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Abstract—In this paper, we investigate the performance of
mobile vehicle positioning based on signal propagation delay
estimation in the uplink case for a realistic propagation en-
vironment. In order to optimize the ranging performance, we
introduce a parametric waveform. This waveform contains a
scalar parameter for adjusting the distribution of the available
signal power over the frequency. The optimization is achieved
by a functional dependency between the waveform parameter
and the positioning error. In order to derive a cost function,
we combine the approaches of the Cramér-Rao and Ziv-Zakai
bounds for position and propagation delay estimation. As an
exemplary environment we consider a mobile vehicle located in
an area surrounded by three base stations together with realistic
propagation conditions provided by the WINNER II channel
model. The results show that the waveform parameter has to be
adjusted differently compared to a simple free space propagation
scenario. Additionally, we compare the obtained results with a
scenario with four base stations and a scenario where we use
the WINNER II channel model in terms of line-of-sight received
power and shadow fading to classify the effects of geometry and
propagation conditions.

I. INTRODUCTION

Nowadays, the parameters of future ITS communication

systems for positioning are intensely discussed, e.g. in the

European HIGHTS project [1]. At the moment infrastructure-

based wireless communication technologies like Wi-Fi, ITS-

G5, UWB tracking, Zigbee, Bluetooth, LTE etc. are investi-

gated in this project. The next major step in the development

of mobile communication systems will be the 5G standard.

Current research questions of 5G systems can be found in [2]–

[4]. Besides requirements related to the communications part,

the network-based positioning should be supported with an

accuracy of 10 m down to less than 1 m in 80 % of occasions

and less than 1 m indoors according to [5]. Network-based

positioning should should thus act as a complementary posi-

tioning system, if the position provided by a global navigation

satellite system is not accurate enough. In the vehicular context

this occurs for example in urban canyons [6]. Several system

parameters envisaged for 5G in order to meet the challenging

requirements related to communications are beneficial for

positioning as well. These include higher carrier frequencies

and signal bandwidths, dense networks and device-to-device

communications, and the use of new waveform designs.

In this paper, we investigate how the shape of the wave-

form affects the positioning performance of the mobile vehi-

cle (MV) depending on the channel conditions at a carrier fre-

quency close to the ITS-G5 standard. In [7] the authors inves-

tigated combined Radar-communication waveforms, whereas

we want to use multiple communication signals for one-way

ranging directly for positioning. The parametric waveform

can be adjusted by the MV to adapt it to its current needs

of accuracy and latency (time-to-first-fix) in dependence on

the expected signal-to-noise ratio (SNR). The ranging per-

formance is evaluated in terms of the Cramér-Rao bound

in conjunction with the Ziv-Zakai bound to determine its

dependence on the waveform parameter γ at different SNRs.

We provide insights how the waveform will impact the position

performance depending on the channel, the propagation condi-

tions, and the number of base stations. The obtained results can

help in defining a parametric waveform for future 5G mobile

radio systems, since such a waveform integrates the demand

of flexibility depending on the needs of the mobile vehicle by

adapting to the propagation conditions.

The paper is structured as follows. The propagation envi-

ronment is described in Section II. In Section III, we introduce

the parametric waveform and in Section IV we define the

system model and show how we evaluated the positioning

performance. Section V presents the results and Section VI

concludes the paper.

II. PROPAGATION ENVIRONMENT

In order to describe the signal propagation between the i-
th base station BSi and a MV the typical urban macro cell

channel model developed within the WINNER II project [8] is

used similar to [9]. The path loss is given by the deterministic

function

PLi [dB] = A log (di [m]) +B + C log

(

fc [GHz]

5.0

)

. (1)

It depends on the distance di between BSi and MV as well

as the carrier frequency fc. The channel model parameters

for a line-of-sight (LOS) or a non-LOS (NLOS) propagation

scenario are summarized in Table I. The parameters have been

calculated for typical heights of the BSi (hBS,i = 25m)

and the MV (hMV = 1.5m). In the WINNER II channel

model for typical urban macro cell scenarios (C2), two sets

of parameters are provided for (1) as shown in Table I for

the LOS propagation case. The choice of the parameter set

depends on the distance between receiver and transmitter di
and on the carrier wavelength λc =

c0
fc

with c0 being the speed

of light. In our simulation scenario only the first parameter set,

i.e., di < 48m2/λc ≈ 800m for fc = 5GHz, is relevant.

The WINNER II channel model distinguishes between LOS

and NLOS propagation scenarios. The probability of a LOS

scenario between BSi and the MV

PLOSi = min

{

18m

di
, 1

}

(

1− e−
di

63

)

+ e−
di

63 (2)
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Figure 1. Probability for LOS condition between BSi and the MV vs. their
distance for the WINNER C2 Typical Urban Macro Cell channel model.

Table I
LARGE SCALE CHANNEL MODEL PARAMETERS FOR A TYPICAL URBAN

MACRO CELL (WINNER C2).

Propagation
Scenario

Range A B C σSFi

LOS 10m < di < 48m2/λc 26 39 20 4 dB

48m2/λc < di < 5 km 40 12.4 6 6 dB

non-LOS 50m < di < 5 km 35.7 42.6 23 8 dB

depends on the distance di between BSi and the MV and is

shown in Fig. 1.

The WINNER II channel model also includes shadow fading

SFi [dB] ∼ N (0, σSFi
) , (3)

which is a random process and is drawn in dB from a normal

distribution with zero mean and standard deviation σSFi
. We

assume that shadow fading is mutually uncorrelated between

the links from the MV to the different BSs.

Path loss and shadow fading are related to the flat fading

coefficients αBS
i as

αBS
i = 10−

PLi+SFi

20 . (4)

We are going to use these flat fading coefficients in Sec. IV.

III. WAVEFORM DEFINITION AND ANALYSIS

For propagation delay-based ranging, there is a trade-off be-

tween the estimation resolution and the detection ambiguities.

For a given SNR, a dedicated power spectrum density (PSD)

exists, which minimizes the mean-square error for range esti-

mation. Subsequently, we introduce a waveform whose PSD

is controlled by a scalar parameter. This waveform parameter

is then used to optimize the range estimation performance for

this type of waveform.

A. Dirac-Rectangular Waveform

We consider a parameterized band-limited waveform with

bandwidth B. The waveform is built as a superposition of

-B/2 +B/2

(1- )/B

|S(f)|2

f

/2

(a) Power spectrum density
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Figure 2. Dirac-rectangular waveforms

two component signals having Dirac and rectangular PSD,

weighted by a scalar parameter γ. The resulting PSD is

|S(f)|2 =

{

1−γ
B + γ

2

[

δ
(

f + B
2

)

+ δ
(

f − B
2

)]

, |f | ≤ B
2

0, |f | > B
2
,

(5)

where δ(·) stands for the Dirac distribution. The corresponding

autocorrelation function, i.e. the Fourier transform of the PSD

calculates to

ϕ(τ) = (1 − γ)
sin (π B τ)

(π B τ)
+ γ cos (π B τ) . (6)

Fig. 2 shows both the PSD and autocorrelation function graphs

for different values of the waveform parameter γ ∈ [0, 1]. With

an increasing γ, the signal power is more concentrated at the

edges of the spectrum, which leads to a tighter mainlobe and

higher sidelobes in the autocorrelation function.

B. Range Estimation Performance Bounds

The Cramér-Rao lower bound (CRB) is a lower bound

for the achievable variance of any unbiased estimator. For

signal propagation delay based range estimation between a

transmitter and a receiver, the CRB according to [10] is

σ2
CRB =

c20
8π2 β2 Es

N0

. (7)

The CRB is inverse proportional to the squared equivalent sig-

nal bandwidth β2 and the signal-to-noise ratio Es
N0

experienced
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Figure 3. Square root of the ZZB and CRB for range estimation using Dirac-
rectangular waveforms.

at the receiver. For the Dirac rectangular waveform the squared

equivalent signal bandwidth is

β2 =

∫

f2 |S(f)|2 df
∫

|S(f)|2 df
=

B2

12
(1 + 2 γ) , 0 ≤ γ ≤ 1. (8)

A larger γ leads to a larger equivalent signal bandwidth,

which reduces the ranging CRB. However, it comes with the

price of higher autocorrelation function sidelobes as shown

in Fig. 2(b). Particularly at low SNRs, an estimator might

erroneously pick the delay of the sidelobe instead of the

mainlobe with non-negligible probability. Due to this behavior,

the estimation variance rapidly increases for lower SNRs. The

CRB, which is known to be tight only for reasonably high

SNRs, does not take into account this threshold effect. The

Ziv-Zakai lower bound (ZZB), however, considers this effect.

We follow results in [11] for this type of bound. Accordingly,

the ZZB for range estimation calculates to

σ2
ZZB = c20

Tobs
∫

0

τ

(

1− τ

Tobs

)

φ

(

√

Es

N0

(1− ϕ(τ))

)

dτ

(9)

where

φ (x) =
1√
2π

∞
∫

x

e−t2/2 dt (10)

denotes the Gaussian Q-function. Parameter Tobs describes

the length of an observation interval, Es/N0 the signal-to-

noise ratio. The signal propagation delay, as the parameter to

be estimated, is equally distributed within [−Tobs/2 , Tobs/2].
Subsequently, we choose an observation interval length of

Tobs = 400m
c0

= 1.33µs, which is aligned to a prior obser-

vation distance of 400m.

The square root of the CRB and the ZZB for range

estimation are shown in Fig. 3 for a signal bandwidth of

B = 10MHz. The threshold effect mentioned above is clearly

visible for the ZZBs. For increasing SNRs the ZZBs converge

to the corresponding CRBs. The SNR values at which the

ZZB converges to the CRB increases with increasing squared
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Figure 4. Mobile vehicle positioning using uplink signals.

equivalent bandwidth β2. For the Dirac waveform, i.e. γ = 1,

the ZZB shows no convergence to the corresponding CRB. For

this particular waveform, the autocorrelation function equals

a cosine, so the amplitude of the sidelobes are equal to the

mainlobe amplitude. Therefore, the autocorrelation function

is ambiguous in its largest amplitude such that an estimation

algorithm has equal probability in estimating the delay of a

sidelobe instead of the mainlobe.

Minimizing the ZZB with respect to the waveform pa-

rameter γ leads to an optimal ZZB which is also drawn in

Fig. 3. This optimum is the lower envelope curve of the ZZB

graphs for all γ ∈ [0, 1]. Depending on the available signal

power respectively the receiver SNR, we might decide for an

optimum spectrum form. However, this depends on the local

distribution of mobile vehicles. Therefore, it is beneficial to

keep a positioning waveform flexible with respect to its power

spectrum density.

IV. POSITIONING PERFORMANCE EVALUATION

A. Signal Model

We consider an uplink transmission, where a MV transmits

a signal s(t) as shown in Fig. 4. At the base stations, the

signals

ri(t) = αBS
i si(t− τi) + ni(t), i = 1, . . . , NBS (11)

are received. These received signals ri(t) consist of the

delayed and attenuated transmit signal and additive white

Gaussian noise (AWGN) ni(t). The observed propagation

delays

τi(θ) =
di
c0

+TMV =
1

c0

√

(x− xi)2 + (y − yi)2+TMV (12)

depend on the distance di between the MV and BSi and

an unknown time offset TMV between the MV and the BSs.

The BSs itself are assumed to be synchronized. The unknown

variables to be estimated, i.e., the position and time offset of

the MV, are gathered in a parameter vector θ = [x, y, TMV]
T.



We assume the propagation conditions as described in Sec. II.

Therefore, the signal-to-noise ratios (SNRs)

SNRi =
Esi
N0

=
P si
Pnoise

=
PTx GTx GRx,i α

BS
i

kB ϑB
(13)

observed at the BSs depend on the TX power PTx, the antenna

gains GTx and GRx,i at the MV and BSi
1, and the flat fading

coefficient αBS
i as introduced in (4). The noise power density

N0 = kB ϑ is determined by the Boltzmann constant kB and

the system noise temperature ϑ.

B. Fisher Information for Positioning

For the evaluation of the positioning performance of the

MV, we start with the calculation of the CRB for vector

parameter estimations [10]. The unknown parameters which

we wish to estimate are the position and time offset of the

MV, which we collect in a vector θ = [x, y, TMV]
T. For

the calculation of the CRB we require the so called Fisher

information matrix. Its components

Fk,ℓ = E

{(

∂

∂θk
log p (r(t)|θ)

)(

∂

∂θℓ
log p (r(t)|θ)

)}

=
2

N0

Re

+∞
∫

−∞

NBS
∑

i=1

(

∂

∂θk
si(t− τi(θ))

)

(

∂

∂θℓ
s∗i (t− τi(θ))

)

dt (14)

are calculated from the likelihood function which in case of

AWGN can be expressed as

p (r(t)|θ) ∝ exp



− 1

N0

NBS
∑

i=1

+∞
∫

−∞

|si(t− τi(θ))− ri(t)|2 dt



 .

(15)

For notational convenience we omit constant factors, which

vanish when calculating derivatives of the logarithmic like-

lihood function according to (14). The likelihood function

provides the conditional probability density of observing the

signals r(t) = [r1(t), . . . , rNBS
(t)]

T
at the NBS BSs for a

given MV position and time offset, θ = [x, y, TMV]
T. In

matrix notation the Fisher information matrix

F = c20 J
T
τ
diag

(

σ−2
CRB1

, . . . , σ−2
CRBNBS

)

Jτ (16)

consists of the Jacobian matrix Jτ = ∂τ
∂θ for the delay vector

τ = [τ1(θ), τ2(θ), τ3(θ)]
T and a diagonal matrix containing

the inverse ranging variances, which are calculated from (7)

for each link. Matrix G = c0 Jτ is also called the geometry

matrix. It only depends on the MV and BSs positions relative

to each other. Note, the geometry matrix depends neither

on the transmitted signal nor on the SNR. The dependency

on the signal and propagation properties is solely contained

in the diagonal ranging matrix diag
(

σ−2
CRB1

, . . . , σ−2
CRBNBS

)

.

Finally, the CRB is calculated as the inverse of the Fisher

information matrix. It contains lower bounds for the variance

1For simplicity, we assume that the antenna gains at the transmitter and
receiver sites are equal for each link.

of an unbiased estimation of the unknown parameters — in

our case θ = [x, y, TMV]
T — in its main diagonal.

C. Waveform Optimization

The CRB for ranging, as introduced in Sec. III-B and

contained in (16), is known to be loose for low SNRs. This

bound is monotonically decreasing with increasing squared

equivalent bandwidth β2, or equivalently, increasing parameter

γ for all SNRs. Minimizing the CRB with respect to the wave-

form parameter γ results in an optimal waveform parameter

γopt = 1, independent of the SNRs, and therefore, the MV

position. The Ziv-Zakai lower bound (ZZB), however, does

account for the threshold effect as shown in Fig. 3. It leads to

an optimal choice of the waveform parameter γ dependent on

the SNR, or equivalently, the MV position.

As an approach for optimizing the positioning performance

with respect to the waveform parameter γ we replace the CRB

ranging variances in (16) with the corresponding ZZB obtained

from (9) and get

F̃ = c20 J
T
τ
diag

(

σ−2
ZZB1

, . . . , σ−2
ZZBNBS

)

Jτ (17)

as a kind of modified Fisher information matrix. Its inverse

C̃ = F̃
−1 (18)

provides 2nd order moments for the estimation performance of

the unknown parameters on its main diagonal. However, these

values are formally no lower bounds but provide an easy to

calculate cost function for waveform optimization. Similar to

the CRB approach we use the square root

σpos(γ) =

√

C̃1,1 + C̃2,2 (19)

of the sum of the first two main diagonal elements of matrix

C̃ as a measure for the expectable position estimation standard

deviation. This metric depends on the ZZB ranging variances

σ2
ZZBi. Since the optimal choice of the waveform parameter γ

is dependent on the SNR, we expect an optimum

γopt = argmin
0≤γ≤1

σpos(γ) (20)

leading to an optimal (minimum) positioning error

σopt = σpos(γopt) (21)

according to (19). This optimal positioning error depends on

the position of the MV as well as on further system parameters

like the base station distance, effective power, etc.

V. RESULTS

In this section, we investigate the influence of the WIN-

NER II channel on the position estimation performance. The

simulations are conducted with the parameters provided in

Table II. An uplink scenario similar to the one shown in Fig. 4

is used, with one MV and three BSs.

The positioning performance is evaluated for γ = 0 and

γopt. Hereby, the case with γ = 0, i.e. a waveform with

a rectangular spectrum, is used as a reference, since typical

today reference signals use a rectangular PSD.



Table II
SIMULATION PARAMETERS.

Parameter Value

Carrier frequency fc 5GHz

Effective power PTxGTxGRx,i 10 dBm

Signal bandwidth B 10MHz

Boltzmann constant kB 1.381 · 10−23 Ws/K

Noise temperature ϑ 300K

Noise power density N0 = kB ϑ N0 = −173.8 dBm/Hz

Base station distance dBS 50 m
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Figure 5. Positioning error σpos(0) for a waveform with rectangular PSD
(γ = 0).

For every position of the MV the received SNRi at the i-th
BS according to (13) is calculated. By inserting the resulting

SNR into (9), we obtain the Ziv-Zakai bound for ranging

estimation. The ZZB is then inserted into (17) to obtain the

position error in dependence on the waveform parameter γ
according to (19). Since the path loss and the shadow fading

are modeled by a stochastic process, it is not guaranteed to

have three good SNR values, if the MV is close to the centroid

of the triangle.

The positioning error for the reference case with γ = 0 is

shown in Fig. 5. Compared to a scenario, where only the free

space loss is accounted for, the positioning error in Fig. 5 does

not exhibit symmetry anymore. The stochastic shadow fading

clearly prevents this. Since the probability of having LOS

propagation is smaller than 0.5 for di > 70m, we restricted

the scenario size to dBS = 50m. As the probability of one bad

link to the BS increases, the position error naturally becomes

larger.

The situation is similar for the positioning error using γopt
as shown in Fig. 7. The slightly different color, however,

indicates that the positioning error is smaller for the optimal

waveform as expected from theory. We present the gain

G =
σpos(γ = 0)− σopt

σpos(γ = 0)
= 1− σopt

σpos(γ = 0)
(22)

in dependence on the location of the MV in Fig. 6. The gain
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Figure 6. Performance gain 1 − σopt/σpos(0) for the optimal waveform
choice compared to a reference waveform with rectangular PSD.
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Figure 7. Optimal positioning error σopt = σpos(γopt) for the Dirac-
rectangular waveform.

almost reaches the maximum of

Gmax = 1− σpos(1)

σpos(0)
= 1− 1√

3
= 42, 3% (23)

at the centroid of the triangular constellation It’s in general

lower than for free space path loss. The maximum gain is

achieved when all the links’ SNRs go to infinity. In this case

the optimum waveform parameter γopt → 1 and we obtain

(23) by applying the Cramér-Rao lower bound with (7), (8)

and (16).

Since we use the minimum number of base stations to

obtain a position estimate, one bad propagation scenario, i.e.,

NLOS propagation, already has a big impact on the positioning

bound. For such a scenario, γopt → 0 is more likely than

γopt → 1 due to the high probability of having at least one

low SNR value for the links to the BSs. In order to confirm

the assertion that one bad link already affects the selection of

the parameter γ in a crucial manner, we conducted two more

simulations, where we changed the geometry of the BSs in

the first one and used the WINNER II channel model in the

second one.

By adding a fourth BS, we increase the probability that we

have at least three links with sufficiently high SNR values

to estimate the position. This should directly influence the
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Figure 8. Performance gain 1−σopt/σpos(0) for the optimal waveform for
a four BS scenario.

0 10 20 30 40 50

0

10

20

30

40

x [m]

y
[m
]

BS
1

BS
2

BS
3

P
er

fo
rm

an
ce

 g
ai

n
 [

%
]

40

41

42

Figure 9. Performance gain 1−σopt/σpos(0) for the optimal waveform for
purely LOS scenarios.

performance gain that can be achieved, since the probability

of links with reasonable SNR values increases. The reasoning

for such a scenario are future massive device-to-device links,

where the probability of MVs in the vicinity, i.e., links with

sufficiently high SNR values usable for position estimation,

increases.

The results in Fig. 8 show that observing one additional

link at the receiver helps in obtaining almost the optimal gain

for the whole scenario. At virtually every position inside the

rectangular area, the propagation conditions to three different

BSs are most probable LOS conditions so that a high gain can

be achieved as expected.

The last use case that we investigate uses the WINNER II

channel model with the LOS probability equal to one, i.e., we

always have LOS conditions with additional shadow fading.

As it can be seen in Fig. 9, the propagation conditions are

reasonable good within the triangular area between the BSs

and the performance gain is hardly affected by shadow fading.
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Figure 10. CDF of the positioning error for optimized and fixed γ.

Therefore we conclude that the NLOS propagation conditions

have a crucial effect on the positioning performance. If the MV

moves in a urban canyon with only three BSs available and at

least one of them is blocked by a building, the performance

gain is smaller and a rectangular waveform is more beneficial

for ranging.

In Fig. 10, we show the cumulative density function of the

positioning error for arbitrary positions in the triangular area

and the normal WINNER II channel. The resulting curves

show that the rectangular waveform performs worse than the

optimized waveform. Until a cumulative probability function

value of 0.5 both waveforms show a similar performance.

At higher probabilities, the optimized waveform with γopt
outperforms the waveform with γ = 0.

VI. CONCLUSION

We showed the impact on the selection of the waveform

parameter using a realistic channel model for simulations.

It becomes clear that the channel worsens the propagation

conditions and therefore the spectrum waveform should be

closer to a rectangular shape instead of concentrating all

energy to the edges of the spectrum. This result, however, is

only valid using a minimum of three base stations and under

non-line-of-sight conditions. If there are more base stations

available, the best links can be used for positioning and the

optimized waveform diverges from a rectangular spectrum. If

only line-of-sight conditions are prevalent, a power spectral

density with energy concentrated at the edges is advantageous.

With a flexible waveform it becomes possible to optimally

adapt it to the propagation conditions in order to obtain the

best positioning performance. The proposed network-based

positioning with an adjustable waveform should complement

the positioning service of global navigation satellite systems.
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