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INITIAL POSE ESTIMATION USING PMD SENSOR DURING THE 
RENDEZVOUS PHASE IN ON-ORBIT SERVICING MISSIONS 

Ksenia Klionovska,* and Heike Benninghoff† 

This paper describes a designed visual model-based algorithm using the PMD 

(Photonic Mixer Device) sensor for the initial pose estimation of the target in 

future On-Orbit Servicing missions. The initial relative pose (position and 

orientation) in a close range has to be estimated, starting less than 7 meters 

between target and a camera. The verification of the algorithm is conducted by 

comparing the estimated pose with a ground truth. The ground truth is derived 

from the high-accuracy hardware-in-the-loop European Proximity Operations 

Simulator offered for the simulations of On-Orbit Servicing scenarios on the 

ground. 

The results of the simulations have shown the feasibility of the algorithm to 

estimate the pose with sufficient accuracy as required for a pose initialization 

algorithm. Consequently, the designed algorithm is applicable for the initial pose 

estimation using PMD sensor with definite working parameters and conditions. 

INTRODUCTION 

On-orbit failures, space debris and orbital crowding are the prerequisites for the high demand 

in the field of On-Orbit Servicing (OOS) missions. Nowadays, there are more than 100 million
‡
 

of artificial objects orbiting Earth, e.g. active/inactive satellites, used rocket stages, or other 

fragmentation debris. Partly damaged and uncontrolled satellites represent a hazardous risk for 

the “healthy” ones and have to be removed from operational orbits or repaired to the operating 

status.
 1,2

  

The orbital real estate at Geostationary Earth Orbit (GEO) is a limited resource that is in high 

demand for communication satellites. Removing the inoperative satellites at GEO and reuse their 

orbital slots or refueling to extend the satellite’s lifetime are also the issues of the servicing 

activities.
3
 OOS reduces on-orbit losses of the satellites by maintaining and improving space-

based capabilities without launching new spacecrafts
4
.  

An On-Orbit servicing mission consists of the following main phases: inspection; rendezvous 

and docking (RvD); and manipulation and maneuvering missions. Nowadays, there is a 
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tremendous need to provide OOS duties autonomously, regarding the target satellite as a non-

cooperative and passive target.
5
 

In this work we focus mainly on the rendezvous part, especially, in the close range rendezvous 

phase (less than 7 meters). In order to maneuver and approach the target the servicer spacecraft 

has to determine the relative 6 degrees of freedom (DOF) (position and orientation) between the 

approaching spacecraft (chaser) and the target. At the moment two groups of optical technologies 

are taken in operation for rendezvous missions.
6, 7

 The first one contains 2D cameras (monocular- 

or stereo- cameras) and the second includes some types of LIght Detection And Ranging 

(LIDAR) sensors (e.g. scanning LIDAR or Flash LIDAR).  

In 2000, the new type of 3D Time of Flight (ToF) sensor appeared on the terrestrial market: 

the Photonic Mixer Device (PMD) camera.
8,  9 

The PMD camera is a ranging system, where the 

distance to the object can be measured for each pixel of the sensor chip. Modulated light from the 

LEDs of the camera illuminates the scene, phase shift between the emitted and reflected signal is 

measured and the distance to every individual pixel can be worked out.
8
 

For simulation and verification of the OOS scenarios before the real mission takes place, 

German Aerospace Center operates the European Proximity operations simulator (EPOS 2.0).
10

 It 

is a hardware-in-the-loop RvD simulator, where a client satellite mockup is mounted on one robot 

of the EPOS facility and optical sensors, such as the so-called DLR-Argos3D - P320 with an 

included PMD chip, is mounted on the second robot. 

In this paper, we propose and prove the designed initial relative model-based pose estimation 

algorithm using the data provided from the PMD sensor. It is supposed that the CAD model of the 

target is known in the form of the vertices with predefined normal vectors to the surfaces in every 

vertex. We tested the algorithm for several distances between two robots and for two shapes of 

the known 3D model. Here the term shape means consideration only of some parts of the CAD 

model and not the whole 3D mockup model.  

Comparing the estimated poses with a ground truth from the EPOS facility, we measured 

divergences in the translation and rotation components. The maximum acceptable limits for the 

divergences are predefined in accordance with that fact that we process the raw PMD data from 

the sensor for the initial pose estimation. It means we do not filter the outliers in the depth images 

and do not provide the distance calibration. Moreover, we take in account some inabilities of the 

camera by working in different environmental conditions in terms of occasionally partial loss of 

the taken object in the image. Consequently, we determine the follow bounders for the 

performance of the initial pose estimation: for the translation variables along X, Y, and Z axes is 

20 cm, for the rotation angels around X, Y, and Z axes is10 degrees. A subsequent pose tracking 

and refinement can use the result of the initial pose acquisition, presented in this paper, as start 

value.  

POSE ACQUISITION ALGORITHM 

Overview of existing pose estimation algorithms 

We suppose in our case that the model-based pose estimation is a process of estimating the 

rigid transformation (translation and rotation) between model point cloud and source point cloud. 

Some simple deterministic methods as Principal Component Analyses (PCA) and Singular Value 

Decomposition (SVD) are used quite often for these purposes.
11

 Both algorithms are pairwise 

registration based on the covariance matrix and the cross correlation matrix between two point 

sets. The other common approach is a spin image.
12

  For this algorithm, sets of the spin images 

are constructed for both considered point clouds. After the comparison of these spin images 
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among each other and finding similarities, the surfaces are declared as matched and the 

transformation matrix is found. Along with the above referred algorithms, it is likewise quite 

usual to use different variants of the Iterative Closest Point (ICP)
13

 algorithm for pose estimation. 

The key idea of the ICP algorithm is iteratively to minimize the average squared distance between 

the nearest points from the model and scene cloud sets. The algorithm continues until the error 

converges or the maximum number of iterations is reached. 

The other known possible methods are based on the calculation of so-called features (or 

descriptors) for 3D point clouds.
14

 In the work of Luis A. Alexandre14
14

 the author discusses 

different possible descriptors, which can be used and exist nowadays in a PCL library.
15

  

Throughout the variety of all the suggested descriptors, here we focus on the point pair feature 

descriptor.  

Proposed Method  

Initial pose estimation algorithm based on the point pair feature descriptors using ToF cameras 

is outlined in the work of Drost et al.
16

 For this method it is presumed that the model and the 

scene are presented in the form of the oriented points (e.g. vertices and normal vectors in every 

vertex): 𝑚𝑖 ∈ 𝑀 points belong to the model and 𝑠𝑖 ∈ 𝑆 points belong to the scene, respectively. 

Firstly, the global description model is calculated, which includes point pair feature vectors for 

different combinations of the model’s vertices. Secondly, scene descriptors are calculated when 

the data arrives from the sensor. This global model is used further for finding corresponding 

matches between a set of the scene’s and model’s descriptors. When the matches have been 

found, the voting scheme and clusterization processes for the best pose of the object are involved. 

By varying some initial parameters of the algorithm, it was noticed, that the pose refinement 

process is still necessary, because discrepancies of the rigid transformation between the model 

and the scene point clouds exist. The ICP algorithm is employed and refines the pose retrieved 

after the clustering phase.   

Point Pair Feature Vector 

Let us consider 𝑚𝑖 as a reference and 𝑚𝑗 a referred point throughout all model points 𝑀, 

where the point normal vectors are 𝑛𝑖 and 𝑛𝑗, respectively. In the Equation (1), 

      Fm(mi,mj)= (𝑓1,𝑓2,𝑓3,𝑓4) = (‖d‖,∠(ni,d),∠(nj,d),∠(ni,nj)) (1) 

the point pair feature vector for the model Fm is defined as a four component vector and 

composed by the Euclidean distance ‖𝑑‖  between two points, as well as an angle between d 

vector and the normal 𝑛𝑖, an angle between d vector and the normal 𝑛𝑗, and an angle between two 

normal vectors 𝑛𝑖 and 𝑛𝑗. 

Vector Fm and the components from the Equation (1) are depicted on the Figure 1. The 

distances and angles are sampled in steps by setting parameters 𝑑𝑎𝑛𝑔𝑙𝑒  and 𝑑𝑑𝑖𝑠𝑡 as follow: 

𝑑𝑎𝑛𝑔𝑙𝑒 = 2𝜋/𝑛𝑎𝑛𝑔𝑙𝑒 with an angle sampling value 𝑛𝑎𝑛𝑔𝑙𝑒, which refers to the number of angles 

bins to be quantized; and 𝑑𝑑𝑖𝑠𝑡 dependent on the sampling rate 𝜏𝑑 and model diameter 𝑑𝑑𝑖𝑠𝑡 =
𝜏𝑑𝑑𝑖𝑎𝑚(𝑀𝑜𝑑𝑒𝑙).The model diameter is defined as Euclidean norm of a vector constituted by the 

differences between maximum and minimum values of the vertices coordinates. 
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Figure 1. Illustration of the point pair feature vector. 

Description of the Pose Estimation Algorithm 

As it was already mentioned, we have to construct the global description model, by calculating 

the point pair descriptors. Here the global description model is presented in the form of a hash 

table, where the feature vector F is used as a key.  

          

Figure 2. An example of similar point pairs of the model. 

The model can contain some similar point pair feature vectors, e.g. depicted in Figure 2. 

Reasonably, we put together equal feature vectors in the same cell reducing the dimension of the 

hash table. Usually, in one cell of the hash table there is more than one pair of points of the 

model. 

Having created the hash table, the global model is created. Since the point cloud S has been 

obtained with a PMD camera, the point pair feature vectors 𝐹𝑠(𝑠𝑖, 𝑠𝑗) are calculated as well for 

the pairs of points(𝑠𝑖, 𝑠𝑗). As we opted previously, the feature vectors 𝐹𝑠 are the keys for our hash 

table.  
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We extract out all pairs (mi, mj) from the hash table, if the feature vector of the model Fm is 

equal to the feature vector of scene 𝐹𝑠. This chain of successive action is illustrated in Figure 3. 

 

 

 

 

          

Figure 3. An extraction of the similar pairs of points for the scene and model. 

Once the match between two pairs of points exists, one is able to compute the rigid 

transformation that aligns the model to the scene. In the work of Drost et al.
16

, the author 

introduces the meaning of the local coordinates. Local coordinates are pairs of the form (mi, 𝛼) 

with respect to reference point s𝑖, where α denotes the rotating angle and mi is a reference point 

on the model. For local coordinates, one can derive the rigid transformation. The transformation 

that aligns the model with a scene is computed via follow expression is given as follows: 

𝑇𝑚→𝑠 = 𝑇𝑠→𝑔
−1 𝑅(𝛼)𝑇𝑚→𝑔 (2) 

 In the Equation 2, the transformation 𝑇𝑠→𝑔 moves the scene point si into the origin and aligns 

its normal 𝑛𝑖
𝑠 with the x-axis, see the Figure 4.  

          

Figure 4. A transformation that aligns the model with the scene. 
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The same procedure 𝑇𝑚→𝑔 is implemented for the model reference point mi and the 

corresponded normal vector 𝑛𝑖
𝑚 allocable to that point.  In order to complete the final 

transformation 𝑇𝑚→𝑠, one more transformation 𝑅(𝛼) is needed to align two left points,  𝑚𝑗 and s𝑗. 

The rotating angle α is determined as follows: 

𝛼 = 𝛼𝑚 − 𝛼𝑠, (3) 

where 𝛼𝑚 is the angle between the vector mi- mj and an upper xy half-plane of the intermediate 

coordinate system and 𝛼𝑠 is the angle between the vector si- sj  and the upper xy half-plane of the 

intermediate coordinate system (see Figure 4). 

To find the best local coordinates at a specific point s𝑖, the number of points in the scene lying 

on the model has to be maximized. For that purpose Drost et al.
16

 suggested to use the 2D 

accumulator massive, where the hypotheses vote for the local coordinates. The rows of the 

accumulator massive correspond to the reference points of the model mi and the columns 

correspond to the sampled rotation angles 𝛼. The size of the accumulator massive is 𝑁𝑚 ×
𝑁𝑎𝑛𝑔𝑙𝑒, where 𝑁𝑚 is equal to the number of the model points mi and 𝑁𝑎𝑛𝑔𝑙𝑒 is the number of 

sample steps of the rotation angle 𝛼.  

When the voting process takes place, all point pairs corresponding to the model (mi, mj) are 

retrieved out from the cell for each calculated point feature vector 𝐹𝑠. Using the Equation 3, the 

rotation angle 𝛼 is computed. After completing these steps, it is supposed that we have local 

coordinates (mi, 𝛼), which can move (mi, mj) to (si, sj). The vote for this hypothesis is thrown in 

the related cell of the local coordinate (mi, 𝛼) in the accumulator massive. It should be noted, that 

every voting result has a certain number of votes. When all point feature vectors of the scene 𝐹𝑠 

are processed, the set of local coordinates with the highest number of votes is retrieved from the 

accumulator massive. The transformations from the model to the scene coordinate frame are 

calculated for each returned local coordinates. 

Consequently, knowing the series of object poses from each reference point, the final pose 

must be extracted. For that purposes, the object poses are grouped in one cluster if they do not 

differ in translation and rotation components more than predefined thresholds. For the translation 

component the threshold is taken as 1/10
th
 of the model diameter,𝑡𝑡ℎ𝑟𝑒𝑠ℎ = 0.1 ∗ 𝑑𝑖𝑎𝑚(𝑀), and 

for the rotation component as 𝑟𝑡ℎ𝑟𝑒𝑠ℎ = 2 ∗ 𝜋/30. Poses collected in each cluster are averaged 

and the votes are summed up. The clusters with the highest scores are considered as the 

applicants for the best estimated relative pose. 

Pose Refinement 

In some cases, the issues of the proposed algorithm vary quite significantly from the correct 

pose of the object. In this situation, we would suggest to include the pose refinement algorithm as 

an extra correction step. Since the pose had been obtained by the presented method above, the 

point cloud of the model has been transformed to the point cloud of the scene. In order to revise 

the transformation, we applied the Iterative Closest Point algorithm
13

, similarly with the works of 

Hinterstoisser et al.
17

 and Birdal et al.
18

 By that, the difference between two point sets of the 

model and the scene is minimized: 

𝐸(𝑅, 𝑡) = ∑‖𝑅𝑠𝑖 + 𝑡 −𝑚𝑖‖
2

𝑁

𝑖=𝑞

 

(4) 

When the error converges or maximum number of iterations is reached in the Equation 4,  
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one gets the refined pose. 

3D TIME-OF-FLIGHT SENSOR  

PMD camera 

The vision camera, a DLR-Argos3D - P320 camera, has been used to measure the relative 

position and attitude (pose). 

          

Figure 5. DLR-Argos3D - P320 camera. 

The DLR-Argos3D - P320 camera, see Figure 5, combines two types of sensors inside of the 

housing: a 2D CMOS sensor and a ToF depth sensor, namely PMD sensor with resolution of  

352x287 pixels. In the current work we use only the depth images for the initialization of the 

pose. On this basis, detailed information about the measurement principle and features of the 

PMD sensor is given below. 

Measurement principle 

The basic time-of-flight principle is to measure the distance from the absolute time delay 

between the transmitted wave fronts from the sender illumination unit and the wave fronts 

reflected by the object’s surface
9,19

. Alternatively, the phase shift between transmitted and 

reflected waves can be measured and is used for computing the distance.   The DLR-Argos3D - 

P320 camera includes 12 IR-flash LEDs, which illuminate the entire scene with a modulated 

light.  The distance to the target can be calculated pixelwise easily as follows: 

𝑑 =
𝑐𝜑

4𝜋𝑓𝑚𝑜𝑑
 

(5) 

In the Equation 5, c is a speed of light c=3x10
8
 m/s, ϕ is the measured phase shift and 𝑓𝑚𝑜𝑑  is 

the modulation frequency of the emitted signal. The modulation frequency of the signal can be set 

in the proposed camera depending on the purposes of the user. In our test scenario, it was always 

specified as 𝑓𝑚𝑜𝑑 = 20 𝑀𝐻𝑧.  

Depth accuracy is defined by the amount of active light arriving at each pixel. It depends on 

the illumination modules and the optics of the camera, as well as spectral sensitivity and active 

area of the pixel.
9
 Investigation of the error sources in depth measurements generated inside of 

the camera or dependent on the environmental conditions is out of scope in this work. 
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RENDEZVOUS SIMULATION 

In order to test and verify the visual sensors and navigation algorithms to ensure the reliable 

OOS missions, ground-based simulations have to be performed. 

          

Figure 6. The robotics-based test bed EPOS 2.0. 

 For this reason German Aerospace Center in Oberpfaffenhofen has established a test facility, 

called European Proximity Operations Simulator (EPOS) 2.0, see Figure 6, with the aim to 

provide test and verification capabilities for complete RvD action during OOS missions.
10

 It is a 

hardware-in-the loop RvD simulator consisting of two 6 degrees of freedom industrial robots for 

physical real-time simulations of RvD maneuvers.  This test bed allows users to simulate the 

critical last rendezvous phase from 25 down to 0 meters. 

For the test scenarios handled in this paper the client satellite mockup is mounted on one robot 

of the EPOS facility and DLR-Argos3D - P320 camera is mounted on the second robot. The 

relative ground truth poses of both robots are known in a Global Laboratory Coordinate frame. 

The PMD sensor and the target mockup are mounted fixed on the robots during the simulations. 

The positions of both them related to the robots are known as well. Due to the transformations 

between the coordinate frames, we can gain the relative pose between camera and mockup, which 

is admitted as the ground truth for the evaluation of the estimated pose extracted by the proposed 

algorithm.  

CAD Model of Satellite Mockup 

The initial CAD model of the satellite mockup is a high structural data set, which includes the 

vertices and faces. Observing the model from the frontal side, one can detect a hexagon back part 

and a cone front part (“nose”) with an octagon at the end.  

The target mockup mounted on the robot in our laboratory is depicted in Figure 7 and the 

original full CAD model of that mockup is presented in Figure 8. 

The full CAD model (Figure 8) contains 70002 vertices. To speed up computations, we reduce 

the data set and keep only the most significant geometric shapes (hexagon and cone front part). 

We consider further two shapes of the given 3D model. Let us name the first one as Shape 1 (see 

Figure 9, left) and the other one as Shape 2 (see Figure 9, right). 

 



9 

 

          

Figure 7. The target mockup in laboratory. 

 

          

Figure 8. The original CAD model of the target mockup. 
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Figure 9. Left image is the Shape 1 and the right one is the Shape 2. 

The mockup’s surface consists of the materials, which have close optical properties as real 

satellites. But ToF sensors in general are not reliable and applicable for all surface materials, e.g. 

not suitable for specular or high reflective materials. It can lead to the completely wrong depth 

measurements of the target. We have to keep this fact in mind for the further evaluation of the 

results, because the estimated pose does not depend only on the algorithm performance, but also 

on the accurate measured data. 

 The amount of the points considered for Shape 1 is chosen in the way that the contour of the 

hexagon and the nose part are well-defined. For the sub-sampling implementation the Fast 

Poisson Disc Sampling
20

 was applied. It should be noted, the computing time of the algorithm 

increases significantly with an increasing number of points for the model and for the scene. Due 

to the mockup’s geometric form, there are some regions with a high amount of the parallel 

surface normals. These parts result in formation of the equal point pair feature vectors, which 

sometimes can lead to an inaccurate calculation of the pose.  Therefore, the number of points for 

Shape 1, Shape 2 and scene point clouds must be adjustable for every single task.  

Segmentation  

Corresponding to the resolution of the current PMD sensor, the point cloud of the scene has 

more than one hundred thousand points. Therefore, the segmentation of the mockup from the 

surrounding objects is necessary in order to accelerate computation time of the algorithm and 

eliminate the background in the laboratory. Due to the close space conditions in the EPOS 

laboratory, we can very fast isolate the mockup point cloud from the background just by 

eliminating unreliable distance values. For the DLR-Argos3D – P320 camera this default value is 

a maximal 16-bit unsigned value. This type of segmentation is necessary provide only in the 

laboratory, because in the space the situation is much simpler. Since there is no background, there 

is no need to segment the model from it. 

SIMULATION RESULTS AND ALGORITHM PERFORMANCE ANALYSIS 

Test Performances 

The algorithm was tested for the three different distances between the camera and the satellite 

mockup. For every test position the ground truth between the camera and the mockup was 

counted.  
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Figure 10. Depth images of the satellite mockup with 3 different distances. 

In Figure 10 the depth images of the satellite mockup in the EPOS laboratory at the distances 

4.90 m, 5.59 m and 6.34 m are illustrated. The color bar indicates the distance to the target in 

millimeters. 

The depth images on Figure 10 do not fully reflect the contours of the mockup and some parts 

are missing, where the sensor could not receive reflected light.  The 3D sub-sampled point cloud 

of the scene at the distance 6.34 m is shown in Figure 11 from different views. It should be noted, 

the partial point clouds with some outliers are of greatest interest. We are not able to predict 

precisely spacecraft materials and light conditions in the future OOS missions, therefore the 

quality of the point clouds is able to be completely differ.  Accordingly, in this work we consider 

mainly the robustness of the applied algorithm with data sets received from PMD sensor without 

special tune-up of the camera.  

 

 

Figure 11. The sub-sampled point cloud of the satellite mockup from different views at the 

distance 6.34 meter. 

The position estimation errors are retrieved in meters along each axis as the difference 

between the ground truth and estimated pose with the algorithm. The orientation estimation errors 

are presented in form of Euler angles. The angles have been calculated by the difference 
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quaternion ∆𝑞 = 𝑞𝑚 × 𝑞𝑟𝑒𝑓̅̅ ̅̅ ̅̅  between the reference 𝑞𝑟𝑒𝑓 (ground truth) and the estimated 𝑞𝑚 

quaternion, and then have been converted to the pitch, yaw and roll angles. 

Results with Shape 1 

For the Shape 1, the algorithm was tested by 𝜏𝑑 = 0.01, 𝜏𝑑 = 0.1, 𝜏𝑑 = 0.15, 𝜏𝑑 = 0.2, 

thereby the model sampling step 𝑑𝑑𝑖𝑠𝑡 was varied. In order to sub-sample the scene point cloud, 

the quantity of the reference points si by calculating the feature vectors was determined as follow: 

every 2
nd

, 5
th
, 7

th
 and 10

th
 reference point was selected.  

In the Table 1 the Root Mean Square Errors (RMSEs) are presented for tested scenarios of the 

proposed algorithm for the Shape 1. 

Table 1. Root Mean Square Error for the Shape 1 

 
Position Error (m) Angular Error (deg) 

X Y Z Roll Pitch Yaw 

Root Mean Square Error, 𝜏𝑑 = 0.01 

Distance 1 0.055 0.056 0.136 2.772 1.512 56.404 

Distance 2 0.130 0.044 0.105 5.150 2.314 78.550 

Distance 3 0.174 0.058 0.160 4.643 2.731 75.887 

Root Mean Square Error, 𝜏𝑑 = 0.1 

Distance 1 0.031 0.070 0.143 1.979 1.504 77.150 

Distance 2 0.200 0.080 0.101 4.761 0.095 38.190 

Distance 3 0.199 0.061 0.161 2.983 1.590 37.545 

Root Mean Square Error, 𝜏𝑑 = 0.15 

Distance 1 0.072 0.070 0.115 1.581 2.815 65.269 

Distance 2 0.173 0.015 0.099 4.992 1.229 22.306 

Distance 3 0.197 0.076 0.162 4.193 1.891 74.159 

Root Mean Square Error, 𝜏𝑑 = 0.2 

Distance 1 0.091 0.103 0.133 1.459 2.125 45.419 

Distance 2 0.196 0.100 0.101 3.130 1.092 57.125 

Distance 3 0.202 0.039 0.138 3.863 1.507 82.033 

 

Some visual result interpretations of the initial pose estimation algorithm for the Shape1 are 

depicted in Figure 12 and Figure 13. The left image is a 2D view, the right one is 3D view. 

In general, position errors along every axis do not exceed the predefined threshold, namely 20 

cm for the translation components and 10 degrees for the rotation components. Theoretically, the 

matches between the Shape 1 and the point clouds are occurring, but the divergences of the 

estimated pose from the ground truth depend on the camera measurement errors. The depth 

deviations from the Z axis are identified by the measurement errors, which were caused by 

mockup’s geometry and surface properties. We were expecting to get measurements of the 

mockup’s front hexagon contour (see Figure 7), which is thin and not made from high reflected 

material. But in fact, we have slightly wide contour of points (see Figure 11, third image), 

inappropriate to the reality. It means the reflection from the surround material around the hexagon 

contour biases the depth measurement. The deviations from the X and Y axes are caused by the 

outliers presented in the depth image, as well as by the uncalibrated distance measurements.  

Considering the angular errors, the most deviations appear in the rotation angle around Z axis. 

These deviations mainly are characterized by the symmetry of the hexagon contour. For the more 

accurate estimation of the roll angle, additional features, parts and contours of the mockup are 
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needed. The maximum error throughout other rotation angles around X and Y axes lies within an 

acceptable maximum limit and reaches 5.15 degrees. 

 

 

Figure 12. Output of the initial pose estimation algorithm for 𝝉𝒅 = 𝟎. 𝟏𝟓 and for every 2
nd

 

reference point of the scene. 

 

 

Figure 13. Output of the initial pose estimation algorithm for 𝝉𝒅 = 𝟎. 𝟏 and for every 7
th

 reference 

point of the scene. 
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Results with Shape 2 

For the Shape 2, the algorithm was tested by follow parameters: 𝜏𝑑 = 0.01, 𝜏𝑑 = 0.02, 𝜏𝑑 =
0.05, 𝜏𝑑 = 0.1. The same as in a previous scenario, the number of the reference points for the 

scene si was varied. 

Let us consider the visual interpretation of some results of the initial pose estimation algorithm 

for the Shape 2. On Figure 14, one of the few better matches between Shape 2 and the scene point 

cloud is depicted. On Figure 15, the skewed point cloud of the Shape 2 states incorrected 

determined pose of the target. In both figures the right image is 2D view and the left one is 3D 

view. 

In the Table 2 the RMSEs for the test scenarios for the Shape 2 are presented. 

Table 2. Root Mean Square Error for the Shape 2 

 
Position Error (m) Angular Error (deg) 

X Y Z Roll Pitch Yaw 

Root Mean Square Error, 𝜏𝑑 = 0.01 

Distance 1 0.370 0.159 0.212 52.487 23.535 24.924 

Distance 2 0.349 0.069 0.117 30.803 43.904 79.997 

Distance 3 0.318 0.063 0.078 13.623 16.736 127.325 

Root Mean Square Error, 𝜏𝑑 = 0.02 

Distance 1 0.526 0.060 0.119 15.711 35.705 118.011 

Distance 2 0.350 0.076 0.138 31.246 41.817 110.621 

Distance 3 0.328 0.021 0.039 3.492 1.589 74.637 

Root Mean Square Error, 𝜏𝑑 = 0.05 

Distance 1 0.497 0.084 0.025 2.031 1.018 38.384 

Distance 2 0.342 0.082 0.133 35.411 56.318 17.278 

Distance 3 0.312 0.063 0.100 28.366 63.603 119.511 

Root Mean Square Error, 𝜏𝑑 = 0.1 

Distance 1 0.438 0.115 0.120 15.878 35.931 112.67 

Distance 2 0.304 0.281 0.102 36.237 39.935 68.33 

Distance 3 0.269 0.310 0.366 39.62 12.628 101.26 

 

The estimated results are much different from those derived for the Shape 1. The estimated 

poses have the larger divergences from the ground truth, which lie outside the defined boundaries. 

This is related to the shortage of the 3D points for the Shape 2. Here the maximum deviation of 

the estimated pose along the X axis reaches 52.3 cm, along the Y axis is 31 cm. The depth 

measurement errors are in the range up to 36.6 cm. The maximal angular errors along axes X, Y, Z 

are expressed in significant discrepancies from the ground truth: 52.48, 56.31 and 127.32 degrees 

respectively. Consequently, these results obtained within simulations with a Shape 2 indicate 

notable incorrect initial pose estimations of the target.  

This experiment demonstrates that it is necessary to use all significant parts of the 3D model 

to obtain good pose estimation results. If we use the hexagon only (Shape 2), we will not be able 

to match the model with the scene points, resulting in a decreased performance. 
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Figure 14. Output of the initial pose estimation algorithm for 𝝉𝒅 = 𝟎. 𝟎𝟏 and for every 5
th

 

reference point of the scene. 

 

Figure 15. Output of the initial pose estimation algorithm for 𝝉𝒅 = 𝟎. 𝟎𝟏 and for every 10
th

 

reference point of the scene. 

CONCLUSION 

This paper presents the results of the initial model-based pose estimation algorithm, which 

could be applied in the OOS applications, namely by close range approach of the servicer satellite 

to the target. The key feature of present work is verification of the designed algorithm using the 

data sets from the PMD sensor by varying the distance between the camera and the satellite 
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model and the scene point clouds, as well as for two shapes of the known CAD model of the 

satellite mockup. 

The observed results for the Shape 1 prove the ability to estimate the coarse initial pose with 

satisfying accuracy. It is associated largely with the completeness of the Shape1 relating to the 

known CAD model of the mockup, i.e. sparse model point cloud contains the hexagon contour 

and the nose cone.  

The discrepancy of the estimated pose from the ground truth during simulations with the 

Shape 2 can be interpreted by the incompetence and partial shape of the model itself. Moreover, 

the inaccurate result is caused by the partial loss of the point cloud of the scene.   

The problem in estimating the rotation angle around the Z axis with a Shape 1 still remains to 

be solved. Potentially, the solution could be addressed to the PMD sensor characteristics and 

possibilities in terms of acquisition of entire and high quality PMD data sets of the observed 

mockup. That would help us identifying some other target features and eliminating discrepancies 

in the estimated angle due to the hexagon symmetry.  

REFERENCES 

 
1 Orbital Debris Quarterly News, National Aeronautics and Space Administration, Vol. 19, Issue 2, April 2015 

2 Orbital Debris Quarterly News, National Aeronautics and Space Administration, Vol. 20, Issue 1& 2, April 2016 

3 On-Orbit Satellite Servicing Study. Project Report. National Aeronautics and Space Administration, Goddard Space 

Flight Center, October, 2010 

4 Richards, Matthew G., Shah, Nirav B., Hastings, Daniel E.: Agent Model of On-Orbit Servicing Based on Orbital 

Transfers  

5  Benninghoff, H., Tzschichholz T., Boge T., Rupp T.: Hardware-in-the-Loop Simulation of Rendezvous and Docking 

Maneuvers in On-Orbit Servicing Missions, 28th International Symposium on Space Technology and Science, 05.-12. 

Jun. 2011, Okinawa, Japan 

6 Christian, J.A, Cryan, S.: A Survey of LIDAR Technology and its Use in Spacecraft Relative Navigation, AIAA 

Guidance, Navigation, and Control (GNC) Conference 

7 Jasiobedzki, P., Stephen Se, S., Pan, T., Umasuthan, M., Greenspan,M. : Autonomous Satellite Rendezvous and 

Docking Using LIDAR and Model Based Vision, Spaceborne Sensors II,  edited by Peter Tchoryk, Brian Holz Proc. of 

SPIE Vol. 5798, pp. 54-65. 

8 Schilling, K., Regoli, L.: The PMD 3D-camera for Rendezvous and Docking with Passive Objects. In 8th 

International ESA Conference on Guidence, Navigation& Control Systems, 2011 

9 Ringbeck,T.,  Hagebeuker, B.: A 3D Time of Flight Camera for object detection, Oprtical 3-D Measurement 

Techniques, 09-12.07.2007, ETH Zürich 

10 Boge, T., Benninghoff, H., Tzschichholz, T.: Visual Navigation for On-Orbit Servicing Missions. 5th International 

Conference on Spacecraft Formation Flying Missions and Technologies, 2013 

11Sorkine, O.: Least-Squares Rigid Motion Using SVD, Technical notes, vol.120, pp.3, 2009/2 

12 Johnson, A., Hebert, M.: Using Spin Images for Efficient Object Recognition in Cluttered 3D Scene, IEEE 

Transactions on pattern analysis and machine intelligence, vol. 21 , no. 5, 1999. 

13 Besl, P., McKay, N.: A Method for Registration of 3-D Shapes, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol.14,no.2, February 1992 

14 Alexandre L. A.: 3D Descriptors for Object and Category Recognition: a Comparative Evaluation 

15 Rusu, R., Cousins, S.: 3D is here: Point Cloud Library (PCL), IEEE International Conference on Robotics and 

Automation (ICRA),Shanghai, China, May 2011 

 



17 

 

 
16 Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model Globally, Match Locally: Efficient and Robust 3D Object 

Recognition. IEEE Conference ,2010 

17 Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab, N.: Model Based Training, 

Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes, Asian conference on computer 

vision, 548-562 

18 Birdal, T., Ilic, S.: Point Pair Features Based Object Detection and Pose Estimation revisited. In: IEEE International 

Conference on 3D Vision ,2015 

19 Luan, X.: Experimental Investigation of Photonic Mixer Device and Development of TOF 3D Ranging Systems 

Based on PMD Technology, PhD thesis, University Siegen, 2011 

20 Bridson, R.: Fast Poisson Disk Sampling in Arbitrary Dimensions, In CM SIGGRAPH Sketches, p. 22, 2007 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5521876

