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ABSTRACT 
 
In this paper we describe the method that has been 
implemented to derive the forest/non-forest maps from 
TanDEM-X interferometric synthetic aperture radar 
(InSAR) data, globally acquired in stripmap single 
polarization (HH) mode. Among the several observables 
systematically provided by the TanDEM-X system, the 
volume decorrelation contribution, derived from the 
interferometric coherence, shows to be consistently sensitive 
to the particular land cover type, and is therefore used as an 
input data set for applying a classification method based on 
a fuzzy clustering algorithm. Since the considered InSAR 
quantity strongly depends on the geometric acquisition 
configuration, namely the incidence angle and the 
interferometric baseline, a multi-clustering classification 
approach is used. Once the Forest/NonForest classification 
for individual acquisitions is generated, overlapping 
acquisitions are mosaicked together to improve the resulting 
accuracy.  The final step in the Forest/NonForest map 
production is to apply a binary Forest/Non-Forest decision 
and the decision threshold is found through comparison with 
similar data and statistical analysis. Verification and 
validation of the final product will be accomplished through 
comparison to other forest maps. In summary, this paper 
covers the processing and production status of the global 
TanDEM-X Forest/Non-Forest map which will be made 
available to the scientific community in 2017.  
 

Index Terms—Synthetic aperture radar (SAR), SAR 
interferometry (InSAR), TanDEM-X mission, volume 
decorrelation, forest classification. 

 
1. INTRODUCTION 

 
A precise and up-to-date knowledge of land cover 
information is of great importance for a wide range of 
scientific and commercial purposes. Specific to this paper is 
the identification and the monitoring of vegetated areas 
which is critical for a variety of applications, such as 
agriculture, cartography, geology, forestry, global change 
research, as well as for regional planning. In this paper we 
present a method to generate forest classification maps from 
TanDEM-X interferometric SAR data. The TanDEM-X 

mission comprises the two twin satellites TerraSAR-X and 
TanDEM-X with the main goal of producing a global and 
consistent Digital Elevation Model (DEM) with an 
unprecedented accuracy, by exploiting single-pass SAR 
interferometry [1]. Several observables are systematically 
provided by the TanDEM-X system, and of great 
importance to this paper is the volume correlation factor, 
which quantifies the coherence loss due to volume scattering 
and represents the contribution which is predominantly 
influenced by the presence of vegetation. Since the 
beginning of the TanDEM-X mission (end of 2010), about 
half a million of high-resolution bistatic single polarization 
(HH) scenes covering all the Earth’s land masses have been 
acquired and processed. From these, quicklook images 
representing several SAR and InSAR quantities (like 
backscatter and coherence maps, or the calibrated 
RawDEM) are generated at a ground pixel spacing of about 
50 m x 50 m by applying a spatial averaging process. 
Working with such reduced resolution data makes feasible 
the exploitation of the TanDEM-X dataset on a global scale, 
as it keeps the computational load low. In this paper, we 
extend and apply the method presented in [2] and [3], which 
are revisited in sections 2 (volume correlation factor 
extraction) and 3 (multi-clustering classification). In 
sections 4 and 5, the method for mosaicking the overlapping 
observations into a single map and the calculation of the 
threshold for the binary forest/non-forest decision is 
described. In the following section, the validation approach 
and global forest map final product are presented. The paper 
is concluded in Section 7 with a final summary. 
 

2. EXTRACTING VOLUME CORRELATION 
FACTOR FROM TANDEM-X SAR DATA 

 
Several contributions cause a coherence loss in TanDEMX 
interferometric data [4] and, assuming statistical 
independence, can be factorized as follows:    
𝛾𝛾 = 𝛾𝛾𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝛾𝛾𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 ∙ 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝛾𝛾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∙ 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ ∙ 𝛾𝛾𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∙ 𝛾𝛾𝑉𝑉𝑉𝑉𝑉𝑉 

(1) 
The terms on the right-hand side of the equation above 
describe the decorrelation due to: limited signal-to-noise 
ratio (γSNR), quantization errors (γQuant), ambiguities (γAmb), 
baseline decorrelation (γRange), errors due to relative shift of 
Doppler spectra (γAzimuth), temporal decorrelation (γTemp), 
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and volume scattering (γVol). This last term, here called the 
volume correlation factor, represents the contribution which 
is predominantly affected by the presence of vegetation. 
Given a coherence estimate, the volume correlation factor 
contribution can be found solving Equation 1 for γVol as 
shown below: 

𝛾𝛾𝑉𝑉𝑉𝑉𝑉𝑉  = 𝛾𝛾
𝛾𝛾𝑆𝑆𝑆𝑆𝑆𝑆∙𝛾𝛾𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄∙𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴∙𝛾𝛾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∙𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ∙𝛾𝛾𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

(2)  
The impact and the estimation procedure for each 
correlation contribution in the TanDEM-X data is discussed 
in detail in [2]. For each quicklook product a local incidence 
angle map is derived from the orbit parameters and the 
calibrated RawDEM. This allows us to improve the 
estimation accuracy and, in particular, to precisely 
compensate for possible geometrical decorrelation due to 
the presence of topography. To demonstrate the 
effectiveness of this procedure, we have used the 30m 
resolution global vegetation continuous fields tree cover 
data from the multispectral sensor Landsat-5 developed in 
2005 and freely available online [5], which provides the 
percentage of area covered by vegetation. Pixels having a 
value smaller than 15% and larger than 65% have been 
selected as representative for non-vegetated and forested 
areas, respectively. The corresponding occurrence 
distribution of volume correlation factor estimated from 
TanDEM-X data is depicted in Figure 1 for densely 
vegetated areas and for bare surfaces. This figure clearly 
shows that this information is a powerful indicator for forest 
classification purposes. 
 

3. CLASSIFICATION VIA FUZZY LOGIC 
 

Clustering entails grouping a set of objects coming from N 
input observations Y = [yk] (k = 1,…,N), each one 
characterized by a set of P features, depending on how 
similar they are to each other. The observations are then 
divided into c nonempty subsets, called clusters and in 
fuzzy-clustering a certain amount of overlap between 
different clusters is allowed [6]. A membership function U 
is defined, which describes the probability of an observation 
belonging to each cluster (𝐔𝐔� = [𝑢𝑢�𝑖𝑖𝑖𝑖] ∈  [0,1], 𝑖𝑖 =  1, … , 𝑐𝑐). 
The results are c fuzzy partitions of the input observation 
data set, which contain observations characterized by a high 
intracluster similarity and a low extracluster one. In the case 
of TanDEM-X data, we exploit the volume correlation 
factor information only (i.e. P = 1). The number of clusters 
is set to two, to discriminate forest (F) from non-forest (NF) 
areas. The cluster centers {υF, υNF} are identified by their 
feature {γVol,F, γVol,NF}. In [2] it is verified that the coherence 
loss over forest is notably influenced by the specific 
incidence angle. For this reason a partitioning of the original 
data into S subsets is performed, depending on the specific 
pair of baseline B⊥ (i.e. height of ambiguity) and incident 

angle θinc. Therefore, an observation (pixel) k is associated 
to the i-th subset if  

𝐵𝐵⊥ k ∈ �𝐵𝐵⊥ 𝑖𝑖,min,𝐵𝐵⊥ 𝑖𝑖,max�,           (3) 
𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 k ∈ �𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖,min,𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖,max�.            (4) 

An important step in the cluster algorithm is the 
definition of the cluster centers, each one identified by a P-
dimensional tie-point vector υi (P being the number of 
features). For their determination TanDEM-X bistatic data 
takes acquired over a large region located in the Amazon 
rainforest are "trained" by using the forest density 
information provided by Landsat [5] (see also Figure 1 ). 
For each subset i, the sample expectation of γVol is taken as 
cluster center. Figure 2 shows the cluster centers as points 
for forest and non-forest areas, for different heights of 
ambiguity as well as the local incidence angle ranges. Near, 
mid, and far range are identified with angles steeper than 
35º, between 35º and 45º, larger than 45º, respectively. A 
minimum mean square error fitting is applied for more 
continuous distribution, which is indicated by the 
continuous lines. In addition to defining the cluster centers 
for rainforest, the same process is used for defining cluster 
centers over temperate and boreal forests and all three 

Figure 1: Occurrence distribution of volume correlation 
factor contribution estimated for densely forested and non-
vegetated areas, depicted in green and brown, respectively. 

Figure 2: The points indicate the volume correlation factor 
cluster centers for a large region located in the Amazon rain 
forest (Brazil), and calculated according to (2).  



Figure 3: Pennsylvania Test site for mosaicking located at 
N40W078. Left shows the mosaicked forest map. Right 
shows the Forest map after the binary decision is applied 

cluster centers are used in the final global forest map 
production. 

The output of the clustering is a weighted membership 
which can be interpreted as a sort of probability of a pixel to 
be "covered" by vegetation. Quality weights are introduced 
depending on the training set statistics. 
 

4. MOSAICKING INTO A SINGLE FOREST 
MAP 

 
For an area of interest, multiple overlapping forest 
observations can be used to create a single forest map. To 
mosaic the overlapping forest observations together, a 
measurement of the quality for each overlapping pixel is 
needed. Returning to Figure 2, we see that with a decrease 
in HoA comes an increase in the separation between forest 
and non-forest classifications. Thus a lower HoA has a 
better reliability in the classification. To this end, the 
following metric is used in the mosaicking of overlapping 
pixels. 

𝛥𝛥𝛥𝛥𝑖𝑖 ≜
1

𝛥𝛥𝛥𝛥𝑉𝑉𝑉𝑉𝑉𝑉∙𝛾𝛾𝑆𝑆𝑆𝑆𝑆𝑆
− 1          (6) 

 
The correlation factor due to limited signal-to-noise ratio 
(γSNR) is included in the above metric to reduce the effects 
of poor SNR that can be found on the edges of an 
acquisition. Using the metric in (6), a weighted mean 
method can be utilized to combine all overlapping 
membership pixels into a combined membership pixel of the 
forest map with the weighting and combined membership 
defined as. 

𝛼𝛼𝑖𝑖 ≜ ∆𝑀𝑀𝑖𝑖
−2 ∙ (∑ ∆𝑀𝑀𝑘𝑘

−2𝑁𝑁
𝑘𝑘=1 )−1            (7) 

 
𝑀𝑀�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝛼𝛼𝑖𝑖𝑀𝑀�𝑖𝑖𝑁𝑁

𝑖𝑖=1    (8) 
 
Using equations (6) through (8) above, a forest map with 
pixel values ranging between 0 (No Forest) and 1 (Forest) is 
created and the left side of Figure 3 below shows the results 
of the mosaicking process for a section located at N40W078 
in Pennsylvania.  
 

5. BINARY THRESHHOLD CALIBRATION 
 

The mosaicking process described in the previous section 
produces a Forest/Non-Forest map with pixel values ranging 
between 0 and 1, and the last processing step for the final 
product will be to convert this into a binary Forest/Non-
Forest map. To accomplish this, a threshold must be 
established and as a test case for temperate forests, the 
TanDEM-X Forest/Non-Forest dataset is compared to the 
Lidar/Optical dataset covering Pennsylvania [7] with the 
focus of this calibration tile N40W078. As the Lidar/Optical 
(L/O) data has a resolution of 1m x 1m, the data is first 
scaled to the TanDEM-X forest resolution of 50m x 50m 
where each pixel represents the percent of 1m x 1m L/O 
forest pixels that overlap it. Furthermore, only a subset of 
the tile N40W078 is used in order to exclude urban areas 
and farmland. The left side of Figure 4 shows the 2-
demensional histogram of the pixel-by-pixel comparison 
between the TanDEM-X and Lidar/Optical datasets. In this 
figure, the bottom left corner is the case where both datasets 
find Non-Forest and the top right is when both find Forest. 
The other two corners are the cases when the two datasets 
disagree. From this histogram, the φ coefficient is 
constructed for each forest percent value to evaluate the 
changes in both datasets as shown below: 

𝜑𝜑 = 𝑇𝑇𝑇𝑇∙𝑇𝑇𝑇𝑇−𝐹𝐹𝐹𝐹∙𝐹𝐹𝐹𝐹
√𝑃𝑃∙𝑅𝑅𝑅𝑅∙𝑅𝑅𝑅𝑅∙𝑁𝑁

    (9) 
Where:  
TP = True Positive               TN = True Negative 
FP = False Positive             FN = False Negative 
P = Total Positive                N = Total Negative 
RP = Total Ref. Positive    RN = Total Ref. Negative 
 

The results of the φ coefficient are shown on the right 
side of Figure 4. From the φ coefficient plot, the optimal 
threshold is found to be 60% for the TanDEM-X dataset and 
this corresponds to a forest coverage of 25% in the L/O 
dataset. The result of a binary decision application using this 
threshold to the forest map is shown in on the right side of 
Figure 3 for the same section as the left side. 

Figure 4: Left side showing the 2D histogram of TanDEM-
X and Lidar/Optics Forest pixel data. Right side is the φ 
coefficient graph showing the optimal threshold to be 60% 
for TanDEM-X and 25% for Lidar/Optical 



6. VERIFICATION AND FINAL PRODUCT 
 

Verification of the final dataset quality will be performed 
firstly, by a performance comparison against existing 
Forest/Non-Forest maps such as Landsat [5], Palsar [8], and 
CORINE Standard [9]. Secondly, the dataset will be 
validated against the Pennsylvania Lidar/Optic dataset and 
the CORINE high resolution Forest map in Europe. 

Figure 5 shows the application of the Forest 
classification method described in this paper for a region 
over the Amazon rainforest. On the left is the optical image 
provided by Google Earth and on the right side is the 
corresponding TanDEM-X forest/non-forest map.  

The final Forest/Non-Forest dataset product will 
provide a global coverage based on TanDEM-X 
interferometric SAR data. The resolution of this TanDEM-X 
forest map will be 50m x 50m with each pixel being A 
binary Forest/Non-Forest value. It is expected to finish the 
TanDEM-X Forest map dataset by mid-2017. It will be 
made freely accessible to the scientific community. 
 

7. CONCLUSION 
 

In this paper, a method for the generation of a Forest/non-
forest map from TanDEM-X interferometric SAR data has 
been proposed. It has been shown that from the TanDEM-X 
quick looks with a resolution of 50m x 50m meters the 
volume correlation factor can be extracted and used for 
vegetation identification. Fuzzy-clustering has been 
introduced as a method to translate from the volume 
correlation factor to a weighted membership in forest / non-
forest clusters. A method for reliably mosaicking the 
overlapping observations into a final forest map has been 
presented as well as the determination of the binary 
threshold between forest and non-forest. The validation of 
the final product has been described in the last section.  
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Figure 5: The Amazon rainforest with Google Earth Optical Image (Left) and TanDEM-X Forest/Non-Forest map (Right) 


