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Abstract— In the field of service robotics, whole arm
contact with an unstructured environment or human beings
becomes a major issue. Therefore soft robots, which means
robots with passively (or mechanically) compliant joints, be-
come more and more important. In this work we analyze what
Cartesian stiffness at the tool center point one can achieve
with a passively compliant, redundant robot with variable
joint stiffness. We restrict this work to the special case of
uncoupled joint stiffness only, as coupling of joint stiffness
seems to be mechanically difficult to realize. Finally we discuss
a Cartesian controller which incorporates the compliance of
the joints and ensures the correct stiffness behavior also for
high displacements from the desired position.

I. INTRODUCTION

In the field of service robotics, compliance and reactivity
to unforeseen contacts in a priori unknown environments
with the whole arm, not only with the tool center point
behind a force torque sensor (FTS), are a major issue.
Today there are basically tree ways to establish compliance:
(1) Use a FTS, possibly in combination with a passively
compliant device close to it; (2) build a stiff robot with joint
torque sensors and implement compliant behavior through
control at joint level; or (3) construct a soft robot with
mechanically (or passively) compliant joints with variable
joint stiffness. The stiffness can be varied by an additional
actuator in each joint.
In situations where control and precision in the position
domain are less important and the focus is on compliance,
soft robots (3) become more and more interesting, as they:
• cause less impact on their environment, especially on

human beings, in the case of contact,
• are less prone to structural damage in case of contact,

especially in non-nominal situations (power failure;
controller failure; sensor failure etc.). This holds es-
pecially true for small and lightweight structures as
e.g. artificial hands or humanoid robots.

• yield better compliant performance, as they inher-
ently and instantaneously show a compliant behavior,
whereas (1) and (2) can only react compliantly with
a time delay through the loop sensor data processing,
control and actuation.

There are already a few interesting examples of robots
realizing an adjustable mechanical joint stiffness [14],
[6], [9]. Concerning safety aspects of passively compliant
robots, [17], [2] made some important contributions. In
this work we would like to give a theoretical analysis and
an optimization solution for the problem of realizing a
desired Cartesian stiffness at the tool center point (TCP) of

a passively compliant robot and touch some control issues
that result from drawbacks of passively compliant robots.

II. PROBLEM STATEMENT

With a soft robot, we would like to realize a desired
Cartesian stiffness at the tool tip. While for some applica-
tions, the adjustment of the stiffness on joint level may be
sufficient, a specification of Cartesian stiffness is required
for various tasks such as assembly of parts or sliding along
surfaces. This desired Cartesian stiffness should be realized
in a manner, that a force (or torque) input along specified
principal stiffness axes should result in a linear position
(orientation) displacement along these axes also for a larger
displacement from the initial position.
To realize this behavior, we can use the mechanically
variable joint stiffnesses and - in case of a redundant robot
- the null space of the robot [12].
Additionally it needs to be stated that when talking about
passively compliant robots, we imply that the robot’s joints
are decoupled in the sense of compliance. Of course, one
could establish coupling of joint stiffnesses mechanically1,
but this is beyond the scope of this paper. This leads to the
first constraint in this work:
Diagonal Joint Stiffness Matrix: Joint stiffness matrices
(KJ ) have no coupling terms, they are always of diagonal
shape in this work.

For a general robotic application it is most natural to
specify the desired stiffness behaviour of the robot in
Cartesian coordinates. The desired values would result
from a task description with respect to the TCP. The user
may specify a desired constant stiffness matrix KC =
−∂f

∂x
∈ <m×m as the relation between the Cartesian

wrench f and the Cartesian displacement x. Here, m is
the number of Cartesian degrees of freedom (DoF). On
the other hand, the robot will be able to adjust the stiffness
KJ = −∂τ

∂q
∈ <n×n of its n joints, where τ is the joint

torque and q is the joint position. Hence the Cartesian
stiffness has to be transformed to the joint space using
a mapping T : KJ = T (KC), an approach known as
stiffness control. This transformation can be computed as
follows:

KJ = −
∂τ

∂q
= −

∂(J(q)T KC∆ x)

∂q

= J(q)T KCJ(q)−
∂J(q)T

∂q
KC ∆ x (1)

1This kind of coupling is realized in the human limbs.
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J denotes the manipulator Jacobian J(q) = ∂f(q)
∂q

, where
f(q) is the forward kinematics mapping. ∆ x = xd −
x is the Cartesian displacement between the desired and
the actual position. If the stiffness is computed around the
equilibrium position, (i.e. ∆x = 0) then (1) reduces to

KJ = J(q)T KCJ(q). (2)

This relation was generally used in the early work on
stiffness control [11]. The importance of the second term
in (1), which reflects the position dependent change of
the Jacobian is pointed out in [7], [3]. Notice that the
mapping T and the matrix KJ in (1),(2) have only local
meaning and will change with the robot configuration (see
also sec. V).
As mentioned in the introduction, the robot has the ability
to adjust mechanically the stiffness in each joint, what
means that a diagonal joint stiffness is available: KJ =
diag{kJi} ∈ <m×m. In general, KJ in (1) is a full matrix,
what means that only an approximation of the desired
Cartesian stiffness can be achieved.
Problem statement: Given a desired Cartesian robot
configuration xd ∈ <m and a desired Cartesian stiffness
matrix KC ∈ <m×m for that configuration, find the
optimal joint position qd and the diagonal joint stiffness
matrix KJ ∈ <n×n which provides the best approximation
of KC under the constraint xd = f(qd).
The implementation of the second term in (1) using the
passive joint compliance seems difficult, since it needs
displacement ∆x and this in turn would require the fast
and continuous change of the joint stiffness during motion,
what is in contrast to the main design idea. Therefore, eq.
(2) will be used for computation of the desired passive
joint compliance. In sec. V an approach will be intro-
duced, which enables the combination of the variable joint
stiffness with a slower Cartesian control loop. This slower
loop may also implement the remaining part of the stiffness
transformation (1).
The inverse problem of computing the resulting Cartesian
stiffness matrix KC = T −1(KJ ) for a given KJ can be
easiest solved by considering compliance matrices, which
are the inverses of the stiffness matrices (CC = K−1

C and
CJ = K−1

J ), under the assumption of a positive definite
KC and KJ . The same reasoning as in (1), (2) leads to

CC = J(q)CJJ(q)T (3)

and hence to

KC = (J(q)K−1
J J(q)T )−1. (4)

Remark: The same result can be obtained directly from (2)
by using a pseudoinverse matrix J(q)+ satisfying JJ+ =
I in order to compute

KC = J(q)+
T
KJJ(q)+. (5)

The pseudoinverse is generally given by J(q)+ =
A−1J(q)T (J(q)A−1J(q)T )−1, with A being a positive
definite matrix. Notice that for the given problem, the
mapping between the spaces of torques and the space of
(infinitesimal) displacements is uniquely defined by K−1

J .
Therefore, A = KJ has to be chosen as a metric
tensor in the pseudoinverse. The usage of an arbitrary
positive definite matrix A would lead to a wrong stiffness
transformation.

III. ANALYSIS OF ROBOTS WITH COMPLIANT
UNCOUPLED JOINTS

A. Analysis of a 2 DoF planar finger

In order to get a first feeling for our problem, the
simplest, 2DoF case of a planar finger will be analyzed in
this section. Suppose, the robot is fixed at a given config-
uration. We want to determine the limitations imposed on
the Cartesian stiffness by choosing a diagonal joint stiffness
KJ = diag{kJ1, kJ2}. Eq. (5) becomes in this case

KC = J+T
(

kJ1 0
0 kJ2

)

J+

= α · J+T
(

1 0
0 β

)

J+ (6)

where the notations α = kJ1 and β = kJ2

kJ1
have been used.

This can be rewritten in the following form:

KC = αP J+(β)T

(

λ1(β) 0
0 λ2(β)

)

P J+(β)

= P J+(β)T

(

αλ1(β) 0
0 αλ2(β)

)

P J+(β),(7)

where λ1(β), λ2(β) are the eigenvalues which determine
the stiffness along the principal stiffness axes.2 These
axes are given by the matrix P J+(β) which contains the
eigenvectors of KC . As a direct consequence of (7) it turns
out that the direction of the principal axes and the ratio
of the stiffness values along these axes can not be cho-
sen independently from each other. Both the eigenvalues
λ1(β), λ2(β) and the matrix P J+(β) are parameterized by
the same scalar β. α is linearly scaling both eigenvalues,
keeping their ratio and the principal directions constant.
Figure 1 displays an example for this result. The Cartesian
stiffness matrices are described by three parameters: the
eigenvalues λ1 and λ2 and the angle θ between the coor-
dinate system of the TCP and the coordinate system defined
by the principal stiffness axes. The implementable stiffness
matrices KC form a two dimensional manifold in this
three dimensional space, parameterized by kJ1 and kJ2.
The intersection of this manifold with any horizontal plane
(θ = θ0) is a straight line, due to the previously mentioned
property. Fig. 2 gives a two dimensional representation
of the results. It displays the Cartesian stiffness values
which can be obtained with a diagonal upper bounded
joint stiffness matrix as a function of the rotation angle
θ between the TCP and the principal axes. One can see
that there are regions for θ which cannot be chosen.
These results reveal a severe limitation of the method,

since independent stiffness values along the different axes
are crucial for the use of stiffness control in most appli-
cations. It turns out that special attention has to be paid
to the design of the manipulator and to the choice of the
optimal configuration and stiffness transformation, in order
to obtain good results in practice.
An obvious solution to the problem is to increase the num-
ber of joints of the planar finger. Since the joint stiffness

2In this simple example only the two dimensional case of translational
stiffness is considered. Since the configuration space is here a subset of
<2, the Euclidian norm in <2 can be naturally considered for the forces
and displacement spaces and the concepts of orthogonality, principal
stiffness axes, etc. are thus well defined. In the general, six dimensional
Cartesian case, the intuitive generalization of these concepts has to be
treated with care.
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Fig. 1. Achievable stiffness with a 2 DoF robot

Fig. 2. Achievable Cartesian stiffness for kJ1, kJ2 ∈ (0, kmax]. Darker
leafs: values for λ1, lighter leafs: values for λ2. The principal axes of
stiffness are drawn for θ = 27.6713◦, β = 1, what results in λ2/λ1 =
2.6283. The values for α = 1 are marked with a circle, while the values
for α = 0.5 are indicated by a rectangle.

in (2) is symmetric, we need three independent variables
to parameterize it. Adding a third joint without passive
compliance would already introduce an additional degree
of freedom through the null-space motion, which may
solve the problem. This would be the minimal requirement
concerning the number of independent parameters. If the
joint has also a variable stiffness, a further tuning parameter
is available. Nevertheless, the surjectivity of the mapping
T −1 for only diagonal joint matrices is still not guaranteed.
These results obtained for this simple planar case give the
motivation for a detailed analysis and a solution for the
general 6 DoF case.

B. Specification of Cartesian Stiffness in 3D

1) Structure of Cartesian Stiffness Matrices: An arbi-
trary Cartesian stiffness matrix can be decomposed in four
blocks: The translational and rotational stiffness part KT

and KR, resp. and two coupling matrices, KTR and KRT .
KT and KR can be written as diagonal stiffness matrices
λT and λR in a rotated coordinate system with the rotations

P T and P R in the translational and rotational stiffness
dimensions, respectively.

KC =

(

KT KRT

KTR KR

) (

P T
T λTP T KRT

KTR P T
RλRP R

)

=

(

P T
T 0

0 P T
R

)(

λT KRT

KTR λR

)(

P T 0
0 P R

)

(8)
In order to specify a desired Cartesian stiffness KCD it is
sufficient (and customary) for many practical applications
to specify (1) translational and rotational stiffnesses in
the same (task relevant) coordinate system P and to (2)
omit coupling terms between translational and rotational
stiffnesses (although one might think of some “screwing”
applications where these couplings could make sense).

KCD =

(

P T λTP 0
0 P T λRP

)

(9)

Remark:We will use here this restricted way of specifying
the stiffness for purpose of simplicity and intuitiveness.
However, this restriction is not required in any further
step of the optimization process and is exploited only in
the definition of the intuitive error measure in sec. IV.
This measure is used only for the visualization and in-
terpretation of the optimization results. Hence, any way
of specifying a complete p.d. Cartesian stiffness matrix
(e.g. based on twist and wrench representation, or using
a potential function in order to generate a force field [8],
[4], [16], [13]) may be used instead.

2) Number of Required DoFs: In this section, an esti-
mation of the minimal number of DoF is given, which is
required for the implementation of an arbitrary Cartesian
stiffness matrix with a passively compliant robot. The
number of degrees of freedom needed to describe an
arbitrary Cartesian stiffness in 3D is found by looking at
the symmetrical3 6 × 6 stiffness matrix KC : There are
21 (upper right or lower left triangular matrix) parameters
to be specified. For the passively compliant robot with
diagonal joint stiffness we have two independent variables
for each joint (joint angle and joint stiffness), but we need
6 DoFs to achieve a specified TCP pose. Thus we get from
n joints

DoFstiffness = 2 · n− 6

DoFs to realize KC . This means that we need a 14 DoF
robot to get at least the degrees of freedom needed to
obtain 21 “stiffness” DoFs, which - of course - doesn’t
guarantee surjectivity of the mapping from joint positions
and stiffnesses to Cartesian stiffness.

3) Limitations for the Cartesian stiffness of robots with
passively compliant joints: There are two main sources of
errors for the Cartesian stiffness we identified so far:
• Due to the diagonal form of the KJ , the desired

Cartesian stiffness can not be realized exactly.
• Because of the locality of the Jacobian the desired

behavior is only local: A larger deflection due to a
given force will yield a significant position error if
the Jacobian and as a result the joint stiffness is not
updated.

The first problem will be tackled in the next section and
the second problem in sec. V.

3As mentioned in sec. II, we are considering here the case of small de-
flections, where the symmetry holds. For the treatment of high deflections
see sec. V.



IV. THE TCP STIFFNESS OPTIMIZATION PROBLEM
BestLocalStiffnessApprox

As stated above, there is a very high probability that
a desired Cartesian stiffness KCD cannot be achieved,
mostly due to the lack of DoFs and - if we use a robot
with at least 14 DoFs - due to the non-surjective mapping
from joint stiffnesses to Cartesian stiffnesses. Therefore we
can only find a good approximation instead of a perfect
solution by formulating the problem as an optimization
problem: Mimimize

norm (KCD,KC(KJ, q))

subject to
f(q) = xd (10)

This formulation raises three questions: (1) What function
can we use as a suitable norm, (2) how hard is the
optimization problem and (3) what tools can we use?

A. Choosing the appropriate norm

Obviously, the result of the optimization task stated
above will depend on the type and the weighting of the
norm used to calculate the optimization error. The choice
of a norm (and of a corresponding weighting) should be
seen rather as a degree of freedom in the design of the
solution: by choosing a norm, one specifies in which sense
the resulting approximation should be optimal, similar to
the procedure in any optimal control problem. In particular
applications, the choice of a norm may result from the
specific problem formulation. However, we are interested
here in an application independent solution, so different
norms will be evaluated in terms of computation cost and
intuitiveness of the parameterisation.

1) Induced L2 norm: Assuming the Euclidian norm
for the twist space, one could choose the induced matrix
norm ||KC ||2 = λmax(KC), with λmax(KC) being
the maximal eigenvalue of KC . However, this solution
is computationally expensive (compared to IV-A.3), not
very intuitive (compared to IV-A.2) and questionable from
geometrical point of view [10].

2) Intuitive norm: We tried to identify a set of intuitive
error qualities and came up with an error vector

∆ =
(

∆Rot
T ,∆Rot

R ,∆Rel
T ,∆Rel

R ,∆K

)T
(11)

where ∆Rot
T and ∆Rot

R mean the angle axis rotations
between the main axes coordinate systems of the desired
and resulting translational and rotational stiffnesses, respec-
tively,

∆Rel
T =

1

3

3
∑

i=1

∣

∣

∣λTi − λ̃Ti

∣

∣

∣

1
2 (λTi + λ̃Ti)

∆Rel
R =

1

3

3
∑

i=1

∣

∣

∣
λRi − λ̃Ri

∣

∣

∣

1
2 (λRi + λ̃Ri)

are a measure for the relative errors of the stiffnesses
(i.e. eigenvalues) λ of the translational and rotational
dimensions and ∆K is a measure for the coupling between
translational and rotational stiffnesses. For ∆K we simply
use the largest absolute value of the elements of KRT and
KTR (see eq. 8).
We used this error vector as is as an intuitive, human
readable error representation. Instead of making a norm

out of this error vector (which basically means a weighted
sum and implies the selection of a proper set of weighting
factors), we used a different norm for the optimization al-
gorithm. This also eases the optimization task dramatically:

3) Weighted Frobenius- or Schur Norm.: Let A =
(aij) be a n×n matrix. Let G = (gij) (weight matrix) be a
n×n matrix of positive scalars. The weighted Frobenius-
or Schur norm of A is defined by:

‖A‖
G
F :=







n
∑

i,j

gij |aij |
2







1
2

By transforming G to diagonal form (see eq. 9) we can
choose weights for the coupling terms (KRT and KTR)
(see eq. 8), for the errors of the translational and rota-
tional stiffness coordinate system orientation (off-diagonal
elements of KT and KR, resp.) and the translational and
orientational stiffness values (diagonal elements of KT and
KR, resp.).
An ad-hoc approach to the optimization problem would
be to use a nonlinear optimization algorithm and optimize
joint stiffnesses and the nullspace joint position simulta-
neously. Looking at the problem more in detail, it turns
out that a separate optimization of joint stiffnesses and
nullspace joint position makes sense.

B. Joint Stiffness Optimization

Let kJ be the vector of joint stiffnesses of the diagonal
matrix KJ . By choosing the Frobenius norm as norm in
the general optimization problem statement (eq. 10), we
can assign a unique optimal joint stiffness to a given robot
pose for a desired Cartesian stiffness:

kBest
J (q) =

{

kJ , ‖KC(q,kJ )−KCD‖
G
F → Min!

}

By searching the extremal of kJ(q) (i.e. differentiating the
Frobenius norm w.r.t. the joint stiffnesses)

∂

∂kJi

‖KC(q1, . . . , qn, kJ1, . . . , kJn)−KCD‖
G
F = 0

we get a linear equation system with the unknowns kJi,
i ∈ {1, . . . , n} (since kJi enter quadratically the Frobenius
norm) :

A · kJ = b

The matrix A and the right hand side b depend on the
robot pose q, the desired Cartesian stiffness KJ and the
weight matrix G. So we can calculate kBest

J as

kBest
J (q) = A−1 · b (12)

This extremely efficient joint stiffness optimization step
can now be used as a sub-procedure in the following,
unfortunately much more complicated optimization step for
the nullspace of the robot.

C. Nullspace Optimization

At a given Cartesian position within the workspace of
a redundant robot, there are an infinite number of joint
configurations reaching the respective TCP position. The
resulting space is the well-known nullspace.

So the question arises, whether there are optimal config-
urations meeting our desired Cartesian stiffness. Figure (3)
shows a plot of the norm B (q) = ‖KBest

C (q)−KCD‖
G

F
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optimized by (12), which was generated by equally sam-
pling the nullspace of a seven DoF robot.
As one can see, the optimization function contains local
minima. The darker line in figure (3) points out the reach-
able local minima from the position within the nullspace.
Optimization is done by a gradient search along the fol-
lowing gradient:

grad B
(

qi
)

= lim
λ→0





k
∑

j=1

(

B
(

qi + λnj

)

−B
(

qi
))

λ
· nj





whereas N = {n1, · · · ,nk} represents the nullspace of J
with the dimension k = DoF − 6 and qi is the position at
sample i in the nullspace.
Due to the existence of the local minima, well-known local
optimization methods, like the Moore-Penrose pseudoin-
verse, will lead to very suboptimal results. Therefore the
optimization should be performed in less real-time critical
planning layer, where other nonlinear optimization methods
can be utilized. For the sake of fast computability, a cluster
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Fig. 4. Number of nullspace clusters vs. Cartesian stiffness error

method was investigated, where the nullspace is sampled
by a few number of representants. With those representants,
the nullspace optimization is performed, and the minimum
is selected. On an investigation about the required number
of representants, one sees in figure (4), that the practical
number of representants should be somewhere between 10
and 100 for a four dimensional nullspace (10 DoF robot).
Figure (5) shows the achievable quality during a random
walk through the nullspace of a 10 DoF Robot using the
previously described methods.
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Fig. 5. Achievable stiffness quality during a random walk through the
nullspace of a 10 DoF robot; joint stiffness and nullspace optimization
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V. CONTROL

As mentioned in sec. II, the stiffness mapping from joint
space to Cartesian space is valid only locally. A first choice
for implementing a Cartesian stiffness may be to use (2)
for computing the desired joint stiffness matrix KJ and
command this stiffness, together with the desired position
qd = f−1(xd) to the variable compliant joint. The torque
in the joint springs would then be

τ = KJ(f−1(xd)− q)−DJ q̇, (13)

where DJ q̇ is a damping term, inherently available in the
joint springs by design or added by control. This method
leads however, at least for higher displacements ∆x from
the desired position, to substantial errors in the stiffness
matrix. The reason for these errors is the local character of
(1). The last term in (1) does not completely eliminate
this error, because ∂(KC∆x)

∂q
= KCJ(q) is also valid

only locally. Here, the Jacobian is implicitly assumed to be
constant, despite of being multiplied by a big displacement
∆q. This error can be seen in fig. 6, where the joint
stiffness is emulated on the DLR light-weight robot [5]
by control. For the direction of low desired stiffness, the
error increases with the displacement. For comparison, the
results with an additional slower Cartesian loop, as will be
presented in the next section, are also displayed.



A. Combination of the passive variable joint stiffness with
a Cartesian controller

In this section, a method of dividing the impedance
control problem into two levels is presented [1], which
can make use of the elastic joint design concept:
• The first level is the level of the physical, variably tun-

able joint stiffness, equivalent to an infinite bandwidth
control. It should have the form (13), while accounting
for the local character of (1).

• The second layer is a Cartesian control level, (with a
typical sampling rate of 1 to 6ms for the DLR robots),
in which J(q), f(q) and a Cartesian controller may
be computed. This controller should be designed to
implement those parts which can not be assigned to
the first level. 4

In the following, the index []C will be used for sig-
nals which are measured or computed in the Cartesian
loop. Furthermore, for the difference signals, the notations
∆qC = qd − qC and ∆qJ = qC − q are used.
Considering the above remarks, one can write:

∆x = xd − x ≈ xd − xC −
∂x

∂q

∣

∣

∣

∣

q=q
C

(q − qC) =

= ∆xC + J(qC)∆qJ (14)

JT (q) ≈ JT (qC) + ∆qT
J

∂JT (q)

∂q

∣

∣

∣

∣

∣

q=q
C

(15)

The torque produced by an ideal Cartesian stiffness can be
written as:

τ dK = JT (q)KC∆x ≈ JT (qC)KC∆xC +

+ JT (qC)KCJ(qC)∆qJ +

+ ∆qT
J

∂JT (q)

∂q

∣

∣

∣

∣

∣

q=q
C

KC∆xC +

+ ∆qT
J

∂JT (q)

∂q

∣

∣

∣

∣

∣

q=q
C

KCJ(qC)∆qJ (16)

The first term corresponds to the impedance controller
on Cartesian control level. The second term corresponds
to a stiffness controller, as described in [11]. Here, in
contrast to (13), the joint stiffness acts only locally, in
the vicinity of the last Cartesian position. This helps over-
coming the slower Cartesian sampling rate. The third term
corresponds to the correction term in (1), which ensures the
conservativeness of the mapping. Finally, the fourth term
depends on the square of the small displacement ∆qJ and
consequently has no practical significance.
Two alternatives may be considered for implementing (16),
having in mind that in our robot, only a diagonal KJ is
available:
• If the commanded KC corresponds already to a

diagonal matrix on joint level after the optimization
from sec.IV, the Cartesian controller should imple-
ment the first and third term in (16). Depending on
the implementation of the low level joint control, the

4Of course there is an additional control module, which has to take care
of the low level control for the variable stiffness actuator. This includes
the command of the motors to adjust the stiffness as well as the setting
of the equilibrium point for the springs qd [15].This part is not subject
of the current paper.

torque may be commanded directly or in form of a
desired joint displacement, using the known value of
the elasticity. JT (qC)KCJ(qC) is also computed
in every Cartesian cycle and represents a constant
desired stiffness, which is commanded to the joint for
the duration of this step. The desired position during
this step is qC .

• If an arbitrary KC is commanded, then also the off-
diagonal terms of the stiffness controller have to be
implemented by the software.

VI. SIMULATION RESULTS
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Fig. 7. Desired and resulting Cartesian stiffness for a 7 DoF robot.
Medium gray (red) line: desired stiffness (identical frames and values
were chosen for the translational and rotational part); light gray (green)
frame: resulting Cartesian stiffness, translational part; dark gray (blue)
frame: resulting Cartesian stiffness, rotational part.

Typical results of the method described in sec. IV for
finding the best approximation for KC are shown in fig. 7
and fig. 8. A fixed Cartesian desired configuration and the
same KC are commanded for a 7 DoF arm ( fig. 7) and for
the same arm mounted on a three DoF platform, leading to
a 10 DoF system ( fig. 8). The following weighting matrix
was used for the Frobenius norm:

G =













3 30 30 3 3 3
30 3 30 3 3 3
30 30 3 3 3 3
3 3 3 10 100 100
3 3 3 100 10 100
3 3 3 100 100 10













(17)

It can be seen that different values have been chosen for the
different sub-matrices in (8). This is related to the different
scaling of rotations and translations but is also used to
weight the various errors from (11) corresponding to the
requirements of a specific application. By increasing the



Fig. 8. Desired and resulting Cartesian stiffness for a 10 DoF robot.
Medium gray (red) line: desired stiffness (identical frames and values
were chosen for the translational and rotational part); light gray (green)
frame: resulting Cartesian stiffness, translational part; dark gray (blue)
frame: resulting Cartesian stiffness, rotational part.

off-diagonal weighting of KT and KR with respect to the
diagonal elements, a better alignment of the principal axes
is enforced, in detriment to an exact stiffness value along
these axes.
The simulations showed that with the 7 DoF arm, the
resulting approximation is in general very poor. In contrast,
with the same arm mounted on a mobile platform, an
acceptable accuracy can be achieved, although this system
also does not have sufficient DoFs for an exact solution.
The errors for the analyzed example are summarized in
table I.

TABLE I
ERRORS OF THE CARTESIAN STIFFNESS APPROXIMATION.

∆Rot

T
∆Rot

R
∆Rel

T
∆Rel

R
∆K

7 DoF 6.26◦ 41.83◦ 75.4 % 55.37 % 0.58
10 DoF 0.61◦ 6.71◦ 0.055 % 9.95 % 0.25

VII. CONCLUSIONS

The following conclusions can be drawn from this study:
1.) There are severe limitations concerning the implementa-
tion of Cartesian stiffness with an usual (6 or 7 DoF) arm
with adjustable diagonal joint compliance. 2.) A mobile
system with an arm placed on a vehicle or a humanoid
torso has a considerably improved performance. 3.) The
optimization problem can be divided into a fast (linear)
optimization in the space of the joint stiffness values
and a slow (nonlinear) optimization in the null-space of
the manipulator. This second part can be computed only
offline, in a planning phase for the working posture. 4.)
The joint stiffness can be integrated into a Cartesian control
scheme to provide the desired stiffness behaviour also for
large displacements from the desired position.

Simple applications like “wiping a table” have very
different requirements concerning the stiffness accuracy
than challenging assembly tasks (e.g., peg in hole). While
the paper provides a framework to weight and optimize
the various error components, an absolute evaluation of
the resulting quality can be done only in the context of the
specific task.
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