset that
is available in OpenCV computer vision framework. Followed training procedure of
SVM-HOG detector is given in [2]. The function from OpenCV (table.4) allows us
to set the SVM detector with the SVM weights that is pre-trained on Daimler mono
dataset [26].

Table 4: OpenCV function for setting SVM detector with pre-trained SVM weights on
[44] dataset.

cv::HOGDescriptor:: getDaimlerPeopleDetector()

With the SVM detector loaded with the pre-trained model it is active to perform
linear classification of given sample that is encoded by the HOG-descriptor to either
of two classed (pedestrian, non-pedestrian). As witnessed from fig.21, during test-
ing/inference an input image is processed for normalization and gamma correcte.
Then detection window is proposed by using the scanning image at multiple scales
as explained in section 6.1.2 . The HOG descriptor is computed and the feature
vector is further given to linear SVM for classifying the detection window which
is a patch of the image for potential object existence. Each detection window/re-
gion in the image is classified either as pedestrian and non-pedestrian based upon
its computed HOG descriptor feature vector. HOG descriptor computed on each
detection window is weighted with the learnt SVM weights (see fig.2), based on its
weighted results the detected region is provided a decision �SVM�HOG. Those re-
gions if classified as pedestrians are given decision �SVM�HOG:ped and if classified as
non-pedestrian then it is assigned decision �SVMHOG:non�ped. As seen in the fig. 15,
the top classifier SVM�HOG is the followed HOG-SVM pedestrian detector pipeline
explained in this section. Further decisions on Caltech pedestrian dataset are used
to fuse with context-based classifier AR. The fusion classifier H is explained further
in this chapter.

6.2.3 Context-Based classifier

Contextual information allows use to improve the performance of object detector.
This section explains about a classifier that deals with context information of object
for classifying the proposed regions to respective classes.

Contextual information

There are many object contextual cues [23] that can be drawn from the image. As-
pect ratio of an pedestrian is generic context information that can be utilized by
the classifier for supporting precise detection of pedestrian. Hence we show in this
section how we modelled a classifier with aspect ratio of the pedestrian. The work
just shows how a additional information will improve the detector e�ciency, aspect
ratio of pedestrian is alone used but based on the available information in dataset we
can consider many object cues. Form both the figures 13 and 15 we notice that the
classifier AR is a context based classifier dealing with context information (aspect

45

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

ratio) of pedestrian to classify given region as pedestrian or non-pedestrian by defin-
ing scores or decision for each regions respectively. Caltech pedestrian dataset [1] is
used to model the contextual classifier. Set05 of Caltech pedestrian dataset alone is
used to get the aspect ratio distribution information of the pedestrian object in the
images. The fig.22 tells the distribution of aspect-ratio of the pedestrian object in
Caltech pedestrian set05 dataset. From the fig.22 it is noticed that the distribution
can be modelled as a Gaussian function.

Figure 22: Histogram/distribution of aspect ratio’s of pedestrian object in set 05 of Caltech
pedestrian dataset

Modelling Bayesian classifier with contextual information

In this work we model the contextual classifier AR as seen in the figures 13 and 15
as Naive Bayesian Classifier. The naive Bayesian classifier is simple probabilistic
classifier that make use of Bayes’ Theorem. The Bayes’ Theorem is given by equation
(6.1) [37];

P (!k|x) =
P (x|!k) ⇤ P (!k)

P (x)
(6.1)

Alternatively,

Posterior Probability =
(Likelihood) ⇤ (Prior)

(Marginalization)
(6.2)

• !k: k defines the number of classes, in our case its binary (pedestrian, non-
pedestrian).

• x: independent feature, aspect ratio of the pedestrian object.

46

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

Parameter estimation In this case the class prior is assumed to be equiprobable.
To estimate the parameters for a features’ distribution (aspect ratio distribution)
fig.22, the assumed event model (i.e the assumptions on distributions of feature)
is a simple Gaussian naive Bayes. The discrete Gaussian distribution is given by
equation (6.3) [38],

P (x|!k) =
1q
2⇡�̂2

k

e
� (x�µ̂k)2

2
ˆ
�2
k (6.3)

The training data distribution fig.22 is modelled to be Gaussian distribution. For
each class, the estimated mean µ̂k and variance �̂2

k is computed using the maximum
likelihood estimator(MLE) as given in the equation (3.42). The fig.23 shows the
Gaussian distribution of the training data distribution, where the parameters of the
Gaussian curve is estimated using MLE.

Figure 23: Gaussian distribution for aspect ratio values over Caltech pedestrian dataset
Note: The distribution is modelled using only the set05 data form Caltech pedestrian dataset.

The blue curve is the modelled distribution of aspect ratio over the set05 of
Caltech pedestrian dataset. While estimating the event model parameter we just
considered aspect ratio of pedestrian that are less the one. For non-pedestrian
you see from the fig.23, the standard deviation is 10x greater than the standard
deviation of pedestrian class. This allows to have a flat distribution for the non-
pedestrian class. It can be stated that the contextual classifier AR is a univariate
naive Bayesian classifier, where this classifier provides the class specific posterior
probability (thresholding the resulted probability with confidence threshold gives
the class decision �AR of the region). Knowing the parameters (µ̂k and �̂k) of the
distribution on training data, class specific likelihood P (x|!k) are computed by using
equation (6.3).

47

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

During testing the class specific posterior probability is computed as follow.

• Class specific likelihood is calculated using equation (6.3). Where the aspect
ratio value of the region is substituted along with learnt class specific param-
eters (µ̂k and �̂k) in the equation (6.3).

• The class priors are assumed to be equiprobable.

• Posterior probability of the new aspect ratio value is given by substituting the
computed class likelihood and marginalization factor in equation (6.1).

6.3 Calssifier’s fusion

6.3.1 Fast-RCNN (FastRCNN) + Context based Classifier (AR) fusion

From the fig.13, the two classifiers FastRCNN and AR are the dynamic classifier.
Where classifier FastRCNN that is explained in section 6.2.1 is a deep learning model
and classifier AR is a univariate context-based classifier which is explained in section
6.2.2. Each of these classifiers accepts the regions proposed from brute force method
explained in section 6.1.1 and attaches corresponding pedestrian and non-pedestrian
scores for each region. Fast-RCNN results ⇠FastRCNN = (⇠pedFastRCNN , ⇠

non�ped
FastRCNN) for

each region, where ⇠pedFastRCNN is the pedestrian score for the region and ⇠non�ped
FastRCNN is

the score for non-pedestrian from the Fast RCNN deep architecture. Likewise, the
univariate context-based classifier AR assigns score ⇠cb c⇡⇠AR = (⇠pedAR, ⇠

non�ped
AR) for

each proposed regions (where ⇠cb c is the score for the region based on classifier model
with context information, her we use just aspect ratio (AR), so it scores based on AR
value). Therefore each region has four scores (⇠pedFastRCNN , ⇠

non�ped
FastRCNN , ⇠

ped
AR, ⇠

non�ped
AR)

from dynamic classifiers (FastRCNN and AR), the scores from these classifier can
also be viewed as;

• ⇠pedFastRCNN : probability/score of a region predicted to be pedestrian by Fast
RCNN.

• ⇠non�ped
FastRCNN : probability/score of a region predicted to be non-pedestrian by
Fast RCNN.

• ⇠pedAR: probability/score of a region predicted to be pedestrian by context-based
classifier (aspect ratio of the region).

• ⇠non�ped
AR : probability/score of a region predicted to be non-pedestrian by context-
based classifier (aspect ratio of the region).

These obtained scores for each proposed regions of a image is fused inside an
supervisory classifier H as shown in the fig.13. Supervisory classifier fuse the score
provided from the dynamic classifiers for each proposed region and attaches a new
fused score ⇠H = (⇠pedH , ⇠non�ped

H) for each region. The fusion classifier is a Bayesian

48

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

classifier which governs on the principle of Baye’s Theorem, the classification is based
on the posterior probability. The fusion classifier is defined as given by equation (6.4),

P (!k|⇠FastRCNN , ⇠AR) =
P (⇠FastRCNN , ⇠AR|!k) ⇤ P (!k)

P (⇠FastRCNN , ⇠AR)
(6.4)

In the equation (6.4) class-conditional probability density function P (⇠FastRCNN , ⇠AR|!k)
is the likelihood function. The likelihood function is given as in the equation (6.5),

P (⇠FastRCNN , ⇠AR|!k) = P (⇠pedFastRCNN :j|!k) ⇤ P (⇠non�ped
FastRCNN :j|!k) ⇤ P (⇠pedAR:j|!k) ⇤ P (⇠non�ped

AR:j |!k)

(6.5)

where, j= ped, non-ped. As seen in the equation (6.5), likelihood function is the
product of four univariate likelihood density function. Set-05 of Caltech pedestrian
dataset is used to get these four density function (actually we get eight likelihood
functions for both classes (k=ped,non-ped)), the event model of the density function
is assumed to be Gaussian function described by equation (6.3) and the parameters
of each univariate density function is estimated using MLE from the equation (3.42).

Figure 24 shows the estimated parameters of four likelihood density functions
based upon scores given by Fast RCNN for each proposed ROI.

• In fig.24a, the blue curve defines the estimated parameter for event model,
which is assumed to be Gaussian distribution of pedestrian scores (⇠pedFastRCNN :ped)
from FastRCNN for true pedestrian/person regions that are proposed on over-
all set-05 of Caltech pedestrian dataset. Whereas, the red curve is the esti-
mated Gaussian parameter for non-pedestrian scores (⇠pedFastRCNN :non�ped) from
 FastRCNN for true pedestrian region. The parameter are estimated using
MLE method as explained in section 3.3. In the proposed ROI using brute
force method the true pedestrian regions are captured using Intersection over
Union(IoU) as given by the equation(5.1), the overlapping threshold (Amatch

in equation 5.1) was set to be 0.5, if the region overlaps with the pedestrian
ground truth of the image greater than 50% then it is captured to be true
pedestrian region. Also the true pedestrian regions consisted of pedestrian
ground truths of the all the images in Set-05 of Caltech dataset. In fig.25a,
the blue curve defines the estimated parameter of assumed Gaussian distribu-
tion of pedestrian scores ⇠pedAR:ped for true pedestrian region from context based
classifier AR and red curve defines the estimated parameter of assumed Gaus-
sian distribution of non-pedestrian scores ⇠pedAR:non�ped for true pedestrian region
from context based classifier AR.

• In fig.24b, the blue curve defines the estimated parameter for event model,
which is assumed to be Gaussian distribution of pedestrian scores (⇠non�ped

FastRCNN :ped)
from FastRCNN for true non-pedestrian/background regions that are proposed
on overall set-05 of Caltech pedestrian dataset. Whereas, the red curve is the
estimated Gaussian parameter for non-pedestrian scores (⇠non�ped

FastRCNN :non�ped)

49

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

from FastRCNN for true non-pedestrian region. The parameter are estimated
using MLE method as explained in section 3.3. In the proposed ROI using
brute force method the true non-pedestrian regions are captured using In-
tersection over Union(IoU) as given by the equation (5.1), the overlapping
threshold (Amatch in equation 5.1) was set to be < 0.5, if the region over-
laps with the pedestrian ground truth of the image lesser than 50% then it is
captured to be true non-pedestrian region. In fig.25b, the blue curve defines
the estimated parameter of assumed Gaussian distribution of pedestrian scores
(⇠non�ped

AR:ped) for true non-pedestrian region from context based classifier AR and
red curve defines the estimated parameter of assumed Gaussian distribution of
non-pedestrian scores (⇠non�ped

AR:non�ped) for true non-pedestrian region from context
based classifier AR.

During testing the new posterior probability/fusion score ⇠H for the proposed
region is computed as, computation of pedestrian fusion score ⇠pedH ;

• Each region has four scores (⇠pedFastRCNN , ⇠
non�ped
FastRCNN , ⇠

ped
AR, ⇠

non�ped
AR) from the dy-

namic classifiers as seen in the fig.13

• The class priors P (!k) are assumed to be equiprobable.

• The fusion score for pedestrian is given by the equation (6.4). The likelihood
term in the equation (6.4) is product of four univariate density functions as seen
in equation (6.5). The likelhood term in equation (6.4) for finding posterior
probability of funsion classifier for pedestrian class can be given as in equation
(6.6).

P (⇠FastRCNN , ⇠AR|!ped) = P (⇠pedFastRCNN :ped|!ped) ⇤ P (⇠non�ped
FastRCNN :ped|!ped) ⇤ P (⇠pedAR:ped|!ped) ⇤ P (⇠non�ped

AR:ped |!ped)

(6.6)

• P (⇠pedFastRCNN :ped|!ped), term is computed using equation (6.3) by substituting

x = ⇠pedFastRCNN (which is obtained from FastRCNN), and µ̂k, �̂2
K which are

estimated parameters for distribution of pedestrian scores for true pedestrian
regions (blue curve in fig.24a). The same computation is followed to compute
P (⇠non�ped

FastRCNN :ped|!ped), P (⇠pedAR:ped|!ped), P (⇠non�ped
AR:ped |!ped) by subsituting specific

scores and estimated parameters in (6.3). This enables to estimate the likeli-
hood using equation (6.6).

• The posterior probability P (!ped/⇠FastRCNN , ⇠AR) ⇡ ⇠pedH of the region from the
fusion classifier (H in fig.13) for pedestrian class is obtained from equation
(6.4) by substituting likelihood P (⇠FastRCNN , ⇠AR/!ped), assumed class priors
P (!k), and computed marginalization factor P (⇠FastRCNN , ⇠AR).

• With the known posterior probability for pedestrian class the posterior prob-
ability of non-pedestrian is given as below,

⇠non�ped
H = P (!non�ped/⇠FastRCNN , ⇠AR) = 1� P (!ped/⇠FastRCNN , ⇠AR)

50

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

(a) Gaussian estimated parameter on scores (⇠pedFastRCNN :ped,

⇠pedFastRCNN :ped) of true pedestrian/person region given by Fast
RCNN FastRCNN

(b) Gaussian estimated parameter on scores (⇠non�ped
FastRCNN :ped,

⇠non�ped
FastRCNN :non�ped) of true non-pedestrian/background region
given by Fast RCNN FastRCNN

Figure 24: Gaussian distribution of scores from Fast RCNN FastRCNN

51

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

(a) Gaussian estimated parameter on scores (⇠non�ped
AR:ped ,

⇠non�ped
AR:non�ped) of true pedestrian/person region given by Fast
RCNN AR

(b) Gaussian estimated parameter on scores (⇠non�ped
AR:ped ,

⇠non�ped
AR:non�ped) of true non-pedestrian/background region given
by Fast RCNN AR

Figure 25: Gaussian distribution of scores from context-based classifier AR

52

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

6.3.2 SVM-HOG (SVM�HOG) + Aspect ratio classifier (AR) fusion

From the figure 15, the classifiers SVM�HOG and AR are the dynamic classifiers.
These two classifiers are shallow method, where in each classifier is responsible for
mapping encoded object features which are in ⇧ space to appropriate class label !
which is a discrete space �. As noticed from the fig.15, the classifier SVM�HOG

is a linear SVM classifier that acts on the encoded HOG descriptor of the object
for classifying the detection window from feature space ⇧ to discrete decision space
�. Thereby for all the regions proposed for HOG-SVM detector pipeline are given
decisions �SVM�HOG that defines for which class label !k does the region is associ-
ated to. Here, k is binary (pedestrian, non-pedestrian). The context-based classifier
 AR is the simple naive Bayesian classifier that depend on the univariate density
function of the context feature; the context information used are the aspect ratio of
the pedestrian object from Caltech pedestrian dataset (only set 05). Hence, for each
region proposed the context-based classifier provides posterior decision !k, which is
class label in discrete space (Bayesian classifier is responsible for posterior proba-
bility, hence thresholding the probability with specific confidence value will provide
decision of the region with respect to decision space �). Therefore, these two dy-
namic classifiers can be given as : ⇧! �. For implementation details of this two
classifiers author points to the sections 6.2.3 and 6.2.2 of this chapter. The obtained
decisions for each proposed region from classifiers SVM�HOG and AR are used to
fuse classifier fig.15, whereas in section 6.3 scores from the dynamic classifiers were
used in fusing classifier. The fusion classifier H in fig.15 is modelled on the marginal
decisions (�SVM�HOG, �AR) obtained for each region proposals, for modelling the fu-
sion classifier H(�SVM�HOG, �AR), set 05 of the Caltech pedestrian dataset is used.
The fusion classifier/supervisory classifier H(�SVM�HOG, �AR) is a naive Bayesian
classifier. This supervisory classifier make decisions on the marginal decisions of
the dynamic classifiers rather than on the joint probability densities of the feature
space. The method proposed in [45] is followed for fusing the decision from the
dynamic classifiers. The usual Bayesian bivariate classifier b is formed from the
bivariate class-conditional probability density function P (XHOG, XAR|!k) and the
prior probability P (!k) using equation (6.1), therefore it requires to estimate the
bivariate density functions P (XHOG, XAR|!k) which are to be known beforehand.
The need to estimate the bivariate density functions are eliminated by just consid-
ering the decisions �SVM�HOG, �AR from the dynamic classifiers SVM�HOG, AR.
The supervisory Bayesian classifier is given as in the equation (6.7),

 H(�SVM�HOG, �AR) ⇡ P (!k|�kSVM�HOG, �
k
AR)

=
P (�kSVM�HOG, �

k
AR|!k) ⇤ P (!k)

P (�SVM�HOG, �AR)
(6.7)

where, k=binary (pedestrian, non-pedestrian). The likelihood or bivariate class-
conditional probability P (�kSVM�HOG, �

k
AR|!k) is estimated on basis of likelihood

value learnt on true class regions being given decision as pedestrian and non-pedestrian
on training dataset. In the same way likelihood value for true class boxes from

53

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

Table 5: Eight likelihood values computed on decisions made from the dynamic classifiers
 SVM�HOG, AR.

SVM-HOG detector (SVM�HOG(XHOG)! �SVM�HOG) Context-based classifier (AR(XAR)! �AR)

�pedSVM�HOG:ped =
True�Positive
TotalPositives = 0.0698 �pedAR:ped =

True�Positive
TotalPositives = 0.8339

�pedSVM�HOG:non�ped =
False�Negatives
TotalPositives = 0.93017 �pedAR:non�ped =

False�Negatives
TotalPositives = 0.1760

�non�ped
SVM�HOG:ped =

False�Positives
TotalNegatives = 0.0004659 �non�ped

AR:ped = False�Positives
TotalNegatives = 0.3758

�non�ped
SVM�HOG:non�ped =

True�Negatives
TotalNegatives = 0.9995 �non�ped

AR:non�ped =
True�Negatives
TotalNegatives = 0.6341

Note: The likelihood values are computed on set 05 of Caltech pedestrian dataset which is
consider to be training data in our case.

context-based classifier AR is learnt on the training Set 05 of Caltech pedestrian
dataset. This accounts for eight likelihood values. the true pedestrian and non-
pedestrian regions are captured as discussed in the section 6.3.

• �pedSVM�HOG:ped: The upper subscripts define the true class of proposed region
in the image, lower subscript SVM-HOG:ped defines decision of regions being
pedestrian from SVM-HOG detector pipeline.

• �pedSVM�HOG:non�ped: The upper subscripts define the true class of proposed
region in the image, lower subscript SVM-HOG:non-ped defines decision of
regions being non-pedestrian from SVM-HOG detector pipeline SVM�HOG in
figure 15.

• �non�ped
SVM�HOG:ped: The upper subscripts define the true class of proposed region
in the image, lower subscript SVM-HOG:ped defines decision of regions being
pedestrian from SVM-HOG detector pipeline.

• �non�ped
SVM�HOG:non�ped: The upper subscripts define the true class of proposed
region in the image, lower subscript SVM-HOG:non-ped defines decision of
regions being non-pedestrian from SVM-HOG detector pipeline.

• Same as the above we get the likelihood value from the context-based classifier;
�pedAR:ped, �

non�ped
AR:ped , �pedAR:non�ped, �

non�ped
AR:non�ped. During training eight decision likeli-

hood from two dynamic classifier are learnt. The table 5 gives information of
computed learnt likelihoods values over training set.

Table 6: Class priors obtained on the set 05 of Caltech pedestrian data set

Class Priors
P(!ped) 0.0588

P(!non�ped) 0.9411

Computation of fusion decision �H from the fusion classifier H during testing;
each proposed region gets the decision from the dynamic classifiers SVM�HOG and

54

CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

 AR. For sake of understanding let’s assume that for a single region of interest �i,
the decisions from the dynamic classifiers SVM�HOG and AR are �SVM�HOG:non�ped

and �AR:ped respectively. The decision from the SVM-HOG detector is defining that
the region is an non-pedestrian and that of the context-based classifier decision
based upon its aspect ratio value has given the decision as pedestrian. To get the
new fusion decision from the fusion classifier that govern on these obtained decisions
is given by the equation (6.7). In this case, equation (6.7) can also be rewritten as
follows,

P (!k|�SVM�HOG:non�ped, �AR:ped) =
P (�SVM�HOG:non�ped, �AR:ped|!ped) ⇤ P (!ped)

P (�SVM�HOG, �AR)
(6.8)

The likelihood function P (�SVM�HOG:non�ped, �AR:ped|!k) in equation (6.8) is not com-
puted on basis of the joint probability density function, but with the help of the
likelihood values learnt during modelling the fusion classifier. Hence in this case the
likelihood function is given by as follows;

P (�SVM�HOG:non�ped, �AR:ped|!ped) = �pedSVM�HOG:non�ped ⇤ �
ped
AR:ped (6.9)

form the table 5 substitute corresponding likelihood values in above equation the
prior P (!ped) from the equation (6.8) is given from the table 6. With the computed
likelihood in equation (6.9), pedestrian class prior and marginalization factor in (6.8)
we arrive with the decision score of the region for pedestrian class. It is given as,

P (!ped|�SVM�HOG:non�ped, �AR:ped) =
P (�SVM�HOG:non�ped, �AR:ped|!ped) ⇤ P (!ped)

P (�SVM�HOG:non�ped, �AR:ped|!ped) ⇤ P (!ped) + P (�SVM�HOG:non�ped, �AR:ped|!non�ped) ⇤ P (!non�ped)

P (�SVM�HOG:ped, �AR:non�ped|!ped) ⇡ �H:ped

For the same considered region decision for non-pedestrian is given as;

�H:non�ped = 1� �H:ped

55

Chapter 7

Results and Discussion

7.1 Deep learning

As described in the section 4.1, the deep learning detector Fast-RCNN Fast�RCNN

is fused at the post processing stage with the context-based classifier AR. Initially
it is important to notice the e↵ect of fusion method explained in the section 6.3.1,
the obtained results shown in the fig.26 gives evidence of the fusion methodology.
The fig.26a and fig.26d shows the detection score provided by the Fast-RCNN deep
detector, the fig.26b and fig.26e are the score for each bounding box obtained from
context-based classifier, and the fig.26c and fig.26f are the score given from the fusion
classifier H . Pedestrian appearing at the far region are missed by many detectors
because of several factors that govern the detectors. As seen from the fig.26, consider
the score given by the Fast-RCNN classifier (fig.26d), it is noticed that the score
given to the region belonging to pedestrian class is significantly very low (0.055).
This shows the necessity of additional object cues to improve the detection ability.
The required additional information is provided by the context-based classifier AR,
the context information used is the aspect ratio (AR) of the pedestrian. From the
fig.26e you notice that the context-based classifier score for the proposed region is
having high score (0.849). Section 6.3.1 explains the fusion method that governs on
the scores obtained from the Fast-RCNN classifier and the context-based classifier,
as a result of fusing the scores it is seen from the fig.26f the increase in the confidence
(0.698) of the region belonging to pedestrian category.

The region hypothesis are generated based on the brute force method that is
explained in the section 6.1.1. For each image approximately ⇡ 2000k region hy-
pothesis were proposed, large number of proposed hypothesis have the aspect-ratio
size that of an pedestrian object this can be visualised fig.17b. The context-based
classifier which governs on AR value of the proposed region hypothesis, has many
false positives resulting in very low precision. It is clearly seen from the fig.27,
the fourth and fifth row corresponds to the detection given by the context-based
(aspect ratio classifier) at two confidence threshold 0.3 and 0.5 respectively. When
fusion of Fast-RCNN and context-based classifier score is performed, it is seen along
with increase in the detection of pedestrian the additional false positives. Consider

56

CHAPTER 7. RESULTS AND DISCUSSION

(a) (b) (c)

(d) (e) (f)

Figure 26: Visualizing the e↵ect of fusion.
Note: For the sake of understanding the e↵ect of fusion, we just consider ground truth as the
proposed objects for the detector 4.1.

the first image column in the fig.27, at the confidence threshold 0.3 the deep net-
work Fast-RCNN detects very few pedestrians. As a result of fusing with context
based classifier we notice that the detected pedestrian score have significantly in-
creased and even it is capable of detecting far region pedestrian which has coarse
spatial information (see last two rows of the first image column in fig.27). Along
with increased number of true class detection we notice the increased number of
false positive that is induced by the consider context-classifier which governs on the
aspect-ratio of the proposed regions.

57

CHAPTER 7. RESULTS AND DISCUSSION

Test Image with GT
plotted

Fast-RCNN (NMS:0.3,
Confidence threshold:0.3)

no detection at confidence
threshold 0.3

Fast-RCNN (NMS:0.3,
Confidence threshold:0.5)

no detection at confidence
threshold 0.5

Aspect-Ratio classifier
(NMS:0.3,

Confidence threshold:0.3)

Aspect-Ratio classifier
(NMS:0.3,

Confidence threshold:0.5)

Figure 27: continued....

58

CHAPTER 7. RESULTS AND DISCUSSION

Fusion Classifier
(Fast-RCNN+AR)

(NMS:0.3,
Confidence threshold:0.3)

Fusion Classifier
(Fast-RCNN+AR)

(NMS:0.3,
Confidence threshold:0.5)

Figure 27: Overview of detection from Fast-RCNN, Context-based(aspect-ratio) classifier
and Fusion classifier at di↵erent

The classifiers Fast-RCNN Fast�RCNN , context-based classifier AR and the fu-
sion classifier H are evaluated on set 09 of Caltech pedestrian data [1]. The total
number of region hypothesis proposed for each classifier are equivalent. The Re-
ceiver Operator Characteristic (ROC) curve fig.32a provides the information of true
positive rate (TPR) versus false positive rate or 1-specificity (FPR) at di↵erent con-
fidence threshold, also it provides information regarding how the number of correctly
classified positive examples varies with the number of incorrectly classified negative
examples. It is noticed from the equation (5.4) that the TPR is the ratio of true
positives over the total provided positives and FPR equation (5.6) is the ratio of
false positives over total number of negatives. For all the considered classifiers at
very low confidence threshold the point in the ROC space is at the top extreme right
corner stating with high TPR and FPR. With a slight increase in the confidence
threshold (increase from 0.0 to 0.1) the TPR of a Fast-RCNN drastically decreases to
approximately 0.4/40% fig.32a, the reason behind this is that Fast-RCNN score’s the
proposed regions with very least scores as noticed in the fig.26d, also the FPR is very
low at this TPR position because as increase in the confidence threshold the number
of false positives are very less. Many of the true pedestrian region in the set 09 of
Caltech dataset are occurring at medium and far region that are very challenging
for the detectors. From fig.28c it is noticed that the scores given by the Fast-RCNN
classifier Fast�RCNN for true class regions are more concentrated with low scores,
at very low confidence threshold many of the true class regions are grouped into true
positives hence having very low number of true negatives this give rise to high TPR
score initially. As the confidence increases slightly many of the regions with less score
than the confidence threshold fall to false negatives, hence leading with low TPR.
This is the core reason for having a steep decrease of the Fast-RCNN ROC curve

59

CHAPTER 7. RESULTS AND DISCUSSION

in the fig.32a. The context-based classifier AR which governs on the aspect ration
value of the proposed regions for classifying the regions to a specific class. As the
region hypothesis is proposed using the brute-force method many of the proposed
regions are having the aspect ratio size that of the true pedestrian region, hence
this result in many false positives even as the threshold is increased it can be seen
in the fig.28b. From the fig.32a the aspect ratio classifiers’ ROC curve shows high
FPR even at the high confidence threshold. When the both classifiers Fast�RCNN

and AR are fused the true pedestrian regions are given high score and even much
of the false positives are induced by the AR classifier. This can be seen in the
fig.28e and fig.28e respectively. Clearly from the ROC plot fig.32a it is seen that the
fusion classifier (blue curve) has dominance over the Fast�RCNN and AR classifiers.

Precision-Recall (PR) curves are alternative to the ROC curves that give better
metric for task with large skew in datasets like Caltech pedestrian dataset. An im-
portant di↵erence between the ROC space and PR space is the visual representation
of the curves. The goal of the PR space is to be in the upper-right-hand corner, and
the PR curves in the fig.32b shows that there is still vast room for improvement.
Precision is given as in the equation (5.3) which measures that fraction of examples
classified as positives that are truly positive, whereas the recall is same as TPR. In
other sense recall can be interpreted as the amount of region hypothesis that cover
maximum true class regions at given threshold confidence of the classifier. False
Positives FP weights the precision of the classifier, it is noticed from the fig.32b the
PR curve of the context-based classifier AR almost runs parallel to the Recall axis
having very low precision. From the fig.28b, it is seen even at thresholds grater
than 0.6 the aspect ration classifier AR contributes large number of FPs, hence this
contribution of FPs results in very low Precision even as the confidence threshold
increases. Whereas, the Fast-RCNN Fast�RCNN PR curve shows that their is vast
space for improving it. Hence, fusing the Fast-RCNN with context-based classifier is
tried to compensate for that achievable PR space. As it is noticed from the Fig.32b,
classifiers fusion PR curve (blue curve) is shows dominance as the confidence thresh-
old is increased, during very low confidence threshold the curve is dominated by the
Fast-RCNN PR curve. It is because at very low thresholds (0.0 to 0.4) the number
of false positives are high (seen in the fig.28f) resulting in low precision compared to
Fast-RCNN, over increasing the threshold further the PR curve of fusion classifier
starts dominating. From the ROC space fig.32a and PR space fig.32b it is observed
that the fusion classifer H dominates, but from both the spaces it is noticed the
fusion classifier has vast room for improvement. This improvement can be achieved
buy fusing the classifier with additional object cues/information.

Miss-rate versus false positive per image (MR vs FPPI) log plot are important
especially in the automotive environment. In the automotive environment there is
a space for acceptable amount of FP’s per image. Therefore many of the evaluation
of object detectors designed for automotive area make use of MR vs FPPI as a main
metric tool. Fig.32c shows the obtained log curves for Fast�RCNN , AR and fusion

60

CHAPTER 7. RESULTS AND DISCUSSION

(a) Change in TP with increase in the
confidence-threshold of context-based classi-
fier

(b) Change in FP with increase in the
confidence-threshold of context-based classi-
fier

(c) Change in TP with increase in the
confidence-threshold of Fast RCNN

(d) Change in FP with increase in the
confidence-threshold of Fast RCNN

(e) Change in TP with increase in the
confidence-threshold of Fusion classifier
(Fast-RCNN + Context-based)

(f) Change in FP with increase in the
confidence-threshold of Fusion classifier
(Fast-RCNN + Context-based)

Figure 28: Histogram of true positives and false positives over test dataset

61

CHAPTER 7. RESULTS AND DISCUSSION

classifier H , observed from the fig.32c all the curves converge to a single point on
x-axis because all the classifier receive same number of region proposal per image
for classification. From the fig.32c it is noted that the fusion classifier curve (red) at
the higher classification thresholds dominates the Fast-RCNN curve (blue). As the
confidence threshold decrease the miss-rate remains almost equal, but the Fusion
classifier has many FP’s which are induced by the context-based (aspect ratio) clas-
sifier. All the metric curves shown in the fig.32 explains the e↵ect of fusion classifier
in the positive tone. A implemented context-based classifier AR is modelled using
just the aspect ratio value. To have an better context-based classifier features like
spatio-temporal information, semantic information along with scale features can be
used for modelling.

As it is explained form the section 6.3 the event model considered for learning
scores from Fast-RCNN Fast�RCNN and context-based AR to model the fusion clas-
sifier H is the univariate Gaussian model. The distribution of scores for pedestrian
(TP’s) and non-pedestrian regions (FP’s) from fig.33 is modelled using assumption
as normal distribution, using an Gaussian mixture model on the obtained distribu-
tion will further eliminate the FP’s and even a much sophisticated fusion classifier
can be designed. Using Gaussian mixture model will increase the design complexity.
In the next section, the outlook work shows how the detected FPs can be tackled
using the stereo information. The Caltech dataset does not contain the stereo infor-
mation, hence DLR data is used. There is no evaluation results for this outlook work
as DLR data does not have enough annotation. It is just to give an outlook about
how stereo information can be helpful to eliminate the detected false positives.

False positive elimination using stereo data

With the help of stereo image pair an dense stereo disparity image can be con-
structed. The disparity map is obtained using the Triangulation [27] principle. To
show e↵ect of adapting stereo-information an pre-computed dense disparity image of
a corresponding image pair are utilized. The fig.29a is the detections obtained at the
point in the detection pipeline showed in the fig.14, the detections are performed
by fusion classifier F , the fusion classifier F is equivalent to the one explained
earlier H in section 6.3.1, which make use of deep network Fast-RCNN scores and
context-based scores. Due to fusion, along with high TP’s we have high FP’s fig.29a.
These FP’s can be eliminated using stereo information, fig.29b is the corresponding
pre-computed disparity image. With the help of this disparity image the average
disparity Zavg for each detected region is computed, and it ais used to compute the
distance (meters) to the region from camera center. Distance is computed using the
equation (7.1) [27], where f is the focal length and b is the Stereobasis. The tabel 7
gives the stereo camera parameters that is used in to acquire DLR dataset. With
the know distance and disparity values for each of the detected regions, the ground
plane is estimated as shown in the fig.30a (green plane). The detected region bot-
tom right (br) points are perpendicularly projected onto the ground plane and the
height (meters) between the ground plane and the detected regions are computed

62

CHAPTER 7. RESULTS AND DISCUSSION

(The yellow line in fig.30a shows the projection of br on to the ground plane). De-
tected regions with greater than height-threshold (THH) are eliminated, in the work
the threshold (THH) is decided based on the rough estimation and it is fixed to be
0.5m. After height thresholding it is noticed that many false positives are eliminated
compare fig.29a and fig.30b. Knowing the distance and disparity information of each
detected region, the detected regions real height and width in meters are computed
using the equations (7.3) and (7.2) [27], where Wroi and Hroi are real object width
and height in meters, w and h are regions width and height in pixels. Whereas, d
and f are distance to region from center of the camera and focal length respectively.
Upon obtaining the real objects width and height in meters they are subjected to
thresholding based on preselected height and width thresholds THh and THw.

d =
f ⇤ b
Zavg

(7.1)

Wroi =
w ⇤ d
f

(7.2)

Hroi =
h ⇤ d
f

(7.3)

Table 7: Camera intrinsic parameter of DLR dataset

Focal length (f) 640.9625
U0 342.81
V0 255.58

Stereo Basis (b) 0.9182470065

63

CHAPTER 7. RESULTS AND DISCUSSION

(a) Fusion classifier detection over DLR dataset image at con-
fidence threshold 0.7 with NMS

(b) corresponding pre-computed dense disparity image

Figure 29: Fusion based detection on sample DLR image
Note: Image sample are from the DLR dataset.

64

CHAPTER 7. RESULTS AND DISCUSSION

(a) Ground plane estimation using stereo information

(b) Projection of bottom co-ordinates of detected boxes on to
the estimated ground plane

65

CHAPTER 7. RESULTS AND DISCUSSION

(a) Further eliminating FP based on detected boxes height and
width

Figure 31: Elemination of false positives obtained from fusion classifier using stereo infor-
mation

Note: Image sample are from the DLR dataset.

7.2 Shallow approach

The shallow approach design as explained in the section 4.2 is interpreted in this sec-
tion. As observed from the decision likelihood table 5, the decision given to positive
(pedestrian) ROI from SVM-HOG SVM�HOG to be pedestrian is very much less
likely (�pedSVM�HOG:ped = 0.0698), and even the decision given to negative (non-ped)

ROI by the SVM�HOG is also very less likely (�non�ped
SVM�HOG:ped = 0.0004659). From

these likelihood value it can be interpreted that the SVM�HOG classifier considers
for very low number of TPR and very less FPR on Caltech pedestrian data set. The
core reason behind very low TPR and FPR by the SVM�HOG, is that the SVM is
trained on Daimler detection dataset [26], and this data set is complete di↵erent to
that of Caltech dataset. On the other hand it is observed that the classifier AR has
the high likelihood for ROI being pedestrian (�pedAR:ped = 0.8339, �non�ped

AR:ped = 0.3758),
this allow AR during decision fusion using H to have dominance over decisions
given by the SVM�HOG for ROI. Hence this results in high FPR and Recall, it is
visualized from the fig.34. As the design is governed on decisions, only a single pre-
cision, recall, TPR and FPR value are obtained. Therefore it is not possible to have
a PR and ROC space curves by varying threshold. In the next section we compare
these values with the designed deep approach.

66

CHAPTER 7. RESULTS AND DISCUSSION

(a) Receiver Operator Characteristic (ROC)
curve

(b) Precision-Recall (PR) curve

(c) MissRate(MR) vs False positive per im-
age(FPPI) curve

Figure 32: Metric curve’s obtained by evaluating designed deep learning method
Note: Evaluation on Caltech pedestrian dataset considering all visible image regions.

67

CHAPTER 7. RESULTS AND DISCUSSION

(a) Change in TP with increase in the
confidence-threshold of context-based classi-
fier

(b) Change in FP with increase in the
confidence-threshold of context-based classi-
fier

(c) Change in TP with increase in the
confidence-threshold of Fast RCNN

(d) Change in FP with increase in the
confidence-threshold of Fast RCNN

(e) Change in TP with increase in the
confidence-threshold of Fusion classifier
(Fast-RCNN + Context-based)

(f) Change in FP with increase in the
confidence-threshold of Fusion classifier
(Fast-RCNN + Context-based)

Figure 33: Histogram of true positives and false positives over training dataset

68

CHAPTER 7. RESULTS AND DISCUSSION

(a) detection by SVM-HOG classifier
 SVM�HOG

(b) Detection by decision fusion H classifier

Figure 34: Sample Detection image from SVM�HOG and decision fusion classifier H

7.3 Comparison of deep and shallow approach

In this section comparison of di↵erent modelled classifiers that are employed in the
design procedure is done. Table 9 provides the information regarding the best preci-
sion and recall of classifier which are obtained by finding least euclidean distance to
the point (1, 1) from the point in PR-space. F1 scores as given by equation (7.4) [42]
provides the harmonic mean of obtained precision and recall of each classifier (table
9). F1 score gives rank and single measure of classification procedure’s usefulness,
therefore enabling one way to compare classifiers. According to the obtained F1

scores from table 8, the score of proposed classifier H(⇠Fast�RCNN , ⇠AR) is ranked
high compared to other classifiers. Whereas the F1 scores of other classifiers are too
low because, the F1 score is balanced score provided on basis of precision and recall.
Therefore those classifiers with low scores compare to H(⇠Fast�RCNN , ⇠AR) as either
very low precision or recall on considered Caltech dataset. Other metrics used to
compare classifier performance are Area Under ROC Curve (AUC-ROC) and Aver-

69

CHAPTER 7. RESULTS AND DISCUSSION

age Precision (AP). Area under a PR curve gives rise to AP which allows to compare
performance of classifiers. The PR curves also highlights the performance di↵erence
that are lost in ROC space [46, 47]. Table 10 shows the AUC-ROC and APped for
the di↵erent classifier. The AUC-ROC of H(⇠Fast�RCNN , ⇠AR) is high compared to
other considered classifiers, but the APped is less than that of Fast-RCNN. This is
due to the high number of FPR from the fused context-based classifier AR. As it is
evident form table 10, the proposed fused classifier H(⇠Fast�RCNN , ⇠AR) dominates
in ROC space and further modelling the context-based classifier with sophisticated
information relative to object will improve the AP of the classifier. The high de-
gree of skewness in the Caltech dataset should be consider, this skewness allows the
considered and designed classifiers to have low values (table 8 and 10).

F1score = 2 ⇤ Precision ⇤Recall

Precision+Recall
(7.4)

Table 8: Comparison of F1 scores on basis of PR-curve for di↵erent classifiers models used
in the designed procedure

Classifier F1Score
Context-based classifier AR 0.01172
Fast-RCNN Fast�RCNN 0.0916
SVM-HOG SVM�HOG 0.0011965

Fusion classifier H(�SVM�HOG, �AR) 0.0256
Fusion classifier H(⇠Fast�RCNN , ⇠AR) 0.2454

Table 9: Comparison of Precision and Recall on basis of PR-curve for classifiers used in
the designed procedure

Classifier Precision Recall

Context-based classifier AR 0.59% 98%
Fast-RCNN Fast�RCNN 71% 4.9%
SVM-HOG SVM�HOG 21.1% 0.06%

Fusion classifier H(�SVM�HOG, �AR) 1.3% 99%
Fusion classifier H(⇠Fast�RCNN , ⇠AR) 17.7% 40%

Table 10: Comparison of area under ROC curve and average precision for classifiers used
in the design procedure

Classifier ROC-AUC APped

Context-based classifier AR 0.66 0.5%
Fast-RCNN Fast�RCNN 0.70 19.6%

Fusion classifier H(⇠Fast�RCNN , ⇠AR) 0.756 7.5%

70

CHAPTER 7. RESULTS AND DISCUSSION

Table 11 shows the consumed time to detection. Time consumed for region
hypothesis generation using brute-force method is not consider, only the time take
for featuring engineering and classification is shown in table 11. As it is observed
Fast-RCNN consumes maximum time, it is because of the computation complexity
involved in convolution and pooling layer for feature map generation at each layers
before final inner product linear classification layer. The context-based classifier and
deep fusion classifier consumes only 59msec and 35msec respectively, which is very
negligible. This shows that fusion does not add up to the delayed latency.

Table 11: Comparison of time consumed

Classifier Time consumed

Context-based classifier AR ⇡ 59msec for ⇡ 2300 region proposals
Fast-RCNN Fast�RCNN ⇡ 25.97sec for ⇡ 2300 region proposals
SVM-HOG SVM�HOG ⇡ 140msec using sliding window

Fusion classifier H(�SVM�HOG, �AR) ⇡ 10msec using sliding window
Fusion classifier H(⇠Fast�RCNN , ⇠AR) ⇡ (35msec) for ⇡ 2300 region proposals

71

Chapter 8

Conclusion and Future work

Conclusion

This work focused on integrating context-based information explicitly to Deep learn-
ing detector (Fast-RCNN) and shallow based detector (SVM-HOG) to address the
problem of pedestrian detection. Fusing of context-based classifier at the post pro-
cessing stage of Fast-RCNN and SVM-HOG was proposed and evaluated on di↵erent
metrics. It is perceived from the obtained evaluation results that, the utilized clas-
sifiers (SVM�HOG, AR) in designing shallow approach as described in section 6.3.2
leads to very poor performance with F1 score of 0.0256. This is due to the adapted
SVM-HOG classifier (SVM�HOG) which is trained on Daimler detection dataset [26]
has very low recall and precision on Caltech pedestrian dataset [1], therefore this el-
evates the ambiguity in representation of appropriate feature engineering involved in
shallow learning. Whereas, the utilized deep architecture Fast-RCNN [9] fine-tuned
on PASCAL VOC dataset [7] shows better performance compared to the SVM�HOG

used in shallow approach. The feature engineering task involved in deep learning is
inherent and allows to have high generalization compared to SVM�HOG. Compar-
ing the F1 scores from the table 8, the proposed method of fusing the context-based
classifier with the deep network Fast-RCNN as improved the usefulness and perfor-
mance from F1 = 0.0916 to F1 = 0.2452.

The context-based classifier AR is governed on just scale feature (aspect-ratio) of
an object, therefore it has high false positive rate compared to other classifier. After
fusing AR classifier with Fast-RCNN in post-processing stage it induces high false
positives allowing the average precision (AP) of fusion classifier H(�Fast�RCNN , �AR)
to drop from AP=19.6% to AP=7.5%. Hence to increase the average precision of
fused model H(�Fast�RCNN , �AR) the contextual informations like spatiotemporal
and semantic information along with aspect-ratio that are relative to pedestrian
should be considered during modelling context-based classifier AR. The table 11
displays the computation intensity involved by Fast-RCNN, most of the time con-
sumed is for the feature engineering task involved inside the deep architecture. Also
it is evident that, the context based classifier AR and the time taken by fusion
classifier H(�SVM�HOG, �AR) is very negligible. To conclude, integrating context

72

CHAPTER 8. CONCLUSION AND FUTURE WORK

information with deep learning will provide an sophisticated object detector that
address the problem of object detection in the area of computer vision and machine
learning.

Future work

Future work aims at integrating more context information and even addressing the
problem of occlusion. Designing of end-to-end deep models that have the ability
to learning intuitive information implicitly for data for object detection task will
be focused. Deep Learning models are associated with millions of parameters and
require billions of floating point operations per second, which limits the ability to
inference on low power mobile platforms for real time application. It is important
to focus on dedicated hardware such as Nvidia Drive PX/ PX2 [48] and highly
optimized BLAS functions which makes it easy to deploy Deep Learning models
that can operate in real time. Considering the fact that Deep Learning models
are highly redundant, Deep Compression techniques will be focused to decrease the
redundancy and reduce the computation expenses without performance degradation.

73

Bibliography

[1] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An
evaluation of the state of the art,” IEEE transactions on pattern analysis and
machine intelligence, vol. 34, no. 4, pp. 743–761, 2012.

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), vol. 1, pp. 886–893, IEEE, 2005.

[3] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. Lecun, “Pedestrian detection
with unsupervised multi-stage feature learning,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2013.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, pp. 1097–1105, 2012.

[5] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using convolu-
tional networks,” arXiv preprint arXiv:1312.6229, 2013.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional
networks for accurate object detection and segmentation,” IEEE transactions
on pattern analysis and machine intelligence, vol. 38, no. 1, pp. 142–158, 2016.

[7] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes challenge: A retrospective,”
International Journal of Computer Vision, vol. 111, pp. 98–136, Jan. 2015.

[8] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selec-
tive search for object recognition,” International journal of computer vision,
vol. 104, no. 2, pp. 154–171, 2013.

[9] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448, 2015.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

74

BIBLIOGRAPHY

[11] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information
processing systems, pp. 91–99, 2015.

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” arXiv preprint arXiv:1506.02640, 2015.

[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed, “Ssd: Single shot
multibox detector,” arXiv preprint arXiv:1512.02325, 2015.

[14] https://github.com/rbgirshick/fast rcnn, “Fast-rcnn pre-trained model.”

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Ca↵e: Convolutional architecture for fast feature embed-
ding,” in Proceedings of the 22nd ACM international conference on Multimedia,
pp. 675–678, ACM, 2014.

[16] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R. Pas-
canu, J. Bergstra, F. Bastien, and Y. Bengio, “Pylearn2: a machine learning
research library,” arXiv preprint arXiv:1308.4214, 2013.

[17] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environ-
ment for machine learning,” in BigLearn, NIPS Workshop, no. EPFL-CONF-
192376, 2011.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–9, 2015.

[19] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part-based models,” IEEE transactions
on pattern analysis and machine intelligence, vol. 32, no. 9, pp. 1627–1645,
2010.

[20] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,” 2009.

[21] Y. Zheng, C. Shen, R. Hartley, and X. Huang, “E↵ective pedestrian de-
tection using center-symmetric local binary/trinary patterns,” arXiv preprint
arXiv:1009.0892, 2010.

[22] S. Zhang, R. Benenson, and B. Schiele, “Filtered channel features for pedes-
trian detection,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1751–1760, IEEE, 2015.

[23] C. Wojek, S. Walk, and B. Schiele, “Multi-cue onboard pedestrian detection,”
in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on, pp. 794–801, IEEE, 2009.

75

BIBLIOGRAPHY

[24] G. Bradski et al., “The opencv library,” Doctor Dobbs Journal, vol. 25, no. 11,
pp. 120–126, 2000.

[25] A. Ess, B. Leibe, and L. Van Gool, “Depth and appearance for mobile scene
analysis,” in 2007 IEEE 11th International Conference on Computer Vision,
pp. 1–8, IEEE, 2007.

[26] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection: Survey and
experiments,” IEEE transactions on pattern analysis and machine intelligence,
vol. 31, no. 12, pp. 2179–2195, 2009.

[27] G. Hirtz, “Stereo vision.” Lecture notes Computer Vision TU Chemnitz, June
2014.

[28] N. Dalal, Finding people in images and videos. PhD thesis, Institut National
Polytechnique de Grenoble-INPG, 2006.

[29] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-
national journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[30] T. Joachims, “Making large scale svm learning practical,” tech. rep., Universität
Dortmund, 1999.

[31] A. Karpathy, “Convolutional neural networks for visual recognition.” Lecture
notes CS231n, Winter 2015.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[33] Y. B. Ian Goodfellow and A. Courville, Deep Learning. 2016. Book in prepa-
ration for MIT Press.

[34] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European Conference on Computer Vision, pp. 818–833, Springer,
2014.

[35] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding
neural networks through deep visualization,” arXiv preprint arXiv:1506.06579,
2015.

[36] S. R. Gunn et al., “Support vector machines for classification and regression,”
ISIS technical report, vol. 14, 1998.

[37] C. M. Bishop, “Pattern recognition,” Machine Learning, vol. 128, 2006.

[38] A. R. Webb, Statistical pattern recognition. John Wiley & Sons, 2003.

76

BIBLIOGRAPHY

[39] K. Kashin, “Statistical inference: Maximum likelihood estimation.” Notes
Statistics, Spring 2014.

[40] E. Zivot, “Maximum likelihood estimation,” 2001.

[41] M. D. Happel and P. Bock, “Analysis of a fusion method for combining marginal
classifiers,” in International Workshop on Multiple Classifier Systems, pp. 137–
146, Springer, 2000.

[42] I. I. Jose A. Lozano, Guzmán Santafé, “Classifier performance evaluation and
comparison.” International Conference on Machine Learning and Applications
(ICMLA 2010), December 2010.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” arXiv preprint arXiv:1512.03385, 2015.

[44] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection: Survey and
experiments,” IEEE transactions on pattern analysis and machine intelligence,
vol. 31, no. 12, pp. 2179–2195, 2009.

[45] M. D. Happel and P. Bock, “Analysis of a fusion method for combining marginal
classifiers,” in International Workshop on Multiple Classifier Systems, pp. 137–
146, Springer, 2000.

[46] K. Boyd, K. H. Eng, and C. D. Page, “Area under the precision-recall curve:
Point estimates and confidence intervals,” in Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pp. 451–466, Springer,
2013.

[47] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous detection
and segmentation,” in European Conference on Computer Vision, pp. 297–312,
Springer, 2014.

[48] http://www.nvidia.de/object/drive-px de.html, “The ai computer for self-
propelled cars.”

77

	List of Figures
	List of Tables
	Introduction
	Literature review
	Deep learning approaches for object detection
	Conventional methods for pedestrian detection
	Dataset

	Fundamentals
	Feature engineering
	Hand-coded Features
	Histogram of Oriented Gradients(HOG)
	Visualization of HOG-descriptor computed features

	Deep Learning
	Convolutional Neural Networks(CNN, ConvNet)
	Visualizing the features learnt by ConvNet

	Image classifiers
	Linear Support Vector Machine
	Hard-Margin case
	Soft-Margine case

	Softmax
	Score function
	Loss function

	Maximum Likelihood Estimation
	The Likelihood Function
	Maximum Likelihood Estimator(MLE)

	Overview of methods
	Fast-RCNN and Bayesian classifier fusion
	Stereo information for contextual modelling

	SVM-HOG and Bayesian classifier fusion

	Evaluation methodology
	Implementation and performance study
	Region hypothesis generation
	Brute force method
	Multi-scale scanning window method

	Feature extraction and classification
	Fast-RCNN architecture
	HOG-SVM Pedestrian detector pipeline
	Context-Based classifier

	Calssifier's fusion
	Fast-RCNN (_Fast RCNN) + Context based Classifier (_AR) fusion
	SVM-HOG (_SVM-HOG) + Aspect ratio classifier (_AR) fusion

	Results and Discussion
	Deep learning
	Shallow approach
	Comparison of deep and shallow approach

	Conclusion and Future work
	Bibliography

