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We study the interaction between a complex plasma and metal spheres. We use the PK-3 Plus Laboratory on board the International Space Station.
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=« |ast experiment with the PK-3 Plus Laboratory on board the International Space Station

. _ _ : » PK-3 Plus Laboratory on board
= argon plasma + microparticles + metallic spheres of 1 mm diameter B inetional Space Station rf electrode
= spheres set into motion by manual shaking of the experiment container, are reflected off the chamber . capacitively coupled plasma cham- 4
walls, decelerated slowly compared to time scale of microparticle dynamics ‘ I lledl viith argon 3 em t;;@_ vlasma & particleell -1 cpo
Microgravity is essential for this project. = microparticles injected with dis- | §
pensers, illuminated with laser

= under influence of gravity, microparticles fall to sheath where they are suspended by electric field sheet, motion recorded with cam- rf electrode -

= metallic spheres would not be trapped in plasma at all eras (frame rate: 50 fps)
— microgravity essential for study of interaction = o B

Forces Acting on the Spheres
The sphere motion is dominated by inertia. The drag forces are negligible. Experiment parameters

- sphere mass: ms = 4.1 x 10 %kg = Knudsen number Kn = Ay e,/ R (mean free

path of gas atoms / sphere radius)
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= Stokes drag: Fy o< vs, correction for slip (3) 29.3 50.8+125 05 104 7 +2 5 3.4 40 5400 0.4 14.0
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= sphere radius R = 0.5mm

= typical velocity: vs =30mm/s

= stopping sphere from vg during At = 1s would
require force Fy = msvs/At = 120 nN

= Reynolds number: Re = 2Rpuvs/u (p: gas mass
density) low — laminar flow of gas around sphere
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« drag due to viscosity and friction of 6.8 VIR 6600 4.4 9.3

microparticle fluid [1]: F,qq ~ 0.3nN < F5 Table: Experiments (1) Simple interaction, (2) Bubbles, (3) Repulsive attraction, and (4) Exciting waves, spheres interaction with
microparticles of diameter dy. “estimated with drift motion limited theory (DML) [3]; ’calculated from the position of the first peak
2]

of the radial pair correlation function; “estimated by counting particles
(1) Simple Interactions between the Microparticles and Spheres
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see Table for experiment parameters

Sphere charge estimated with rule of thumb: Qs ~ 1400 T¢|oy @|yme ~ 1.8 X 10%e
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Spheres cause cavities in the microparticle cloud and cast shadows when in the laser plane. The shape of the cavity can be measured in three dimensions.

8

= use sphere traveling through the laser plane
as probe to get 3D structure of cavity

= assume constant sphere speed in z-direction
(perpendicular to laser plane), measure v,
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200 from time needed to transverse laser plane
2 f 150 = the caIV|ty forms very fast with a shock in
2 2 the microparticle fluid
; 4 ~ 100 : .
Z Z - = after the sphere is gone, the cavity closes
c NS . : . .
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The forces approximately balance at the cavity edge.

At the cavity flank: 7 = 1.8 mm : : MY
directed away from the sphere: At the leading cavity edge: 71 = 3.0mm

=T r dvg i p calculate the distance d over which the
o\ ‘x | 13 v o iR e S =) » electric field Qs " ) my dv = Fgp,+ Fp+ Fi+qqE(r)), microparticle decelerates:
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" pressure for;:e E(re) ~ 120 V/m sphere velocity vs
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= ion drag force [4] (Ape used as screening length inside »d=210pm
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(2) Sphere generated bubbles | (4) Exciting waves

The spheres cause bubbles in the void. _ e ~ Spheres excite waves in the vicinity of self-excited waves. The wave excitation is controlled by the electric field.

= .

spheres attract ions and bend ion stream lines

dust density waves are excited when electric field stronger than
critical field E¢, [6]

TEp kg1
_— iR PR g Tl R - iy Cd ’6'
e st - Ft it sy | for experiments (1) — (3) with higher gas pressure, Fer = 180V /m

to 250V/m — no excitation of waves _—

here, the sphere’s electric field is strong enough to bring total electric : ‘

ﬂ

field over the threshold in vicinity of self-excited waves (also, there is ¥
a density increase due to compression by sphere) '

Ecr 2

~ 80V /m

Figure: A bubble forms around a sphere at the void edge. Fov: 6.5 x 8.5 mm?.

= bubbles similar as under influence of thermophoresis [5] e
= effective surface tension = mass M moved during bubble =ity

breakup in time 7, o >~ M/7'2 ~ 4 x 10711 kg/52 (about Figure: An approaching sphere excites waves in its vicinity. Fov: 16 x 9 mm?.

1/2-1/3 of value in [5]) = dust density waves are excited at low pressure and high dust density
= bubble lid loses cohesion after sphere left - here, waves appear once a sphere gets close

the wave fronts bent towards cavity, similar as towards a rod [7],
which is due to the attraction of the ions to the sphere
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(3) Repulsive attraction Conclusions

Inside the void, spheres effectively attract microparticles. Summary B - Outlook

B e e e el e o narticles in plasma = study excitation of waves and effective attraction in more detail

= cavities in the microparticle cloud surround the spheres, caused by " CompRISRIS preV|ous SIE S

ion drag, pressure force by the other microparticles, and electric force ReFerences

= when moving in the VOid, spheres attract microparticles (due to 1on [1] A. V. lvlev and D. |. Zhukhovitskii. Phys. [5] M. Schwabe et al. Phys. Rev. Lett. 102,

Figure: Negatives of images with fov of 11.9 x 7.2 mm? ' : : : : - Plasmas 19, 093703 (2012). 255005 (2009).
drag fOI’CG) at intermediate distances, formlng bubbles with effective [2] R. Heidemann et al. Phys. Plasmas 18, 6] M. A. Fink et al. EPL 102, 45001 (2013).

= sphere moving inside the void first attracts microparticles, then surface tension 053701 (2011). [7] M. Choudhary, S. Mukherjee, and P. Bandy-

repels them = the spheres extend the region where microparticles waves are excited, 3] G. E. Morfill et al. New J. Phys. 8, 7 (2006).  opadhyay. Phys. Plasmas 23, (2016).
[4] S. A. Khrapak et al. Phys. Rev. Lett. 106,

= probably due to ion flux towards the sphere and bend the wave ridges 205001 (2011).
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