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Abstract— One of the most unique benefits of multi-baseline
synthetic aperture radar interferometry (InSAR) is the long-
term monitoring of subtle ground deformation over large areas.
Most state-of-the-art algorithms for retrieving such parameter
are based on single pixels, e.g. Permanent Scatterer InSAR
[1] or clusters of ergodic pixels with stationary phases e.g.
SqueeSAR [2]. None of the studies has addressed the joint
inversion in an object level, where the true interferometric
phase may be varying subject to topography and deformation.
Recently, one study has investigated SAR and optical data
fusion in order to make use of the rich semantic information
from optical images [3]. Based on that work, we seek to
investigate the possibility of an object-level multi-baseline In-
SAR deformation reconstruction given the semantic information
from the corresponding optical images. In this paper, we
introduced the tensor model for the multi-baseline InSAR
inversion and proposed a maximum a posteriori estimator
of the deformation parameters by including a spatial prior
function in the objective function. Substantial improvement in
the deformation estimation is observed in the experiments using
both simulated and the real SAR data.

I. INTRODUCTION

Long-term monitoring of millimeter-level deformation
over large areas is so far only achievable through multi-
baseline InSAR techniques such as Persistent Scatterer
Interferometry (PSI) [1], [4], [5] and Differential SAR
tomography (D-TomoSAR) [6]–[8]. Through modeling the
interferometric phase of the scatterers in SAR images, one
is able to reconstruct the 3-D position and the deformation
history of each scatterer.

Past research on the multi-baseline InSAR mainly focused
on the optimal retrieval of the phase history parameters of
individual pixels. Although Distributed Scatterer (DS)-based
methods [2], [9] did employ information of multiple pixels,
they exploited purely statistical information, assuming the
stationarity of the selected samples. Few study addresses
the parameter retrieval using explicit geometric information
from the image. Only until recently, [10] has demonstrated
that by introducing building footprints from OpenStreetMap
as a prior knowledge of pixels sharing similar heights,
along with joint sparse reconstruction techniques, a highly
accurate tomographic reconstruction can be achieved using
six interferograms only, instead of the typically required
20–100. Inspired by this, in [11], [12], we investigated the
possibility to utilize semantic information obtained from

optical images to reconstruct the deformation parameters in
an object level.

This paper is a demonstration of the object-based pa-
rameter retrieval algorithm. We give an introduction to the
multi-baseline InSAR inversion problem in the form of a
tensor, with an additional spatial penalty function. The spatial
support of the object is given by the semantic information
from optical images. Such semantic classification label is
often difficult to obtain from SAR images, because of the
complex scattering mechanism. The proposed algorithm is
applied to the deformation retrieval of one target bridge area
in Berlin.

II. TENSOR-BASED INSAR DEFORMATION RETRIEVAL

A. Tensor model for the multi-baseline InSAR inversion
Given the spatial area of pixels belonging to the same

object, the interferometric phase stack can be represented
by a 3-mode tensor G ∈ CI1×I2×I3 , where I1, I2 represent
the spatial dimension in range and azimuth, and I3 denotes
the number of SAR images. Similar to the vector model of
Permanent Scatter (PS) time series, the corresponding tensor
model is

G(S,P) = exp{−j(4π
λr

S⊗ b+
4π

λ
P⊗ τ )}, (1)

where G(S,P) is the modeled complex phase tensor of the
observed object, S,P represent the matrices of the unknown
elevation and deformation parameters, respectively, b is
the vector of the spatial baseline, τ is the vector of the
deformation model, e.g. τ = t for linear motion, and
τ = sin(2π(t − t0)) for the seasonal motion model with
the temporal baseline t, λ is the wavelength of the radar
transmitted signals and r denotes the range between radar
and the observed object. The symbol ⊗ is the outer product
for the dimension expansion.

Based on this, the Maximum Likelihood Estimator (MLE)
of the elevation and deformation parameter matrices assum-
ing Gaussian noise can be expressed in the following tensor
form

{Ŝ, P̂} = argmin
S,P

1

2
‖G − G(S,P)‖2F , (2)

where G is the observed InSAR phase tensor, and ‖ · ‖F is
the tensor Frobenius norm.
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B. Maximum a posteriori (MAP) estimator in tensor form

Equation (2) extends the MLE from a vector level [13],
[14] to a tensor level, which is theoretically identical to
a pixel-wise inversion. Assuming certain prior knowledge,
e.g. smoothness, sparsity, of the deformation map in the
object area, the tensor-based ML estimator can be extended
accordingly to the Maximum a posteriori (MAP) estimator
with the form of:

{Ŝ, P̂} = argmin
S,P

1

2
‖G − G(S,P)‖2F + γf(S,P), (3)

where the first term denotes the data fidelity term, which
is the Frobenius norm of the log-likelihood between the
observed tensor G and the noiseless tensor model G, f(S,P)
denotes the penalty term which describes the spatial priors
of S and P, and γ controls the balance between these two
terms. In this paper, we exploit the smoothness prior of P.
The estimator can be expressed as follows:

{Ŝ, P̂} = argmin
S,P

1

2
‖G − G(S,P)‖2F+

γ
∑
i,j

|P(i+ 1, j)−P(i, j)|+ |P(i, j + 1)−P(i, j)|.

(4)

III. BRIDGE DETECTION IN OPTICAL IMAGES

This paper demonstrates the proposed method via bridge
monitoring. However, the proposed algorithm is generally
applicable to other objects. As bridge detection is not the
focus of this paper, the associated method in optical images
is briefly introduced as follows:

• River classification by training a Support Vector Ma-
chine (SVM) on the extracted texture features, e.g.
Local Binary Pattern (LBP).

• Refinement of river segmentations by Chan-Vese seg-
mentation.

• α-shape approximations of river segments.
• Bridge detection based on the parametric bridge edge

representation

IV. EXPERIMENT

A. Simulated data

We simulate a multi-baseline SAR phase stack with the
spatial deformation pattern shown in Figure 1 (Left column).
The linear deformation rates range from 1 mm/year to 2.5
mm/year. We choose a spatial baseline comparable to that of
TerraSAR-X and a temporal baseline with regular spacing
from 0 to 5 (years). The number of images is set to 20.
Uncorrelated complex circular Gaussian noise is added to the
simulated stacks with signal-to-noise ratio (SNR) of 0 dB and
5 dB. The comparison of the deformation maps estimated
by the pixel-wise periodogram (PSI) and by the proposed
object-based approach is shown in Figure 1. One can find that
the result obtained by the pixel-wise periodogram is much
noisier than the proposed approach. Without considering the
spatial information of the deformation, the reconstruction
result by the pixel-wise periodogram cannot even reflect the

Fig. 1. Comparisons of the linear deformation rates estimated by the pixel-
wise periodogram and the proposed object-based approach under two SNRs
(0 dB and 5 dB), given the ground truth. (Left) The ground truth deformation
map. (Middle) The estimation result by pixel-wise periodogram. (Right) The
deformation map reconstructed by the object-based approach.

real deformation pattern under low SNR (0 dB). As shown
in Table I, at 0 dB SNR, the proposed approach outperforms
the single-pixel periodogram by a factor of 40 in terms of
the standard deviation of the estimates.

The parameter γ in equation (3) can be determined by
the ”L-curve” method, which is a plot of the regularization
term with respect to the data fidelity term for a range of
regularization parameters [15]. Generally, an L-curve is made
up of a flat part and a steep part. The optimal parameter
is selected as the corner point of the L-curve where the
maximum curvature of the curve is reached. For instance, the
L-curve (in log scale) for the simulated InSAR stack with
SNR=0dB is plotted in Figure 2. Accordingly, the optimal γ
can be determined as 350.

Besides, we have also tested the efficiency of the proposed
estimator at different spatial sizes ranging from 20 × 20 to
40 × 40 pixels. As illustrated in Figure 3, no significant
difference of the efficiency is found, as their SDs are all
around 4 × 10−2 (mm/year) under the same noise level
(SNR=5dB).

B. Real data

1) Bridge segmentation in the optical image: The test area
is in central Berlin, which contains several bridges to be
monitored. As demonstrated in Figure 4, the size of our study
area is 980×1180 with a pixel spacing of 0.2 m. Based on the
method introduced in Section III, we classify the associated
rivers and bridges, which are marked in blue and green,
respectively in Figure 4. As we can see from the result,
some building shadows close to the river are misclassified
as rivers, since they share similar RGB values with those of
rivers. Some bridges do show irregular shapes, especially the
top one, since the bridge mask depends on the boundary of
the river segments. Yet, this does not affect much the bridge
monitoring, since the bridge masks cover most part of the
bridges.



TABLE I
NUMERICAL PERFORMANCE FOR THE RESULTS SHOWN IN FIGURE 1

pixel-wise peridogram the proposed approach

Standard Deviation (SD) [mm/year]
SNR = 0 dB 2.64 6.32× 10−2

SNR = 5 dB 2.31× 10−1 3.94× 10−2

5.45 5.5 5.55 5.6

log(data fidelity term)
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Fig. 2. The L-curve plot (in log scale) of the regularization term with
respect to the data fidelity term in equation (4) for a range of γ. The optimal
γ can be automatically chosen by finding the maximum curvature of the
curve. In this simulation (SNR=0dB), γ is accordingly selected as 350 (red
rectangle).
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Fig. 3. The plot of the errors of our result w.r.t. different spatial sizes
ranging from 20 × 20 to 40 × 40 pixels. It is shown that there is no
significant difference in the efficiency, as their SDs are all around 4×10−2

(mm/year) under the same noise level (SNR=5dB).

Fig. 4. The classifications of the rivers and bridges by the proposed
approach, which are masked in blue and green, respectively. As we can
see from the result, some building shadows are misclassified as rivers, since
they share similar RGB values with those of rivers. Some bridges do show
irregular shapes, especially the top one, since the bridge mask depends on
the boundary of the river segments. Yet, this does not affect much the bridge
monitoring, since the bridge masks cover most part of the bridges.

2) Bridge mask projected to the SAR image: Given the
classified bridge areas in optical images, we can obtain the
corresponding bridge masks in the SAR image based on the
’SARptical’ work in [3]. For example, the top bridge mask
in Figure 4 projected in the SAR image is shown in Figure
5. The area extracted for the deformation reconstruction is
chosen by the bounding box of the bridge mask as indicated
by the red rectangle. The dimension of this dataset is 243×66
pixels with 109 SAR images in total.

3) Object-based InSAR deformation retrieval: The se-
lected bridge undergoes a seasonal motion which is primarily
caused by the thermal dilation of the steel railways on the
bridge. The estimated amplitudes of this periodic motion
using the proposed method and the pixel-wise periodogram
are shown in Figure 6. Consistent with the analysis of the
simulation, more incorrectly estimated deformation points
are shown in the pixel-wise periodogram result. On the
contrary, the object-based approach can obtain much more
reliable deformation reconstruction of the study area.

V. CONCLUSIONS

In this paper, we proposed a general framework for
object-based multi-pass InSAR parameters estimation, i.e.
introducing a spatial regularization term based on given
object labels. To demonstrate the application of the proposed



Fig. 5. The bridge mask (green) in the SAR image obtained by projecting
the corresponding mask from the optical image [3], which is the top bridge
shown in Figure 4, and the red rectangular area is used for the object-based
deformation reconstruction.

method for bridge monitoring, we also proposed a bridge
detection method in optical images.

The experiments show that the regularization parameter
γ does not sensitively influence the efficiency of the recon-
struction result, especially at the high SNR (5dB). Its optimal
value can be automatically determined by the ”L-curve”
method within a given range of γ. This range setting depends
on the dataset. We find it to be 100− 350 in our simulated
experiments. In addition, we observe that the efficiency of
the proposed method does not show significant change with
respect to different object dimensions, which indicates that
the spatial size can be kept small for large area parallel
processing.

To summarize, the proposed robust object-based approach
is a novel framework that combines geometric information
and multi-pass InSAR technique. It is suited for areas with
homogenous pixels as well as for urban areas where the
pixels are highly nonergodic. The proposed approach can
be efficiently solved by smart optimization methods which
renders it suitable for operational processing.
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