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Abstract
We present the design of a compact absolute optical frequency reference for space
applications based on hyperfine transitions in molecular iodine with a targeted
fractional frequency instability of better than 3 × 10–14 after 1 s. It is based on a
micro-integrated extended cavity diode laser with integrated optical amplifier, fiber
pigtailed second harmonic generation wave-guide modules, and a quasi-monolithic
spectroscopy setup with operating electronics. The instrument described here is
scheduled for launch end of 2017 aboard the TEXUS 54 sounding rocket as an
important qualification step towards space application of iodine frequency references
and related technologies. The payload will operate autonomously and its optical
frequency will be compared to an optical frequency comb during its space flight.

1 Sounding rockets as steppingstone for space-borne laser systems
Frequency stable laser systems are a mandatory key technology for future space missions
using optical and quantum-optical technologies aiming at Earth observation, tests of fun-
damental physics and gravitational wave detection. Proposed and projected space mis-
sions like STE-QUEST [], CAL [, ], QWEP [], Q-TEST [] aim at the observation
of Bose-Einstein condensates at unprecedented expansion times, quantum gas physics in
the pico Kelvin regime, and dual-species atom interferometry for future precision tests
of the equivalence principle with quantum matter [–, ]. Such experiments involving
light-atom interaction, e.g., for laser cooling or atom interferometry, require laser sys-
tems whose optical frequency is stabilized to specific atomic transitions. Moreover, precise
frequency control with high demands on frequency stability and agility as well as inten-
sity control is mandatory. Planned gravitational wave observatories, such as LISA [], use
inter-satellite laser ranging with laser systems at , nm for detection of gravitational
waves in a spectral window between . mHz and  Hz. Next generation gravity missions
(NGGM) might use similar laser ranging techniques for global mapping of temporal vari-
ations of Earth’s gravitational field []. The requirement on laser frequency noise of these
missions can be achieved by laser frequency stabilization to optical cavities or atomic or
molecular transitions. Related technologies have been or are currently being developed
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in the context of missions aiming at space-borne atom interferometry [–] or atomic
clocks [, , ].

In addition to the qualification in environmental testing facilities, the deployment of
laser systems in realistic scenarios and relevant environments, offered by sounding rock-
ets or zero-g parabolic flights, allows for rapid iterative tests and further development of
related technologies. Sounding rocket mission in particular close the gap between ground
and space applications [, ] but also enable scientific, pioneering pathfinder experi-
ments as shown with recent MAIUS mission, demonstrating the first realization of a Bose-
Einstein condensate of Rb in space. Sounding rocket missions based on VSB  motors,
that are used in the TEXUS program, allow for a  min ballistic flight reaching an apogee
of about  km after . min ascent, followed by about  min of μg time []. Typically,
four experiment modules can be launched altogether on one mission as independent pay-
loads, each with a diameter of . cm that can be covered in a pressurized dome. The
total scientific payload mass is usually limited to  kg, with a total payload length of
. m.

In the JOKARUS mission, we aim to demonstrate an absolute optical frequency refer-
ence at , nm on a sounding rocket. The JOKARUS laser system is based on modula-
tion transfer spectroscopy of the hyperfine transition R()-:a in molecular iodine at
 nm, using a frequency-doubled extended cavity diode laser (ECDL). Iodine frequency
standards realized with frequency doubled Nd:YAG lasers locked to this hyperfine tran-
sition have been investigated in detail for many years as optical frequency standards [,
]. Thanks to the strong absorption and narrow natural linewidth of  kHz [] these
systems exhibit fractional frequency instabilities as low as  × – [] and an absolute
frequency reproducibility of few kHz []. These features make them promising candi-
dates for future space missions targeting at the detection of gravitational waves, such as
LISA, or monitoring of Earth’s gravitational potential, such as NGGM [], which rely on
laser-interferometric ranging with frequency-stable laser systems at , nm distributed
on remote satellites that need to be precisely synchronized. Different realizations of iodine
references for space missions were proposed and investigated on a breadboard level [,
] and prototypes were built that fulfill the requirements on the frequency stability for
such missions [, , ]. The JOKARUS mission will, for the first time, demonstrate an
autonomous, compact, ruggedized iodine frequency reference using a micro-integrated
high power ECDL during a space flight.

2 Status of laser system qualification on sounding rockets
In three successful rocket missions, namely FOKUS [], FOKUS Re-Flight and KALEXUS
[], we and partners have demonstrated the maturity of our laser systems and related
technologies []. As part of the FOKUS mission, flown on the rd of April ,
a frequency-stabilized laser system, shown in Figure (a), was qualified as master laser for
the MAIUS laser system []. It is based on frequency modulation spectroscopy (FMS)
of the D transition in Rb using a micro-integrated distributed feedback (DFB) laser
module []. FOKUS demonstrated the first optical Doppler-free spectroscopy in space.
Moreover, the laser frequency was compared to a Cesium (Cs) reference using an optical
frequency comb (Menlo Systems) during flight, making the FOKUS mission a demonstra-
tor for a null test of the gravitational red shift between the optical transition in Rb and
a microwave Cs clock []. The FOKUS payload was flown again on the th of January
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Figure 1 Photographs of three laser payloads successfully operated on sounding rocket flights.
(a) FMS based DFB laser system for Rb spectroscopy (FOKUS, 215 mm ×170 mm ×50 mm, 2.1 kg), (b) MTS
based DBF reference laser system for Rb spectroscopy (FOKUS-Reflight, 288 mm ×170 mm ×50 mm, 3.0 kg)
and (c) Potassium stabilized laser system with two ECDLs (KALEXUS, 345 mm × 218 mm ×186 mm, 16 kg).

 aboard the TEXUS  sounding rocket under the name FOKUS Re-Flight together
with KALEXUS. FOKUS Re-Flight, shown in Figure (b), was updated from FOKUS to
a system based on modulation transfer spectroscopy (MTS) using a fiber-pigtailed phase
modulator. The KALEXUS mission featured two micro-integrated extended cavity diode
lasers (ECDL) [] operating at  nm that were alternately offset-locked to each other
and stabilized to potassium using FMS. This way, redundancy and autonomy concepts
for future space missions were demonstrated []. The successful FOKUS and KALEXUS
missions constitute important qualification steps for the MAIUS mission and towards its
follow on missions MAIUS II and III aiming at dual species atom interferometry with Rb
and K in space as well as planned satellite missions.

JOKARUS is based on the laser system heritage of these successful sounding rocket mis-
sions and is planned to operate on a sounding rocket mission end of . The next section
describes the JOKARUS system design and the estimated performance in context of laser
interferometric ranging missions.

3 JOKARUS payload - system design
The JOKARUS payload, schematically shown in Figure , features a laser system based on
a ECDL with an integrated optical amplifier operating at , nm, a spectroscopy module
including the quasi-monolithic setup for modulation transfer spectroscopy of molecular
iodine and two periodically poled lithium niobate (PPLN) waveguide modules for second
harmonic generation (SHG), as well as RF and control electronics for frequency stabilizing
the ECDL laser to the spectroscopy setup. The individual subsystems are presented in the
following sections.

3.1 Laser system
The laser system is housed in a module as shown in Figure (a) and includes the laser,
an electro-optic modulator (EOM) and an acousto-optic modulator (AOM) for prepara-
tion of the spectroscopy beams. The laser is a micro-integrated master-oscillator-power-
amplifier-module (MOPA) developed and assembled by the Ferdinand-Braun-Institut
(FBH), see Figure (b). The MOPA consists of a narrow-linewidth ECDL master oscilla-
tor operating at , nm and a high-power power amplifier. A previous generation of the
laser module is described in [] and details on the performance of the laser module and
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Figure 2 Scheme of the JOKARUS payload including the laser system, spectroscopy and RF,
electronics and experiment control. See text for details.

the technology applied for its integration will be given elsewhere []. The ECDL master
oscillator provides an emission linewidth of less than  kHz ( ms, FWHM) and allows
for high bandwidth frequency control via control of the injection current. The laser mod-
ule provides a fiber-coupled optical power of  mW at an injection current of , mA.
This module was subject to a vibration qualification according to the requirements of
the TEXUS program (. grms), while similar laser modules of previous generations even
passed  grms and , g pyroshock tests [].

In the laser system, see Figure , the MOPA is followed by an optical isolator (Thorlabs)
and a : fiber splitter, where few mW are separated from the main beam for frequency
measurements with the frequency comb that is part of another payload aboard the TEXUS
 mission. A second fiber splitter divides the main beam into pump and probe beam
for modulation transfer spectroscopy (MTS). The probe beam is connected to a fiber-
coupled PPLN wave guide module (NTT Electronics) for second harmonic generation.
The pump beam is frequency shifted by  MHz using a fiber-coupled AOM (Gooch &
Housego) to shift spurious interference between pump and probe beam outside the detec-
tion bandwidth of the MTS signal. The frequency-shifted beam is then phase-modulated
at ≈ kHz by a fiber-coupled EOM (Jenoptik) and will later also be frequency-doubled
by a second SHG module. Taking nominal losses of the components, splice connections
and the conversion efficiency of the SHG modules into account, we expect an optical
power of  mW and  mW for the pump and probe beam at  nm, respectively, which
is sufficient for saturation spectroscopy. The power of the pump beam can be stabilized
by using a voltage controlled attenuator (VCA) and a feedback loop (see Figure ). Several
fiber taps are used for power monitoring at various positions in the laser system during
flight. The pump and probe beam are finally guided from the laser module to the spec-
troscopy module by polarization maintaining fibers at , nm and mating sleeves con-
nectors.
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Figure 3 (a) CAD drawing of the JOKARUS laser system module (Laser system in Figure 2). From top to
bottom: ECDL, optical isolator, EOM and AOM. The dimensions are 290 mm × 225 mm × 58 mm with a total
mass of 3.5 kg. (b) A photograph of the assembled JOKARUS ECDL with dimensions of 128 mm × 78 mm ×
23 mm and a total mass of 760 g.

All components of the laser system were qualified at a random vibration level of . grms

(hard-mounted) to ensure their integrity after the boost phase of the rocket launch.

3.2 Spectroscopy module
The spectroscopy setup is housed in a separate module as shown in Figure  together
with the SHG modules (cf. Figure ). It is based on previous iterations of an iodine refer-
ence for deployment in space missions, developed at ZARM Bremen, DLR Bremen and
the Humboldt-Universität zu Berlin []. The optical setup is realized using a special as-
sembly integration technique [], where the optical components are bonded directly on
a base plate made from fused silica with a footprint of  mm ×  mm resulting in a
quasi-monolithic, mechanically and thermally stable spectroscopy setup as shown in Fig-
ure (b). An iodine setup using this assembly technique was subjected to environmental
tests including vibrational loads up to  grms and thermal cycling from –°C to +°C
[].

In the JOKARUS MTS setup, the pump beam is launched from a fiber collimator
(Schäfter + Kirchhoff ) with a beam diameter of  mm and is guided twice through an
iodine cell with a length of  cm, resulting in an absorption length of  cm. Behind the
cell, the pump beam is reflected at a thin film polarizer (TFP) and focused on a photo de-
tector for optional power stabilization. The probe beam is launched with the same beam
diameter and is split using a TFP into a probe and a reference beam for balanced detec-
tion using a noise-canceling detector adapted from [], as shown in Figure . The iodine
cell is provided by the Institute of Scientific Instruments of the Academy of Sciences of
the Czech Republic (ISI) in Brno, filled with an unsaturated vapor pressure of ≈ Pa [].
From the experimental parameters of the spectroscopy module we estimate the expected
operating linewidth Γ []

Γ = (Γnat. + Γpress. + Γtof )
√

 + Ssat. +
√

 + Spr.


, ()

with the natural linewidth Γnat., the contributions from pressure broadenig Γpress. and
time-of-flight broadening Γtof and the saturation parameter S of the saturating and the
probe beam respectively. We take the natural linewidth Γnat. of  kHz [], the pressure
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Figure 4 (a) CAD drawing of the JOKARUS spectroscopy module (Spectroscopy in Figure 2). The two
SHG modules are located at the top. The dimensions are 290 mm × 225 mm × 78 mmwith a total mass of
6 kg. (b) Photograph of the assembled JOKARUS spectroscopy setup.

broadening of  kHz Pa– [] adds Γpress. of  kHz and the time-of-flight broadening
Γtof is  kHz for the beam diameter of  mm. The saturation parameter for the saturat-
ing and the probe beam will be set to ≈ and ≈, respectively. The expected operating
linewidth Γ thus evaluates to ≈ kHz.

3.3 Electronics
The electronic system for JOKARUS is segmented in  functional units. First, the RF elec-
tronics for the optic modulators shown in Figure . It is based on a direct digital synthesizer
(DDSm, Novatech Instruments), referenced to an oven-controlled crystal oscillator. The
DDS provides a  MHz signal for the AOM and two signals for phase modulation of the
pump beam via the EOM and analog demodulation of the MTS signal. Second, a stack of
compact electronic cards by Menlo Systems based on the FOKUS flight electronics [] are
used for temperature control of the SHG modules and the diode laser, as current source
for the ECDL-MOPA and for realizing the feedback control for laser frequency stabiliza-
tion. The cards are controlled by an ARM based embedded system via a CAN interface,
also providing an interface to higher level data acquisition. The third unit contains a -
bit DAQ card that is used for data acquisition and the x-based flight computer (exone
IT). It runs the experiment control software that provides coarse tuning of the laser fre-
quency, identification of the fine transition R()- as well as invoking and controlling
a PID feedback control for frequency stabilization to the selected hyperfine transition.

3.4 Payload assembly
The subsystems presented above are integrated in individual housings made from alu-
minum that share a common frame as a support structure shown in Figure . A water-
cooled heat sink is integrated into the base frame for temperature control until liftoff.
During flight, we expect an average temperature increase of about  K throughout the
mechanical structure, based on nominal power consumption of  W. The optical fiber
connection between the laser and spectroscopy units are realized via mating sleeves. The
total payload has a dimension of  mm ×  mm ×  mm and a total mass of  kg,
which allows for integration into the TEXUS sounding rocket format.

We estimated the performance of the JOKARUS system in terms of amplitude spec-
tral density (ASD) of frequency noise in comparison to the frequency stability of an io-
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Figure 5 CAD drawing of the JOKARUS payload. The payload dimensions are 345 mm × 270 mm ×
350 mmwith a total mass of 25 kg and a power consumption of 100 W.

dine reference developed, characterized and reported previously [, ], called elegant
breadboard model (EBB). The frequency noise achieved with the EBB is shown in Fig-
ure  (green graph) together with the frequency noise of the free-running Nd:YAG laser
(blue graph) used in this setup. The EBB fulfills the requirement on the frequency noise
of planned space missions like LISA and NGGM.

For the JOKARUS instrument we expect to achieve frequency noise on a level of
 Hz/Hz/ (red dashed graph) at Fourier frequencies below  Hz which corresponds
to a fractional frequency instability of . × –/

√
τ for averaging times above  ms.

The performance was estimated from the frequency noise of the free-running ECDL (or-
ange graph) assuming a control bandwidth of ≈ kHz. The white frequency noise floor
was estimated from the equation

σ (τ ) =
Γ

νopt.


S/N

√
τ

, ()

which gives the fractional frequency instability of our laser locked a transition with Q-
factor νopt/Γ and resolved with a signal-to-noise ratio S/N in a  Hz bandwidth. The
signal-to-noise ratio S/N for FM-spectroscopy is estimated from []

S/N =



J(β)J(β)
√

η

eB
�αpL

√
Ppr. ()

with the pressure p and absorption length L given by the spectroscopy setup, a probe beam
power Ppr. of  μW, detection efficiency η = . A W–, bandwidth B = /(π ) Hz and
the Bessel functions Jn(β) for the phase-modulation index β of ≈. A factor / accounts
for  dB above shot-noise detection expected from the noise canceling photo detector [].
The peak absorption contrast �α is calculated from []

�α = α

(


√
 + Spr.

–


√
 + Spr. + Ssat.

)
()

with α = . × – cm– Pa– for transition R()- []. With Eqs. (), () and (),
the white frequency noise in terms of fractional frequency instability, Eq. (), evaluates to
σ (τ ) = .×–/

√
τ , which corresponds to a frequency noise amplitude spectral density
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Figure 6 Estimated frequency stability of
JOKARUS in comparison to another iodine
frequency reference (EBB) using an Nd:YAG
laser. Frequency noise of the free-running Nd:YAG
laser (blue) is suppressed by frequency stabilization
to the EBB resulting in frequency noise depicted in
green. The frequency noise of the ECDL is expected
to be reduced to the frequency noise indicated by
the red dashed line when locked to the JOKARUS
spectroscopy module. The requirements on the
laser frequency noise for missions like LISA and
NGGM are shown in blue and yellow, respectively.

of Sf (f ) =
√

σν,nm, which evaluates to  Hz/Hz/ at , nm. The estimated per-
formance is in agreement with the performance of the EBB, taking into account a factor of
three shorter absorption length of the JOKARUS spectroscopy module compared to the
EBB, and otherwise similar experimental parameter. We therefore expect the JOKARUS
instrument to fulfill the requirements on the frequency noise of space missions like LISA
and NGGM, where the long term instability needs to be characterized in beat-note mea-
surements, e.g., with the EBB setup, to determine the Flicker noise floor and random walk
noise of the JOKARUS frequency reference.

4 Conclusion
We presented the design of an absolute optical frequency reference developed as a payload
for a sounding rocket mission and a potential candidate for space applications that require
frequency-stable laser systems at , nm. The payload will be part of a sounding rocket
mission planned for a launch end of , where the optical frequency of the JOKARUS
frequency reference will be compared to an optical frequency comb during a  min space
flight. JOKARUS will demonstrate autonomous operation of an absolute optical frequency
reference whose performance is expected to meet the requirement on the frequency noise
of laser systems for future space missions such as LISA or NGGM. As a next step we see
our diode laser technology being ready for in-orbit demonstration on small satellites. In a
recently started project, we have begun to develop scenarios to study diode laser system
and related technologies in orbit, specifically regarding long-term performance, radiation
effects, and autonomy.

The assembly integration technology used for the iodine spectroscopy setup is a very
promising technology for realization of compact and ruggedized space optical systems.
Future space missions such as NGGM, LISA or MAQRO [] can benefit from this tech-
nology heritage.

As demonstrated with the FOKUS and KALEXUS missions operating laser frequency
references at  nm and  nm, respectively, this project further shows the versatility
of the micro-integrated diode laser technology for the realization of compact and efficient
laser systems for applications in the field. Such compact, reliable and ruggedized diode
laser based frequency references are also a promising candidate for mobile atomic sensors
and optical clocks on ground. Future space missions using laser or atom interferometry
for geodesy, gravitational wave astronomy or quantum tests of the equivalence principle,
together with the development of space optical clocks may benefit from this technology
heritage and its first applications in space missions.
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