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Vibration response characterisation and fault-size 
estimation of spalled ball bearings

Research efforts have increased to investigate the ability to quantify localised bearing faults, ie spalls. These efforts 
revolve around extending the useful service life of the bearing after the detection of spalls. A number of studies have 
investigated a linear correlation between the size of spalls and three geometric points that may be recognised in the 
vibration response: the entry into the spall; the exit from the spall; and a third impact point between the first two. The 

time difference between these points, calculated using different signal processing techniques, has been widely exploited 
for quantifying spall size. Currently, there are two main challenges: the first is to enhance the entry point, which typically 

has weak excitation; the second is to distinguish the impact and the exit points investigated in the literature based on 
the spall size. However, for practical applications, there is no prior rough estimation of the fault size (ie small or large) 

and a method is needed for the interpretation of responses. This paper provides insights into the movement of the rolling 
element within the spall region and shows that the rolling element strongly strikes the bearing races at a minimum of 
two points. A new technique is then presented to quantify the spall and determine the inherent scaling factor without 

comparison to any reference data. The technique is based on evaluating two root-mean-square (RMS) energy envelopes, 
one for the vibration signal and one for a numerical differentiation of this signal. A geometric scaling factor is then used 

to give a generalised quantification for the small and large spalls. Serviceable estimations of spall size have been achieved 
for several seeded faults measured on two dissimilar test-rigs provided by the German Aerospace Centre (DLR) and the 

University of New South Wales (UNSW).

M A A Ismail and N Sawalhi

1.	 Introduction
Rotating machinery systems are typically equipped with a number of 
rolling element bearings in order to provide frictionless support for 
the spindles. The existence of faults in the bearings leads to bearing 
damage; it can also initiate hazardous vibrational excitations within 
the whole structure. To prevent such risky scenarios, fault diagnosis 
and prognosis capabilities may be developed. Fault diagnosis 
is used to detect emergent faults without evaluating their size or 
severity in order to launch immediate maintenance. However, more 
economic benefits can be attained through fault prognosis, in which 
faulty bearings are tolerated as long as the fault is below a critical 
limit of severity[1]. 

Here, the scope is limited to a specific prognosis task: the fault 
quantification of seeded faults rather than complete remaining 
useful life estimation. The ball bearings degrade in two manners: 
localised spalling/pitting and/or distributed wear[2,3]. This paper 
focuses on spall-type degradation because it is the ordinary 
degradation if the bearing is operated and maintained properly.

Recently, several vibration-based studies have been conducted 
to investigate spall size[4-9] based on the principle that there is a 
linear correlation between spall width and the geometric features 
identified in the vibration response. These features consist of three 
points: the ball entry into the spall zone (the fault), an impact at 
the spall centre and the ball exit from the spall. The time difference 
between those impacts, estimated using different signal processing 
techniques, has been exploited for quantifying the spall.

However, there is a challenge related to which of these features 
actually exists. The literature has investigated the existence of only 
two combinations: the entry to the impact or the entry to the exit. 
It is essential to know which combination is present in order to 
scale the extracted spacing to the actual fault size using a geometric 
factor. The existing studies set this factor manually by comparing 

reference fault data. However, for new assemblies, this factor cannot 
be calculated in advance because it requires very complex models 
and precise loading conditions.
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This paper introduces a new technique 
for extracting spall size and determining the 
geometric factor between the extracted size 
and the actual size without comparison to 
any reference data. The paper is organised 
in four sections: Section 2 formulates the 
spall quantification problem and the current 
state-of-the-art advances; Section 3 presents 
a description of the seeded faults and the 
test-rigs used for the experiments; Section 
4 presents the new quantification principle, 
which is then experimentally verified; 
followed by a conclusion in Section 5.

2.	 Investigating 
vibration-based 
geometric features

A localised spall fault on one of the bearing 
elements produces a periodical disturbance 
to the rotating shaft, as shown in Figure 1. 
This disturbance is due to successive passages  
of the balls over the spall, which causes a  
series of impact forces that excite the 
bearing sub-components and the attached 
assembly[10]. 

These impacts are induced at a unique 
fault characteristic frequency (FCF), which 
is a function of the spall location (ie at the 
inner race, at the outer race or at the ball), 
the running speed N in Hertz, the bearing 
geometry, for example the ball and pitch diameters, and the load 
angle. The spall size, however, is independent of the FCF value, 
which is utilised only to detect the fault. In addition, the impact’s 
amplitude (Am in Figure 1(d)) is not monotonically correlated with 
the spall size[11].

Specific geometric features of the vibration response have been 
widely investigated as a promising quantification approach[5,6,8]. 
These features are the entry into the spall zone ‘A’, an impact at the 
spall centre ‘C’ and the exit from the spall ‘B’, as shown in Figure 2. 
The entry point A involves a disturbance of the ball’s path of motion 
without significantly striking the spall leading edge; at location 
C, which may be close to the mid-point between the entry and 
exit, the ball is found to strongly strike the spall, giving rise to the 
vibration response, C. The exit B is often difficult to identify due to 
the complex damping/decaying of the response[5].

The lag time between these points (Figure 2(a)) can be mapped 
to the spatial domain (Figure 2(b)) in order to estimate the actual 
spall size in millimetres using the following Formula (1), which is 
adapted from[5]:

                                    L = T
Gπ fr Dp

2 − d 2( )
2Dp

................................. (1)

where L (mm) is the spall width, T (s) is the lag time between points 
A and B or A and C depending on the vibration response, fr (Hz) is 
the shaft speed, Dp (mm) is the pitch diameter of the bearing and d 
is the ball diameter (mm). This formula can work for faults on both 
the inner and outer races with a maximum error of 4%, assuming 
that the load angle of the bearing is neglected as investigated in[5]. 
The term G (unitless) represents the geometric factor, which relates 
the actual size to the extracted size. The G value depends on how the

interval T is interpreted. 
Two scenarios have been cited in the literature, as presented 

in Table 1. The first one identifies only the entry point A and the 
impact point C in the vibration response. The actual size is extracted 
by multiplying the entry-impact interval, T = TAC , by a factor of 
two, ie G = 2, as shown in Figure 2(a). The other scenario involves 
the identification of entry point A and exit point B (Figure 2(b)); 
thus, the actual size is 100% of the extracted size, ie G = 1, where  
T = TAB . 

The selection of G is performed manually by comparing the 
extracted size and the actual size. This is because points C and 
B may have similar responses and thus might not be correctly 
distinguished. Such confusion can lead to serious problems: (a) 
assuming incorrect G for new non-faulty applications can cause 
errors of 100%; (b) the extraction of points A, B and C has not been 
systematically investigated in the literature for more than a test-rig. 
Both challenges will be investigated.

3.	 Test-rig and seeded fault 
specifications

In this work, two different test-rigs are used in order to 
experimentally validate the technique for datasets that have 
multiple diverse factors, including the size of seeded faults, speeds, 
load types, resonant frequencies and geometric factors; the latter 
parameter should be automatically extracted. The seeded faults 
were obtained by a spark erosion for both cases, as depicted in 
Figure 3 and Table 2; one of the radial vibration measurements was 
found to be sufficient for this study. 

Figure 1. (a) Ball bearing elements and the arrangement used to measure vibration; (b) 
vibration response of an undamaged bearing; (c) a seeded spall at the outer race; (d) 
vibration response due to the presence of the fault

Table 1. Summary of the spall quantification literature and geometric factors

Study Speed range  
(r/min)

Load  
(kN)

Spall sizes 
(mm)

Geometric ratio, G

1 Epps, 1991[4] 1500-3000 1.5-7 1-1.2 • 2 – manually interpreted

2 Sawalhi, 2011[5] 800-2400 – 0.6-1.2 • 2 – manually interpreted

3 Jena, 2012[6] 1500 – 2.1 • 1 – manually interpreted

4 Moustafa, 2014[7] 10-60 1-10 0.7-6 • 1 and 2 – manually interpreted

5 Ismail, 2015[9] 60-500 5-8.8 1.4-4 • 1 – manually interpreted

6 This work 500-1200 0-5 0.6-4 • 1 and 2 – automatically identified 
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4.	 Spall quantification process
The quantification problem can be formulated in terms of how the 
geometrical features of the spall (ie A, B and C) are encoded in the 
vibration response. Basically, there are two encoding forms for any 
dynamic signal: the amplitude and the frequency modulations. As 
shown in Figure 2, the exit feature B is mainly encoded as a large 
amplitude variation in the response, while 
the entry feature A is more manifested by 
a short-time variation of the frequency. 
The middle point C may be identified by 
both the frequency and the amplitude 
modulations. The raw vibration response has 
more distinguishable amplitude-encoding 
content than the frequency content. Here, 
a numerical differentiator is proposed to 
enhance the features that have been encoded 
in the frequency modulation. An example of 
this concept is shown in Figure 4.

Based on this investigation, a new 
investigation to account for both frequency 
and amplitude encoding types is proposed, 
as shown in Figure 5. Two processing paths 
are proposed; the first one involves a root-

mean-square (RMS) energy envelope, the first envelope, which is 
fed by the raw signal. This envelope reflects the vibration energy 
due primarily to the amplitude modulation. The other path 
consists of two stages: a numerical differentiator and the second 
RMS envelope. The differentiator is utilised to extract the inherent 
frequency modulation in the signal and it is then quantified by the 
second RMS envelope.

The resultant envelopes are compared in order to locate possible 
geometric features and determine their relationship to the actual 
size, ie determine the geometric factor. A study for numerous 
combinations of spall sizes, loads and speeds was conducted on 
dissimilar test-rigs (ie two of them are included here), leading to 
the three main patterns of envelopes depicted in Figure 6. This 
shape diversity can be understood as a result of different physical 
contributions, such as loads and their types, shaft speed, spall size 
and bearing curvatures. 

The envelope patterns in Figure 6 can be interpreted by 
comparing how geometric features are manifested. Here, the interest 
is in identifying the spall width rather than the depth, which will be 
considered in future work. Entry feature A has a fixed criterion for 
all cases, which is the earlier increase of the response, whatever it is, 
included in the first or second envelopes. In case 2, both envelopes 
have approximately the same centre. This case indicates that the 
response is symmetric around the spall centre, thus supporting 
the entry-impact pattern. The majority of small spalls follow this 
pattern. In case 3, the centre of the highest peak of the first envelope 
is significantly shifted away from the virtual centre of the second 
envelope.

This has been observed for large-spalls. The physical 
interpretation can be explained based on the main attribute of the 
first envelope, which is more influenced by higher frequencies than 
the second envelope. Large separation of the envelopes indicates 

Figure 2. (a) Possible vibration response patterns for spalled 
bearings (the majority of small spalls match the upper shape, 
while larger spalls match the bottom case); (b) the corresponding 
geometric features: A indicates the entry point, B indicates the 
exit point and C indicates a middle impact point. No signal-
based identification between the shown responses has been 
investigated in the literature

Figure 3. Seeded spall examples for test-rigs: DLR in A and UNSW 
in B

Table 2. Test-rig specifications

Test-rig Fan-geared test-rig[5] Laboratory testing machine[9]

Data source University of New South 
Wales (UNSW)

German Aerospace Centre 
(DLR)

Bearing code NACHI 2206GK QJ212TVP

Geometric factor 2 1 and 2

Ball diameter mm 7.93 15.87

Pitch diameter mm 39 85.15

Speed r/min 800-1200 500

Sampling rate kHz 65.5 25.6

Load N Radial support load Axial load of 5000

Inner faults – width mm 1.2 1, 2.1, 3.8

Outer faults – width mm 0.6, 1.2 1.4, 2.4, 4



VIBRATION ANALYSIS

a large spall, thus case 3. The remaining case, case 1, represents a 
special case with high axial loading, where the entry point excites a 
higher resonant frequency; this excitation is then disturbed as the 
ball departs the spall. 

The Savitzky-Golay differentiator (SGD)[12] is used here to 
perform an adjustable numerical differentiation for the vibration 
signal. SGDs were introduced in 1964 to smooth and differentiate 
the data while maintaining the underlying signal’s waveform (for 

example width and height) obtained from noisy data. The theory of 
SGDs is to provide an approximation of a set of noisy data points 
x(n) of length 2M + 1 by fitting them into a polynomial p(n) of 
order N, as in Equation (2)[12]:

                            p n( ) = ckn
k

K=0

N

∑ − M ≤ n ≤ M ............................ (2)

where ck denotes the polynomial coefficients of the length N + 1.  
The input data are defined by a window frame with a length  
f = 2M + 1 and centred at n = 0. The process of fitting these input 
data entails an optimal fitting of p(n) coefficients. The number of 
unknown coefficients N + 1 should be selected to be less than the 
number of the data frame 2M + 1. A demonstration of the SGD 
principle is depicted in Figure 7. The frequency response of SGD is 
defined by two parameters, the polynomial order k and the size of 
the data window f, as shown in Figure 8. The term bandwidth (BW) 
will be used here to indicate the largest amplification interval prior 
to any spectral leakages. 

The determination of the SGD parameters is crucial to separate 

Figure 4. A demonstration of the frequency demodulation by a 
differentiator: (a) two repeated unity chirp signals, simulating 
the weak excitation of a spall; (b) a first-order differentiation for 
the signal of (a), where the frequency content is extracted as an 
amplitude modulation. The differentiator has a limited bandwidth 
that stops all frequencies above a certain threshold

Figure 5. Signal flow of the spall quantification technique

Figure 6. Three patterns are proposed for the envelope modes 
calculated in Figure 5. The top row represents the conceptual 
relationship between the outer profiles of the envelopes, while the 
bottom row shows examples extracted from dissimilar test-rigs:  
1 mm inner fault, 1.2 mm inner fault and 3.8 mm outer fault for 
cases 1 to 3. The envelope magnitudes are not used here because 
they are mainly influenced by load 

Figure 7. An SGD example for differentiating noisy data. A 
movable data frame of 21 points is used to fit a polynomial:  
y(x) = − x2 – 0.19x + 2.3. The smoothed value at the frame centre 
(x = 0) equals the absolute term c0 = 2.3, while two smoothed 
derivatives are available at the same point, dy/dx = c1 = −0.19 and 
d2y/d2x = 2c2 = −2. For another x point, the data window should 
be centred on this point; in addition, a new polynomial should be 
fitted

Figure 8. Frequency response of an SGD of {f, k} = {11:14, 2). 
The bandwidth (BW) is located as an example at f = 13. The BW 
is proportional to (1/f); increasing f permits BW scanning of the 
response for possible quantification features
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The maximum error of DLR is 24% because it is biased by a 1 mm 
inner fault. The maximum error of UNSW is 22%, which is close 
to the DLR maximum value. The large errors for both cases are 
observed within the smallest spall sizes, which are the most likely 
to be masked by the background noise. The quantification error 
may be predicted based on the standard deviation of the results. As 
shown in Table 3, higher standard deviation is proportional to the 
precision of the extracted size. 

5.	 Conclusion
This paper has presented a fault quantification technique based 
on identifying the geometric features of a fault in the vibration 
response. The technique consists of two energy (RMS) envelopes for 
the vibration signal and a numerical differentiation of this signal. 
The differentiator is an adjustable Savitzky-Golay differentiator 
(SGD) that is automatically tuned based on the kurtosis rate to 
a wide range of possible parameters. The mutual features of the 
envelopes are grouped into three generalised patterns, which 
characterise different excitation forms due to the passage of the ball 
over the fault zone. In 12 investigated cases from two dissimilar 
test-rigs, the technique estimated the physical size of the spall with 
average errors of 12% and 13% and maximum bounds of 24% and 
22% for DLR and UNSW data, respectively. The proposed future 
work is to validate the technique on more diverse loading and speed 
conditions for naturally induced spalls.

a specific bandwidth in which the geometric features are most likely 
to be distinguishable. We empirically determined that the best 
window size, f, is correlated with the kurtosis of the differentiated 
signal. The kurtosis is a well-known statistical quantity that is 
quadratically proportional to the variance. The best value of f can be 
attained by evaluating increasing values of SGD until the kurtosis 
rate is approximately zero, as shown in Figure 9. 

Two examples of resultant envelopes are depicted in Figures 10 
and 11. The raw vibrations for both cases are similar, without clear 
distinguishable features. However, the envelopes in Figure 10 are 
similar to case 2 in Figure 6, in which the first and second envelopes 
have approximately the same centre. The entry point A is identified 
by the second envelope and the middle impact C is identified by the 
first envelope. Other examples are shown in Figures 11 and 12 for 
envelopes that follow case 3 and case 1, respectively. 

Table 3 and Figure 13 summarise the results for the given 
datasets. For each case, the data is trimmed to one revolution, or 
six spall impacts. The average quantification error of DLR data is 
12%, while it is 13% for UNSW, 800 and 1200 r/min, respectively. 

Figure 11. The raw vibration and dual RMS envelopes for an inner 
spall-width of 3.8 mm at 500 r/min from DLR. The envelopes match 
case 3 of Figure 6

Figure 12. The raw vibration and dual RMS envelopes for an outer 
spall-width of 2.4 mm at 500 r/min from DLR. The envelopes match 
case 1 of Figure 6

Figure 9. The criterion for selecting the differentiator window, f. 
The upper plot shows the inherent F-BW relationship of an SGD. 
The middle plot indicates the corresponding kurtosis values for 
each f. The bottom shows the kurtosis rate, which at f = 37 satisfies 
a steady-state slow rate below 1

Figure 10. The raw vibration and dual RMS envelopes for an inner 
spall-width of 1.2 mm at 800 r/min from UNSW. The envelopes 
match case 2 of Figure 6
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