
1 

Assessing the performance of multiple spectral-spatial features of a 

hyperspectral image for classification of urban land cover classes 

using support vector machines and artificial neural network 
 
Reddy Pullanagari, R.

 a*
, Gábor Kereszturi

 a
, Ian J. Yule, 

a
, Ghamisi, Pedram

 ac
  

a 
New Zealand Centre for Precision Agriculture, Soil and Earth Sciences group, Institute of Agriculture and 

Environment (IAE), Massey University, Palmerston North, Private Bag 11 222, New Zealand 
b 
Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), 82234 Weßling, Germany

 
Signal 

c
Processing in Earth Observation, Technische Universität München (TUM), 80333 Munich, Germany 

 

 

Abstract. Accurate and spatially detailed mapping of complex urban environments is essential for land managers. 

Classifying high spectral and spatial resolution hyperspectral images is a challenging task because of its data 

abundance and computational complexity. Land-use classification based on the consideration of spectral 

information, i.e., without any spatial organization, has limited potential in the final classification map. Consequently, 

approaches with a combination of spectral and spatial information in a single classification framework have attracted 

special attention because of their potential to improve the classification accuracy. In this study, we extracted 

multiple features from spectral and spatial domains of hyperspectral image and evaluated with two supervised 

classification algorithms such as support vector machines (SVM and artificial neural network (ANN). The spatial 

features considered in this study are produced by Gray Level Co-occurrence Matrix (GLCM) and extended multi-

attribute profiles (EMAP). All of these features were stacked and the most informative features selected using a 

genetic algorithm-based support vector machine (GA-SVM). After selecting the most informative features, the 

classification model was integrated with a segmentation map. The segmentation procedure was performed on the 

hyperspectral image using the Hidden Markov Random Field (HMRF). We tested the proposed method on a real 

application of hyperspectral image acquired from AisaFENIX and also on widely used hyperspectral images (ROSIS 

and AVIRIS). From the results, it can be concluded that the proposed framework significantly improves the results 

with different spectral and spatial resolutions over different instrumentation. 
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1 Introduction 

Mapping of urban land cover information is essential to many groups and agencies such as urban 

planners and policy makers, as classified maps can form a basis for short and long term resource 

management and planning.  

 Due to the availability of remote sensing images, a wide range of studies have been 

conducted which has proven that it can offer accurate and cost-effective information for land 

cover classification [1-3]. Although traditional multispectral satellites (e.g. Landsat ETM+, 
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ASTER) have widely been used in classification studies [4, 5], the classification accuracy was 

limited due to the small number of spectral bands and their broad spectral and spatial resolution 

[6]. Consequently, the new generation of satellite sensors such as IKONOS, World View-2 and 

3, QuickBird, Orb View-3, and GeoEye, have been launched, which offer enhanced spatial 

resolution (1-10 m), which enables identification of small urban features. For instance, [6] used 

WorldView-2 satellite imagery with 8 bands and 2, 4, 10 and 30 m spatial resolutions for 

mapping urban land cover in Nottingham, UK. The classification accuracy was significantly 

improved with increased spatial resolution, in which 2 m resolution imagery gained a high 

overall accuracy (OA) of 90%, while coarser resampled imagery-based classifications obtained 

OA of 31%. Nonetheless, few ground objects are less separable due to constrained spectral 

properties.  

 Hyperspectral sensors were considered as potential tools for mapping urban land-cover 

classes as they acquire radiance values in many narrow and continuous bands which are the 

diagnostic absorption or reflection signatures that help to discriminate complex ground features 

accurately [7]. Studies have proven that urban materials can be more accurately characterized 

with hyperspectral data compared to multispectral information [8]. Hyperion is a spaceborne 

hyperspectral mission which offers fine spectral data, but the potential applicability of data is 

constrained with coarse spatial resolution results preventing recognition of small-scale features 

in a diverse urban scene. Nevertheless, future hyperspectral satellite missions such as HyspIRI 

(Hyperspectral Infrared Imager), EnMAP (Environmental Mapping and Analysis Program) [9], 

and PRISMA, planned to sample on a large spatial extent with high temporal resolution, 

however, they have limited spatial resolution (30 - 60 m). Consequently, with the advancement 

of technology, high spatial and spectral resolution airborne sensors such as AVIRIS-NG 
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(Airborne Visible-Infrared Imaging Spectrometer - Next Generation) [10], AisaFENIX [11], 

DAIS, CAO-2 (Carnegie Airborne Observatory-2) [12], APEX [13] to name a few, have been 

developed which are considered as a valuable data source for detailed thematic urban mapping 

[14]. In addition to fine spectral data, desirable spatial information with a significant reduction in 

the number of mixed pixels is possible, which enables detection of small urban features 

accurately.  

 Despite these advanced sensor configurations, classifying hyperspectral imagery with high 

spatial resolution remains challenging due to the large volume of data which leads to 

computational complexity [13-15]. In particular, the number of training samples is very limited 

relative to the number of features which carry redundant information. This results in an apparent 

reduction of classification accuracy.  This problem also known as the curse of dimensionality or 

Hughes phenomenon [16]. Moreover, high spatial resolution can increase intra-class variation 

due to different ages, and decrease inter-class variation as the majority of the urban materials 

look spectrally similar, which results uncertainty in classification accuracy [13]. There are 

several classification algorithms, either parametric or nonparametric, which have been proposed 

to classify hyperspectral images. In case of urban mapping however, nonlinear nonparametric 

approaches, such as support vector machines (SVM), random forest (RF), and artificial neural 

network (ANN), were better suited as the urban data are complex and violate the assumption of 

statistical distribution [17, 18]. Momeni et al. [6] indicated that SVMs are well suited for 

mapping urban landscapes when using very high resolution images because they can handle 

noise present in the training data. SVMs can produce very accurate classification results when 

there is no balance between dimensionality (number of bands) and the number of available 

training samples [8]. The above algorithms are also be effective tools for separating non-linear 
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class boundaries that commonly exist in the hyperspectral data [19]. However, aforementioned 

algorithms, to some extent, are sensitive to high-dimensional space (Hughes phenomena). To 

overcome this problem, a sufficient number of samples are required - but in practice the number 

of training samples is limited. Therefore, feature extraction (FE) and feature selection (FS) 

techniques have been proposed to address these issues [20]. An FE technique transforms the high 

dimensional space (original data) into a lower dimensional subspace which preserves the total 

variation being present in the original space. The transformation may be linear or nonlinear and 

supervised or unsupervised. Principal component analysis (PCA) [21], minimum noise fraction 

(MNF) [22], projection pursuit (PP), independent component analysis (ICA) [23], are widely 

used linear unsupervised approaches for producing a new sequence of orthogonal images. Class 

separation can be further optimized using supervised algorithms such as discriminant analysis FE 

(DAFE) [24], decision boundary FE (DBFE) and nonparametric weighted FE (NWFE) [25]. 

However, reducing the number of dimensions by FE might lead to a loss of information relevant 

to the classification scheme and thus results in lower classification accuracy [26]. On the 

contrary, FS selects an optimal subset of features based on some criteria where discrimination 

relevant features were selected using training samples and removes unrelated features thereby 

significant improvement in class separability and classification accuracy.  

Although the majority of studies have focused on spectral data to classify hyperspectral 

images, recent studies have agreed that the fusion of spectral and spatial information 

significantly improves the classification accuracy. Utilizing the information from high spatial 

resolution hyperspectral images, studies have attempted to extract the spatial (contextual) 

features such as morphological features [27, 28], textural features [29], wavelet based spatial 

indices [30], object based features [31], pixel shape index [32], hidden markov random field 



5 

(HMRF) [21] then combined with spectral data. The concept of morphological profile is based 

on a simultaneous use of openings and closings on a scalar image with a set of known shapes, 

also called structural element (SE) [33]. Ak [34] used structural information from the derivative 

of the morphological profiles (DMP) for a segmentation procedure in which segments were 

hierarchically modelled based on the factors of spectral homogeneity and neighbourhood 

information. Although MP and DMP proved as a potential tool for spatial feature extraction, the 

shape of the SE is fixed. Consequently, an adaptive profile concept of Attribute Profiles (APs) 

was proposed to overcome this problem which characterizes the image at multiscale thus 

comprehensive spatial information can be extracted [35]. These APs are extended to 

hyperspectral images, called as extended attribute profiles (EAPs), by concatenation of MPs 

which are obtained by applying on sub-space of the original data to reduce ill-posed problems. 

Individual algorithms or features have a capacity to perform best classification results. However, 

the classification can be further improved by combining the multiple features with efficient 

algorithms.  

This paper aims to extract multiple features (spectral, textural and EAPs) from high spatial 

resolution hyperspectral imagery acquired using AisaFENIX sensor on urban landscape. This 

study considers and integrates the spectral information with textural, morphological, and 

neighbourhood pixel information to differentiate land cover classes using supervised 

classification. 

2 Methods 

With the given recent work, several researchers attempted to incorporate different data types into 

the classification task and achieved improved accuracy [21, 36]. Efficient combination of data 

types with advanced algorithms may provide complementary information to improve the level of 
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Fig. 1 General scheme of the proposed approach for classifying hyperspectral images  
  

accuracy. Consequently, we attempted to incorporate different spectral and spatial features such 

as GLCM (Gray level co-occurrence matrix), EMAP (extended multi-attribute profiles) and 

segmentation map (Fig .1). In addition, optimal features were selected using genetic algorithm 

(GA) and evaluated with two supervised algorithms such as SVM and ANN. 
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2.1 GLCM 

GLCM is a widely used method to describe the textural properties of an image, and explains 

spatial correlation characteristics as well [37]. Image texture indicates the homogenous regions 

of the image which can be used in segmentation and classification [38, 39]. GLCM is computed 

based on the spatial distribution of co-occurring pixel brightness (i.e. gray levels), which is a 

function of distance and angular relationships between two neighbouring pixels. In this study, 

GLCM was applied on the first ten MNF bands of the hyperspectral image that account for the 

maximum amount of total variation within the scene. On each MNF image, six different 

statistical textural features were calculated from co-occurrence matrix: mean, variance, 

homogeneity, contrast, dissimilarity, entropy, second movement and correlation. 
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where p(i, j) indicates the portability of all possible pairs of adjacent pixel gray levels i and j 

for a distance d and considers four direction angles (𝜃) (0, 45, 90, 135). N is the number of gray 

levels present in the image constructed under 64 gray level quantization. High level quantization 

would be beneficial for accurate textural estimations [40]. In this study we used a smaller 
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window size 3×3 to extract the fine scale statistical parameters listed above from the selected 

MNF bands (Fig. 1). 

2.2 EMAP 

Mathematical Morphology (MM) is a well-established theoretical framework proposed to 

describe geometrical structures of the images based on the theory of lattice algebra, set theory, 

topology, and integral geometry [41]. In image processing, MM investigates the small patterns or 

shapes, which are called structural elements (SE), in a given image using basic operations such 

as dilation and erosion. These operations are considered as building blocks to derive two 

important transformations, opening and closing. Openings and closings can remove brighter and 

darker regions while preserving the geometrical characteristics of the structures present in the 

gray scale image. They are proven to be effective in analysing and extracting spatial information 

that can consistently improve the classifier performance [20, 35, 42]. Although, MMs and their 

modifications (e.g., morphological profiles) have been used intensively in the remote sensing 

community, their concepts have a few limitations such as: (i) the shape of the SE is fixed, and 

consequently, they cannot efficiently extract spatial information; and (2) SEs are only able to 

extract information related to the size of existing objects, while they are unable to characterize 

information related to the gray-level characteristics of the regions [43].  

To address these issues, attribute profiles (APs) have been proposed [35]. APs are the 

advanced version of morphological profiles and are able to extract detailed multilevel 

characteristics of an image. A sequence of morphological attribute filters (AFs) was applied to a 

gray-level image by merging its connected components to derive APs. APs are extended to 

multispectral or hyperspectral data to extract different types of attribute profiles and stacked 
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together as EMAP [23]. A comprehensive survey on spectral-spatial classification approaches 

based on APs has been reported in [8].  

Initially, an attribute A is computed for every connected components of a grayscale image f 

according to a given reference value λ. For each connected component (Ci) of the image, if the 

A(Ci) > λ, then the corresponding region is kept unaffected, otherwise, it is set to the grayscale 

value of the adjacent region with the closer, greater or lower value (leading to thinning and 

thickening profiles). An AP is obtained by applying a sequence of attribute thinning and 

thickening transformations with a given sequence threshold {λ1, λ2,…, λn}. 

 

AP(f) = {ϕn(f ),…..,ϕ1(f),  f,γ1(f),….,γn(f)}, 

where ϕi and γi are the thickening and thinning transformations, respectively, calculated on the 

input gray scale image f. Due to the high dimensionality of hyperspectral images and in order to 

avoid producing redundant features, attribute filtering was suggested to be only applied to the 

first few features (instead of all the bands) extracted by a feature extraction approach such as 

MNF, which significantly reduces the computational complexity and CPU processing time [23]. 

By doing so, one will come up with extended attribute profile (EAP), which can mathematically 

be given by 

EAP = {AP(f1), AP(f2),……,AP(fq)}, 

where q is the number of MNF components preserved. From the above definition, the APs 

from each MNF component were combined by concatenating them in a single vector which leads 

to EMAP (Fig. 2).  

In this study, multiple features (reflectance spectra, GLCM and EMAP) were concatenated 

into one feature vector and fed to the support vector machine (SVM) classifier (Fig. 2). 
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2.3 Support vector machines (SVM) 

The SVM is a widely used supervised classification method, which does not require any prior 

assumptions about the statistical distribution of data.  

The general idea behind SVM is to differentiate training samples belonging to different classes 

by tracing maximum margin hyperplanes in the feature space [44]. SVMs were originally 

introduced to solve linear classification problems, while hyperspectral images are usually 

nonlinear. To make the SVM well-suited for hyperspectral images, they can be generalized to 

nonlinear decision functions by considering the so-called kernel trick. A kernel-based SVM is 

being used to project the pixel vectors into a higher dimensional space and estimate maximum 

margin hyperplanes in this new space, in order to improve linear separability of data [44]. 

Among different types of kernels, the Gaussian radial basis function (RBF) has widely been used 

in remote sensing. This kernel has two parameters. The parameters C (the parameter which 

controls the trade-off between the maximization of the margin and minimization of classification 

error) and γ (kernel width) can be tuned using a strategy called grid search with n-fold cross-

validation. Here, we used 10-fold cross-validation to tune hyperplane parameters. 

Although SVM models can provide good generalization in high–dimensional input spaces, 

feature selection is important for improving the classification accuracy, to filter out the bands 

that are irrelevant [45, 46]. 

2.4 GA-SVM 

In order to reduce the dimensionality of the stacked multiple features, a feature selection 

algorithm was applied to select the best optimal set. In this study, genetic algorithm was used. 

The GA is a stochastic method which imitates the biological evolution process. This approach 

has widely been used for search and optimization techniques [47]. GA considers a set of 
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randomly chosen chromosomes from the search space to create initial population. Each 

chromosome is comprised of a sequence of genes where each gene represents one of the spectral 

bands, and the number of genes being equal to the number of features (n = 638). The total is 

generated from a combination of GLCM features (n = 80), EMAPs (n = 110) and spectra features 

(n = 448). The chromosomes are binary-encoded where each gene can assume to be one or zero, 

in which 1 show the presence of the corresponding band and 0 shows the absence of the 

corresponding band. The fitness of each chromosome is evaluated by using a fitness function. In 

this study, SVM classification accuracy was considered to evaluate the better chromosome.  

Table 1 Parameter of GA-SVM 

 

 

 

 

 

 

 

The fittest chromosomes have higher probability to reproduce in each generation and aimed to 

improve overall fitness of the population. New chromosomes as offsprings were introduced in 

the next generation by performing single-point crossover where two parent chromosomes were 

split at a random point. After the cross-over, mutation was applied to increase the randomness of 

the individuals. This algorithm is repeated until the termination criteria are fulfilled. The 

parameters were presented in Table 2. 

Parameter Value 

Population size 74 

Probability crossover 50% 

Probability of 

mutation 
1% 

Fitness function SVM classification accuracy 

Number of runs 100 

Number of evaluations 200 
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2.5 Artificial neural network 

Artificial neural network (ANN) is a non-parametric mathematical model to solve complex non-

linear classification problems [48]. The concept of ANN is based on the principles of human 

nervous system. In recent years the use of ANNs has continuously growing in remote sensing 

community because of its wide range of advantages (i) NN effectively deals with data that do not 

require normality assumptions (ii) ancillary data and multisource data can be incorporated into 

model to strengthen the relationships between input and output data (iii) ANNs required less 

number of training samples when supervised classification is performed. Artificial neurons are 

represented by nodes and connected using a link called network. There are different NN 

architectures available to solve supervised classification problems: radial basis function NN 

(RBF NN), probability NN (PNN), multilayer perceptron (MLP NN). MLPNN is a type of feed 

forward architecture widely used in remote sensing community [49]. Typically, MLP comprised 

of input, output and one or more hidden layers, and the adjacent layers are interconnected with 

neurons or nodes. The number of inputs nodes corresponds to number of bands used in the 

classification task, while in the output the number corresponds to number of classes. The nodes 

in the hidden layer contain nonlinear activating functions. These nodes are interconnected by a 

certain weight and bias which are determined by using training samples and Levenberg-

Marquardt optimization [50]. The number of neurons in the hidden layer was optimized by 

testing different numbers, and the over-fitting of the model avoided by executing early-stopping. 

The weights between the nodes being adjusted by iteratively calculating the error.  
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2.6 Hidden Markov Random Field (HMRF) 

Hidden Markov random field (HMRF) is a segmentation procedure, which has been used in 

medical imaging applications [51] and introduced to use in the remote sensing community by 

Ghamisi et al. [21]. HMRF is a probability-based modelling technique which considers the 

spatial information at object scale and preserves the edges information to avoid over-smoothing 

on boundaries between different classes. In the HMRF framework, initial image segmentation 

was performed using k-means clustering on the first component of MNF image. Different k-

means clusters were tested on the final classification model. As a result 28 clusters were 

considered as inputs in the segmentation process. From this, initial labels and parameters were 

generated for maximum a posteriori (MAP) and expectation maximization algorithms. MAP 

algorithm iteratively reassigns the class labels based on probability distribution function and 

neighborhood information. In addition to the segmentation process, edge information was 

preserved which was extracted using edge detection algorithm. In this study, Sobel edge 

detection algorithm was applied on the first component of MNF image. For detailed description 

of HMRF refer to [21]. 

2.7 Majority voting (MV) 

After selecting the features using GA, SVM classification map was created and then fused with 

the segmented image obtained by HMRF using a procedure called majority voting. In which 

frequently occurring GA-SVM class labelled pixels in each segmented region were selected 

using the following equation [51]. 

   

𝐶𝐿 (𝑅𝑗) = arg max
𝐾={1,2,…𝑘}

𝑉𝑅𝑗
(𝑘)

𝑉𝑅𝑗

> 𝑟 
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where CL(Rj) is the final assigned class label of the segmented region Rj. VRj(k) is the number of 

samples labelled as class k within Rj, VRj is the number of all samples within Rj, and r is a 

constraint parameter. By using this procedure within a segmented region, spatial errors are 

significantly minimized. 

2.8 Accuracy assessment 

A confusion matrix was computed from the results of different classification models which 

indicate how many pixels were correctly classified in each class. From the confusion matrix, 

accuracy parameters such as overall accuracy (OA) and kappa coefficient (k) were generated. 

OA indicates the percentage of pixels correctly classified in each class. 

 

𝑂𝐴 =
∑ 𝑁𝑖

𝑝
𝑖

𝑇
 

 

where P is the number of classes, Ni is the summation of correctly classified pixels, and T 

denotes total number of pixels being tested. Kappa coefficient measures the quality of overall 

classification by comparing the agreement against the one expected by chance [52]. 

𝑘 =
𝑚0 − 𝑚𝐶

1 − 𝑚𝐶

 

Where mo represents the proportion of correct agreement in the validation dataset, and mc is 

the proportion of agreement that is expected by chance. The possible values range from -1 to + 1, 

where -1 indicates disagreement and +1 indicates perfect agreement between actual and 

predicted classes. 
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Fig. 2 The study area, Massey University (a) RGB image (b) location  

3. Hyperspectral datasets 

3.1 Imagery from AisaFENIX 

The study was conducted at Massey University (40˚23.156’ S latitude and 175˚37.227’ E 

longitude) located in the southern part of the city of Palmerston North, New Zealand (Fig.1). The 

study area comprised of a range complex heterogeneous land cover types such as buildings with 

different roof materials, roads, sidewalks, vegetation (dairy farms and trees), bare soil, water and 

playgrounds (Fig. 1). 

 

The AisaFENIX (Specim, Finland) is a full spectrum hyperspectral imaging sensor covering 

visible to SWIR (380-2500 nm). This sensor has single optics with a single input slit where light 
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enters and is dispersed against two focal plane arrays (FPA) using two diffraction gratings 

optimized for VNIR and SWIR. The focal plane arrays are a 12 bit dynamic range 

Complementary Metal Oxide Semiconductor (CMOS) and the other is a 16 bit dynamic range 

cryogenically cooled Mercury Telluride Cadmium (MCT).  The FPA image VNIR and SWIR 

respectively and are used to maximise the sensitivity and signal-to-noise ratio (SNR).  

AisaFENIX is a pushbroom type sensor which means that the hyperspectral image is created in a 

line scan fashion by forward motion of the platform. The sensor has a field of view (FOV) of 

32.3° and instantaneous field of view of 0.084°. The AisaFENIX used in this study was coupled 

with RT Oxford Survey+ Global Positioning System (GPS) and Inertial Measurement Unit 

(IMU) system for accurate registration of the data. During the aerial survey, a spectral binning 

setting of 4×2 was used in the VIS-NIR to enhance signal strength. No spectral binning was used 

in the SWIR region. 

The raw hyperspectral imagery was corrected for boresight effects due to a misalignment 

between the IMU and the imaging sensor. The original raw DN data was corrected for bad 

detector, resulting in horizontal strips in the data. The faulty lines have been detected using 

statistics from each column of image data, and then replaced by the spectrally neighbour bands’ 

values. The data have been geometrically and radiometrically calibrated using the CaliGeoPRO 

software package. The atmospheric corrections were performed on the original scanning 

geometry (i.e. non-georectified) imagery using flat terrain atmospheric correction method 

implemented in ATCOR-4 [53]. The atmospheric compensated imagery was then georectified 

and mosaicked together using ENVI. This mosaicked imagery was smoothed spatially and 

spectrally to reduce the noisiness of the data cube. 
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A total of 23 different land-cover classes were considered in the classification scheme which 

includes nine different types of roof top, five vegetation types, water, soil and two different 

shadows (Table 2). Each land-cover class was identified and polygons created using high 

resolution RGB images and ground survey throughout the study area.  

 

Table 2 The selected land cover classes and the number of pixels in training and validation data sets for AisaFENIX 

 

Class   Training pixels Validation pixels 

1 

Roof tops 

Tiles 50 431 

2 Metal 40 222 

3 New building roof 53 236 

4 Roof_1 35 118 

5 Roof_2 34 124 

6 Roof_3 33 109 

7 Roof_4 13 30 

8 Roof_5 27 98 

9 Roof_6 24 234 

10 

Manmade structures 

Pavement 14 38 

11 Gravel 31 269 

12 Tennis court 26 144 

13 Race running track 22 70 

14 Road 28 247 

15  Bare soil 29 292 

16 

Vegetation 

Dairy pasture 50 1914 

17 Lawn pasture 40 1545 

18 Dried lawn 33 689 

19 Bush 35 1060 

20 Trees 24 722 

21  Water 21 182 

22 
Shadows 

Building shadow 19 89 

23 Tree shadow 18 83 

 

The pixels in the selected polygons were randomly divided into training and validation 

datasets. The selected number of pixels in training and validation data corresponding to each 

land use class is presented in Table 1. A general workflow of the proposed image classification 

approach is illustrated in Figure 2. Below, we briefly discuss the main building blocks of the 

proposed approach. 
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3.2 Imagery from ROSIS 

The second hyperspectral data was collected in 2001 by ROSIS optical sensor over the area of 

the University of Pavia located in Italy. The data has 103 spectral bands in the spectral range of 

430 nm to 860 nm. The size of the hyperspectral image is 610×340 pixels with a spatial 

resolution of 1.3 m. Fig.3a false color composite of ROSIS university of pavia, and Fig.3b shows 

nine different classes of the image. In this study, a total of 3158 pixels were used for training the 

models while the remaining pixels were used for testing.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 (a) False color composition of the university of pavia (b) reference map including nine 

classes. 

 

3.3 Imagery from AVIRIS 
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The third hyperspectral data used in this experiment was collected by the AVIRIS (Airborne 

Visible/Infrared Imaging Spectrometer) over the area of Indian pines region in Northwestern 

Indiana in 1992. This image comprises 145×145 pixels with 200 spectral bands spanned from 

400 to 2500 nm and a spatial resolution of 20 m/pixel. As shown in Fig. 4 the image has 16 

classes. In order to perform classification, approximately 10% of random pixels were selected for 

training which leads to a total of 898 pixels. The remaining pixels allocated for testing. 

 

 

Fig. 4 (a) False color composition of the AVIRIS Indian pines (b) reference map including 

sixteen classes. 

 

4 Results 

4.1 Results from AisaFENIX 

We evaluated the performance of different methods for classifying hyperspectral images 

collected by AisaFENIX imaging system. A wide range of land-cover classes (n = 23) were 
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selected for classification (Table 2), majority of the classes are manmade surfaces (Table 2). 

Different spectral and spatial related features were extracted from the hyperspectral image.  

The classification performance on validation data using SVM and ANN was presented in 

Table 3 with overall accuracy, k statistic and individual class accuracy. Note that both classifiers 

achieved highest accuracy when all the features were integrated together.  

 

Table 3 Overall classification accuracies (in percent), k statistic and individual class accuracies were obtained for 

different data types extracted from hyperspectral data acquired from AisaFENIX using support vector machine 

(SVM) and artificial neural network (ANN). 

 

Land-cover 

classes 
Spectra SVM+ GLCM 

Spectra + GLCM + 

EMAP 
GA-Spectra + GLCM + 

EMAP 
GA-Spectra +  GLCM 

+ EMAP + HMRF 

 SVM ANN SVM ANN SVM ANN SVM ANN SVM ANN 

Tiles 85.51 88.40 85 95.36 97.91 96.06 97.91 98.14 92.84 100.00 

Metal 98.20 98.65 98 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

New building 

roof 
83.90 72.03 84 72.03 84.75 71.19 70.34 91.10 100.00 100.00 

Roof_1 85.59 100.00 98 100.00 98.31 100.00 100.00 100.00 100.00 100.00 

Roof_2 55.65 60.48 56 74.19 52.42 50.81 50.81 50.81 100.00 95.45 

Roof_3 49.54 97.25 49 92.66 68.81 97.25 67.89 100.00 100.00 100.00 

Roof_4 97.06 100.00 100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Roof_5 94.90 82.65 97 77.55 100.00 100.00 100.00 100.00 42.15 98.00 

Roof_6 69.01 85.47 84 85.47 85.47 85.47 85.47 85.47 100.00 100.00 

Pavement 84.85 69.70 88 75.76 96.97 90.91 96.97 87.88 84.11 30.19 

Gravel 91.76 99.26 95 99.26 97.77 100.00 99.26 93.31 96.14 78.37 

Tennis court  93.75 91.67 94 100.00 96.53 100.00 100.00 100.00 100.00 100.00 

Race running 
track 

100.00 100.00 100 100.00 100.00 100.00 100.00 100.00 100.00 80.46 

Road  66.80 35.22 72 49.80 85.02 99.60 88.26 100.00 81.33 75.77 

Bare soil 83.56 100.00 90 100.00 97.26 100.00 100.00 100.00 100.00 100.00 

Dairy pasture 54.48 65.52 55 70.06 61.39 91.22 71.16 99.90 94.31 97.70 

Lawn pasture 58.71 55.79 58 50.10 88.28 88.03 92.69 86.47 87.00 99.12 

Dried lawn 95.79 88.97 96 88.97 96.81 88.97 97.97 91.29 97.11 100.00 

Bush 97.04 98.68 97 97.55 99.81 100.00 100.00 100.00 79.52 93.47 

Trees 86.29 97.51 87 97.51 93.77 92.94 92.24 96.81 100.00 100.00 

Water 83.85 98.90 90 99.45 91.76 100.00 97.25 100.00 100.00 99.45 

Building shadow 87.34 76.40 91 67.42 98.88 95.51 98.88 100.00 64.84 36.29 

Tree shadow 25.30 39.76 24 12.05 34.94 6.02 30.12 6.02 100.00 100.00 

OA 74.28±0.7 78±1.6 76.25±0.5 78±0.6 85.58±0.4 91±1 88.37±0.4 94±0.8 89.04±1.4 94±0.3 

k 0.71 0.75 0.73 0.76 0.83 0.90 0.86 0.93 0.88 0.93 

Number of 

variables 
448 448 528 528 638 638 96 96 96 96 
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However, ANN produced highest overall accuracy (94%) compared to SVM (OA = 90%) 

(McNemar’s Z score > 1.96). Moreover, with all data types ANN produced better accuracy 

compared to SVM. When the spectral data alone was used in classification tasks, more number 

of classes were classified accurately using ANN compared to SVM. From the Table 3, one could 

say that the addition EMAP features to the spectral data significantly improved the overall 

accuracy (Mc Nemar’s Z score > 1.96), whereas GLCM features did not significantly improve 

the accuracy (Mc Nemar’s Z score < 1.96). However, interestingly, the accuracy of few land-

cover classes such as roof_2, and tree shadow was decreased. We also report that GA 

significantly reduced number of features from 638 to 96 and also improved the accuracy levels in 

both cases (88% ≤ OA ≤ 94%).  

A total of 40 features were selected from the domain of EMAP, 53 bands from the spectral 

domain and 3 features from the domain of GLCM. The selected spectral bands present all over 

the spectrum from visible to short wave infrared (SWIR) region. From the domain of GLCM, the 

GLCM contrast (2) and entropy (1) features were selected in the final model. This OA again 

slightly improved with SVM after applying the segmentation procedure with HMRF where 

majority of classes were classified with high accuracy (79-100%) except the classes roof_5 

(46.15%) and building shadow (65.84%). In contrast, in case of ANN, the accuracy was not 

improved after fusing with segmentation map, Overall, the results confirm that combining 

multiple features significantly improved the classification accuracy compared to spectral data 

alone. Fig. 5 and Fig. 6 show the classification maps using the proposed approach with SVM and 

ANN.  
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Fig. 5  SVM classification maps based on multiple features Spectra + GLCM + EMAP using GA-SVM (a) 

before fusing with the segmentation map (c) after fusing with segmentation map. 
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Fig. 6  ANN classification maps based on multiple features Spectra + GLCM + EMAP using GA-SVM 

(a) before fusing with the segmentation map (c) after fusing with segmentation map. 
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4.2 Results from ROSIS 

We also evaluated the proposed method on ROSIS data set. Table 4 shows that the using all 

features (spectral data, GCLM and EMAP) significantly improved the classification results. 

Similar to the conclusions of AisaFENIX data, the genetic algorithm optimized the number 

features from 208 to 96 which lead to the best classification accuracy with both classification 

algorithms (SVM and ANN). The classification maps using different approaches were illustrated 

in Fig. 7. We can notice in the Fig. 7, after applying HMRF majority of the classes were 

classified with distinct boundaries. In the final classification results, all classless were well 

described (accuracy > 90%) with ANN. 

 

Table 4 Overall classification accuracies (in percent), k statistic and individual class accuracies were obtained for 

different data types extracted from hyperspectral data acquired from ROSIS using support vector machine (SVM) 

and artificial neural network (ANN). 

 

Land-cover 
classes 

Spectra 
 

Spectra+ GLCM 
Spectra + GLCM + 

EMAP 
GA-Spectra + GLCM + 

EMAP 
GA-Spectra +  GLCM + 

EMAP + HMRF 

 SVM ANN SVM ANN SVM ANN SVM ANN SVM ANN 

Asphalt 52.89 63.77 55.37 74.58 62.81 79.49 70.83 83.81 76.82 91.33 

Meadows 76.92 91.88 73.57 91.88 77.09 92.54 85.38 93.91 99.85 99.85 

Gravel 97.62 95.83 97.02 95.83 98.81 98.14 99.40 98.82 89.23 96.35 

Trees 95.60 97.85 97.80 97.85 98.90 100.00 97.94 97.83 88.77 98.94 

Metal 
sheets 

92.31 74.04 98.35 79.82 98.90 83.57 99.45 81.08 100.00 100.00 

Bare soil 91.39 97.17 96.17 97.17 100.00 99.52 100.00 99.04 98.57 99.87 

Bitumen 93.24 97.95 97.97 97.95 97.99 99.32 98.65 100.00 82.40 98.10 

Bricks 93.45 95.51 96.43 95.78 98.81 94.25 95.40 98.81 79.13 96.52 

Shadows 98.95 100.00 98.94 100.00 100.00 100.00 100.00 100.00 99.16 99.16 

OA 87.8±0.4 89.7±0.2 89.9±0.7 91.8±0.5 92.41±0.4 93.72±0.6 94.29±0.2 94.37±0.3 94.04±1.4 98.87±0.7 

k 0.86 0.88 0.88 0.90 0.91 0.93 0.93 0.93 0.93 0.98 

Number of 
variables 

103 103 143 143 208 208 96 96 96 96 
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4.3 Results from AVIRIS 

We have evaluated 16 classes using different classification methods. The classification results of 

each class with the overall accuracy and the kappa coefficient is given in Table 5. The 

classification accuracy was increased by including the number of features in the dataset, though 

SVM (OA = 92.01±0.3) performed well compared to ANN (90.42±0.8). As can be seen in Table 

5, GA selected effective features and slightly improved the classification results in both cases. 

Among all the classes, grass/pasture had lowest accuracy (97.10 %) in case of SVM, while for 

ANN algorithm stone-steel towers had lowest accuracy (20%). In contrast to all other 

hyperspectral datasets, after applying HMRF the classification accuracy (OA) reduced to 89-

 

Fig. 7  Figure shows classification maps using different features and classification algorithms 
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90%, though salt and pepper effect significantly reduced. Fig. 8 describes the classification maps 

using different methods.  

Table 5 Overall classification accuracies (in percent), k statistic and individual class accuracies were obtained for 

different data types extracted from hyperspectral data acquired from AVIRIS using support vector machine (SVM) 

and artificial neural network (ANN). 

 

 

Land-cover 
classes 

Spectra 
Spectra+ 

GLCM 
Spectra + GLCM + 

EMAP 
GA-Spectra + GLCM + 

EMAP 
GA-Spectra +  GLCM + 

EMAP + HMRF 

 SVM ANN SVM ANN SVM ANN SVM ANN SVM ANN 

Alfalfa 78.57 0.00 92.86 36.36 92.31 100.00 100.00 100.00 50.00 41.67 

Corn-no till 84.87 93.33 90.97 94.00 92.21 98.67 97.35 98.67 99.29 99.23 

Corn-min till 82.14 97.22 90.74 86.11 94.59 99.07 96.40 96.30 100.00 100.00 

Corn 56.52 80.00 54.84 20.00 50.00 95.00 94.44 100.00 0.00 0.00 

Grass/pasture 100.00 0.00 100.00 19.61 87.50 0.00 75.93 97.56 100.00 100.00 

Grass/trees 100.00 100.00 97.18 98.57 98.59 100.00 97.10 100.00 100.00 100.00 

Grass/pasture-
mowed 

90.00 0.00 45.00 0.00 64.71 100.00 100.00 0.00 100.00 100.00 

Hay-
windrowed 

95.00 0.00 88.37 100.00 97.56 100.00 100.00 97.50 100.00 100.00 

Oats 88.89 100.00 56.25 0.00 50.00 100.00 100.00 100.00 0.00 0.00 

Soybean-no-till 41.03 0.00 76.92 48.28 92.11 100.00 97.44 97.44 100.00 100.00 

Soybean-min 
till 

80.77 95.87 90.91 86.78 97.46 97.52 97.44 97.52 98.35 98.35 

Soybean-clean 
till 

74.07 94.55 83.64 92.73 98.18 100.00 98.18 94.55 100.00 100.00 

Wheat 100.00 0.00 57.14 0.00 100.00 0.00 100.00 90.00 100.00 100.00 

Woods 100.00 100.00 100.00 100.00 100.00 100.00 100.00 90.00 100.00 100.00 

Bldg-grass-
tree-drives 

78.38 100.00 89.47 56.52 86.11 97.22 97.30 100.00 97.22 97.22 

Stone-steel 
towers 

66.67 0.00 73.68 58.82 100.00 0.00 100.00 20.00 0.00 0.00 

OA 82.5±0.8 72.61±1.3 86.78±0.7 77.03±1.3 92.01±0.3 90.42±0.8 94.29±0.2 95.02±0.4 89.04±1.4 90.02±1.1 

k 0.80 0.69 0.85 0.77 0.91 0.89 0.93 0.94 0.88 0.89 

Number of 
variables 

200 200 248 248 378 378 141 141 141 141 
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5. Discussion  

Airborne hyperspectral imaging sensors have provided unprecedented opportunity for mapping 

urban landscapes. The enhanced spectral properties enable identification of subtly varying 

spectral changes. In this study, high spectral resolution data proved that urban features can be 

classified accurately. High spatial resolution has provided complementary information to the 

spectral data through increasing spatial and thematic detail where different scale objects were 

well described. However, this accuracy was further improved by using the efficient methods in 

combination with data types for analysing hyperspectral images.  

 

The results from this experiment proved that combining multiple features (spectral and spatial) 

of a hyperspectral image also significantly improved the classification accuracy (Tables 3, 4 & 

 

Fig. 8  Figure shows classification maps of AVIRIS Indian pines using different features and classification 

algorithms 
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5), which is consistent with the results of other studies [19, 21]. In general, utilizing spectral data 

alone classification performance was not good due to some urban objects being spectrally similar 

which led to classification error. Combining multiple features significantly improved the 

classification accuracy, indicating its potential separating spectrally similar objects. Similar to 

[38] integrated multiple features such as spectra from WorldView-2, GLCM, differential 

morphological profiles, and UCI using SVM ensemble approach estimated accurate results for 

different land use classes. Yu et al. [54] proposed a method where they combined subspace-

based SVM and adaptive MRF for classifying hyperspectral images and achieved better 

classification accuracy.  One can say that majority of land unit classes are spectrally similar 

because of their chemical composition. After considering the spatial features from GLCM and 

EMAP the class discrimination significantly improved, evidencing its importance. Dalla Mura et 

al. [23] found that the EAP features had a higher capacity to distinguish land-cover class 

compared with original spectral features. Moreover, high spatial resolution images hold valuable 

information for mapping complex environments as there is a strong association between spatial 

resolution and classification accuracy. 

Although combining multiple features yielded better classification performance, both 

classification algorithms (SVM and ANN) may be constrained to high-dimensional feature space 

which leads to misclassification and classification uncertainty [38]. To overcome this problem, 

optimal FS is recommended which excludes irrelevant input features and may improve the 

classification accuracy. In this study, GA-SVM significantly reduced the number of features. A 

study by [13] used a band selection method, BandClust, to reduce the dimensionality of the 

hyperspectral image for classifying urban land-cover data. The classification results from the 

BanClust method (OA = 82.7%) are comparable with results of full spectral domain (OA = 
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82.9%). In this study, GA-SVM not only selected informative features but also improved the 

classification accuracy. In addition, small dimensional space can cope with Hughes phenomena 

with reduced computational complexity and time.  

It can be clearly seen in the Figs. 5, 6, 7 and 8, after combining the segmentation procedure, the 

salt and pepper affect was significantly minimized, though the overall accuracy was not 

significantly improved. In case of AVIRIS, the classification accuracy decreased after applying 

segmentation map. It might be due to low resolution (20 m) image which leads to presence of 

mixed pixels complicate the classification process. Ghamisi et al. [21] used an approach where 

they attempted to extract spatial information using HMRF and integrated this with a spectral 

classification framework, and achieved an improvement of 3.2-8% in OA over spectral data 

alone. With the SVM classification, surprisingly, the classification accuracy of roof_5 and 

building shadow classes were dramatically reduced might be due to over smoothing in this area. 

In contrast, the accuracy of pavement, gravel, road and building shadow was dramatically 

reduced with ANNs classification. From the results, it can be confirmed that the performance of 

HMRF is not consistent, though, the building structures and shapes were distinctive and spatial 

errors were minimized (Figs. 5-8), as such, HMRF considers the neighborhood pixels and 

structural edge information. This is due to the fact that HMRF models spatial information using a 

fixed neighborhood system. This type of segmentation approaches sometimes suffers from under 

segmentation where different objects are merged wrongly, which downgrades the quality of the 

classification map. 

6. Conclusion 

The availability of high spatial resolution hyperspectral images has significantly improved in 

recent years. However, using these images in urban map classification is still challenging. 
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Recently, researchers have been success with integrating the information from spectral and 

spatial domains for improving the classification results. Consequently, in this paper, we used 

multiple features such as GLCM, EMAP, original spectra and segmented image where GLCM 

and EMAP features extracted from MNF bands. All the features were stacked together into one 

vector then optimal subset features were selected using the genetic algorithm combined with 

SVM. The supervised classification algorithms: SVM and ANN was applied on the optimal 

features and created a classification map. This approach was investigated on a real application, a 

high spectral and spatial resolution AisaFENIX hyperspectral image for mapping 23 urban land-

cover classes. Results from this study have shown that combining multiple features significantly 

improved the accuracy compared to the spectral data alone. When the classification map fused 

with a segmentation map which was obtained by performing HMRF, the accuracy was not 

significantly improved but spatial errors were minimized and salt and pepper effect removed. 

The proposed method (GA-SVM + Spectra + GLCM + EMAP + HMRF) seems to be an 

efficient approach for successfully distinguishing 23 urban land-cover classes with high accuracy 

compared to all other single feature classification models and full dataset models. In addition to 

improving the accuracy, feature selection process significantly reduced the CPU time. The 

performance of the method also evaluated on two widely used hyperspectral datasets (ROSIS 

and AVIRIS). Overall, experimental results proved that integrating multiple features could be 

useful for achieving more accurate classification results.  
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Caption List 

 

Fig. 1 The study area, Massey University (a) RGB image (b) location. 

Fig. 2 General scheme of the proposed approach for classifying hyperspectral images  

Fig. 3 (a) False color composition of the university of pavia (b) reference map including nine 

classes. 

 

Fig. 4 (a) False color composition of the AVIRIS Indian pines (b) reference map including 

sixteen classes. 

 

Fig. 5 SVM classification maps based on multiple features Spectra + GLCM + EMAP using GA-

SVM (a) before fusing with the segmentation map (c) after fusing with segmentation map. 

 

Fig. 6 ANN classification maps based on multiple features Spectra + GLCM + EMAP using GA-

SVM (a) before fusing with the segmentation map (c) after fusing with segmentation map. 

 

Fig. 7 Figure shows classification maps using different features and classification algorithms 

 

Fig. 8 Figure shows classification maps of AVIRIS Indian pines using different features and 

classification algorithms 

 

Table 1 Parameter of GA-SVM 

Table 2 The selected land cover classes and the number of pixels in training and validation data 

sets for AisaFENIX 

 

Table 3 Overall classification accuracies (in percent), k statistic and individual class accuracies 

were obtained for different data types extracted from hyperspectral data acquired from 

AisaFENIX using support vector machine (SVM) and artificial neural network (ANN). 

 

Table 4 Overall classification accuracies (in percent), k statistic and individual class accuracies 

were obtained for different data types extracted from hyperspectral data acquired from ROSIS 

using support vector machine (SVM) and artificial neural network (ANN). 

 

Table 5 Overall classification accuracies (in percent), k statistic and individual class accuracies 

were obtained for different data types extracted from hyperspectral data acquired from AVIRIS 

using support vector machine (SVM) and artificial neural network (ANN). 

 


