
A Hybrid 3D Discontinuous Galerkin Code for CAA
Applications

Markus Lummer∗

A convenient approach for CAA calculations for complex geometries are discontinuous Galerkin

(DG) methods on unstructured meshes. Such methods are quite expensive compared with finite dif-

ference methods on cartesian grids and it is desirable to combine both approaches: relatively small

unstructured meshes in the vicinity of bodies with cartesian grid blocks in the far field. A hybrid CAA

code of this kind is under development at German Aerospace Center (DLR) and is presented here.

The coupling procedure between cartesian blocks and unstructured parts of the mesh is described

and details of the implementation are given. Arbitrary unsteady boundary conditions can be applied.

Array calculations on the cartesian blocks are optimized using the Blitz++ library. A combination

of MPI and OpenMP parallelization is used. Fully unstructured meshes can be distributed on dif-

ferent MPI processes using the Metis software. The accuracy of the code is checked by calculating

monopole scattering at a sphere and comparison with a known analytical solution. For large prob-

lems using hybrid meshes instead of fully unstructured ones the wall clock time can be reduced by

about 64% and the memory requirements by about 80%.

Contents

I Introduction 3

II Governing Equations 4

III Boundary Conditions 5

IV Hybrid Approach 5

V Time Integration 6

VI Implementation 7

A Unstructured Mesh . 7

B Cartesian Grid Blocks . 8

VII Monopole Scattering Test Case 10

VIII Numerical Accuracy 12

IX Numerical Efficiency 13

X Summary and Outlook 15

A Galerkin Approximation of the Acoustic Perturbation Equations 16

B Determination of the Upwind Fluxes 18

C DLR CASE-Cluster 20

References20

List of Figures

1 Cut through cartesian block . 6

2 Tetrahedra on first triangular prism . 6

∗Research Engineer, Department of Technical Acoustics, Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR),

Lilienthalplatz 7, D-38108 Braunschweig, markus.lummer@dlr.de

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

 22nd AIAA/CEAS Aeroacoustics Conference

 30 May - 1 June, 2016, Lyon, France

 AIAA 2016-2719

 Copyright © 2016 by DLR - German Aerospace Center. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 Aeroacoustics Conferences

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2016-2719&domain=pdf&date_stamp=2016-05-27

3 Tetrahedra on second triangular prism . 7

4 OpenMP parallelization of simple and Blitz++ loops . 9

5 Sphere scattering test. 10

6 (x,y)-cut through L300 meshes . 11

7 Pressure field after 20000 time steps. (x,y)-cut through hybrid L150 mesh. 12

8 Pressure signal at x = (−3, 0, 0) on L150 hybrid and unstructured mesh 12

9 Pressure difference at x = (−3, 0, 0) between L150 hybrid and unstructured mesh 13

10 Directivity for λ = 0.15 and 6 CPW, L150-mesh . 13

11 Directivity as function of wavelength for 9 CPW resolution and hybrid meshes 14

12 Directivity for λ = 0.3, hybrid meshes and small source sphere . 14

13 MPE logging output . 15

14 MPI scaling of fully unstructered calculations . 16

List of Tables

1 Mesh parameter . 11

2 Mesh resolution CPW and wavelength λ . 11

3 Performance using 3 computational nodes . 15

Nomenclature

Greek Symbols

∆ Distance between to grid lines on a cartesian block

λ Wavelength

ω =
2πc0

λ
angular frequency

Φn(xi) Lagrange functions on computational cell

ϕ(xk) Galerkin test function

̺0 Mean flow density

Indices

α, β, . . . Variable indices (0, 1, 2, 3)

m, n, . . . Collocation point indices on tetrahedron m ∈ (0, 1, 2, . . . , 19)

i, j, k, . . . Space indices (0, 1, 2)

Latin Symbols

G
p

ln
=

∑

m M̃−1
lm

G̃
p
mn Matrix in DG equations

K
j

ln
=

∑

m M̃−1
lm

K̃
j
mn Matrix in DG equations

Λ
pn Diagonal matrix of eigenvalues of D

pn

αβ

Rpn Matrix of right eigenvectors of D
pn

αβ
{

np

}

Index set of collocation points on face p

G̃
p
mn Surface integral

∫

Ap dAΦmΦn

K̃
j
mn ’Stiffness’ matrix

∫

V
dVΦm, jΦn

M̃mn ’Mass’ matrix
∫

V
dVΦmΦn

RRAM Reduction in percent RAM of hybrid vs. fully unstructured calculation

RWCT Reduction in percent WCT of hybrid vs. fully unstructured calculation

∂V Surface of cell

Ap Surface p of cell

A
jn

αβ
Value of A

j

αβ
at cell collocation point n

A
j

αβ
Flux matrices

c0 Mean flow sound speed

D
pn

αβ
Value of A

j

αβ
n j at collocation point n of face p. Also written Dpn

dA Surface element

dV Volume element

F
j
α = A

j

αβ
uβ Flux vectors

F
pn

α Flux of variable α in point n on face p of cell

G
p

ln
Matrix depending on cell geometry

2 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

H
pn±
αβ

Upwind flux matrices in point n of face p

k =
2π
λ
=
ω
c0

. Wave number

K
p

ln
Matrix depending on cell geometry

L Edge length of computational domain

N Number of data points on the edge of the computational domain. N3 is approximately the number of

data points (degrees of freedom – DOF) of a calculation

n j Face normal

p Acoustic pressure

RS Radius of source sphere

sα Acoustic source vector

uα Acoustic variable vector (p vi)
T

V Volume of cell

Vi Mean flow velocity

vi Acoustic velocity

xm

i
Lagrangian collocation points on cell

Abbreviations

CPW Resolution in cells per wavelength

DG Discontinuous Galerkin

DOF Degrees of Freedom, number of data points that represent a field

DRP Dispersion Relation Preserving

FRPM Fast Random Particle-Mesh

MPE MPI Parallel Environment

MPI Message Passing Interface

RAM Random Access Memory

RAMHybrid RAM for hybrid calculation

RAMTetra RAM for fully unstructured calculation

STL Standard Template Library

WCT Wall Clock Time

WCTHybrid WCT for hybrid calculation

WCTTetra WCT for fully unstructured calculation

I. Introduction

Computational aeroacoustic (CAA) calculations for complex geometries are most easily performed on unstructured

meshes. In this case, convenient methods to solve the governing equations with adequate accuracy are discontinuous

Galerkin (DG) methods [1, 2]. Unfortunately, DG-methods require significantly more computational work compared,

e.g., with dispersion relation preserving (DRP) finite difference schemes [3] on cartesian grids. Therefore, it is tempt-

ing to combine both approaches: a DG-method on relatively small unstructured meshes in the vicinity of bodies and

DRP-schemes on large cartesian grid blocks in the far field. The classical 7-point DRP-schemes [3] are 4th-order

accurate and a simple coupling with 20-point 4th-order accurate tetrahedral DG-Cells [4] is possible.

Therefore, a new hybrid 3D-DG-DRP code is under development for some time at German Aerospace Center

(DLR), complementing the 3D-DRP Piano [5–9] and 2D-DG DISCO [1, 10, 11] codes. Hybrid DG-DRP CAA ap-

proaches are not new. E. g., in [12] the high order DG-Solver NoisSol is coupled with the Piano code. Nevertheless,

the approach presented below seems to be especially simple.

This paper is structured as follows. In the next section the governing equations are given. The new code solves

acoustic perturbation equations (APE) [13] with a quadrature-free DG-method of 4-th order [1, 2]. A short overview

over the implemented boundary conditions follow. In the subsequent section the coupling of the unstructured mesh

with the cartesian blocks is described. The key idea is to cover the outer 3 cell layers of each cartesian block with

tetrahedra. Each group of 33
= 27 block surface cells is covered with 6 tetrahedra. The data points of the tetrahedra

correspond exactly to cartesian grid points and no interpolation procedure between the structured and unstructured

parts of the mesh is necessary. Furthermore, from outside, the cartesian block can be treated as unstructured mesh part

too. This allows simple automatic combination of structured and unstructured mesh parts in the code. For unstructured

mesh generation the Gmsh code is used [14]. Gmsh has a scripting capability and can process CAD files in IGES and

STEP formats. The cartesian blocks are generated by the DG code on the fly.

In the following section some details of the implementation will be given. The code is written in C++ and relies

3 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

heavily on the usage of templates. Parallelization is prodvided by a hybrid MPI/OpenMP approach. The unstructured

mesh cells can be distributed among the MPI processes using the Metis software [15]. Array calculations on the

cartesian grid blocks are performed using the expression template library Blitz++. The OpenMP parallelization

approach to Blitz++ is briefly discussed.

Unsteady boundary conditions can be applied by weak coupling using ghost cells. The performance of the code is

demonstrated using a simple application, the scattering of an acoustic monopole at a sphere. The solution is calculated

on a fully unstructured and a hybrid mesh and compared with an analytical one, obtained from the Green’s function of

the problem. In case of large problems, replacing fully unstructured by hybrid meshes can reduce the wall clock time

by about 34% and the memory requirements by about 80%.

II. Governing Equations

The code solves linear acoustic perturbation equations (APE, cf. [1, 13]) which read in index notation (greek indices

are variable indices (0,1,2,3), latin indices are space indices(0,1,2), a summation convention applies)

∂tuα + F
j

α, j
− sα = 0 (1)

where sα is a source vector and the flux vectors F
j
α have the form F

j
α = A

j

αβ
uβ. The A

j

αβ
are matrices and uα = (p vi)

T

is the acoustic variable vector which is formed from the acoustic pressure p and the acoustic velocity vi. Writing Vi, ̺0,

and c0 for the mean flow velocity, density and sound speed, the matrices A
j

αβ
can be written in the form (dots indicate

zero entries)

A0
αβ =





V0 ̺0c2
0
. .

1
̺0

V0 V1 V2

. . . .

. . . .





, A1
αβ =





V1 . ̺0c2
0
.

. . . .
1
̺0

V0 V1 V2

. . . .





, A2
αβ =





V2 . . ̺0c2
0

. . . .

. . . .
1
̺0

V0 V1 V2





. (2)

Eq. (1) is solved by a quadrature-free discontinuous Galerkin procedure. A brief derivation of the discontinuous

Galerkin equations is given in appendix A. Generally, Galerkin procedures require expensive integrals over the com-

putational cells. However, if it is possible to map the computational cells linearly to some reference cell, so-called

quadrature-free methods are possible [2]. In this case, the integrations can be performed in advance for the reference

cell and only matrix-vector multiplications are required during the integration. Such kind of linear mapping is possible,

e. g., for tetrahedrals.

Therefore, the quadrature-free DG method is implemented on a tetrahedral mesh. For a 4th-order discontinuous

Galerkin method 20 collocation points are selected on each tetrahedron, cf. [4], and the acoustic quantities are approx-

imated by the vectors un
α, n = 0, 1, . . . , 19 which are defined in each collocation (or data) point of the cell (The fraktur

letters n,m, ... denote the collocation points on the cells). The quadrature-free DG approximation of Eq. (1), derived

in appendix A, then becomes the following system of ordinary differential equations on each cell

u̇l

α +

3∑

p=0

∑

n∈{np}
G

p

ln
F

pn

α −
19∑

n=0

2∑

j=0

K
j

ln

3∑

β=0

A
jn

αβ
un

β − sl

α = 0,

F
pn

α ≡
3∑

β=0

D
pn

αβ
un

β , D
pn

αβ
≡

(

A
j

αβ
n j

)pn

.

(3)

(4)

G
p

ln
and K

j

ln
are matrices depending on the geometry of the cell and A

jn

αβ
and D

pn

αβ
are matrices depending on the

mean flow quantities. The summation over p indicates a summation over the four faces of the cell and F
pn

α is a flux

of variable α in point n on face p. One has 10 collocation points on each face of the cell and
{

np

}

is the index set of

collocation points on face p. In the form given in Eq. (3) the solutions on the cells are independent of each other. In

order to obtain a physically meaningful solution for the acoustic field, the cells must be coupled, i. e. the flux vector

F
pn

α must be approximated by an appropriate upwind flux, which takes into account also the acoustic quantities on the

face of the adjacent cell. Presently a Steger-Warming flux ([16], [1]) is used

F
pn

α = H
pn+

αβ
un+

β + H
pn−
αβ

un−
β . (5)

Assuming a face normal n j pointing out of the cell the un+

β
denote the data values inside of the cell, and the un−

β
the

data values of the adjacent cell. The upwind matrices H
pn±
αβ

are usually calculated by a similarity transformation of the

4 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

flux matrix D
pn

αβ
≡ Dpn (cf. Eq. (4))

Dpn
= Rpn

Λ
pnRpn−1

, Hpn±
=

1

2

[

Rpn
(

Λ
pn ± |Λpn|) Rpn−1

]

(6)

where Rpn is the matrix of the right eigenvectors of Dpn, Λpn is the diagonal matrix of the eigenvalues, and |Λpn| is
the diagonal matrix of the modulus of of the eigenvalues. Using a simple rotation of the coordinate system the matrices

Hpn± can be calculated analytically. This is shown in appendix B.

III. Boundary Conditions

Boundary conditions must be provided at outer boundaries of the mesh, i. e., at faces with only one adjacent cell. In

the code they are implemented by setting special values for the flux matrices Hpn±. Here, only the implemented form

is given. Some more details can be found in [1].

At solid walls it is set Hpn−
= 0 and

Hpn+
=





0 0 0 0
n0

̺0
n0V0 n0V1 n0V2

n1

̺0
n1V0 n1V1 n1V2

n2

̺0
n2V0 n2V1 n2V2





. (7)

At far field boundaries it is set Hpn−
= 0. Then, waves normal to the face can leave the computational domain without

reflection. Waves impinging the farfield boundary under an angle scatter some noise back into the computational

domain. So far these spurious wave components have been found to be small.

Unsteady values of pressure and velocity are fed into the computational domain by attaching a ghost cell at the

boundary face. Then, the face is treated like an interior face of the domain and the values of pressure and velocity in

the ghost cell are taken from the boundary condition.

IV. Hybrid Approach

An inspection of Eq. (3) reveals a significant amount of floating point operations necessary for each cell. Even more

important seem to be the high memory requirements. For each cell the 960 floating point numbers of the matrices A
jn

αβ

must be stored and for each face 320 elements of the matrices Hpn±. Since one has usually twice as many faces as cells,

for each cell of the mesh about 1600 floating point values must be stored. Thus, using single precision data, at least

6.4 GB of memory is necessary for 106 cells. Moreover, the description of acoustic sources by synthetic turbulence,

e. g. produced by the Fast Random Particle-Mesh (FRPM) method [6], requires the calculation of long time series

for the accurate prediction of the spectral properties of the acoustic field. Consequently, efficiency improvements of

the algorithm are desirable. In case of large scale problems a significant reduction in computational resources can be

expected using highly efficient finite difference methods on equidistant cartesian blocks for most of the computational

domain. This requires an appropriate coupling procedure between the unstructured and structured parts of the mesh.

Different coupling mechanisms are possible. In [12] the discontinuous Galerkin code NoisSol is coupled with the

Piano code using a flexible space-time interpolation procedure. This allows different cell sizes and time steps on the

structured and unstructured parts of the mesh. Often, however, the mesh cell size is determined by enabling proper

wave propagation and therefore doesn’t change much across the mesh. In this case, the following simple coupling

procedure that avoids interpolation can be used. It requires a box like outer surface of each unstructured part of the

mesh, which has to be covered by a special regular triangulation.

Then, coupling to cartesian grid blocks is possible by covering some outer grid layers of each cartesian block

by tetrahedra whose collocation points correspond to grid points of the block, cf. Fig.1. These surface tetrahedra

(depicted in blue) can be treated like all other unstructured cells and allow to pass appropriate boundary data to the

cartesian block. The boundary of the tetrahedra to the interior of the block is treated as an outer boundary of the

unstructured mesh, where unsteady surface data can be applied as usual unsteady boundary conditions by attached

ghost cells (depicted in orange). At beginning of each Runge-Kutta sub step, the appropriately updated variables from

interior block points are copied to these ghost cells.

The surface tetrahedra are constructed as follows. The number of cartesian grid cells is assumed to be a multiple

of 3 in each space direction. Thus, for example in x-direction, the equidistant grid points are xi = i∆, i = 0, 1, . . . ,Nx.

Each group of 33 cartesian surface grid cells is then covered by 6 tetrahedra. This is depicted in Figs. 2 and 3. The 27

cartesian cells of the group are splitted in two triangular prisms first and each prism is then subdivided into 3 tetrahedra.

The 20 data points of each tetrahedron are identical with points on the cartesian grid and no interpolation is necessary.

5 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

Figure 1. Cut through cartesian block showing the surface tetrahedral cell layers. Each outer 33 cartesian cell group is divided in 2

triangular prisms, depicted in blue, and each prism then in 3 tetrahedra. Ghost cells for data transfer from the block interior to the surface

cells are depicted in dotted orange. Data points on a selected tetrahedral face are depicted in green. A (symmetrical) 7-point DRP stencil is

indicated by the red dots.

a) Tetrahedron 0 b) Tetrahedron 1 c) Tetrahedron 2

Figure 2. First triangular prism – Data points of tetrahedra are identical with grid points and depicted in red

The price which must be payed, is to use an appropriate regular triangulation on the surface of the unstructured

parts of the mesh. This is possible without problems using the Gmsh meshing software [14]. Furthermore, since the

governing equations must only be approximated inside of the block, symmetrical 7-point DRP stencils can be used for

the calculation of the derivatives inside of the block.

V. Time Integration

The time integration is done by a classical 4th-oder Runge-Kutta procedure using four sub steps. Writing for the

differential equations u̇ = f (t,u), the variable update from time tn to tn+1
= tn
+ ∆t reads

un+1
= un

+ ∆t

4∑

j=1

b j k j, k j = f
(

tn
+ c j∆t,wn

j

)

, wn
j = un

+ ∆t

j−1∑

l=1

a jl kl (8)

6 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

a) Tetrahedron 3 b) Tetrahedron 4 c) Tetrahedron 5

Figure 3. Second triangular prism – Data points of tetrahedra are identical with grid points and depicted in red

where the b j, c j, and a jl are the standard constants. At the beginning of each sub step j the work variables wn
j

are

updated according to Eq. (8) on the data points of the cells and the interior points of the cartesian blocks. Then the

ghost cells of each block fetch the necessary interior values from the block grid points and the block surface cells copy

their work variables into the boundary points of the cartesian block. Then, the differental equations can be evaluated

inside the block and for the cells.

VI. Implementation

The hybrid DG-DRP code is written in C++. In order improve data locality, intensive use of templates has been made

which avoids a lot of heap allocation. The matrices of Eq. (3) are stored as far as possible as parts of the cell and

face data structures. Single and double precision data format can be selected at compile time. The code is parallelized

using a combined MPI/OpenMP approach. A cartesian block together with its tetrahedral surface layers is restricted to

one MPI process, but each MPI process can handle several blocks. The cells of the unstructured mesh around bodies

can be distributed among several MPI processes using the Metis softwarea.

The efficiency of the distribution of the cartesian blocks and the unstructured cells on the several MPI processes

can easily be checked by the implemented Multi-Processing Environment (MPE)b package. Some more information

about MPE is given below. An interpolation procedure for CFD mean flow fields on to the CAA mesh is integrated

into the code [17]. For the description of acoustic sources by synthetic turbulence created from RANS mean flow

data the DLR Fast Random Particle-Mesh (FRPM) method [6] is implemented. The FRPM module is taken from the

Piano code and written in Fortran. Usually, it is run as a separate MPI process.

Since finally the code is bound to be used by industrial customers, providing a user friendly operation has been

kept in mind. In order to use the hybrid features of the code, the user must only provide an unstructured mesh with an

appropriate regular surface triangulation, and the cartesian grid blocks can be generated by the code on the fly. During

the integration process, the calculated solution can be visualized using the Python interface of the VisIt softwarec. Of

interest in industrial applications is also a large flexibility concerning in- and output data formats as well as, e. g.,

the implementation of different unsteady boundary conditions. This is achieved by providing the possibility to code

appropriate separate plugins, which can be loaded dynamically at run time [18]. The interface of the plugins is well

defined and they are completely independent of the core code. It is planned to provide this plugin feature also for

changing the governing equations on the code.

A. Unstructured Mesh

Some brief information about the used data structures will be given. The fundamental geometric entities of the un-

structured part of the code are cells and faces which have in common the set of cell and face corner points of the mesh.

A corner point is represented by a C++ class which stores its coordinates as three double precision numbers. A series

a Metis software from http://glaros.dtc.umn.edu/gkhome/views/metis
b MPE documentation from http://www.mcs.anl.gov/perfvis

MPE software from http://www.mpich.org/static/mpe/downloads
c VisIt from https://wci.llnl.gov/simulation/computer-codes/visit

7 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.mcs.anl.gov/perfvis
http://www.mpich.org/static/mpe/downloads
https://wci.llnl.gov/simulation/computer-codes/visit

of methods like, e. g., scalar and vector products is defined for this class. All corner points of the cells are stored in a

global C++ Standard Template Library (STL) vector container.

The cells and faces of the mesh are represented by a C++ class Cell and Face, respectively. At start of a calculation,

each MPI process reads the corner points and tetrahedral cells of the mesh from a file and the faces of the mesh are

then determined by analysis of the connectivity of the cells. In order to reduce the memory requirements during this

phase of the calculation, the Cell and Face classes are derived from some base classes CellBase and FaceBase which

store only the geometrical informations necessary for the analysis of the mesh. Again, the cells and faces are stored in

two global C++ STL vector containers.

B. Cartesian Grid Blocks

Each cartesian grid block is represented by a C++ class called HybridBlock. The blocks together with their coupling

cells are created at beginning of the calculation, i. e., before the unstructured parts of the mesh are read. Thus, the

cells of each block are stored contiguous at beginning of the global cell container. The variables on each block are

stored in large three dimensional arrays. Originally, a self designed array class was implemented, but finally, for

increased performance, the array class from the Blitz++ library [19–22] was used. Blitz++ is a C++ library,

which obtains high performance for multidimensional array calculations using expression templates. Customized

evaluation kernels for multidimensional loops can be generated at compile time and many loop transformations which

increase the performance can be performed [21]. Blitz++ is a serial library and OpenMP parallelizations must be

performed by exchanging some of the Blitz++ Range objects [22] by explicit loops. Blitz++ Range objects are

used to access subarrays of Blitz++ arrays. Listing 1 shows pseudo code of two forms of a simple 2-point stencil

operation using Ranges. In line 2 two 3-dimensional Blitz++ arrays are defined. Line 5 defines range objects for

the several dimensions and line 8 demonstrates a simple 2-point stencil operation on array a storing the result in array

b. In lines 12 and 13 the second index range J is replaced by a simple C++ loop which can be parallelized by OpenMP

statements. Replacing the J range by a loop allows Blitz++ to perform stencil optimizations for the I range.

Listing 1. Blitz++ stencil operations using Range objects

1 // 3−dimensional Blitz ++ arrays

2 Array<float,3> a(n1,n2,n3), b(n1,n2,n3);

4 // Range objects

5 Range I (1, n1−2), J (0, n2−1), K(0,n3−1);

7 // Standard Blitz ++ stencil operation

8 b(I , J ,K) = a(I+1,J ,K) − a(I−1,J ,K);

10 // Looping over an index is also possible

11 #pragma omp parallel for

12 for (int J=0; J<n2; ++J)

13 b(I , J ,K) = a(I+1,J ,K) − a(I−1,J ,K);

Calculating the spatial derivatives using 7-point DRP stencils is quite expensive and its speed-up using Blitz++ and

OpenMP parallelization has been examined. Listing 2 shows pseudo code for calculation of the x-, y-, z-derivatives

using OpenMP parallel C++ loops. Listing 3 shows pseudo code for the same calculations using OpenMP parallel

Blitz++. The OpenMP directives are the C++ preprocessor #pragma statements. The number of threads can be

varied at run time using the C++ nThread variable. The OpenMP schedule(dynamic,1) directive means that

at start of the loop each thread is assigned a chunk of length 1 of the loop. When a thread finishes its chunk, it is

dynamically assigned another.

8 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

Listing 2. 7-Point DRP derivatives using simple loops

// nThread is the number of threads

// d[7] are the DRP coefficients

// ========== diffXloop ==========

#pragma omp parallel for num threads(nThread) \
schedule(dynamic,1)

for (i=3; i<n1−3; ++i)

for (j=0; j<n2; ++j)

for (k=0; k<n3; ++k)

ax(i , j ,k) = d[0]*a(i−3,j ,k) + ... + d[6]*a(i+3, j ,k);

// ========== diffYloop ==========

#pragma omp parallel for num streads(nThread) \
schedule(dynamic,1)

for (i=0; i<n1; ++i)

for (j=3; j<n2−3; ++j)

for (k=0; k<n3; ++k)

ay(i , j ,k) = d[0]*a(i , j−3,k) + ... + d[6]*a(i , j+3,k);

// ========== diffZloop ==========

#pragma omp parallel for num streads(nThread) \
schedule(dynamic,1)

for (i=0; i<n1; ++i)

for (j=0; j<n2; ++j)

for (k=3; k<n3−3; ++k)

az(i , j ,k) = d[0]*a(i , j ,k−3) + ... + d[6]*a(i , j ,k−3);

Listing 3. 7-Point DRP derivatives using Blitz++ Ranges

// nThread is the number of threads

// d[7] are the DRP coefficients

// ========== diffX ==========

Range I (3, n2−4), K(0,n3−1);

// J−Loop is parallelized

// I /K−Loops can be optimized by Blitz ++

#pragma omp parallel for num threads(nThread) \
schedule(dynamic,1)

for (int J=0; J<n2; ++J))

ax(I , J ,K) = d[0]*a(I−3,J ,K) + ... + d[6]*a(I+3,J ,K);

// ========== diffY ==========

Range J(3,n2−4), K(0,n3−1);

#pragma omp parallel for num threads(nThread) \
schedule(dynamic,1)

for (int I=0; I<n1; ++I))

ay(I , J ,K) = d[0]*a(I , J−3,K) + ... + d[6]*a(I , J+3,K);

// ========== diffZ ==========

Range J(0,n2−1), K(3,n3−4);

#pragma omp parallel for num threads(nThread) \
schedule(dynamic,1)

for (int I=0; I<n1; ++I))

az(I , J ,K) = d[0]*a(I , J ,K−3) + ... + d[6]*a(I , J ,K+3);

Exemplary, Fig. 4 shows the floating point performance for arrays of size 4003 in GFlops up to a number of 24 threads.

The calculations were performed on the DLR CASE-cluster (for some hardware details see appendix C). The values

for thread 0 are calculated using Blitz++ ranges without OpenMP acceleration. The Blitz++ calculations reach

their maximum performance at about 10 threads where they are about twice as fast as simple C++ loops. Even using

24 threads the Blitz++ loops are about 20% faster.

Figure 4. OpenMP parallelization of simple and Blitz++ loops for a 3-d array of size 4003. Thread 0 is the performance using Blitz++

ranges alone.

9 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

VII. Monopole Scattering Test Case

In order to assess the accuracy and efficiency of the code, calculations of the scattering of the sound field of an acoustic

monopole at a sound hard unit sphere were performed. The analytical solution of this problem is known [23] and can

be used for assessing the accuracy of the calculation. The computational domain is depicted in Fig. 5. The scattering

Figure 5. Block structure of computational domain for sphere scattering test. (Blue: scattering sphere, red: surface where monopole

boundary conditions are applied). Three of the five cartesian blocks are colored.

sphere with radius 1, shown in blue, is centered in the origin of the coordinate system The acoustic monopole is located

at x0 = (0, 2, 0) above the sphere. Its pressure and velocity field is

p(x, t) =
−ikc0

4πr
eikr−iωt, v(x, t) =

−1

4π̺0

(

ik

r
− 1

r2

)

eikr−iωt∇xr, ∇xr =
x − x0

r
, r = |x − x0| (9)

The mean flow density ̺0 and mean flow sound speed c0 have been set to 1 in the calculations. The pressure has

an unusual wave number k dependent amplitude factor, since in the code the point mass source (acoustic monopole)

in a uniform subsonic flow from [24] is implemented. This sound field is fed into the computational domain, using

unsteady boundary conditions on a small sphere with radius RS = 0.2, depicted in red, around the monopole position.

It must be emphasized that this source sphere is a hole in the computational domain and some discrepancies between

calculation and analytical solution are expected. This will be discussed later. The whole computational domain is a

cube with edge length L = 7.8, (−3.9 < x, y, z < 3.9) which is divided into 6 boxes. The scattering sphere as well as

the source sphere is located inside a box with −1.2 < x, z < 1.2 and −1.2 < y < 3.9 which encloses a fully unstructured

tetrahedral mesh. The remaining 5 boxes can be treated either as cartesian blocks or also filled with tetrahedra. Three

of them are colored in Fig.5. The cartesian blocks can be filled with tetrahedra by covering each group of 33 cartesian

cells with 6 tetrahedra. This guarantees that the hybrid as well as the fully unstructured meshes have identical data

points. The distance ∆ of two grid lines on the cartesian blocks is constant for all blocks and serves as measure for the

mesh resolution.

4 different grid resolutions have been considered, whose parameters are depicted in table 1. The first column

contains the mesh identifier. The finest mesh is denoted L100 and the coarsest one L300. The second column depicts

3∆, i. e. triple the distance of two grid lines on a cartesian block. The next column gives the number N = L/∆ + 1 of

data points on an outer edge of the computational domain and the following one its cube N3 . N3 is approximately the

total number of data points in the computational domain, which will also be denoted as Degrees Of Freedom (DOF) of

10 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

Table 1. Mesh parameter

Mesh Spacing 3∆a Edge Points Nb N3 ≈ DOFc Core Cellsd Cellse

L100 0.050 469 103.0 × 106 1468 × 103 22.1 × 106

L150 0.075 313 30.7 × 106 224 × 103 6.6 × 106

L200 0.100 235 13.0 × 106 102 × 103 2.8 × 106

L300 0.150 157 3.9 × 106 37 × 103 0.8 × 106

a
∆ is distance of two grid lines

bData points on egde of computational domain: N = L/∆ + 1 where L = 7.8 is the edge length of the computational cubic domain
cApproximate number of DOFs assuming the whole computational domain is covered by a cartesian grid.
dOn unstructured central box around geometry and source
eFully unstructured calculation – cartesian blocks covered with tetrahedra

the calculation. The last two columns contain the numbers of cells of the unstructured core box around the geometry

and the number of cells of the fully unstructured calculations. The unstructured mesh around the scattering sphere and

source surface has been created by Gmsh using a characteristic length of 3∆. This gives on the unstructured mesh a

similar resolution like on the cartesian blocks.

Table 2 depicts the achievable wavelengths on each mesh for 6, 9, and 12 Cells Per Wavelength (CPW) resolution.

A computational cell has the edge length ∆. For 6 CPW the minimum wavelength ranges from λ = 0.10 on the mesh

L100 to λ = 0.30 on mesh L300. Fig. 6 depicts (x,y)-cuts through a hybrid and a fully unstructured L300 mesh.

Table 2. Mesh resolution CPW and wavelength λ

Mesh 6 CPW 9 CPW 12 CPWa

L100 0.10 0.15 0.20

L150 0.15 0.225 0.30

L200 0.20 0.30 0.40

L300 0.30 0.45 0.60

a The relation between CPW, λ, and N is CPW = λ(N − 1)/L.

a) Hybrid tetrahedral/cartesian mesh b) Tetrahedral mesh (cartesian blocks covered with tetrahedra)

Figure 6. (x,y)-cut through L300 meshes

11 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

VIII. Numerical Accuracy

Before selected results of the calculations are discussed in more detail, Fig. 7 gives an impression of a typical scattered

sound field. It depicts (x,y)-cuts through the pressure field after 20000 time steps for the L150 hybrid mesh and three

different wavelengths, corresponding to 6, 9, and 12 CPW resolution. One identifies the interference pattern of the

incident and reflected wave and the large shadow zone below the sphere. Directly below the sphere, along the negative

y-axis, a narrow beam with higher pressures, the so-called Arago spot, is visible. In order to compare the different

a) 6 CPW, λ = 0.15 b) 9 CPW, λ = 0.225 c) 12 CPW, λ = 0.30

Figure 7. Pressure field after 20000 time steps. (x,y)-cut through hybrid L150 mesh.

solutions, the pressure signal on points of a circle of radius R = 3 around the scattering sphere in the (x,y)-plane is

evaluated. Fig. 8 shows the pressure signal at x = (−3, 0, 0) for the hybrid and unstructured L150 mesh and 6, 9, and

12 CPW resolution. The calculations have been run for 20000 time steps. After an initial phase an almost periodically

time signal evolves. For 9, and 12 CPW the signal on the hybrid and unstructured mesh is almost the same, while for 6

CPW a larger difference in amplitude is visible. This is not unexpected since 6 CPW is usually the minimum resolution

necessary to obtain any meaningful results for 4th-order accurate CAA calculations. Fig. 8 shows the difference of the

a) 6 CPW, λ = 0.15 b) 9 CPW, λ = 0.225 c) 12 CPW, λ = 0.30

Figure 8. Pressure signal at x = (−3, 0, 0) on L150 hybrid and unstructured mesh

pressure signal for the hybrid and unstructured L150 meshes. The relative error is about 3% for 9 CPW and 2% for

the 12 CPW calculation. It should be mentioned that the signal at the point considered is relatively small and thus the

error is relatively large.

In order to assess the overall accuracy of the calculations, the so-called directivity, i. e. the root mean square (RMS)

value of the pressure signal on the circle is compared with the analytical solution, taken from [23]. Fig. 10 depicts the

directivity for λ = 0.15 and 6 CPW resolution on the hybrid and fully unstructured L150-mesh. In spite of the large

error seen in Fig. 9a the overall correspondance between the calculated and analytical directivity is acceptable. Fig. 11

depicts the directivity in case of 9 CPW resolution on hybrid meshes for the wavelengths λ = 0.15, λ = 0.225, and

12 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

a) 6 CPW, λ = 0.15 b) 9 CPW, λ = 0.225 c) 12 CPW, λ = 0.30

Figure 9. Pressure difference at x = (−3, 0, 0) between L150 hybrid and unstructured mesh

a) Hybrid mesh b) Fully unstructured mesh

Figure 10. Directivity for λ = 0.15 and 6 CPW, L150-mesh

λ = 0.3. The source position is at θ = 180◦ and by interference of the direct and reflected signal, the RMS value has

its maximum there. Below the sphere there is a large shadow region. By and large, one sees good agreement between

the analytical and calculated solution on most of the circle. Merely near the source direction larger differences, e. g.

for λ = 0.3 can be seen. As mentioned above the source position is a mesh singularity (a hole) and these differences

are not unexpected. In order to check the influence of the size of the source sphere on the solution the calculations

for λ = 0.3 have been repeated for a source sphere of half the size, i. e. RS = 0.1. Fig. 12 depicts the directivity for

λ = 0.3 for different resolutions using hybrid meshes and the small source sphere. One sees a significantly better fit of

calculated and analytical solution compared with Fig. 11c. Even in case of the coarsest mesh, i. e. in case of 6 CPW

only small differences are visible.

IX. Numerical Efficiency

The meshes were distributed on 3 MPI processes running on 3 nodes on the DLR CASE-cluster (cf. appendix C).

On each node 24 OpenMP threads were used. Table 3 shows the used computational resources for the hybrid and

unstructured computations. The first two columns show the approximate number of data points and the used time

step for each mesh. Then, the wall clock time (WCT) for 1000 time steps of the hybrid and unstructured calculations

13 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

a) L100 λ = 0.15 b) L150 λ = 0.225 c) L200 λ = 0.3

Figure 11. Directivity as function of wavelength for 9 CPW resolution and hybrid meshes

a) L300, 6 CPW b) L200, 9 CPW c) L150, 12 CPW

Figure 12. Directivity for λ = 0.3, hybrid meshes and small source sphere

follow. Finally the total memory is given.

The WCT for the L300-mesh hybrid calculation is reduced by 32% compared to the fully unstructered one. This

reduction increases to 64% in case of the large L100-mesh. The WCT reduction becomes better with increasing prob-

lem size since the numerical effort spent on the tetrahedral coupling cells becomes relatively smaller with increasing

block size. The reduction in memory consumption using hybrid meshes is even larger. For the L300-mesh the memory

is reduced by about 47% and for the L100-mesh by 80% using hybrid instead of fully unstructured meshes.

The efficiency of the parallelization can be assessed by examination of the MPE logging output. Fig. 13 shows

the MPE logging output for 20000 time steps using 3 nodes on a L150 mesh for (a) the fully unstructured mesh and

(b) the hybrid mesh. For each of the 3 MPI processes the accumulated WCT for several phases of the calculation

is depicted in different colors. The WCT spend for cell calculations is shown in red, the one for face calculations

in orange, and the WCT for cartesian blocks in brown. The WCT that is used for the MPI exchange of ghost cell

data between the processes is shown in cyan. It should be mentioned that the x-axis for the unstructured calculation,

Fig. 13a, covers about 125 × 103 [s] and the one for the hybrid calculation, Fig. 13b, about 62 × 103 [s]. One sees

that the fully unstructured calculation is well balanced between the 3 processes and most of the computational work is

done on the faces while only little time is spend for MPI data transfer between the cells. In the hybrid mesh calculation

the computational work on cells and faces is significantly reduced in favor of work on cartesian blocks. However, the

distribution of work between the processes is unbalanced and the third process spends a lot of time for MPI cell data

transfer. In the present case, the 2 large cartesian blocks of Fig. 5 (i. e. the regions x < −1.2 and 1.2 < x) are assigned

to the processes 0 and 1 and the remaining cartesian blocks as well as the unstructured part of the mesh on process 2.

Thus, a disadvantage of hybrid calculations is the difficulty to distribute the calculation well balanced on several MPI

14 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

Table 3. Performance using 3 computational nodes

Mesh DOFa Time Step WCTHybrid
b WCTTetra

b RWCT
c RAMHybrid

d RAMTetra
d RRAM

e

L100 103.0 × 106 0.4 × 10−3 7500 [s] 20700 [s] 64% 52.6 [GB] 263.5 [GB] 80%

L150 30.6 × 106 0.8 × 10−3 3030 [s] 6500 [s] 53% 20.5 [GB] 68.3 [GB] 70%

L200 13.0 × 106 0.8 × 10−3 1770 [s] 2900 [s] 39% 11.0 [GB] 29.0 [GB] 62%

L300 3.9 × 106 0.8 × 10−3 840 [s] 1230 [s] 32% 4.5 [GB] 8.5 [GB] 47%

aApproximate number of DOFs assuming the whole computational domain is covered by a cartesian grid.
b Wall clock time for 1000 steps on 3 nodes/24 threads

c The WCT reduction in percent is defined by RWCT =

(

1 − WCTHybrid

WCTTetra

)

× 100%

d Total process memory size on 3 nodes

e The RAM reduction in percent is defined by RRAM =

(

1 − RAMHybrid

RAMTetra

)

× 100%

processes.

a) Fully unstructured mesh (x-axis covers about 125 × 103[s]) b) Hybrid mesh (x-axis covers about 62 × 103[s])

Figure 13. MPE Logging output for 3 MPI processes. L150-mesh. Accumulated WCT: Brown: work on cartesian block(s), Orange: work

on all faces, Red: work on all cells, Cyan: MPI cell exchange time.

An advantage of the fully unstructured calculation is the possibility to distribute the mesh easily on an arbitrary

number of MPI processes. In order to obtain informations about the speed-up of the calculation by using more and

more computational nodes, calculations for the fully unstructured L100-mesh were performed using 3, 12, 18 , and 24

nodes. Fig. 14 shows the obtained speed-up of the calculations with increasing number of computational nodes. In the

range considered the speed-up scales quite well with the number of cores.

X. Summary and Outlook

A new hybrid CAA code is under development at DLR which combines the advantages of unstructured meshes around

bodies and cartesian grid blocks in the far field. The structured and unstructured parts of the mesh are weakly cou-

pled by covering the surface of the cartesian blocks by appropriate tetrahedral layers. Arbitrary unsteady boundary

conditions can be applied using ghost cells. Acoustic sources can be described using synthetic turbulence created by

the FRPM method. The numerical work on the cartesian blocks is optimized using the Blitz++ library. In order

to allow easy extension of the code by the user, dynamically loadable modules, e. g. for different mesh formats,

boundary conditions, and mean flow fields, are provided. It is planned to implement this feature also for the governing

equations, which would allow an easy exchange of the acoustic perturbation equations, e.g., by the linearized Euler

equations.

The accuracy of the code has been checked by calculation of monopole scattering at a sphere using meshes of dif-

ferent type and resolution. The differences between hybrid, fully unstructured and analytical solutions are sufficiently

small even for a quite coarse resolution of 6 CPW. For large problems the wall clock time can be reduced by about

15 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

Figure 14. MPI scaling of fully unstructered calculations. Speed-up as function of the number of computational nodes. L100-mesh,

≈ 100 × 106 data points

64% using hybrid meshes instead of fully unstructured ones and the memory requirements by about 80%.

Fully unstructured calculations can easily be distributed on different MPI processes using the Metis library. Up

to 24 computational nodes the speed-up of large fully unstructured calculations scales almost linearily with the number

of nodes.

A disadvantage of the hybrid approach is the difficulty to achieve a well balanced distribution of the mesh on to a

larger number of MPI processes. Presently, the topology and distribution of the cartesian blocks must be provided by

the user. In future, the code should be able to analyse the computational domain and to propose an appropriate block

structure of the mesh.

A. Galerkin Approximation of the Acoustic Perturbation Equations

Here, a brief derivation of the discontinuous Galerkin approximation of the acoustic perturbation equations (APE),

Eq. (3), in 3-dimensions is given. The 2d case can be found, e. g. in [1]. The APE (cf. [1, 13]) read in index notation

(greek indices are variable indices, latin indices are space indices)

∂tuα + F
j

α, j
− sα = 0, F

j
α = A

j

αβ
uβ. (10)

The acoustic variable vector uα = (p vi)
T

is formed from the acoustic pressure p and velocity vi, and the source vector

sα contains appropriate source terms for the pressure and momentum equation. Writing Vi, ̺0, and c0 for the mean

flow velocity, density and sound speed, the flux matrices A
j

αβ
can be written in the form (dots indicate zero entries)

A0
αβ =





V0 ̺0c2
0
. .

1
̺0

V0 V1 V2

. . . .

. . . .





, A1
αβ =





V1 . ̺0c2
0
.

. . . .
1
̺0

V0 V1 V2

. . . .





, A2
αβ =





V2 . . ̺0c2
0

. . . .

. . . .
1
̺0

V0 V1 V2





. (11)

Multiplication of Eq. (10) with a test function ϕ(xk) yields

∂tϕuα + (ϕF
j
α), j − ϕ, jF j

α − ϕsα = 0. (12)

Integration over a volume V gives then a weak form of the APE

∂t

∫

V

dV ϕuα +

∫

V

dV (ϕF
j
α), j −

∫

V

dV ϕ, jF
j
α −

∫

V

dV ϕsα = 0. (13)

Using the Gaussian theorem the second volume integral in Eq. (13) can be transformed in an integral over the surface

of V

∂t

∫

V

dV ϕuα +

∫

∂V

dA ϕF
j
αn j −

∫

V

dV ϕ, jF
j
α −

∫

V

dV ϕsα = 0 (14)

16 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

where n j is the outer unit normal of the volume and dA a surface element. One has

F
j
αn j = A

j

αβ
n juβ (15)

and it is convenient to introduce the matrix Dαβ by

Dαβ ≡ A
j

αβ
n j =





V jn j ̺0c2
0
n0 ̺0c2

0
n1 ̺0c2

0
n2

n0

̺0
V0n0 V1n0 V2n0

n1

̺0
V0n1 V1n1 V2n1

n2

̺0
V0n2 V1n2 V2n2





. (16)

The weak form, Eq. (14), now becomes

∂t

∫

V

dV ϕuα +

∫

∂V

dA ϕDαβuβ −
∫

V

dV ϕ, jA
j

αβ
uβ −

∫

V

dV ϕsα = 0. (17)

Now one chooses V to be the volume of a computational cell and select a set of Lagrangian collocation points xm

i
as

well as Lagrange functions Φn(xi) with (Fraktur letters denote collocation point indices on computational cells)

Φn(xm

i) = δmn. (18)

The Lagrange functions for a ’cubic’ tetrahedron, i. e. a tetrahedron with 20 collocation points, can be found in [4].

The Galerkin ansatz now reads

uα(xk, t) =
∑

n

un

α(t)Φn(xk), sα(xk, t) =
∑

n

sn

α(t)Φn(xk),

Dαβuβ =
∑

n

Dn

αβu
n

β (t)Φn(xk), A
j

αβ
uβ =

∑

n

A
jn

αβ
un

β (t)Φn(xk).

(19)

(20)

As set of test functions one can choose ϕ = Φm. Before the surface integral is analysed the so-called ’mass’ matrix

M̃mn and ’stiffness’ matrix K̃
j
mn are defined by the volume integrals

M̃mn ≡
∫

V

dV ΦmΦn, K̃
j
mn ≡

∫

V

dV Φm, jΦn, (21)

and one obtains
∑

n

M̃mnu̇n

α +

∫

∂V

dA ϕDαβuβ −
∑

n

K̃
j
mnA

jn

αβ
un

β −
∑

n

M̃mnsn

α = 0. (22)

Now the integral over the surface of the cell is analysed. It is assumed that the cell is bounded by plane faces Ap and

one can split the surface integral in a sum over the faces

∫

∂V

dA ϕDαβuβ =
∑

p

∑

n∈{np}
D

pn

αβ
un

β

∫

Ap

dA ΦmΦn. (23)

The face index p is added to D
pn

αβ
because Dαβ depends explicitly on the normal n j of the face. The surface integral is

abbreviated by

G̃
p
mn ≡

∫

Ap

dA ΦmΦn. (24)

The weak formulation Eq. (14) now becomes

∑

n

M̃mnu̇n

α +

∑

p

∑

n∈{np}
G̃

p
mnD

pn

αβ
un

β −
∑

n

K̃
j
mnA

jn

αβ
un

β −
∑

n

M̃mnsn

α = 0. (25)

Multiplication with the inverse of the mass matrix M̃−1
lm

yields a formulation suitable to be fed into a Runge-Kutta

procedure

u̇l

α +

∑

p

∑

n∈{np}

∑

m

M̃−1
lm

G̃
p
mnD

pn

αβ
un

β −
∑

n

∑

m

M̃−1
lm

K̃
j
mnA

jn

αβ
un

β − sl

α = 0. (26)

17 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

As last step before specifiying the fluxes one can combine the matrices

G
p

ln
≡

∑

m

M̃−1
lm

G̃
p
mn, K

j

ln
≡

∑

m

M̃−1
lm

K̃
j
mn, (27)

and obtains

u̇l

α +

∑

p

∑

n∈{np}
G

p

ln
D

pn

αβ
un

β −
∑

n

K
j

ln
A

jn

αβ
un

β − sl

α = 0. (28)

Assuming a ’cubic’ tetrahedron with 20 collocation points and writing down explicitly the sums over β and j gives the

form used in Eq. (3)

u̇l

α +

3∑

p=0

∑

n∈{np}
G

p

ln

3∑

β=0

D
pn

αβ
un

β −
19∑

n=0

2∑

j=0

K
j

ln

3∑

β=0

A
jn

αβ
un

β − sl

α = 0. (29)

Now, one considers a point n on a face p and replaces the flux vector F
pn

α ≡ D
pn

αβ
un

β
there by an appropriate upwind flux.

This is the essential step for the DG coupling of neighbor cells. To start with, one can use so-called Steger-Warming

fluxes (cf. [16], [1])

F
pn

α =

[

H+αβu
+

β + H−αβu
−
β

]pn

(30)

where the

H±αβ ≡
1

2

[

Dαβ ± |Dαβ|
]

(31)

are a kind of upwind flux matrices. u+
β

denotes the variable values on the back side of Ap, i. e., the values of the cell out

of which the face normal points, and u−
β

the values on the front side of Ap, i. e., the values on the face of the adjacent

cell. The explicit form of H±
αβ

is derived in the next section.

B. Determination of the Upwind Fluxes

In order to derive the explicit form of the upwind flux matrix H±
αβ

, a special coordinate system is chosen were the face

normal points into x-direction. The flux matrix Dαβ is written in symbolic notationd

D =

(

vT

0
n ̺0c2

0
nT

n
̺0

nvT

0

)

(32)

where n denotes the face normal. In order to rotate the face normal n into the x-axis ex = (1, 0, 0)
T

, a rotation matrix

A with n = Aex is constructed. In spherical coordinates the face normal n and a vector ay, orthonormal to n, is given

by

n =





cosϕ sinϑ

sinϕ sinϑ

cosϑ




, ay =





− sinϕ

cosϕ

0




, if sinϑ 6= 0, or ay =





0

1

0




otherwise. (33)

The third vector ax of the tripod is then obtained by the vector product ax = ay × n. Then, the columns of matrix A

are the column vectors (n, ax, ay). The inverse of A is its transposed A−1
= AT. Thus, one obtains for the rotated face

normal ñ

ñ = AT n =





n
T

a
T

x

a
T

y





n =





1

0

0




= ex. (34)

Introduction of rotated vectors ñ, ṽ0 by

n = Añ, v0 = Aṽ0, (35)

d In symbolic notation the scalar product is the product of a row and a column vector, i. e., e. g. n2
= nTn. The product of a column and a row

vector is a matrix

nvT
=





n0v0 n0v1 n0v2

n1v0 n1v1 n1v2

n2v0 n2v1 n2v2




.

18 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

and substitution into the flux matrix Eq. (32) yields

D =

(

ṽT

0 AT Añ ̺0c2
0
ñT AT

A ñ
̺0

AñṽT

0 AT

)

=

(

ṽT

0 ñ ̺0c2
0
ñT AT

A ñ
̺0

AñṽT

0 AT

)

=

(

1 .

. A

) (

ṽT

0 ñ ̺0c2
0
ñT

ñ
̺0

ñṽT

0

)

︸ ︷︷ ︸

≡D̃

(

1 .

. AT

)

. (36)

Considering that ñ = ex and writing for the mean flow velocity ṽ0 = (U,V,W)T the rotated flux matrix D̃ becomes

D̃ =

(

ṽT

0 ñ ̺0c2
0
ñT

ñ
̺0

ñṽT

0

)

=





U c2
0
̺0 . .

1
̺0

U V W

. . . .

. . . .





. (37)

The Steger-Warming upwind fluxes (cf. [16], [1]) are now introduced by the similarity transform D̃ = RΛR−1 using

the matrices of the eigenvalues Λ and right eigenvectors R of D

R =
1
√

2





1 1 1 .
−1

c0̺0

1
c0̺0

−U

c2
0
̺0

.

. . . 1

. .
U2−c2

0

c2
0
̺0W

−V
W





, Λ =





U − c0 . . .

. U + c0 . .

. . . .

. . . .





, R−1
=

1
√

2





1 −c0̺0
−c0̺0V

U−c0

−c0̺0W

U−c0

1 c0̺0
c0̺0V

U+c0

c0̺0W

U+c0

. .
2c2

0
̺0V

U2−c2

2c2
0
̺0W

U2−c2

. . 2 .





. (38)

The similarity transform was performed using the Maxima computer algebra systeme. The upwind flux matrices then

become

H̃
− ≡ D̃ − |D̃|

2
= R
Λ − |Λ|

2
R−1, H̃

+ ≡ D̃ + |D̃|
2

= R
Λ + |Λ|

2
R−1. (39)

In the subsonic case, it is U < c0 and one obtains

Λ − |Λ|
2

=





U − c0 . . .

. . . .

. . . .

. . . .





,
Λ + |Λ|

2
=





. . . .

. U + c0 . .

. . . .

. . . .





. (40)

Substitution in Eq. (39) yields

H̃
±
=

1

2





U ± c0 ±c0̺0(U ± c0) ±c0̺0V ±c0̺0W

±U±c0

c0̺0
U ± c0 V W

. . . .

. . . .





. (41)

Finally, the upwind flux vector F̃up = H̃
+

ũ+ + H̃
−
ũ− becomes

F̃up =
1

2





U(p− + p+) + c2
0
̺0(u− + u+)

p−+p+

̺0
+ U(u− + u+) + V(v− + v+) +W(w− + w+)

.

.





−

− c0

2





(p− − p+) + ̺0 (U(u− − u+) + V(v− − v+) +W(w− − w+))

(u− − u+) + U

c2
0
̺0

(p− − p+)

.

.





(42)

The face normal vector points outside of the cell volume. Thus, the ũ+ = (p+, u+, v+,w+)T denotes the variable vector

on the back side of the face, i. e. inside of the cell volume, and ũ− = (p−, u−, v−,w−)T are the values outside of the

cell, i. e. at the front side of face.

e Maxima computer algebra system: http://maxima.sourceforge.net

19 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

http://maxima.sourceforge.net

C. DLR CASE-Cluster

The calculations were performed on the CASE cluster of the DLR Institute of Aerodynamics and Flow Technology

in Braunschweig. The cluster consists of 560 compute nodes with two Intel Xeon E5-2695V2 processors (IvyBridge

architecture) and 128 GB RAM each. Each processor has a base frequency of 2.4 GHz, 12 cores, and 30 MB level 3

(L3) cache. Without oversubscription and Hyper-Threading 24 cores can be used on each each node.

References

[1] Bauer, M., “Airframe noise prediction using a discontinuous Galerkin method,” Forschungsbericht 2011-11, Deutsches Zen-

trum für Luft- und Raumfahrt, Institut für Aerodynamik und Strömungstechnik, 2011.

[2] Atkins, H. L. and Shu, C.-W., “Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations,”

AIAA journal, Vol. 36, No. 5, 1998, pp. 775–782.

[3] Tam, C. K. W. and Webb, J. C., “Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics,”

Journal of Computational Physics, Vol. 107, 1993, pp. 262–281.

[4] Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z., The Finite Element Method: Its Basis and Fundamentals, Butterworth-

Heinemann, Oxford, 2005.

[5] Delfs, J., Bauer, M., Ewert, R., Grogger, H., Lummer, M., and Lauke, T., “Numerical Simulation of Aerodynamic Noise with

DLRs aeroacoustic code PIANO,” Tech. rep., Deutsches Zentrum für Luft-und Raumfahrt eV, Institut für Aerodynamik und

Strömungstechnik, 2008.

[6] Ewert, R., Dierke, J., Siebert, J., Neifeld, A., Appel, C., Siefert, M., and Kornow, O., “CAA broadband noise prediction for

aeroacoustic design,” Journal of Sound and Vibration, Vol. 330, 2011, pp. 4139–4160.

[7] Dierke, J., Ewert, R., Chappuis, J., Lidoine, S., and J, R., “Influence of realistic 3D viscous mean flow on shielding of

engine-fain noise by a 3-element high-lift wing,” Tech. Rep. AIAA-2010-3917, 16th AIAA/CEAS Aeroacoustics Conference,

Stockholm, Sweden, June 7–9, 2010.

[8] Dierke, J., Appel, C., Siebert, J., Bauer, M., Siefert, M., and Ewert, R., “3D Computation of Broadband Slat Noise from

Swept and Unswept High-Lift Wing Sections,” Tech. Rep. AIAA-2011-2905, 17th AIAA/CEAS Aeroacoustics Conference,

Portland, Oregon, USA, June 05–08, 2011, http://elib.dlr.de/73668/.

[9] Neifeld, A. and Ewert, R., “On the Contribution of Higher Azimuthal Modes to the Near- and Far-Field of Jet Mixing Noise,”

Tech. Rep. AIAA-2012-2114, 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, Colorado, USA, June 04–06,

2012.

[10] Bauer, M., Dierke, J., and Ewert, R., “Application of a discontinuous Galerkin method to discretize acoustic perturbation

equations,” AIAA journal, Vol. 49, No. 5, 2011, pp. 898–908.

[11] Bauer, M., Dierke, J., and Ewert, R., “On the performance of airframe noise prediction on unstructured grids,” Tech. Rep.

AIAA-2012-2148, 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, Colorado, USA, June 04–06, 2012.

[12] Birkefeld, A., Computational Aeroacoustics with a High Order Discontinuous Galerkin Scheme, Ph.D. thesis, Technische

Universität Stuttgart, October 2012, http://elib.uni-stuttgart.de/opus/volltexte/2013/7976/.

[13] Ewert, R. and Schröder, W., “Acoustic Perturbation Equations based on Flow Decomposition via Source Filtering,” Journal

of Computational Physics, Vol. 188, 2003, pp. 365–398.

[14] Geuzaine, C. and Remacle, J.-F., “Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities,”

International Journal for Numerical Methods in Engineering, Vol. 79, No. 11, 2009, pp. 1309–1331.

[15] Karypis, G. and Kumar, V., “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM Journal on

Scientific Computing, Vol. 20, No. 1, 1999, pp. 359–392.

[16] Steger, J. L. and Warming, R. F., “Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-

Difference Methods,” Journal of Computational Physics, Vol. 40, 1981, pp. 263–293.

[17] Sarfaraz, M. S., Interpolation of mean flow fields between unstructered CFD and CAA grids, Master’s thesis, Technische

Universität Braunschweig, April 2014.

[18] Isotton, A., “C++ dlopen mini HOWTO,” Tech. rep., 2006, http://www.tldp.org/HOWTO/C++-dlopen/index.

html.

[19] Veldhuizen, T., “Scientific computing: C++ versus Fortran,” DOCTOR DOBBS JOURNAL, Vol. 22, 1997, pp. 34–41.

[20] Veldhuizen, T. L. and Jernigan, M. E., “Will C++ be faster than Fortran?” Scientific Computing in Object-Oriented Parallel

Environments, Springer, 1997, pp. 49–56.

[21] Veldhuizen, T. L., “Arrays in blitz++,” Computing in object-oriented parallel environments, Springer, 1998, pp. 223–230.

[22] Veldhuizen, T., “Blitz++,” Tech. rep., 2012, https://sourceforge.net/projects/blitz/files.

[23] Meyer, P. S., Axisymmetric Acoustic Scattering by Interpolation, master thesis, Courant Institute of Mathematical Sciences,

May 2001, http://phe.rockefeller.edu/perrin/psm_masters.pdf.

[24] Delfs, J., “Grundlagen der Aeroakustik (Basics of Aeroacoustics),” 2014, http://www.dlr.de/as/en/

desktopdefault.aspx/tabid-191/401_read-22566/.

20 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 M

ar
ku

s
L

um
m

er
 o

n
D

ec
em

be
r

21
, 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
27

19

http://elib.dlr.de/73668/
http://elib.uni-stuttgart.de/opus/volltexte/2013/7976/
http://www.tldp.org/HOWTO/C++-dlopen/index.html
http://www.tldp.org/HOWTO/C++-dlopen/index.html
https://sourceforge.net/projects/blitz/files
http://phe.rockefeller.edu/perrin/psm_masters.pdf
http://www.dlr.de/as/en/desktopdefault.aspx/tabid-191/401_read-22566/
http://www.dlr.de/as/en/desktopdefault.aspx/tabid-191/401_read-22566/

	 Introduction
	 Governing Equations
	 Boundary Conditions
	 Hybrid Approach
	 Time Integration
	 Implementation
	Unstructured Mesh
	Cartesian Grid Blocks

	 Monopole Scattering Test Case
	 Numerical Accuracy
	 Numerical Efficiency
	 Summary and Outlook
	Galerkin Approximation of the Acoustic Perturbation Equations
	Determination of the Upwind Fluxes
	DLR CASE-Cluster
	References

