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A method is developed to determine station-keeping maneuvers for a fleet of satel-

lites collocated in a geostationary slot. The method is enabled by a linear time-varying

formulation of the satellite orbit dynamics in terms of non-singular orbital elements.

A leader-follower control hierarchy is used, such that the motion of the follower satel-

lites is controlled relative to the leader. Key objectives of the station-keeping method

are to minimize propellant consumption and to limit the number of maneuvers, while

guaranteeing safe separation between the satellites. The method is applied in a realis-

tic simulation scenario, including orbit determination, actuation and modeling errors.

The method is demonstrated to work for fleet of four satellites with differences in mass,

surface area and propulsion system for a maneuver cycle of one week. It is then demon-

strated that by reducing the maneuver cycle duration to one day, the method allows

to collocate 16 satellites in a single slot, without penalties on propellant consumption.
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Nomenclature

α Right ascension of geostationary position [rad]

∆e Relative eccentricity vector ∆e = (∆ex,∆ey)
T [-]

∆i Relative inclination vector ∆i = (∆ix,∆iy)
T [rad]

∆e Relative eccentricity [-]

δe Magnitude of relative eccentricity vector [-]

∆i Relative inclination [rad]

δi Magnitude of relative inclination vector [rad]

∆L Relative mean longitude [rad]

δM Angle between satellite position and relative eccentricity vector [rad]

∆n Relative mean orbital motion [rad/s]

δΩ Phase angle of relative inclination vector [rad]

δω Angle between relative eccentricity and inclination vectors [rad]

δω̃ Phase angle of relative eccentricity vector [rad]

Γ Thruster configuration matrix mapping thrusts to RTN frame

{.}i Superscript i refers to ith Follower satellite

{.}L Superscript L refers to Leader satellite

{.}GEO Subscript GEO refers to a geostationary orbit

{.}lb Subscript lb refers to lower bound

{.}ub Subscript ub refers to upper bound

e Eccentricity vector e = (ex, ey)
T [-]

i Inclination vector i = (ix, iy)
T [rad]

T Thrust force vector [N]

2



uc Vector of controlled accelerations in RTN frame [m/s2]

ud Vector of disturbing accelerations in RTN frame [m/s2]

µE Gravitational parameter Earth [m3/s2]

Ω Right ascension of ascending node [rad]

ω Argument of perigee [rad]

ρ Magnitude of relative position vector [m]

ω̃ ω̃ = ω +Ω [rad]

ε Mean longitude at epoch t0 L = ω +Ω+M0 [rad]

a Semi-major axis [m]

e Eccentricity [-]

i Inclination [rad]

L Argument of mean longitude L = ω +Ω+M [rad]

M Mean anomaly [rad]

m Satellite mass [kg]

n Mean orbital motion [rad/s]

nE Mean angular rate Earth [rad/s]

re Radius of relative eccentricity vector control window [-]

ri Radius of relative eccentricity vector control window [rad]

Se Set describing relative eccentricity vector control window

Si Set describing relative inclination vector control window

V Satellite velocity [m/s]

x, y, z Components of relative position vector in radial, tangential and normal direction [m]

I. Introduction

Syncom II was launched in 1963 and was the first satellite to arrive in a geosynchronous or-

bit. Since that time many satellites followed, and the geostationary orbit (GEO) in particular has
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become increasingly populated due to the high economic and political value of assets in this orbit.

Driven by the need to avoid radio-frequency interference between different satellites, the geosta-

tionary orbit was divided into slots, which are allocated by the International Telecommunication

Union. The limited availability and difficulty of obtaining these slots, especially at key locations

above densely populated areas, together with the ever increasing need for geostationary satellite

services lead several organizations to collocate multiple satellites within a single geostationary slot,

see e.g. [1].

The problem of collocating a fleet of geostationary satellites shares many similarities to other

distributed space systems, such as formations, clusters or swarms of satellites. One of the key chal-

lenges in orbit maintenance of distributed space systems is collision avoidance which is dealt with

by maintaining a certain minimum separation distance between satellites. Collocation strategies

developed to control more than two satellites in a geostationary slot generally rely on a technique

called eccentricity / inclination (e/i) vector separation, introduced by Eckstein [2], and have been

used for over 20 years to safely collocate geostationary satellites ([1]). Eccentricity and inclination

vectors for geostationary satellites lie in the equatorial plane and point respectively in the direction

of perigee and towards the ascending node, and have a magnitude depending on eccentricity and

inclination. The key idea is to configure the satellites’ desired mean eccentricity and inclination

vectors such that their relative eccentricity and inclination vectors are (anti-)parallel. Such configu-

ration uses the natural orbit dynamics to maintain safe separation distances by ensuring that radial

separation is maximum when normal separation vanishes and vice-versa.

The current state-of-art in collocation of geostationary satellites uses relative orbital elements

only in the definition of a desired configuration. The satellites are then controlled individually to

stay close to their desired (absolute) states. Collision avoidance is treated in a reactive fashion by

monitoring the (relative) motion of the satellites [3]. To minimize the required number of collision

avoidance maneuvers large separations of eccentricity and inclinations vectors are required. Orbit

determination errors, actuator errors, modeling errors, and the large variations of osculating eccen-

tricity and inclination vectors all cause deviations from the desired mean eccentricity and inclination

vectors, requiring large tolerance windows. This approach severely limits the number of satellites
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that can be collocated in a single geostationary slot.

Research in the field of other distributed space systems has been inspired by the techniques

developed for collocation of geostationary satellites. In [4] an impulsive control method based on

e/i vector separation was introduced for controlling the relative motion of a formation of two low

Earth orbiting satellites. The relative motion was controlled directly in terms of relative orbital

elements. Relative orbital elements have in turn been investigated for controlling collocated geosta-

tionary satellites. Beigelmann and Gurfil [5] present a method for calculating collocation maneuvers

using relative orbital elements under influence of the J2 perturbation. Other dominant perturba-

tions were omitted in their work. Rausch ([6], Chap. 4) includes also other dominant perturbations

(but no sensor and actuator errors) and propose a method to calculate impulsive maneuvers to

achieve desired relative orbital element differences. Constraints on relative states between subse-

quent maneuver calculations cannot be taken into account using such control strategy and thus

relative separation distances cannot be guaranteed at every point in time (i.e. a minimum separa-

tion distance is guaranteed for the nominal configuration, but perturbations induce drift, moving

the relative orbital elements away from their desired values). In addition, the impulsive maneuver

assumption further limits applicability to satellites with a high thrust-to-mass ratio.

The use of numeric optimization based methods allows a more proactive approach. Constraints

on maximum accelerations due to limitations of the propulsion system are straightforward to take

into account. Maneuvers can be planned such that constraints on relative states are satisfied at ev-

ery point in time. Maintaining a minimum separation distance imposes a non-convex constraint in

Cartesian space on such numeric optimization strategy. Algorithms for formation maintenance and

reconfiguration of distributed space systems managed a convexification of such constraint success-

fully by defining a series of halfspaces (or separating planes) at discrete timesteps using a heuristic

approach [7] or by using sequential convex programming techniques where the last iteration is used

to define the intersection of halfspaces that constitute the collision-safe region [8].

This paper develops a convex optimization-based method to accurately control the relative or-

bital elements of collocated geostationary satellites in the presence of all dominant perturbations,

errors and model uncertainty. It is shown that by controlling relative orbital elements, notably
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relative eccentricity and inclination vectors, inside convex control windows, minimum separation

distances between satellites can be guaranteed. Defining constraint windows on relative orbital el-

ements does not inhibit natural orbital motion and removes the need for a convexification of the

minimum separation distance constraint. In [9] it was demonstrated that differential perturbations

between satellites are small within a geostationary slot, suggesting that, in the absence of maneu-

vers, variations in the osculating relative states are small as well. Thus if the guidance and control

problem is formulated directly in terms of osculating relative states, and these relative states are

maintained within small tolerance windows, the number of satellites that can be collocated within a

single slot increases. To achieve this increase, the method for station-keeping of geostationary satel-

lites introduced in [9] is reformulated in terms of relative states. A leader-follower control hierarchy

is used to control the fleet. The leader satellite can be controlled using any desired method (we

use the method from [9]), and it is assumed that the predicted leader’s state trajectory is available

for determining the followers’ station-keeping maneuvers. Since the follower trajectory is only de-

pendent on the leader state trajectory, the method can be implemented in a decentralized manner

and is scalable to an arbitrary number of follower satellites (n.b the number of follower satellites is

limited by the size of the geostationary slot, and the desired minimum separation distance). The

maneuvers are determined by formulating and solving a convex optimization problem. The method

from [9] is further improved by explicitly accounting for the thruster configuration and using directly

the thrusts of each individual thruster as independent variables in the optimization problem. The

optimization problem is scaled to improve the numeric solution.

A simulation campaign was performed and the method is demonstrated to work under real-

istic (even conservative) orbit determination errors, actuator errors and modeling errors, and for

satellites with different design characteristics. It is also shown that by decreasing the maneuver

cycle duration, it is possible to collocate a larger number of satellites in a slot. A demonstration

of the method is given for four satellites, for a maneuver cycle duration of 7 days, and for a fleet

of 16 satellites for a maneuver cycle duration of 1 day. Results are analyzed in terms of propellant

consumption, number of maneuvers, accuracy of control of relative orbital elements, and minimum

separation distances.
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Corollary results include that propellant savings are achieved by explicitly accounting for

thruster configuration in the station-keeping strategy. It is shown that the classical sun-pointing

perigee strategy is not required for typical electric propulsion thruster configurations in order to

save propellant. And lastly it is shown that the thruster configuration itself has an impact on the

orbit prediction and control accuracy.

II. Modeling of Equations of Motion

A. Review of Dynamics

The theory described in this section builds on foundations from [9]. A short review of the

key concepts is given here. A linear time-varying formulation of the dynamics of a satellite in a

geostationary orbit is obtained through two simplifying assumptions:

Assumption 1 The input matrix at the ideal GEO-slot center provides a good approxima-

tion of the input matrix at an arbitrary position inside the GEO-slot.

A similar assumption is applied to the perturbing accelerations:

Assumption 2 The differential accelerations (excluding controlled accelerations) between a

satellite at an arbitrary position inside a GEO-slot and a virtual satellite located at the GEO-slot

center are at all times small.

These assumptions were investigated in [9] and bounds on the maximum error resulting from these

assumptions were given. The assumptions allowed to write the dynamics of a geostationary satellite

as a linear time-varying system:

ẋ (t) ≈ Ax (t) +B (α)uc (t) +B (α)ud (xgeo) . (1)

The state is defined in the orbital element set introduced in [10] and is as follows:
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x (t) =



∆n

ey

ex

iy

ix

∆L



=



n− nE

e sin (ω̃)

e cos (ω̃)

sin
(
i
2

)
sin (Ω)

sin
(
i
2

)
cos (Ω)

ε+
∫ t

t0
ndt− α



, (2)

where n =
√
µ/a3 is the mean orbital motion, nE is the Earth’s rotation rate, ω̃ = ω + Ω, ε is the

mean longitude at epoch t0, α is the right ascension of the geostationary position and a, e, i, ω, Ω

are classical orbital elements. The A matrix contains all zeros, except the (6,1)th-entry, which is

equal to one. The input matrix B is evaluated at the geostationary slot center:

B (α) ≈



0 −3
aGEO

0

− 1
VGEO

cosα 2
VGEO

sinα 0

1
VGEO

sinα 2
VGEO

cosα 0

0 0 1
2VGEO

sinα

0 0 1
2VGEO

cosα

− 2
VGEO

0 0



, (3)

where VGEO and aGEO are respectively velocity and semi-major axis of an ideal geostationary orbit

and the right ascension of the slot center is determined from:

α (t) = α (t0) + nE (t− t0) , (4)

The perturbing accelerations ud (xgeo) are determined at the slot center (xGEO) and both perturbing

and controlled accelerations uc (t) are defined in a radial, tangential, normal (RTN) reference frame.

In summary, the dynamics of a satellite relative to the geostationary slot center can be described

by a linear time-varying system, driven by a perturbing acceleration ud (t). References for obtaining

an expression for the perturbing accelerations are ample, see e.g. [11], Chap. 3 or [12], Chap. 11

and 12. Both the perturbing acceleration and the time-varying input matrix B (t) are, for a given

geostationary slot, non-linear but known function of time (under Assumptions 1 and 2).
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B. Discretization of Dynamics

Equation (1) is discretized using a zero-order hold on the control input uc (t), while applying

the classic fourth-order Runge-Kutta (RK4) scheme to obtain the discrete update:

xk+1 = Ãxk + B̃kuk + d̃k, (5)

where k refers to the kth discrete step, Ã, B̃k and d̃k are obtained by applying RK4 method to Eq.

(1) for a certain timestep h. Note that uk are the controlled accelerations and d̃k contains the effect

of perturbing accelerations. An explicit definition of the matrices is given in [9].

If we now repeatedly apply Eq. (5) from k = 0 to k = N − 1, we obtain the linear equation

X = Fx0 +HU + JD, (6)

that relates the (concatenated) N future states X =
(
xT
1 ,x

T
2 , ...,x

T
N

)T to the current state x0 and

the (concatenated) controls U =
(
uT
0 ,u

T
1 , ...,u

T
N−1

)T . Disturbances D =
(
d̃T
0 , d̃

T
1 , ..., d̃

T
N−1

)T
and

matrices F, H and J follow from a repeated application of Eq. (5).

The development of this approach is extensively treated in [9] and explicit definitions of matrices

are given there. The key feature of this formulation of the dynamics is that it provides an affine

expression relating the osculating future states to the osculating current state and future controls,

without neglecting the perturbing accelerations. It is this particular feature that enables us to solve

problems of station-keeping and collocation using convex optimization techniques.

C. Thruster Configuration

Most common geostationary satellite are three-axis stabilized platforms with an Earth-pointing

payload and solar panels on drive mechanisms. This design allows to keep the satellite attitude

constant in an Earth-fixed reference frame and thus for a geostationary satellite also in the RTN

reference frame. We state the assumption explicitly:

Assumption 3 The satellite attitude is constant in the radial, tangential, normal reference

frame
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Fig. 1 Schematic of thruster configuration REF, none of the thrust vectors have a radial

component.

Fig. 2 Schematic of thruster configuration A, none of the thrust vectors have a radial compo-

nent.

This assumption allows us to ignore attitude control in the station-keeping algorithm. Chemical

propulsion thrusters are generally aligned with North, East, South and West directions, see the

REF thruster configuration in Fig. 1. Such a thruster configuration ties in well with the dynamics,

since the controlled accelerations are defined in radial, tangential and normal direction of the

orbital reference frame (n.b. tangential and normal direction correspond to respectively East/West

and North/South directions).

Satellites employing an electric propulsion system usually have a different layout. North and

South sides are home to solar panels, and the plumes originating from an electric thruster can

cause significant degradation of the solar panel. Hence, the thrusters are generally tilted away

from the North and South directions to avoid contamination. We define two exemplary thruster
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configuration with four thrusters. We seek symmetric configurations and describe the orientation

of the thrusters by two rotations. For thrusters T1 and T4 we first rotate a vector pointing

North over an angle γ ∈ [0, 90◦], while for T2 and T3 we rotate a vector pointing South over an

angle γ ∈ [0, 90◦], both rotations are toward the radial direction. A second rotation is applied as

follows; thrusters T1 and T2 are rotated by an angle β ∈ [0, 90◦] about the North-axis (towards

the East) and T3 and T4 at an angle β ∈ [0, 90◦] about the South-axis (towards the West). One

configuration (A) used in this paper is obtained for γ = 45◦ and β = 90◦, shown in Fig. 2. The

arrows point in the direction of the acceleration that is exerted on the spacecraft by each thruster

(which is opposite to the exhaust plume). With this choice for β and γ the thrust vector lies

completely in the tangential, normal plane, which is a common choice for geostationary satellites.

This configuration is similar as implemented on the Hispasat Advanced Generation 1 mission [13].

Another configuration (B) that is analyzed in this paper is obtained by choosing γ = 45◦ and

β = 10◦,. Fig. 3 shows the projected thrust force vectors in the TN, RT and RN planes. Note that

for this configuration the thrusters are all pointing away from the solar panels as well as away from

the Earth-facing panel. We also use a reference configuration (REF) with four thrusters pointing

respectively North, East, South and West (Fig. 1). Note that additionally the location of the

thruster could be optimized, for example to support a combined orbit control and attitude control

or momentum management strategy. The configurations used in this work assume each thrust force

vector to pass through the satellite’s center of mass and attitude dynamics are ignored.

For thruster configuration A, we could determine maneuvers in East/West and North/South

directions and realize these maneuvers using the thrusters (e.g. a pure North maneuver would be

executed by firing thrusters T2 and T3 simultaneously. Alternatively, the thruster configuration can

be taken into account in the dynamics formulation by employing a matrix that maps the individual

thrust directions to accelerations in the radial, tangential, normal plane. The second approach is

used in this paper for two reasons: 1. it enables thruster configurations that cannot realize for

instance, pure North or South maneuvers, such as configuration B, and 2. a slight reduction in

propellant consumption is possible by directly optimizing the individual thruster firings. Thrust
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Fig. 3 Schematic of thruster configuration B with thrust vector projections on TN, RT and

RN planes.

forces are mapped into radial, tangential, normal direction as follows;

u =
1

m
ΓT, (7)

where m is the satellite mass, T = (T1, T2, T3, T4)
T is the vector of individual thrust forces and Γ is

the thruster configuration matrix. For our definition of β and γ we obtain:

Γ =


− sin γ cosβ − sin γ cosβ − sin γ cosβ − sin γ cosβ

− sin γ sinβ − sin γ sinβ sin γ sinβ sin γ sinβ

− cos γ cos γ cos γ − cos γ

 (8)

This matrix can be used to reformulate Eq. (6) to:

X = Fx0 +
1

m
HΓT + JD, (9)

with

Γ =


Γ

Γ

. . .

 .

and T =
(
TT

0 ,T
T
1 , ...,T

T
N−1

)T . This formulation relates directly the thrusts by each thruster to the

satellite state, described in non-singular orbital elements.
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D. Relative Orbital Elements and Separation Distances

In this section we present a mapping between orbital elements differences and coordinates in

the radial, tangential and normal reference frame attached to the leader satellite (x, y, z). The

relative orbital elements are obtained by subtracting the leader element from the follower element,

and are indicated by the ∆-symbol. The absolute orbital elements in the equations below refer to

the leader satellite. This first-order mapping is found in [14], where it was introduced as part of a

relative motion model:

x ≈ − 2
3
a
n∆n− a∆ex cosL− a∆ey sinL

y ≈ a∆L+ 2a∆ex sinL− 2a∆ey cosL

z ≈ 2a∆ix sinL− 2a∆iy cosL.

(10)

This linear mapping between relative orbital elements and the relative Cartesian position in the

radial, tangential, normal (RTN) reference frame is valid for near circular, near equatorial orbits.

The mapping is still depending on the leader’s state. If required, this dependency can be removed

by replacing a by aGEO, n by nGEO and L by α for satellites inside a geostationary slot (i.e. if the

mapping is valid between two arbitrary satellites inside the slot, it is also valid between a satellite

and its slot center).

We performed an error analysis of the linear mapping for the cases analyzed in the remainder

of this paper and found that the relative error defined as:

erel =

√
e2x + e2y + e2z√
x2 + y2 + z2

, (11)

where ex, ey, ez are the error between the approximate linear and exact nonlinear mapping, was

at all times smaller than 1.4 · 10−3. This statement is valid for the cases analyzed in this paper.

Note that [6], Chap. 3.2, also introduces a mapping between relative orbital elements and relative

separation distances for a slightly different orbital element set.

As done by d’Amico ([15], Chap. 2), we write relative eccentricity and inclination vectors in

polar notation:

∆e =

 ∆ex

∆ey

 = δe

 cos δω̃

sin δω̃

 (12)
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∆i =

 ∆ix

∆iy

 = sin
δi

2

 cos δΩ

sin δΩ

 ≈ δi

2

 cos δΩ

sin δΩ

 . (13)

Note that we used respectively δe 6= ∆e and δi 6= ∆i to indicate the magnitude and δω̃ 6= ∆ω̃ and

δΩ 6= ∆Ω to indicate the phase of relative eccentricity and inclination vectors. Further defining

δM = L − δω̃ as the angle between the satellite position the relative eccentricity vector and δω =

δω̃−δΩ as the angle between relative eccentricity and inclination vectors allows to write the relative

separation in RTN coordinates as:

x ≈ − 2
3
a
n∆n− aδe cos δM

y ≈ a∆L+ 2aδe sin δM

z ≈ aδi sin (δM + δω) .

(14)

These equations directly show the relation between the phasing of relative eccentricity and incli-

nation vectors and corresponding relative motion. Note that δω can be obtained directly from the

relative eccentricity and inclination vectors:

δω = cos−1

(
(∆e)

T
(∆i)

δe · δi

)
(15)

Due to the larger uncertainty in tangential direction, it is customary to rely on a separation distance

in the radial-normal plane only. From Eq. (14) it can be observed that parallel relative eccentricity

and inclination vectors (i.e. δω = 0 or δω = 180◦) results in the largest separation in this plane,

namely

ρxz,min = min (aδe, aδi) . (16)

Since in reality the satellites cannot be controlled to maintain δω = 0 at all times, we investigate the

minimum separation distance in the radial-normal plane as a function of the relative eccentricity

and inclination vectors. Assuming that the semi-major axis difference is small (∆n ≈ 0), we have:

ρ2xz = x2 + z2 = a2δe2 cos2 δM + a2δi2 sin2 (δM − δω) (17)

with δM ∈ [−π, π]. For a particular configuration of relative eccentricity and inclination vectors,

the minimum separation in the radial-normal plane can be found by minimizing Eq. (17) over δM ,
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as demonstrated below. We take the derivative of Eq. (17):

d
dδM

(
ρ2xz
)
= −a2δe2 sin 2δM + a2δi2 sin (2δM + 2δω) (18)

which can be rewritten to

d
dδM

(
ρ2xz
)
= c1 sin (2δM + c2) , (19)

where c1 and c2 are determined as follows:

c1 = a2
√
δe4 + δi4 − 2δe2δi2 cos 2δω (20)

c2 = atan2
(
δi2 sin 2δω, −δe2 + δi2 cos 2δω

)
. (21)

The minimum is found by solving

d
dδM

(
ρ2xz
)
= 0, (22)

which occurs at δM = −c2/2+ k/2 ·π, and hence there are four solutions in the domain of interest,

two corresponding to the maximum separation distance, and two corresponding to the minimum

separation distance. The symmetry of the relative motion requires us to only examine one of the

two solutions to find the minimum distance. If we choose δM = −c2/2 we can verify (c1 > 0):

d2

dδM2

(
ρ2xz
)
= 2c1 cos (2δM + c2) > 0, (23)

and hence the minimum is obtained. The minimum is found by substituting δM = −c2/2 in Eq.

(17) and taking the square root:

ρxz,min = a

√
δe2 cos2

(
−c2

2

)
+ δi2 sin2

(
−c2

2
− δω

)
. (24)

This equation can be used to find the minimum separation distance as a function of the relative

eccentricity and inclination vectors.

E. Safe Separation Strategy

We use a leader/follower architecture for controlling a fleet of collocated satellites. One desig-

nated leader satellite is controlled using some desired approach and it is assumed that the predicted
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leader state trajectory xL (t) is available to each follower satellite (n.b to obtain a “predicted” state,

the current state is propagated using the latest maneuver plan). The follower satellites are con-

trolled relative to this leader trajectory and are generally assumed to follow this trajectory to within

predefined control windows that are different for each follower.

The typical coordination strategy for collocated geostationary satellites is the eccentricity-

inclination vector separation strategy ([2], [16]). This strategy relies fully on the radial-normal plane

to ensure safe separation. The key idea behind this strategy is to control the relative eccentricity

and inclination vectors such that radial and normal motion are approximately 90◦ out-of-phase and

thus, normal separation is maximal when radial separation vanishes and vice-versa. As discussed

in the previous section, this situation occurs when relative eccentricity and inclination vectors are

parallel (i.e. δω = 0).

We adopt this strategy and define nominal relative e/i-vectors between follower and leader

satellites so that δe = δi and δω = 0. The relative eccentricity and inclination vectors are then

controlled within tolerance windows, centered on the nominal relative e/i-vectors and bounded by

the `2-norm:

∆e ∈ Se (∆ec, re) = {∆e | ‖∆e−∆ec‖2 ≤ re} (25)

∆i ∈ Si (∆ic, ri) = {∆i | ‖∆i−∆ic‖2 ≤ ri} , (26)

where ∆ec and ∆ic are respectively the nominal relative eccentricity and inclination vectors and

re and ri are the corresponding bounds. An exemplary configuration used in this paper, including

tolerance windows, can be seen in Figs. 5 and 6.

The key question is; what is the minimum separation distance for relative eccentricity and

inclination vectors inside these (convex) tolerance windows? From the equations presented before

we can deduce that the minimum separation distance decreases for increasing δω and decreasing δe

and δi. The control windows are defined for relative orbital elements between follower and leader

satellites. If two follower satellites’ relative e/i vectors are controlled within these windows, these

two follower satellites can have larger δω and smaller δe and δi with respect to each other. Note that

in these terms, the worst case (in Figs. 5 and 6) occurs between F1 and F2, or equivalently between

16



F2 and F3 and an equivalent tolerance window is found by assuming F2 fixed and enlarging the

tolerance window on F3 to 2re and 2ri . To find an exact bound on the smallest minimum separation

distance we can solve the non-convex optimization problem

minimize ρxz,min

subject to

∆e ∈ Se

∆i ∈ Si.

(27)

If we set ∆ec = ∆ic and re = ri and assume ∆eT∆i > 0 for all ∆e ∈ Se and ∆i ∈ Si (which is

a very reasonable assumption, since ∆eT∆i = 0 would result in ρxz,min = 0), we find an analytic

solution to the optimization problem in Eq. (27) by substituting:

δe = δi =

√
r2e + δe2c −

√
2reδec and δω =

√
2
re
δe

(28)

into Eq. (24). Note that we need to substitute 2re to find the minimum separation distance between

two follower satellites. Thus by choosing a set of (convex) control windows on relative eccentricity

and inclination vectors, and maintaining the relative orbital elements within these windows, we can

guarantee a certain minimum separation distance, calculated either by solving Eq. (27) or under

more restricted conditions from Eqs. (24) and (28).

This approach provides an alternative method to deal with the non-convex constraint of main-

taining a minimum separation distance between satellites. The great advantage of this approach is

that we are able to deal with the minimum separation distance constraint by defining two different

convex constraints. Since these constraints are defined with respect to (relative) orbital elements,

the satellites follow a very natural orbital motion (i.e. the (relative) orbital elements are integration

constants in the Keplerian two-body problem). The only disturbances that require compensation

are resulting from differential orbital perturbations, controlled accelerations from the leader satellite

and disturbances resulting from sensor and actuator errors.

III. Collocation as a Convex Optimization Problem

In this section we will extend the approach introduced in [9] to a fleet of collocated satellites

with constraints on relative states.
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A. Relative State, State Error and Constraints

The relative state is obtained by subtracting the leader state from the follower state. The leader

state xL (t) is sampled at the discrete time points matching the discretized follower state to obtain

XL and the relative state is formed as follows:

∆Xi = Xi −XL (29)

= Fxi
0 +

1

mi
HΓiT i + JDi −XL,

where i = 1, 2, 3, ... refers to the ith follower satellite. Note that also the term D is different for each

satellite in the fleet, as it depends on all dominant perturbations, including solar radiation pressure,

which in turn is dependent on the particular satellite’s characteristics. Actually, differential pertur-

bations other than solar radiation pressure are very similar for the different satellites, and could be

canceled in forming the relative state. We however decided to maintain also these perturbations,

as it allows us to evaluate also the absolute state and possibly constrain it. Now let ∆Xi
des be the

desired relative state of follower satellite i, the state error is then defined as:

Ei = ∆Xi −∆Xi
des (30)

= Fxi
k +

1

mi
HΓiT i + JDi −XL −∆Xi

des,

The key task of the collocation control algorithm is to maintain a convex function of this error

below a certain bound

Ci
(
Ei
)
≤ Ci

ub, (31)

or an affine function of this error between an upper an a lower bound

Ci
lb ≤ Ci

(
Ei
)
≤ Ci

ub, (32)

where Ci
(
Ei
)

are state constraint functions, “lb” and “ub” refer to respectively lower and upper

bounds.

B. Scaling of the State and Control Variables

In the formulation of an optimization problem it is good practice to scale optimization variables

and constraints so that they vary in more uniform ranges. Proper scaling enhances robustness and

18



improves converges of the optimization problem [17]. The optimization variables (i.e. thrust) are

scaled so that they vary in the range [0, 1], which is achieved by applying the following scaling law:

T̄i = T iTi (33)

=



1/T i
1,max

1/T i
2,max

1/T i
3,max

1/T i
4,max


Ti,

where Tmax denotes the (maximum) thrust that a particular thruster can deliver. The complete

(concatenated) vector of thrusts in the range k = 1, .., N is defined as:

T̄ i = T iT i (34)

=


T i

T i

. . .

T i.

A similar approach is applied to the constraints. In this work we only consider affine constraints

that have symmetric bounds (i.e. Ci
lb = −Ci

ub) or convex constraints which are greater than or equal

to zero, with only an upper bound. If cij denotes the jth element of Ci, we scale that constraint by

1/cij,ub, so that the scaled constraint c̄ij varies in the range [0, 1] or [−1, 1], for respectively cij,lb = 0

and cij,lb = −cij,ub. Similar to the thrust vector scaling, we define a diagonal scaling matrix for the

constraints:

C̄i = CiCi (35)

=


1/cij,ub

1/cij,ub

. . .

Ci.

These scaled variables are used in the formulation of the optimization problem in the next section.

C. Optimization Problem Formulation

An optimization based method is used to determine the station-keeping maneuvers of the fol-

lower satellites. This section details the formulation of the optimization problem. To solve the
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collocation control problem for follower satellite i we specify the following optimization problem:

minimize α‖T̄ i‖1 + (1− α)

M∑
j=1

max (0, sj − 1)

subject to

C̄i ≤ s

T̄ i ≥ 0

T̄ i ≤ 1.

(36)

The optimization variables in this problem are 1. the scaled thrust vector T̄ i, and 2. a slack variable

vector s, which has length of M , equal to the number of constraints C̄i.

1. Cost Function

The cost function contains two terms, the first is the `1-norm of the thrust vector. This term rep-

resents the minimization of propellant consumption. The second term is a deadzone-linear penalty

function [18], which can be interpreted as follows; whenever the slack variable sj is smaller (in abso-

lute terms) than the tolerable bound on the constraint function cij,ub, it is free of charge. Whenever

the bound gets violated, it is penalized through the cost function. This implementation gives the

optimizer an option to violate desired control windows on state variables at a cost. The advantage

of this implementation is that the optimization problem does not become infeasible when the con-

straints cannot be met. A relative weighting between the two terms in the cost function is added

through α (with α ∈ [0, 1]). A further weighting on the slack variables can be included to distinguish

their relative importance.

2. Constraints

Three types of state constraints were used in this work. The first two constraint types are bounds

on the `2-norm of the eccentricity and inclination vector error (∆ex,∆ey)
T and (∆ix,∆iy)

T . To

arrive at a specific example, let Ei
j,k denote the jth relative state error at discrete time k. A

constraint on the `2-norm of the eccentricity vector error at time k, including scaling and slack

variable is as follows:
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1

cij,ub

∥∥∥∥∥∥∥∥
Ei

2,k

Ei
3,k

∥∥∥∥∥∥∥∥
2

≤ sj (37)

and on the inclination vector error:

1

cij,ub

∥∥∥∥∥∥∥∥
Ei

4,k

Ei
5,k

∥∥∥∥∥∥∥∥
2

≤ sj . (38)

The third type of constraint is a box constraint on the longitude error ∆L, implemented as:

1

cij,ub

∣∣Ei
6,k

∣∣ ≤ sj . (39)

The constraint on the control variables T̄ are bounds on the maximum thrust force that the

satellite can deliver. After applying the scaling, each element in T̄ is bounded between 0 and 1.

D. Implementation of Maneuver Plans

The maneuver plans resulting from solving the optimization problem in Eq. (36) are processed

before they are implemented. This is required because we assume that the thrusters have only a

single qualified operational point and are hence on/off thrusters. Since we penalize the `1-norm of

the thrust vector in the cost function, the resulting maneuver plans are always sparse (i.e. they

contain only a small number of non-zero elements). In realizing the maneuver plans we use the

following logic; if subsequent time intervals for a single thruster have a non-zero thrust, these

are combined into a single burn, centered on a weighted average of the individual thrusts, with a

magnitude equal to Tmax, and a duration such that the total impulse is equal to the sum of the

individual elements. This process is visualized in Fig. 4. No more than three subsequent intervals

are combined into a single burn so that the error resulting from this processing remains bounded.

A short analysis on the magnitude of the error thus introduced is presented in [9] and is more than

an order of magnitude smaller than errors resulting from e.g. orbit determination or the thrusters

themselves.
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Fig. 4 Conceptual sketch showing the implementation of a maneuver plan resulting from

optimization.

IV. Simulation and Analysis

This section presents the simulation environment and two analysis cases to evaluate the pre-

sented method for controlling collocated satellites.

A. Simulation Environment

Simulations were carried out using Matlab. We used a validated propagator including Earth

gravity up to 8th order and degree, Moon gravity, Sun gravity and solar radiation pressure (SRP).

The RK4 integration method was used, with a timestep of 100 seconds. The optimization problem

was formulated using CVX [19], and solved using MOSEK [20]. The timestep in the optimization

problem was 1000 s, so that 87 steps are needed for to completely cover one orbit. Maneuver plans

were implemented based on simple on/off thruster with a single operational point (i.e. T = 0

or T = Tmax). The thrusters are assumed to have a minimum on-time as well, to avoid large

uncertainty in the thrust force due to the transient behavior at switch-on and switch-off. Several

forms of uncertainty were included; Gaussian orbit determination errors were implemented based on

the covariance matrix in Table 1, actuator uncertainty was included by implementing a 5% thrust

force error (Gaussian, 3σ) and a 1.5◦ attitude error (Gaussian, 3σ). In addition, SRP uncertainty

was included as a 15% uniform random error on the acceleration due to SRP.

B. Analysis Cases

We present two concrete example cases of a fleet of satellites controlled in geostationary slots of

respectively ±0.1◦ and ±0.05◦, located at 19.2◦E. In the first case, the leader satellite is controlled
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Table 1 Covariance matrix of orbit determination error, Radial (R), Tangential (T) and Nor-

mal (N) position [m2] and velocity (V) [m2/s2]

R T N VR VT VN

R 1.23E+01 4.90E+01 1.12E+01 2.95E−04 -1.70E−03 -1.94E−03

T 4.90E+01 1.47E+05 -1.56E+02 2.09E−03 -7.86E−03 2.74E−02

N 1.12E+01 -1.56E+02 1.32E+02 2.31E−04 -1.50E−03 -2.30E−02

VR 2.95E−04 2.09E−03 2.31E−04 9.20E−09 -4.33E−08 -4.02E−08

VT -1.70E−03 -7.86E−03 -1.50E−03 -4.33E−08 2.37E−07 2.61E−07

VN -1.94E−03 2.74E−02 -2.30E−02 -4.02E−08 2.61E−07 4.00E−06

using a sun-pointing perigee strategy, while in the second case the mean eccentricity is controlled

to a fixed point. The leader’s inclination control strategy is such that only secular variations of the

inclination vector are compensated, while the periodic oscillations are uncontrolled. The longitude

control strategy targets the center of the slot at the end of the maneuver cycle in both cases. More

specifically, the leader satellite was controlled using the method outlined in [9], without constraints

on the thrust other than the maximum thrust force. The predicted leader state trajectory was made

available to the follower satellites. The follower satellites are then controlled relative to the leader

satellite using the method outlined in the previous section.

1. Case A: a Fleet of Four Satellites

With this simulation case we aim to show that the method is robust under realistic (/conser-

vative) assumptions on uncertainty, for a maneuver cycle of 7 days (in line with typical maneuver

cycle durations for electric propulsion spacecraft see e.g. [21]), for a fleet of satellite with differences

in mass, surface area and propulsion system. We aim to show that the method has no significant

penalties in performance, while maintaining safe separation distances. Performance is measured in

terms of propellant consumption and number of thruster firings.

The fleet consists of four satellites. The follower satellites have characteristics different from the

leader satellite in terms of area exposed to the Sun, maximum thrust force and minimum impulse

bit. Between the three follower satellites the characteristics are identical, with the exception of
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their thruster configuration. The satellite characteristics are summarized in Table 2. The maneuver

plans for the follower satellites are determined with a prediction horizon of 7 days, in line with usual

operational practice, which are then executed open-loop. The leader follows a Sun-pointing perigee

strategy, following a circle in the eccentricity plane with a radius of 2·10−4, the eccentricity circle’s

center and other nominal leader parameters are given in Table 3.

Table 4 shows the bounds that were implemented in the optimization problem. Figures 5 and

6 show the eccentricity and inclination vector configuration. The nominal relative states of the

follower satellites were chosen consistent with the e/i vector separation strategy. The dashed line

shows the bounds in the optimization problem. The absolute worst-case minimum separation dis-

tance (in the radial-normal plane) can be found by solving Eq. (27) (using the analytical solution

from Eq. (28)) and using a bound of 2re (which would be the maximum bound between two follower

satellites’ relative eccentricity and inclination control windows). The resulting worst-case minimum

separation distance in the radial-normal plane is found to be:

ρxz,min ≥ 6.03 km (40)

which occurs at γ = 36.24◦, with δe = δi = 2.24 · 10−4. Thus maintaining the relative eccentricity

and inclination vectors within the specified convex bounds guarantees the above stated minimum

separation distance.

Note that due to the implementation of the constraints with slack variables s, which are pe-

nalized using a deadzone linear term in the cost function in Eq. (36) the constraints are not hard

bounds, instead, they could be violated, such that the resulting optimization problem is always

feasible. We found that especially in the presence of errors (orbit determination, actuators, mod-

eling) performance increased when we implemented a tighter bound on the final state. We also

found that it is good practice to make the satellite with the least capable propulsion system, in

terms of maximum acceleration of the spacecraft, the formation leader. The underlying reason is

that a formation leader with a significantly more capable propulsion system could produce reference

trajectories which cannot be realized by satellite with a less capable propulsion system.
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Table 2 Parameters of four satellites

Parameter L 1 2 3

Mass [kg] 3000 3000 3000 3000

Surface area [m2] 90 120 120 120

Reflection coefficient [-] 1.2 1.2 1.2 1.2

Thrust force [mN] 75 125 125 125

Minimum on-time [s] 60 60 60 60

Thruster configuration REF REF A B

Table 3 Leader nominal mean orbital elements

Case A Case B

ex [-] -1.41E-04 -0.60E-04

ey [-] 1.41E-04 0.60E-04

ix [rad] -0.71E-04 -0.30E-04

iy [rad] 0.71E-04 0.30E-04

∆L [rad] 0 0

2. Case B: a Fleet of 16 Satellites

If we desire to control the relative orbital elements within tighter bounds, under the assumed

errors in orbit determination, actuation and modeling, we can only do so by increasing the fre-

quency of re-planning. To avoid unnecessary burden on the operator, the method can and should

be implemented in a fully automated manner. A necessary element to achieve autonomous station-

keeping is an automated orbit determination capability, which can, e.g., be enabled by an on-board

Table 4 Bounds on different state constraints

Case A Case B

cij,ub at k < N at k = N at k < N at k = N

re [-] 5.00E-05 2.50E-05 2.50E-05 1.25E-05

ri [rad] 5.00E-05 2.50E-05 2.50E-05 1.25E-05

∆L [rad] 2.00E-04 5.00E-05 1.00E-04 5.00E-05
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GNSS receiver, see e.g [22], containing acceptance testing performance results for a GPS receiver in

GEO. Their results are significantly better than the orbit determination uncertainty assumed in this

work. Assuming such capability, we investigated the collocation of a fleet of 16 satellites in a ±0.5◦

slot, using the proposed method. The leader’s nominal mean orbital elements are given in Table 3.

The nominal inclination and eccentricity vector configuration can be easily derived from Fig.9 and

Fig. 10. In this case we assumed identical satellites, with thruster configuration B. The satellite

characteristics are identical to follower 3 in case A (see Table 2). Making a similar analysis as in

case A, we can guarantee minimum separation distances in the radial-normal plane larger than 2.13

km. We further aim to maintain performance in terms of propellant consumption and number of

maneuvers, despite of the much shorter maneuver cycle. Note that this case significantly improves

the state-of-art as currently up to 8 satellites have been collocated in a slot that is twice the size in

longitude (±0.1◦) and hence quadruple the size in the eccentricity / inclination plane.

Table 5 Propellant consumption and thruster firings for a time-span of one year, case A

L F1 F2 F3

∆V [m/s] 49.86 50.87 68.10 68.06

Pulses 900 901 1458 1361

V. Results and Discussion

A. Case A

Figures 5 to 7 show the results of case A for respectively relative eccentricity control, relative

inclination control and relative mean longitude control. The dashed lines indicate the soft con-

straints as formulated in the optimization problem. Table 5 contains results in terms of propellant

consumption (measured in ∆V ) and number of thruster firings. Figure 8 shows an exemplary ma-

neuver plan for a period of one week, for the third follower satellite.

A geostationary satellite with a low thrust propulsion system usually requires usually one or two

North-South and one or two East-West maneuvers per day [21], which, depending on the thruster

configuration, can be realized with two to eight burns per day. Hence, the expected number of burns

for a satellite with a low-thrust electric propulsion system is between 730 and 2920 per year and
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anything in this range is deemed acceptable. A lower bound on the required ∆V can be established

by analyzing the drift of the mean inclination vector due to luni-solar perturbations over one year

and calculating impulsive ∆V required to compensate this drift. This has been done for the simula-

tion settings in this paper and the result is 47.8 m/s for the REF configuration. For configuration A

and B this value has to be multiplied by
√
2 due to the cosine loss in the North/South direction, the

resulting ∆V is equal to 67.6 m/s. Note that is an absolute lower bound and that these ∆V -values

consider only North-South corrections. Another 2-3 m/s per year is to be expected for East-West

station-keeping.

The results in terms of ∆V and number of firings in Table 5 are very much in line with expecta-

tions. We note that by explicitly taking the thruster configuration into account in the optimization

problem, we saved 2-4 m/s ∆V for configuration A and B. Note that in case of configuration A,

we could optimize for North-South and East-West burns and realize each burn by simultaneous

firing of two thrusters. The resulting ∆V would then be approximately equal to that of Follower 1,

multiplied by
√
2. We could not deal with configuration B at all without explicitly accounting for

the thruster configuration as part of the optimization problem.

We observe that follower 1 required 1.0 m/s more ∆V than the leader satellite, despite of having

the same thruster configuration. The main reason for this increase in propellant consumption is the

higher solar radiation pressure on follower 1. We further observe that the satellites with thruster

configurations A and B require more pulses than for the reference configuration. This result has the

following explanation; most maneuvers are in North-South direction and each maneuver in North-

South direction requires two thruster pulses for configuration A and B, whereas with the REF

configuration a North or South maneuver is realized with a single thruster pulse. The exemplary

thrust profile of F3 in Fig. 8 shows that the resulting maneuver plans are sparse, with only few

thruster firings each day. We further see that thruster firings of T1 and T4 (South) and T2 and T3

(North) are often synchronized to achieve respectively South and North maneuvers.

We analyzed the minimum separation distance in the radial-normal plane, for every satellite

pair (6 combinations). We found that the minimum separation distance in the radial, normal plane

was equal to 8.82 km over the full one year simulation, which is much higher than the theoretical
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minimum of 6.04 km. We also looked into the difference between the state trajectory resulting from

the optimization, based on the linearized model in Eq. (6), and the state trajectory resulting from

propagation (our “real” world). This difference includes the effects of the modeling errors, orbit

determination errors, actuator errors and the processing of the maneuver plans. Table 6 presents

the results in RTN reference frame. We evaluated both the mean error at the end of the maneuver

cycle and the maximum error that occurred during the simulation.

An important observation from Table 6 is that the worst-case error in radial and normal di-

rection is much smaller than the minimum separation distance, hence the current configuration

is very conservative in terms of maintaining a minimum separation distance. In other words, we

could design a configuration with a much smaller minimum separation distance without significantly

increasing collision risk. Another important observation is the importance of the thruster configura-

tion on the accuracy of orbit prediction and control. We observe that errors in radial and tangential

direction are significantly degraded for thruster configuration A. The key reason for this behavior

is that both thrust force errors and attitude errors for every firing can have significant components

in East/West direction. Since both the eccentricity and longitude are very sensitive to East/West

thrust errors, we observe large errors in radial and tangential direction. In configuration B this

problem is much smaller, since the East-West component of thrust is very small, and hence, errors

in the thrust force magnitude have almost no component in East-West direction. Errors in thrust

force direction can still have a significant component in East-West direction.

In summary; a sufficient separation distance was achieved and the results in terms of propellant

consumption and thruster firings were also very much within acceptable range. This simulation case

considered a large slot, and large control windows for the relative orbital elements. To increase the

number of satellites in the slot the satellites need to be controlled within tighter control windows.

This could be achieved by reducing the maneuver cycle duration, which is demonstrated in case B.

B. Case B

Figures 9 and 10 show the results of case B. The results show only minor violations of the con-

trol windows (which were much smaller than the control windows in case A). We further analyzed

28



−4 −3 −2 −1 0 1

x 10
−4

−1

0

1

2

3

4
x 10

−4

L

F1F2

F3

∆ex [-]

∆
e
y
[-
]

L

F1F2

F3 L

F1F2

F3

Fig. 5 Relative eccentricity vector, case A.

−20 −10 0

x 10
−5

−5

0

5

10

15

20
x 10

−5

L

F1F2

F3

∆ix [rad]

∆
i y

[r
ad

]

L

F1F2

F3 L

F1F2

F3

Fig. 6 Relative inclination vector, case A.

29



Table 6 Mean and maximum difference of the satellite position resulting from the solution of

the optimization problem in comparison to the propagated satellite position at the end of a

maneuver cycle, over a 1 year simulation, case A.

L F1 F2 F3

∆Rmean [km] 0.05 0.07 0.11 0.08

∆Tmean [km] 1.36 1.71 3.28 1.42

∆Nmean [km] 0.04 0.03 0.02 0.04

∆Rmax [km] 0.30 0.45 0.62 0.49

∆Tmax [km] 4.62 5.06 10.07 3.60

∆Nmax [km] 0.19 0.20 0.15 0.13
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Fig. 7 Relative mean longitude, case A.

whether no satellite left the geostationary slot. We found that all satellites remained within the

longitude window [−0.048◦, 0.047◦]. The worst-case minimum separation distance in the radial-

normal plane among all 120 pairs was equal to 3.36 km, which is much better than the theoretically

possible worst case of 2.13 km. This worst-case occurred between follower 10 and follower 11. The

relative motion in the radial-normal plane between these two satellites is shown in Fig. 11.

We then looked into the difference between the trajectory as calculated by the optimizer and

the trajectory actually flown (including effects of modeling errors, orbit determination errors and
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Fig. 8 Exemplary maneuver plan, 8th week, case A.

actuator errors) and found the following maximum errors over the complete one year simulation,

over all satellites of 153.9 m in Radial direction, 1739.3 m in Tangential direction and 81.6 m in

Normal direction. These results further confirm that it is a good choice to ensure safe separation

using only the radial-normal plane. The errors between predicted and actual trajectories are very

acceptable and the combined radial, normal error is far smaller than the achieved minimum sepa-

ration distances, allowing us to conclude that the strategy is safe, even with 16 satellites in a small

geostationary slot. It shows that we could further reduce the minimum separation distance and

allow an even greater number of satellites to be controlled safely within a single slot.

The average ∆V required for controlling the fleet was equal to 68.69 m/s and the average

number of thruster pulses was equal to 1440 pulses. Only a minor increase in ∆V was observed

compared to case A, even though no sun-pointing perigee was followed in case B. The minor increase

is due to the more frequent calculation of maneuver plans, and hence, more frequent compensation

of orbit determination errors. The reason that no Sun-pointing perigee strategy is required to save

propellant is that the satellites require much more ∆V in N/S direction than in E/W direction

and since the thrusters are inclined with respect to the N/S plane, every thruster firing for N/S

control basically provides a “free” E/W thrust. By accounting for the thruster configuration in

the optimization problem we were able to use this to our benefit. Thus for satellites with typical

electric propulsion thruster configurations, a sun-pointing perigee strategy is not required to save
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Fig. 9 Relative eccentricity vector, case B.

propellant, leaving more space in the eccentricity vector plane, and allowing to accommodate more

satellites within a single slot.

VI. Conclusion

This paper presented a method for station-keeping of a fleet of satellites collocated in a geosta-

tionary slot. The maneuver plans were calculated based on relative orbital elements, while using

convex optimization techniques in a leader-follower control hierarchy. The method was demon-

strated to be propellant-efficient, requiring an acceptable number of maneuvers, while maintaining

sufficiently large separation distances.

It was demonstrated that relative orbital elements are suitable for controlling the relative mo-

tion of a fleet of satellites in a geostationary orbit. The relative orbital elements provide a direct

measure for relative separation distances and controlling relative eccentricity and inclination vectors

in convex control windows guarantees a minimum separation distance in the radial normal plane.

At the same time the bounds on the absolute orbital elements can guarantee that satellites remain

inside the geostationary slot. Since orbital elements are integration constants in the Keplerian two-
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body problem, the resulting motion is a natural orbital motion.

The relative station-keeping problem was formulated as a convex optimization problem, which

was achieved by using a linear time-varying formulation of the satellite dynamics. The optimization

problem aimed at minimizing propellant consumption, while maintaining the relative states inside

convex control windows. The particular formulation resulted in a sparse solution, with limited

thruster firings, realizable by a simple on/off propulsion system.

The method was demonstrated to work for a fleet of satellites with different design character-

istics, under realistic errors in orbit determination, actuation and modeling for maneuver cycles of

one week. It was shown that significant advantages are obtained for shorter maneuver cycles and it

was demonstrated that 16 satellites can be controlled in a ±0.05◦ longitude slot, while maintaining

safe separation distances and with good performance in terms of thruster firings and propellant

consumption. It is emphasized that the presented method is most beneficial with an automated

implementation.

It was further demonstrated that by including the thruster configuration explicitly in the opti-

mization problem, a small propellant saving is achieved. In addition, it was shown that for satellites
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with typical electric propulsion thruster configurations the classic sun-pointing perigee strategy has

no significant advantages in terms of propellant consumption and only limits the eccentricity vector

configuration space. Lastly, the thruster configuration has an impact on the orbit prediction and

control accuracy and an exemplary configuration with good performance was introduced.
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