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Abstract

In this doctoral dissertation I focus on the problem of classification of
incomplete data. The motivation for the research comes from medicine,
where missing data phenomena are commonly encountered. The most
popular method of dealing with data missingness is imputation; that
is, inserting missing data on the basis of statistical relationships among
features. In my research I choose a different strategy for dealing with
this issue. Classifiers of a type previously developed can be transformed
to a form which returns an interval of possible predictions. In the next
step, with the use of aggregation operators and thresholding methods,
one can make a final classification. I show how to make such transforma-
tions of classifiers and how to use aggregation strategies for interval data
classification. These methods improve the quality of the process of clas-
sification of incomplete data in the problem of ovarian tumour diagnosis.
Additional analysis carried out on external datasets from the University
of California, Irvine (UCI) Machine Learning Repository shows that the
aforementioned methods are complementary to imputation.





Streszczenie

W niniejszej pracy doktorskiej zająłem się problemem klasyfikacji da-
nych niekompletnych. Motywacja do podjęcia badań ma swoje źródło
w medycynie, gdzie bardzo często występuje zjawisko braku danych. Naj-
popularniejszą metodą radzenia sobie z tym problemem jest imputacja
danych, będąca uzupełnieniem brakujących wartości na podstawie staty-
stycznych zależności między cechami. W moich badaniach przyjąłem inną
strategię rozwiązania tego problemu. Wykorzystując opracowane wcze-
śniej klasyfikatory można przekształcić je do formy, która zwraca prze-
dział możliwych predykcji. Następnie, poprzez zastosowanie operatorów
agregacji oraz metod progowania, można dokonać finalnej klasyfikacji.
W niniejszej pracy pokazuję jak dokonać ww. przekształcenia klasyfika-
torów oraz jak wykorzystać strategie agregacji danych przedziałowych
do klasyfikacji. Opracowane przeze mnie metody podnoszą jakość kla-
syfikacji danych niekompletnych w problemie wspomagania diagnostyki
guzów jajnika. Dodatkowa analiza wyników na zewnętrznych zbiorach da-
nych z repozytorium uczenia maszynowego Uniwersytetu Kalifornijskiego
w Irvine (UCI) wskazuje, że przedstawione metody są komplementarne
z imputacją.
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1 Introduction

In this thesis I elaborate on a problem of importance in medicine. This
work is a result of collaboration with specialists from the Division of Gy-
naecological Surgery, Poznan University of Medical Sciences. The main
goal was to support physicians in the process of prediction of ovarian
tumour malignancy. Recent statistics show that the mortality rate is still
alarming in some member states of the European Union, as shown in Fig-
ure 1.1. The latest statistics from the United States show that ovarian
cancer is among the top five leading types of cancer deaths [1].

One of the issues that can delay effective medical treatment is a
shortage of experienced gynaecologists. In general, years of experience
are necessary to become a professional who is able to correctly detect
and classify tumours in their early stages. For this reason, it is desirable
to equip inexperienced physicians with an effective preoperative model.
In recent years, two possible approaches have emerged. Their aim is to
approximate the model of subjective assessment [4]. In the first approach,
through scoring systems, points are assigned for the presence of certain
features in a patient. If the sum of the assigned points exceeds a threshold,
this is taken to indicate malignancy of the tumour. This approach, due
to its simplicity and effectiveness, has resulted in a wide range of such
models [5]–[7].

The second approach exploits more sophisticated mathematical
models. The basic concept utilises rule-based systems through simple
schemes of reasoning [8] and rough sets [9]. Recent developments in the
field of machine learning have led to the construction of new models, from
logistic regression [10]–[12], through artificial neural networks [13], [14],
support vector machines and Bayesian networks [15], [16], to neuro-fuzzy
networks [17].
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Figure 1.1: Ovarian tumour mortality rates in the European Union and
selected member states between 2005 and 2013. The age-standardised
rate (world) is expressed per 100 000 persons at risk. Source: [2], [3].

There are also approaches that take benefits from the two aforemen-
tioned solutions. The risk malignancy index model (RMI) combines a
scoring system with a formal mathematical model [18], whereas the Gy-
necologic Imaging Report and Data System (GI-RADS) is a rule-based
scoring system [19].

Notably, the medical community has recently made additional ef-
forts to establish a discrimination algorithm on the basis of ultrasound
images [20]–[22]. Although the accuracy of this approach is reasonably
high, problems currently arise in connection with the sample size and
variability of tumours. Nevertheless, image-based solutions show great
future promise due to the emergent development of deep learning algo-
rithms.

Such a variety of models has resulted in different levels of classi-
fication performance and different sets of considered features [23]. The
general characteristics of the models can also be particularised. Some of
them have a tendency to be more likely to classify tumours as benign
(liberal models) and some to classify them as malignant (conservative
models).
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Another problem with the models is that they assume a complete
and reliable set of input features. This is in contradiction with the phe-
nomenon of data uncertainty in medicine [24]. Missing values might result
from the health status of a patient, making a particular examination im-
possible to process, from the financial costs of an examination, or from
the fact that an institution is not equipped with the necessary medical
devices. These and related circumstances should be taken into account
when a prediction model is being constructed.

In many real-life problems one can handle missing data through the
process of imputation, that is inserting values on the basis of statistical
relations among features. Although such an approach might be reasonable
in general when applied to a whole dataset, it is a hazardous methodology
when applied to particular cases. This matter has recently been raised
and discussed in the medical community [25]. Moreover, there is par-
ticular interest in the availability of a simple-to-apply method designed
for non-expert practitioners [26]. Hence, there is a need to develop new
classification methods that do not rely on imputation in case of missing
data. Another motivating factor is the fact that, despite recent rapid de-
velopment in artificial intelligence and machine learning, physicians still
diagnose illnesses correctly twice as often as computer algorithms [27].

In this research I focus on a sub-field of supervised learning, namely
the binary classification of incomplete data. In particular, I search for
non-imputation methods designed for the classification of incomplete
data. I shall demonstrate that the aggregation of interval data enables
a reduction in the impact of information incompleteness on the quality
of classification in the problem of ovarian tumour differentiation. The
research is focused on real-world applications; thus, we can assume the
finiteness of the domains of features and other numerical subsets.

The main research objective is to develop a new procedure for en-
semble classification of incomplete data. More specifically, in this thesis I:

• develop algorithms for the uncertaintification of classifiers, so that
they return an interval of possible predictions in case of missing
data;

• describe an original method of aggregation and thresholding of a
set of interval decisions;
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• evaluate the proposed solution in the problem of supporting ovarian
tumour diagnosis;

• evaluate the proposed solution on commonly used machine learning
datasets.

The work has the following structure. In Chapter 2 I describe ba-
sic definitions used throughout the document. In Chapter 3 I propose
an original method for transforming classifiers to uncertaintified form,
and I describe how to aggregate and make decisions based upon interval
predictions. Normally, through imputation we check the performance of
the classification process when we complete the dataset. A more inter-
esting case is the investigation of classifiers when we remove even more
data; this is the topic of the next two chapters. In Chapter 4 I assess
the proposed methodology in the context of supporting ovarian tumour
diagnosis. In Chapter 5 I evaluate the methodology on UCI repository
datasets. Finally, in Chapter 6 I summarise the results and conclusions
relating to the developed methods.

In the appendices I list the aggregation operators used (Ap-
pendix A), thresholding strategies (Appendix B), complexity analysis
of the developed algorithms (Appendix C) and detailed results for eval-
uation on UCI repository datasets (Appendix D).

Finally, this thesis expands on material reported in previous articles
that I have published in collaboration with members of the faculty and
medical project. The article [28] focuses on the imprecision of data ob-
tained by a gynaecologist during examinations. The article [29] describes
a medical dataset and performance results of common ovarian tumour
classifiers. The algorithms for decision-making in case of data incom-
pleteness are elaborated in [30]–[32] – the results from those papers are
contained in Chapter 3. Since the research is focused on medical appli-
cations, an overview of the implemented OvaExpert system appears in
[33]–[35]. Additional approaches to medical classification using similarity
measures and cardinality can be found in [35], [36] respectively.



2 Basic definitions

In this chapter I would like to give definitions and explanations of math-
ematical terms and algorithms used throughout the dissertation. Some
of them are illustrated by examples. The following definitions relate to
data mining, machine learning and imputation. The definitions given are
based on the state-of-art literature related to data mining [37], statistical
learning [38]–[41], performance evaluation [42] and imputation [43].

2.1 Elements of a dataset

Let us define some essential concepts related to sets of data.

An instance is a vector x = (x1, . . . , xn) such that xi ∈ Xi. An
element xi of the instance x is called an attribute (or a feature) and
n is a number of attributes that describe the instance.

An instance is an input vector to a classification algorithm. The
domain Xi of the attribute can be either numeric or categorical.1 In
the former case, the domain is either a closed interval [a, b] of real numbers
(Xi ⊂ R) or a finite subset of integers (Xi ⊂ Z); notably, minXi and
maxXi exist. In the latter case, values of an attribute are pre-specified
by a finite set of possibilities (e.g. Xi = {“a”, “b”, . . . , “z”}).

A domain of an instance is defined as X = X1 × . . .×Xn.

A class is an outcome value y ∈ Y associated with an instance
x. Throughout this work we consider only a binary classification, hence
Y = {y1, y2}, where the yi’s are pre-specified by a finite set of possibilities.

1Although in the literature there are more levels of distinction of attributes, in
most practical cases of machine learning problems this division is sufficient [see 37,
chapter 2].



6 2. Basic definitions

A dataset is a collection D of instances associated with classes. The
number of instances in the dataset D is denoted as |D|.

Example 2.1. An excerpt from a dataset describing quality of wine
([see 44], [45]) is contained in Table 2.1.

Table 2.1: Excerpt from wine quality dataset

No. pH alcohol free sulphur dioxide colour quality
1 3.25 9.0 54 white bad
2 2.82 13.2 14 white good
3 3.36 10.1 4 red bad
4 3.03 10.2 19 white bad
· · · · · · · · · · · · · · · · · ·

6497 3.29 10.1 12 red good

Three attributes are numeric:

1. pH (X1),

2. alcohol (X2),

3. free sulphur dioxide (X3).

One feature – colour (X4) – is categorical. The classes – quality – are
denoted by Y . The domain of the features and the class variables are the
following:

X1 = [2.72, 4.2] ,

X2 = [8.0, 14.9] ,

X3 = [1, 289] ,

X4 = {“red”, “white”} ,

Y = {“good”, “bad”} .

The number of instances |D| is equal to 6497.

2.2 Classification models

Let us define functions that can operate on instances from a dataset.
More specifically, we need functions that can predict a class for a given
set of features.
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A scoring function is a function f such that f : X → R.

A classification model (or a classifier) is a function g such that
g : X → Y with a threshold (or cutoff) θ ∈ R, such that

g(x) =

y1, if f(x) > θ

y2, otherwise
.

The function g has a construction such that, firstly, it returns a raw
prediction f(x), which can be interpreted as a score, probability or possi-
bility of belonging to a class; and secondly, with the use of some threshold
value it assigns one of two possible classes. In practice, a classifier can
output raw predictions from the unit interval [0, 1]. Note that a classifier
does not have to use all of the attributes in the prediction process.

The following definitions give classic examples of classification mod-
els.

2.2.1 Scoring system

A scoring function of a scoring system is a function f sco such that

f sco(x) =
n∑
i=1

qi(xi) ,

where qi : Xi → Qi ⊂ N0, minQi and maxQi exist.

The interpretation of the function qi is that it assigns some amount
of points for the value of an attribute xi. A common case is when the qi’s
are defined as m step functions that assign non-negative points, i.e.

qi(xi) =
m∑
j=1

γjsj(xi) ,

sj(xi) =

1, if xi ∈ Sj
0, otherwise

,

where the γj’s are non-negative points given for the value of xi, the sj’s
are step functions, and the Sj’s are domains of the step functions for
giving specific points, where ⋃mj=1 Sj = Xi, Sj ∩ Sk = ∅ for j 6= k.
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Observe that f sco : X → [0,∑n
i=1 maxQi] for the aforementioned

assumptions on the functions qi.

A scoring system is a function gsco with a threshold θsco ∈ R
such that

gsco(x) =

y1, if f sco(x) > θsco

y2, otherwise
.

Example 2.2. Let us define the following scoring system:

g1(x) =

“good”, if f1(x) > θ1

“bad”, otherwise
,

where θ1 = 3 and f1 is given as a set of rules representing decreasing step
functions (see Table 2.2).

Table 2.2: Rules of the example scoring system

Feature Range Points

pH
[2.72, 3.0) 0
[3.0, 3.7) 1
[3.7, 4.2] 2

alcohol [8.0, 9.0) 0
[9.0, 14.9) 1

free sulphur
dioxide

[1, 20) 3
[20, 90) 2
[90, 289] 0

Suppose we have an instance x1 = (2.9, 9.5, 15), where the elements
of the vector correspond respectively to the pH, alcohol and free sulphur
dioxide attributes. Then we have

f1(x1) = 4 > θ1, thus, g1(x1) = “good” .

The instance x1 is classified as good wine.

Example 2.3. Given the rapid development of machine learning tech-
niques, one may wonder whether scoring systems are still relevant and
useful. Undoubtedly, their power lies in their computational simplicity
and acceptable level of effectiveness. Banking institutions use this ap-
proach to estimate customer credit ratings, but the exact formulae used
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are not publicly available. A scoring system with a known formula that
is extensively used on a daily basis is the Polish government system of
profiling support for the unemployed [46]. A respondent answers 24 ques-
tions and the system assigns points (from 0 to 10) for each answer. The
sum of the points indicates one of three possible profiling support groups,
i.e. what kind of support the employment agency ought to provide to the
unemployed person.

2.2.2 Logistic regression

A scoring function of a logistic regression is a function
f lgr : X → (0, 1) such that

f lgr(x) = 1
1 + exp(−uv) ,

where

u = (u0, u1, . . . , un) ,

v = (1, x1, . . . , xn)T ,

v is a parameter vector, u is a weight vector and u,v ∈ Rn+1.

A logistic regression is a function glgr with a threshold θlgr ∈ (0, 1)
such that

glgr(x) =

y1, if f lgr(x) > θlgr

y2, otherwise
.

Example 2.4. Let us define the following logistic regression:

g2(x) =

“good”, if f2(x) > θ2

“bad”, otherwise
,

where f2 is given as the function f lgr,

u = (−8.6,−0.33, 0.85,−0.06) ,

v = (1, x1, x2, x3)T ,
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x1, x2 and x3 denote values of pH, alcohol and free sulphur dioxide re-
spectively, and θ2 = 0.6.

For the instance x1 from Example 2.2 we have

f2(x1) ≈ 0.08 < θ2, thus, g2(x1) = “bad” .

The instance is classified as bad wine.

2.2.3 Classification tree

Let us define a binary tree (T,E) with t ∈ T nodes, the set of edges E
and height ρ. Leaves determine membership of a class, all non-leaves are
splitting rules, and all nodes except for the root have assigned probabil-
ities of belonging to the classes y1 and y2.

A scoring function of a classification tree is a function
f tree : X → [0, 1] in the following form: given a binary tree (T,E) and
instance x, start from the root and go down to the leaves according to
the splitting rules and values of attributes; when a terminal node (leaf)
is reached, return a probability of belonging to the class y2.

A classification tree is a function gtree with a threshold
θtree ∈ (0, 1) such that

gtree(x) =

y1, if f tree(x) > θtree

y2, otherwise
.

Note that θtree is typically equal to 0.5.

Example 2.5. Let us define the following classification tree:

g3(x) =

“good”, if f3(x) > θ3

“bad”, otherwise
,

where θ3 = 0.5 and f3 is given as the binary tree depicted in Figure 2.1.
For the instance x1 from Example 2.2 we have

f3(x1) = 0.82 > θ3, thus, g3(x1) = “good” .

The instance is classified as good wine.
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True False

pH > 3.0?

Prob.(“good”)=0.79

Prob.(“good”)=0.07 Prob.(“good”)=0.82

alcohol > 10.2?

Prob.(“good”)=0.4

True False

Figure 2.1: Example classification tree

2.2.4 Ensemble of classifiers

An ensemble classification model (or an ensemble classifier) is a
function h with a threshold θens ∈ R, such that

h(x) =

y1, if f0 (f1(x), . . . , fn(x)) > θens

y2, otherwise
.

We assume that an ensemble classifier uses a collection of scoring func-
tions. However, in many practical solutions a function fi can be replaced
with a corresponding gi (i ≥ 1). In consequence, g0 may be, for example,
a simple majority vote.

Example 2.6. Let us consider the scoring functions f1, f2 and f3 defined
in Examples 2.2, 2.4 and 2.5 respectively. We define an ensemble classifier
with θ0 = 0.5, such that

h0(x) =

“good”, if f0 (f1(x), f2(x), f3(x)) > θ0

“bad”, otherwise
,

f0(a, b, c) =
a/6 + b+ c

3 .
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For the instance x1 from Example 2.2 we have

f0(x1) ≈ 0.67 + 0.08 + 0.82
3 ≈ 0.52 > θ0, thus, h0(x1) = “good” .

The instance is classified as good wine.

2.3 Performance measures

Let us define a binary confusion matrix of a classifier g on a dataset D.
With Table 2.3, one can calculate performance measures of a classifier.

Table 2.3: Binary confusion matrix

Predicted class of x
y1 y2

Actual class of x y1 True negative (tn) False positive (fp)
y2 False negative (fn) True positive (tp)

The most common measures are accuracy (Acc) and two metrics
with a single-class focus, sensitivity (Sen) and specificity (Spe):

Acc = #tp + #tn
#tp + #tn + #fp + #fn ,

Sen = #tp
#tp + #fn ,

Spe = #tn
#tn + #fp .

Along with the three metrics, let us define an additional performance
measure, decisiveness (Dec):

Dec = #instances in D for which g is able to predict classes
total #instances in D .

A cost matrix is a numerical matrix where each value corresponds
with the confusion matrix and reflects a reward or loss for a particular
classifier decision. Use of the cost matrix might be useful when different
misclassification types have imbalanced importance or weight.

Example 2.7. Table 2.4 shows an example cost matrix. True positives
and true negatives have no reward, false positives have a cost of 2, and
a false negative has a cost of 5.
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Table 2.4: Example cost matrix

Predicted class of x
y1 y2

Actual class of x y1 0 2
y2 5 0

2.4 Error estimation methods

In the process of learning of the classifier on a large dataset, one may use
a traditional dataset division into training-test or training-validation-test
sets. However, in many situations the available dataset is not large. In
this case, with a desired performance measure Perf, the k-fold cross-
validation algorithm can be used – a descriptive listing of steps is given
in Algorithm 2.1.

Another problem arises when the distribution of classes is imbal-
anced. In this case a stratified k-fold cross-validation algorithm can
be applied, as described in Algorithm 2.2. In this version the folds pre-
serve the approximate global distribution of classes.

In a practical case one may wish to choose one model from a set
of possible models. A model selection procedure can be combined with
cross-validation into nested k-fold cross-validation. The algorithm
is described in Algorithm 2.3. Notice that in this procedure the k-fold
cross-validation can be replaced with a stratified version.

Algorithm 2.1: k-fold cross-validation

1 Divide D of size of m instances into k non-overlapping subsets
Di of approximate size m

k
.

2 For each fold i ∈ {1, . . . , k}:
3 Dtrain = D \Di.
4 Dtest = Di.
5 Train classifier gi on Dtrain.
6 Obtain performance measure Perfi of gi achieved on Dtest.
7 Report average performance measure across folds, i.e.

1
k

∑k
i=1 Perfi.

8 Learn classifier g on D.
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Algorithm 2.2: Stratified k-fold cross-validation

1 Divide D into two datasets each containing only one class, i.e.
Dy1 and Dy2 .

2 Generate k non-overlapping subsets Di
y1 and Di

y2 with
approximately the same number of instances of each class in all
k subsets.

3 Merge consecutive subsets of Di
y1 and Di

y2 , in order to obtain k
subsets reflecting the original class distribution.

4 Perform k-fold cross-validation on these k subsets.

Algorithm 2.3: Nested k-fold cross-validation

1 Divide D into k folds Di.
2 For each fold i ∈ {1, . . . , k}:
3 Divide D \Di into k folds Dj

4 Perform model selection of gi on the folds Dj using k-fold
cross-validation.

5 Learn gi on D \Di.
6 Obtain performance measure Perfi of gi achieved on Di.
7 Report average performance measure across folds, i.e.

1
k

∑k
i=1 Perfi.

8 Perform model selection of g on the folds of D using k-fold
cross-validation.

9 Learn classifier g on D.

2.5 Imputation

In many cases the instances may have some missing attributes. Reasons
for this anomaly may relate to, for example, malfunction of a measuring
device, corruption of a storage device, human error in data input, etc.
In practical applications a missing value is commonly denoted by the
symbol NA. As a consequence, an attribute xi has the extended domain
Xi ∪ {NA}.

In case of missing data, a conventional classifier is often unable to
make a prediction. Naturally, one can avoid this problem by choosing
a classifier with an embedded method of handling missing data, e.g. a
binary classification tree where nodes also check whether an attribute
is available. Unfortunately, this is not always applicable in real-world
problems; moreover, end users often naively assume that all attributes
will be complete in the future.
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For this reason, several methods of dealing with missing data have
been developed in recent years. An extensive overview of statistical data
editing and imputation can be found in [43]. The simplest and most
straightforward method of dealing with missing data might be case-wise
deletion of instances with missing values from the dataset, but in this case
the data loss may be too great to be acceptable. A different approach
may involve inserting a median or mode of the attribute, but this is too
naive when relations among attributes are complex. The most practical
approach to imputation is through random forests [47] and multivariate
imputation by chained equations [48]. An imputation method will be
denoted by Imp throughout this dissertation.





3 Interval classification
procedure

In the previous chapter I defined basic terms and definitions relating
to datasets and classifiers. Normally, if an instance has missing values,
one can handle this problem using either imputation or a special form of
classifier with a native capability of dealing with missing values. However,
this is not the case in the medical problem being considered here. In this
chapter I present a novel method of dealing with this problem. A general
outline of the procedure was published in [32].

3.1 Interval modelling

In order to handle missing data for an attribute, the domain of the at-
tribute must be extended by the element NA. That is, x = (x1, . . . , xn)
where xi ∈ Xi∪{NA}. This standard approach has two major drawbacks.
Firstly, a new separate value must be introduced to represent missing
data. Secondly, often such a value cannot be handled by classical classi-
fiers, which leads to inability to make any prediction. However, this issue
may be modelled in a different way. For the sake of simplicity we shall
focus on numeric attributes.

Let us introduce an interval version of the domain of the attribute
Xi, which is denoted as the set of all nonempty closed subintervals
of Xi, i.e.

X̂ i = IXi
= {[a, b] : [a, b] ⊆ Xi} .
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We can define an interval domain of the interval instance, i.e.
X̂ = X̂1 × . . . × X̂n. Now, for each instance x ∈ X (with or without
missing values) we can define its interval equivalent, i.e.

x̂ = (x̂1, . . . , x̂n) = ([x
¯1, x̄1], . . . , [x

¯n
, x̄n]) ∈ X̂ ,

where

x
¯i

=


xi, if xi 6= NA

min
x∈Xi

x, if xi = NA
,

x̄i =


xi, if xi 6= NA

max
x∈Xi

x, if xi = NA
.

These definitions allow us to describe the value of each attribute in
a uniform way by an interval. With this approach the instances in the
dataset can be similarly processed by a classifier. In the practical case,
the representation of the attribute can be twofold: a set of all possible
values (if the value is not present) or a point (if the value is present).
This representation has an additional practical advantage: it stores and
encodes within the data the possible ranges for missing values. This might
be particularly helpful when the source description of attributes is not
available in a general preprocessing step.

Example 3.1. Let us consider two instances:

x2 = (NA, 9.5, 3) ,

x3 = (2.8, NA, 32) ,

where the respective attributes in the vectors are pH, alcohol and free
sulphur dioxide, with the domains defined in Example 2.1. The interval
representations of the instances are as follows:

x̂2 = ([2.72, 4.2], [9.5, 9.5], [3, 3]) ,

x̂3 = ([2.8, 2.8], [8.0, 14.9], [32, 32]) .
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3.2 Uncertaintification of classifiers

In the next step we have to enable the scoring functions to work with
the interval representation of instances. We say that a vector x is an
embedded vector of x̂, denoted by x ∈E x̂, when for all i ∈ {1, . . . , n}
the attribute xi ∈ x̂i. We can define an uncertaintified scoring func-
tion as

f̂(x̂) = {f(x) : x ∈E x̂} . (3.1)

The resultant interval represents all possible predictions that can be made
based on values of an instance in which every missing value is replaced
with all possible values for that attribute. The more incomplete the in-
stance, the more uncertain the prediction. Observe that in many cases it
is still possible to make a proper decision, since some quantity of missing
values is acceptable and will not affect the final result significantly.

The result of reasoning based on the interval representation can also
be denoted as an interval, i.e.

f̂(x̂) =
[
min
x∈Ex̂

f(x),max
x∈Ex̂

f(x)
]
. (3.2)

These two definitions are equivalent whenever the scoring function is
continuous. In other cases, Formula (3.2) gives a very good approximation
of Formula (3.1), and we therefore adopt Formula (3.2) as the definition
of f̂ : X̂ → I[0,1]. We can assume that the value 0.5 will serve as a
separating point for classes y1 and y2.

We can also define an uncertaintified classification model:

ĝ(x̂) =


y1, if f̂(x̂) ⊂ (0.5, 1]

y2, if f̂(x̂) ⊂ [0, 0.5]

NA, otherwise

.

The interpretation of this classifier is that if the returned interval predic-
tion is wholly greater than, or wholly less than or equal to, 0.5, then it
can still assign a class to the instance. Otherwise, the interval is too wide
and includes the separation point, hence no decision should be made.

The following subsections describe an algorithmic approach to the
uncertaintification of scoring functions.
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3.2.1 The case of scoring system

Suppose we have a scoring system gsco with a threshold θsco as defined in
Section 2.2.1 (i.e. with increasing step functions). We can calculate f̂(x̂)
directly as follows:

f̂(x̂) = [f sco(x˜), f sco(x̃)] ,

where

x˜ : x˜i =


xi, if xi 6= NA

a ∈ arg min
x∈[x

¯i,x̄i]
qi(x), if xi = NA

,

x̃ : x̃i =


xi, if xi 6= NA

b ∈ arg max
x∈[x

¯i,x̄i]
qi(x), if xi = NA

,

(3.3)

where a, b are arbitrary elements of the resulting sets.

Recall that f sco : X → [0,∑n
i=1 maxQi]. Hence, we have to normalise

the result of f̂(x̂) so that it is contained in I[0,1], and rescale through
θsco in order to make the value 0.5 the separating point for classes y1

and y2, i.e.

f̂(x̂) = [ξ (f sco(x˜)) , ξ (f sco(x̃))] ,

where

ξ(c) =


0.5c
θsco

, if c ≤ θsco

0.5(c− θsco)
(∑n

i=1 maxQi)− θsco
+ 0.5, if c > θsco

.

Example 3.2. Let us consider g1 and f1 from Example 2.2 and x2, x3

from Example 3.1. By Formula (3.3), for the first instance we obtain

x˜2 = (2.72, 9.5, 3) ,

x̃2 = (4.2, 9.5, 3) ,
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and for the second one we obtain

x˜3 = (2.8, 8.0, 32) ,

x̃3 = (2.8, 14.9, 32) .

Notice that for x2 we choose arbitrary elements of the resulting sets
arg min and arg max. Now we can compute lower and upper numeric
prediction bounds, i.e.

f̂ 1(x̂2) =
[
ξ
(
f1(x˜2)

)
, ξ (f1(x̃2))

]
≈ [0.67, 1] ,

f̂ 1(x̂3) =
[
ξ
(
f1(x˜2)

)
, ξ (f1(x̃2))

]
≈ [0.33, 0.5] .

We can also compute predictions made by the uncertaintified
classifier, i.e.

f̂ 1(x̂2) ≈ [0.67, 1] ⊂ (0.5, 1], hence ĝ1(x̂2) = “good” ,

f̂ 1(x̂3) ≈ [0.33, 0.5] ⊂ [0, 0.5], hence ĝ1(x̂3) = “bad” .

Observe that despite the missing values, we can still make a predic-
tion by means of f̂ 1 and ĝ1. In fact, no matter what the real value is for
the missing one, it does not influence the prediction.

3.2.2 The case of logistic regression

Suppose we have a logistic regression glgr with a threshold θlgr and weights
u, as defined in Section 2.2.2. We can calculate f̂(x̂) directly as follows:

f̂(x̂) = [f lgr(x˜), f lgr(x̃)] ,

where

x˜ : x˜i =



xi, if xi 6= NA

min
x∈[x

¯i,x̄i]
x, if xi = NA ∧ ui > 0

max
x∈[x

¯i,x̄i]
x, if xi = NA ∧ ui < 0

,

x̃ : x̃i =



xi, if xi 6= NA

max
x∈[x

¯i,x̄i]
x, if xi = NA ∧ ui > 0

min
x∈[x

¯i,x̄i]
x, if xi = NA ∧ ui < 0

.

(3.4)
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Since f lgr : X → (0, 1), there is no need to normalise the output
range to be within I[0,1]. However, there might be a need to rescale
through θ = θsco so that the value 0.5 will serve as a separating point for
classes y1 and y2, i.e.

f̂(x̂) =
[
φ
(
f lgr(x˜)

)
, φ
(
f lgr(x̃)

)]
,

where

φ(a) =


0.5a
θ

, if a ≤ θ

0.5(a− θ)
1− θ + 0.5, if a > θ

.

Example 3.3. Let us consider g2 and f2 from Example 2.4 and x2, x3

from Example 3.1. By Formula (3.4), for the first instance we obtain

x˜2 = (4.2, 9.5, 3) ,

x̃2 = (2.72, 9.5, 3) ,

whereas for the second one

x˜3 = (2.8, 8.0, 32) ,

x̃3 = (2.8, 14.9, 32) .

Now we can calculate lower and upper numeric prediction bounds, i.e.

f̂ 2(x̂2) =
[
φ
(
f2(x˜2)

)
, φ (f2(x̃2))

]
≈ [φ(0.11), φ(0.17)]

≈ [0.09, 0.14] ,

f̂ 2(x̂3) =
[
φ
(
f2(x˜3)

)
, φ (f2(x̃3))

]
≈ [φ(0.01), φ(0.77)]

≈ [0.01, 0.71] .

We can also calculate predictions made by the uncertaintified classifier:

f̂ 2(x̂2) ≈ [0.09, 0.14] ⊂ [0, 0.5], hence ĝ2(x̂2) = “bad” ,

f̂ 2(x̂3) ≈ [0.01, 0.71], hence ĝ2(x̂3) = NA .
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3.2.3 The case of classification tree

Suppose we have a binary tree (T,E), as defined in Section 2.2.3. This
time we have to calculate lower and upper bounds in a different way. Let
x̂i ∈ I[0,1] and suppose that node t has a splitting rule utilising xi. During
the prediction process we visit nodes from root to leaves, and according
to the splitting rules we eventually reach leaf (node) t. We check whether
the values of x̂i satisfy the splitting rule, and then continue the procedure
by concurrently visiting left and right sub-nodes. If all attributes x are
available, the procedure ends with a single probability of belonging to
class y1, i.e. {p1}. However, this time the modified procedure returns a
set of probabilities P = {p1, p2, . . . }. We can calculate f̂(x̂) with the use
of P , i.e.

f̂(x̂) =
[
min
p∈P

p,max
p∈P

p
]
.

Since f tree : X → [0, 1], there is no need to normalise the output range to
be within I[0,1]. Moreover, 0.5 is usually a built-in thresholding value for
splitting into two classes, hence the application of a normalising function
is also unnecessary. Nevertheless, such a normalisation can be performed,
if needed, using the function φ.

Example 3.4. Let us consider g3 and f3 from Example 2.5 and x2, x3

from Example 3.1. We can walk through the tree and obtain interval
prediction boundaries, i.e.

f̂ 3(x̂2) = (0.79, 0.82) ,

f̂ 3(x̂3) = (0.07, 0.82) .

We can also calculate predictions made by the uncertaintified classifier:

f̂ 3(x̂2) = [0.79, 0.82] ⊂ (0.5, 1], hence ĝ3(x̂2) = “good” ,

f̂ 3(x̂3) = [0.07, 0.82], hence ĝ3(x̂3) = NA .

3.2.4 Practical guidelines

The aforementioned procedures of uncertaintification show that each type
of classifier needs a different approach to force it to return an interval pre-
diction. Since there are many types of prediction models, customising and
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describing an uncertaintification procedure for each model is ineffectual
in terms of both mathematical notation and computer programming.

Fortunately, the problem of uncertaintification can be thought of
as an optimisation problem, where we have to determine minimum and
maximum values of a scoring function f for a given specific instance
x. In case of a missing attribute xi we have to set in the optimisation
procedure the boundaries given by the domain Xi. In general, it might be
very impractical or even impossible to obtain a derivative of a function.
For this reason, derivative-free optimisation methods are preferable, e.g.
the Nelder–Mead method [49] or particle swarm optimisation [50].

So far we have considered only numeric attributes; however, the
question is what to do if a categorical attribute is missing. Although in
this case we have to check all possible substitutions, this task can be
done independently. Such an operation can be easily programmed and
performed concurrently.

Lastly, in case of a missing value, in the interval modelling step
we consider the whole possible range of values from a feature domain.
Nevertheless, if we have additional knowledge allowing us to discard some
possible values or sub-ranges (e.g. a particular value of one attribute
may not occur with a given configuration of a second attribute), then we
can narrow the attribute intervals. This approach might be particularly
useful, since it results in narrower prediction intervals and more confident
predictions.

3.3 Aggregation of scoring functions

Assume that we have at our disposal m different classifiers g1, . . . , gm. In
order to improve performance in the classification of new instances, we
can restate the problem as one of group decision-making and information
aggregation [51]. We can create a collection of predictions of classifiers
with the use of a special construction of ensemble classifier h (and its
extension to interval inputs) via aggregation and thresholding.
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An n-argument numeric aggregation operator1 is a mapping
Agg : [0, 1]n → [0, 1] with the following property of monotonicity and
boundary conditions [51], [52]:

1. if ai ≤ bi for all i ∈ {1, . . . , n}, then
Agg(a1, . . . , an) ≤ Agg(b1, . . . , bn),

2. Agg(0, . . . , 0) = 0,

3. Agg(1, . . . , 1) = 1.
Observe that the above definition can be extended to an interval ag-
gregation operator, where the function operates on unit intervals, i.e.
Âgg : In[0,1] → I[0,1]. An intelligible definition of the interval aggregation
operator can be found in [53]. Let us denote by L a lattice of non-empty
intervals L = {[a, b]|(a, b) ∈ [0, 1]2, a ≤ b} with the partial order ≤L de-
fined as [a, b] ≤L [c, d]⇔ a ≤ c and b ≤ d. The top and bottom elements
are respectively 1L = [1, 1], 0L = [0, 0]. A function fL : Ln → L is an
aggregation function if it is monotone with respect to ≤L and satisfies
fL(0L, . . . , 0L) = 0L and fL(1L, . . . , 1L) = 1L. Here, fL is equivalent to
Âgg.

There are four main classes of aggregation operators [51]:

1. averaging, i.e. Agg(a1, . . . , an) ∈ [a1 ∧ . . . ∧ an, a1 ∨ . . . ∨ an],

2. conjunctive, i.e. Agg(a1, . . . , an) ≤ a1 ∧ . . . ∧ an,

3. disjunctive, i.e. Agg(a1, . . . , an) ≥ a1 ∨ . . . ∨ an,

4. mixed, i.e. those which do not belong to any of the above mentioned
classes.

A detailed list of the aggregation operators used in this dissertation is
given in Appendix A.

Maintaining the assumptions given in Section 3.1 and Section 3.2,
we can use m normalised interval scoring functions f̂ i : X̂ → I[0,1] and
aggregate their results by means of either a numeric or an interval ag-
gregation operator, i.e. Agg : [0, 1]m → [0, 1] or Âgg : Im[0,1] → I[0,1]

respectively. Since we operate on intervals produced by f̂ i, the numeric
aggregation operator Agg has to work on representatives of the input
intervals, e.g. the lower bounds or midpoints of the intervals (see Sec-
tion A.2). In the case of the interval aggregation operator Âgg, it can
utilise whole input intervals.

1We will use terms aggregation functions and aggregation operators interchange-
ably in this thesis.
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Example 3.5. Let us consider f̂ 1, f̂ 2, f̂ 3 from Examples 3.2–3.4 and x̂2,
x̂3 from Example 3.1. We can aggregate the results produced by the un-
certaintified scoring functions with the use of the simple arithmetic mean.
In the numeric mode of aggregation we can operate on, for example, the
midpoints of the intervals:

Agg
(
f̂ 1(x̂2), f̂ 2(x̂2), f̂ 3(x̂2)

)
=

0.67 + 1
2 + 0.09 + 0.14

2 + 0.79 + 0.82
2

3
≈ 0.59 .

Agg
(
f̂ 1(x̂3), f̂ 2(x̂3), f̂ 3(x̂3)

)
=

0.33 + 0.5
2 + 0.01 + 0.71

2 + 0.07 + 0.82
2

3
≈ 0.41 .

For the interval mode of aggregation we can use interval arithmetic to
operate on whole intervals:

Âgg
(
f̂ 1(x̂2), f̂ 2(x̂2), f̂ 3(x̂2)

)
=
[0.67 + 0.09 + 0.79

3 ,
1 + 0.14 + 0.82

3

]
≈ [0.52, 0.65] .

Âgg
(
f̂ 1(x̂3), f̂ 2(x̂3), f̂ 3(x̂3)

)
=
[0.33 + 0.01 + 0.07

3 ,
0.5 + 0.71 + 0.82

3

]
≈ [0.14, 0.68] .

3.4 Thresholding

The result of the aggregation step can be either a numeric value or an
interval. To perform this, we need two different classes of functions:

1. a numeric thresholding strategy, i.e. τ : [0, 1]→ {y1, y2, NA},

2. an interval thresholding strategy, i.e. τ̂ : I[0,1] → {y1, y2, NA}.

A detailed list of the thresholding strategies used in this dissertation is
given in Appendix B. A combination of an aggregation operator with a
thresholding strategy is called an aggregation strategy and denoted
as AggStr.
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As in Section 3.2, the separating point for classes y1 and y2 is cho-
sen to be 0.5. Observe that these functions support the case where the
aggregation step delivers either a numeric value or an interval that is not
sufficient to make a reliable decision (resulting in the value NA).

Example 3.6. Let us continue Example 3.5. For numeric aggregation
we can use the following thresholding strategy:

τ0.05(a) =


“good” if a > 0.55

“bad” if a ≤ 0.45

NA otherwise

.

For the interval instances we have the following predictions:

τ0.05
(
Agg

(
f̂ 1(x̂2), f̂ 2(x̂2), f̂ 3(x̂2)

))
= τ0.05(0.59) = “good” ,

τ0.05
(
Agg

(
f̂ 1(x̂3), f̂ 2(x̂3), f̂ 2(x̂3)

))
= τ0.05(0.41) = “bad” .

For interval aggregation we can use

τ̂ 0.01 ([a, b]) =


“good” if a > 0.51

“bad” if b ≤ 0.49

NA otherwise

.

For the interval instances we have the following predictions:

τ̂ 0.01
(
Âgg

(
f̂ 1(x̂2), f̂ 2(x̂2), f̂ 3(x̂2)

))
= τ̂ 0.01 ([0.52, 0.65])

= “good” ,

τ̂ 0.01
(
Âgg

(
f̂ 1(x̂3), f̂ 2(x̂3), f̂ 3(x̂3)

))
= τ̂ 0.01 ([0.14, 0.68])

= NA .

3.5 Summary of the proposed approach

In the proposed method we have shown how to perform the process of
prediction uncertaintification. With the use of this step, the classifiers
can return interval predictions for instances with missing values. Then,
through aggregation and thresholding, we can rely on independent clas-
sifiers and collaboratively make a single decision. By this step we have
introduced a novel behaviour, namely the ability to refrain from making
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a final decision if the predictions are mutually exclusive or the predic-
tions are too uncertain. A visualisation of this step is seen in Figure 3.1.
A combination of all four steps is listed in Algorithm 3.1.

...Step 1:
uncertaintification

...Step 2:
aggregation

Uncertaintified
classification model

Aggregated
classification

models

Classification
model

not feasible

complete
instance data

in
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prediction #1
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uncertain
interval

predictions

St
ep

3:
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multiple final
predictions

single final
prediction

Classic approach
Proposed approach

Figure 3.1: A graphical summary of the classical and proposed ap-
proaches. Rectangles represent diagnostic classification models at differ-
ent stages. Vertical arrows represent classification model transformations,
i.e. uncertaintification and aggregation. The third step (thresholding) is
depicted as an ellipse. Horizontal arrows represent the flow of data of
instances and predictions.
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Algorithm 3.1: Ensemble classification through aggregation
strategy

Input : dataset D of n instances, scoring functions fi’s,
compatible aggregation strategy, i.e. (Agg, τ) or
(Âgg, τ̂)

Output: n predictions {y1, y2, NA}
1 Transform attributes of instances in D to the interval form.
2 Transform scoring functions fi into uncertaintified scoring

functions f̂ i.
3 Get interval predictions of f̂ i on transformed D.
4 Aggregate interval predictions by Agg or Âgg.
5 Return, thresholded by τ or τ̂ , aggregated interval predictions.





4 Medical evaluation

In Chapter 3 I presented a method of interval classification for use in
case of missing data. This procedure is well-suited to the medical problem
described in Chapter 1. In this chapter I show how the proposed approach
can be applied in supporting ovarian tumour diagnosis. The results were
published in [32].

4.1 Subject of evaluation

The study group consisted of 388 patients diagnosed and treated for ovar-
ian tumours in the Division of Gynaecological Surgery, Poznan University
of Medical Sciences, between 2005 and 2015. The distribution of benign
and malignant tumours was 61% and 39% respectively. A majority of the
patients (56%) had a complete set of attributes as required by diagnostic
scales, 40% of the patients had missing values in the range (0%, 50%], and
the remaining 4% of the patients had more than 50% of values missing.
The distribution of missing values depending on malignancy is depicted
in Figure 4.1.

Six diagnostic models were selected for the evaluation procedure:
two scoring systems [6], [7] and four regression models [10], [54], [55].
Table 4.1 shows the usage of attributes by the models. The features
consisted of two groups, the first comprising attributes that are always
available, and the second comprising attributes that might have missing
values. The diagnostic models were subjected to the uncertaintification
procedure described in Section 3.2.
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Figure 4.1: Distribution of patients in terms of percentage of missing
values

Four groups of aggregation operators were selected for the aggrega-
tion step: weighted averages, OWA, integrals and t-operations (see Ap-
pendix A). Each group was evaluated in two scenarios, i.e. whether the
subject of aggregation was whole intervals or numerical representatives
of intervals. This step was described in Section 3.3.

Outputs of the aggregation step were thresholded using the methods
listed in Section 3.4. The value of 0.5 served as a raw thresholding point
of classification as malignant or benign tumour. The resulting intervals or
numerical values were checked to determine whether they were greater or
lower than 0.5±ε, where ε ≥ 0. For a resulting interval one can distinguish
three intervals associated with a benign, unknown (NA) and malignant
output, i.e. [0, 0.5− ε], [0.5− ε, 0.5 + ε] and [0.5 + ε, 1] respectively. One
can check which of these intervals has the largest common part with
the input interval or whether the intersected region is greater than the
sum of the remaining two intervals. The thresholding strategies used are
described in Appendix B.
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Attribute
Diagnostic model

SM Alc. LR1 LR2 Tim. RMI
g1[7] g2[6] g3[10] g4[10] g5[54] g6[55]

age - - X X - X
menopausal status X - - - X X
pain during examination - - X - - -
hormonal therapy - - X - - -
hysterectomy - - - - - X

ovarian cancer in family - - X - - -
lesion volume X - X - - -
internal cyst walls X - X X - -
septum thickness X - - - - -
echogenicity X X - - - -
localisation X - - - - X
ascites X - X X - X
papillary projections - X - - X -
solid element size - X X X - X
blood flow location - X X X - -
resistance index - X - - - -
acoustic shadow - - X X - -
amount of blood flow - - X - X -
CA-125 blood marker - - - - X X
lesion quality class - - - - - X

Table 4.1: Attributes used by the selected preoperative diagnostic mod-
els. Features in the first group are always available; the second group
may have missing values.

4.2 Assumptions on dataset partitioning

The evaluation procedure was based on the classic data division into
training and test sets. Since the dataset varied in terms of levels of missing
data, special steps were performed to split the data. For some levels
of data missingness there were too few patients to perform a reliable
division. This could lead to a situation where at some stage of training
or testing there were discontinuities in the levels of missing data. Since
the goal is to construct a classification procedure for all levels, a different
approach was chosen.

The test set consisted of the patients with real missing data and
some proportion of patients with a complete set of attributes. The train-
ing set was formed from patients with a complete set of features, and the
missing data were simulated. It is impossible to reconstruct the actual
process by which missing data occur during examination; the simulations
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therefore assumed random data missingness. In addition, the true distri-
bution of levels of data missingness is also unknown, so in the training
phase different levels of missing data were simulated uniformly. Given
these steps, both training and test sets had none of the aforementioned
discontinuities in the levels of missing data.

Moreover, the true distribution of tumour malignancy in the popula-
tion is also unknown. According to a recent review of classification proce-
dures, the distributions vary widely among study groups [23]. Therefore,
in this evaluation an equal distribution of malignancy was assumed. In
the repeated random sampling of patients and obscuring of data, the
same proportions of benign and malignant cases were selected.

4.3 Evaluation procedure
The training set consisted of 200 patients with no missing data. The
test set consisted of 175 patients: the remaining 18 patients with no
missing data, together with those who had missing values in the range
(0%, 50%]. The aforementioned subgroups of 200 and 18 patients had
the same distribution of tumour malignancy. Patients with more than
50% of values missing were excluded from the study. The partition of the
datasets is depicted in Figures 4.2 and 4.3.

In the training phase we select the parameters of the aggregation
operators and thresholding strategies. The levels of missing data in the
simulation step vary from 0% to 50% with a step size of 5%. For each
level, 1000 repetitions were made of the following procedure:

1. randomly select from the training set 75 patients with benign tu-
mours and 75 patients with malignant tumours,

2. obscure (remove) a given percentage (level) of patients’ features,

3. calculate interval-valued diagnoses with uncertaintified diagnostic
models,

4. calculate final diagnosis with aggregation strategies.

All results were averaged over the repetitions and the levels of miss-
ing data. The numerical parameters of the aggregation strategies were
optimised on a reasonable set of values, selected by an expert. All steps
of the training phase are depicted in Figure 4.4. The result of this phase
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Figure 4.2: The division of the medical dataset. Patients with more
than 50% missing values were not included in the experiment.
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Figure 4.3: Class distribution in the medical training and test sets

is a set of optimised aggregation strategies which performs well on the
simulated missing data.

In the test phase the selected aggregation strategies are checked
on the dataset with actual missing values. A stratified bootstrapping
with 500 replications is used to estimate the uncertainty of the perfor-
mance [56].

4.4 Criteria of performance evaluation

The evaluation procedure aims to identify an aggregation strategy that
provides accurate diagnosis with the highest possible decisiveness. In
the given medical problem, the aggregation strategy should ensure both
very high sensitivity and specificity. In some cases the diagnostic mod-
els may result in ambiguous decisions, hence the aggregation strategy
should not perform a classification by chance; in such a case the patient
should be referred to an experienced gynaecologist. A few percent of pa-
tients having no recommendation for diagnosis is an acceptable situation.
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For each level of missing data

Repeat N times  

For each aggregation operator 
and thresholding strategy

Drawing of instances

Full dataset

Attribute values obscuration

Balanced dataset

Conversion to interval representation

Obscured dataset

Uncertaintified 
diagnostic scale 1

Interval representation of patients

Uncertaintified 
diagnostic scale n

Uncertaintified 
diagnostic scale 2

...

Interval diagnosis Interval diagnosisInterval diagnosis

List of interval diagnoses
for given level of missing data

Aggregation
Single interval diagnoses

Thresholding
Final diagnoses

Performance evaluation 
and optimisation

Reference diagnoses

List of simulated interval diagnoses

Figure 4.4: Visualisation of the training phase. Data flow is represented
by arrows, and boxes represent operations on data.
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Predicted
benign malignant NA

Actual benign 0 2.5 1
malignant 5 0 2

Table 4.2: Cost matrix. The costs were assigned based on expert gynae-
cologists’ opinions.

In general it is difficult to select an appropriate performance measure that
unifies certain other measures [42]. Hence, the cost matrix method can
be considered in this problem. An advantage of this method is that it
has a good interpretation in medical terms.

Table 4.2 presents the costs associated with possible decisions made
by a classifier. The correct classification of tumours, i.e. true positives
and true negatives, comes with zero cost. The highest cost is associated
with false negatives, when a patient has a malignant tumour and the
prediction indicates that it is benign. The cost of a false positive is two
times smaller than that of a false negative, since unnecessary surgery
is still dangerous for a patient, but there is a much greater chance of
recovery. There is also a certain difference in costs when a classifier does
not know which class should be assigned. The cost of no decision (NA)
is lower than that of a false positive, since the patient is referred to
an experienced gynaecologist who is still able to make a good decision.
However, a further misclassification is not ruled out, so in case of no
prediction, the cost when the tumour is malignant is two times greater
than the cost when it is benign. Here, a theoretical maximal total cost is
equal to 567.5 (if all cases are misclassified).

4.5 Technical issues

The statistical evaluation, as well as the implementation of the pro-
posed methodology, were performed using R software, version 3.1.2 [57].
All scripts, documentation and non-sensitive data are available on the
GitHub repository1. All computations were performed with the use of
the Microsoft Azure cloud service.

1https://github.com/ovaexpert/ovarian-tumor-aggregation

https://github.com/ovaexpert/ovarian-tumor-aggregation
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4.6 Results

In the training phase eight groups of aggregation operators and four
groups of thresholding strategies were checked and optimised in order
to minimise the total cost obtained according to the cost matrix. This
resulted in a set of aggregation strategies with optimised parameters,
and the best within-group were selected. For each group the top three
aggregation strategies are listed in Table 4.3.

Figures 4.5–4.7 summarise the training phase with detailed levels
of missing data. Although the original and uncertaintified classifiers are
not subject of the optimisation, they are plotted for comparison with the
aggregation strategies. Firstly, the original diagnostic models were run on
the input data. Note that the original models may still classify patients
with missing values, since a particular model may not use the features
for which values are missing. As one can see in Figure 4.5, the total cost
grows rapidly with an increasing level of missing data. This is caused
by the fact that the original models are not able to make a diagnosis if
any of the used attributes are not available; thus they fail to predict and
produce no diagnosis (NA).

Secondly, Figure 4.6 shows how the diagnostic models perform if
they are uncertaintified. In this case the cost grows more slowly. This
illustrates that even the self-contained process of uncertaintification re-
duces the impact of missing data on the effectiveness of classification.

Thirdly, Figure 4.7 depicts the costs of diagnosis for aggregation
strategies. The diagram shows one arbitrarily chosen aggregation strategy
for a given group. The total costs are smaller than in the cases shown
in Figure 4.5 and Figure 4.6 for each level of missing data, and their
growths are also small. To sum up the training phase, this step allows
us to select a group of aggregation strategies that perform better than
single diagnostic models for each level of missing data.
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Performance measure with 95% CI
No. Operator parameters Total cost Dec Sen Spe

Integrals in interval mode given by Formulae (A.8) and (A.9)

1 Choquet, µAUC, τ̂mp,0.025 80.0 (±28.8) 92.0 (±4.0) 82.6 (±11.0) 93.0 (±4.6)
2 Choquet, µcard, τ̂mp,0.025 80.0 (±27.8) 92.0 (±4.1) 84.8 (±10.3) 91.3 (±5.3)
3 Sugeno, µcard, τ̂mp,0.025 80.0 (±26.1) 87.4 (±4.9) 90.9 (±8.0) 89.0 (±6.2)

Integrals in numerical mode given by Formulae (A.3) and (A.4)

4 Choquet, repmp, µAUC, τ0.025 80.0 (±28.8) 92.0 (±4.0) 82.6 (±11.0) 93.0 (±4.6)
5 Choquet, repmp, µcard, τ0.025 80.0 (±27.8) 92.0 (±4.1) 84.8 (±10.3) 91.3 (±5.3)
6 Sugeno, repmin, µcard, τ0.0 87.5 (±31.8) 100.0 (–) 86.5 (±8.6) 82.9 (±6.9)

Weighted means in interval mode given by Formula (A.6)

7 ωwid, r = 2, τ̂mp,0.025 75.5 (±26.2) 97.1 (±2.6) 91.8 (±7.2) 84.3 (±6.2)
8 ωmp, r = 3, τ̂mp,0.0 77.5 (±28.1) 100.0 (–) 88.5 (±8.7) 84.6 (±6.3)
9 ω1, r = 2, τ̂mp,0.0 79.0 (±27.5) 94.3 (±3.2) 91.7 (±7.3) 84.6 (±6.4)

Weighted means in numerical mode given by Formula (A.1)

10 repmin, ωep, r = 3, τ0.0 72.0 (±27.5) 97.1 (±2.6) 90.0 (±8.6) 86.7 (±5.9)
11 repmp, ωep, r = 3, τ0.0 74.5 (±27.9) 97.1 (±2.6) 90.0 (±8.6) 85.8 (±5.9)
12 repmin, ωwid, r = 3, τ0.025 78.0 (±30.0) 94.3 (±3.4) 85.7 (±9.3) 89.7 (±5.5)

Ordered Weighted Average (OWA) operators in interval mode given by Formula (A.7)

13 ωdec, πmp, τ̂mp,0.025 70.0 (±29.1) 94.9 (±3.4) 90.2 (±8.3) 87.8 (±5.9)
14 ωdec, πmin, τ̂mp,0.025 72.0 (±29.3) 96.6 (±2.8) 90.2 (±8.3) 86.4 (±5.9)
15 ωdec, πwm, τ̂mp,0.025 73.5 (±28.4) 94.9 (±3.1) 90.0 (±8.5) 87.1 (±6.2)

Ordered Weighted Average (OWA) operators in numerical mode given by Formula (A.2)

16 repmp, ωdec, πmp, τ0.025 70.0 (±29.1) 94.9 (±3.4) 90.2 (±8.3) 87.8 (±5.9)
17 repmp, ωdec, πmin, τ0.025 72.0 (±29.3) 96.6 (±2.8) 90.2 (±8.3) 86.4 (±5.9)
18 repmp, ωdec, πwm, τ0.025 73.5 (±28.4) 94.9 (±3.1) 90.0 (±8.5) 87.1 (±6.2)

t-operation based operators in interval mode given by Formula (A.10)

19 smax, α = 0.25, τ̂mp,0.025 78.0 (±26.6) 94.3 (±3.4) 91.8 (±7.0) 84.5 (±6.6)
20 tmin, α = 0.25, τ̂max,0.025 89.5 (±28.5) 94.9 (±3.1) 89.8 (±8.8) 82.1 (±6.9)
21 tmin, α = 1.0, τ̂max,0.0 100.0 (±35.0) 100.0 (–) 73.1 (±12.5) 90.2 (±5.2)

t-operation based operators in numerical mode given by Formula (A.5)

22 repmp, smax, α = 0.25, τ0.025 82.0 (±27.5) 94.9 (±2.8) 89.8 (±8.4) 84.6 (±6.4)
23 repmax, tmin, α = 0.25, τ0.025 89.5 (±28.5) 94.9 (±3.1) 89.8 (±8.8) 82.1 (±6.9)
24 repmin, sprod, α = 0.25, τ0.025 95.0 (±29.7) 93.7 (±3.2) 87.5 (±8.9) 82.8 (±7.2)

Table 4.3: Performance measures for the top three aggregation operators
and thresholding strategies within each group. All measures, along with
bootstrap percentile 95% confidence intervals, are obtained in the test
set. The decisiveness, sensitivity and specificity are in percentage values.
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Figure 4.5: Simulation results for the original models
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Figure 4.6: Simulation results for uncertaintified models
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Figure 4.7: Simulation results for aggregation groups. The aggrega-
tion groups show strategies with the lowest total cost achieved on the
training set.

Next, the results are verified on the test set with real missing values.
Figures 4.8–4.10 show the total costs for original models, uncertaintified
models, and aggregation strategies, respectively. Again, the cost is highest
for the original models and lowest for aggregation strategies. These results
confirm the claim that the aggregation strategies are a good tool for
supporting diagnosis in the presence of missing data.

An additional exploratory analysis of the results can be made based
on Figures 4.11–4.13. Accuracy, sensitivity, specificity and decisiveness
are presented for each method. The accuracy, sensitivity and specificity
of the original models are quite high, but the decisiveness does not reach
an acceptable level. The process of uncertaintification improves the de-
cisiveness. Finally, the aggregation operators produce higher values for
the performance measures, while a diagnosis is unavailable for fewer than
10% of the patients. These are very good results, showing that uncertain-
tification, aggregation and thresholding constitute a promising method
of improving the quality of medical diagnosis.
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Figure 4.9: Total cost performance on the test set among uncertaintified
models
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4.7 Discussion and conclusions

The practical aim of the evaluation procedure was to incorporate an ag-
gregation strategy as a new classification method in a real application
for supporting ovarian tumour diagnosis. During the research, the Ova-
Expert system1 was developed by an interdisciplinary team of scientists
from Adam Mickiewicz University in Poznań and Poznan University of
Medical Sciences. The system was implemented in order to gather med-
ical data, as well as to support a physician in making classification de-
cisions. In order to use the aggregation strategy as a diagnostic module,
it is necessary to choose the best model. To select an aggregation strat-
egy from those returned by the test phase, the following conditions must
be satisfied:

• Sen ≥ 90%,

• Spe ≥ 80%,

• Sen > Spe,

• Dec < 100%.

The first two conditions narrow aggregation strategies to those hav-
ing both high sensitivity and specificity. The third condition reflects the
fact that in this medical case sensitivity is more important than speci-
ficity. Since these performance measures are correlated, some aggregation
operators might trade off sensitivity for specificity – such models should
be discarded. Finally, the last condition filters out models that recom-
mend diagnoses without sufficient justification. In such cases no decision,
leading to further examinations, is better than a wrong decision.

With this set of conditions, the chosen aggregation strategy is an
OWA operator defined by Formula (A.2) with the weighting vector ωdec,
repmp as representative selector, τ0.025 as threshold and πmin used to
order input values. This aggregation strategy will be further referred to
as OEA. A comparison of the total cost of OEA with that of the original
diagnostic models is shown in Figures 4.14 and 4.15. OEA is significantly
better than all of the other diagnostic models. This was verified with
McNemar’s test; the results are given in Table 4.4.

1http://ovaexpert.pl/en
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Figure 4.14: Comparison of total costs between the original diagnostic
models and the selected aggregation strategy in the training phase. The
shaded area indicates lower and upper bounds of the total cost of the
original models.
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Figure 4.15: Comparison of total costs between the original diagnos-
tic models and the selected aggregation strategy in the test phase. The
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Original model
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Alc. < 0.001 < 0.001 < 0.001 0.834 0.472 0.723
LR1 < 0.001 < 0.001 < 0.001 0.406 0.080 1.000
LR2 < 0.001 < 0.001 < 0.001 0.366 0.060 0.935
RMI < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001
SM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Tim. < 0.001 < 0.001 < 0.001 0.001 0.017 < 0.001

OEA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 4.4: McNemar’s test with Benjamini–Hochberg correction be-
tween the original diagnostic models and the uncertaintified models with
the selected aggregation strategy. It can be observed that the uncertain-
tified models significantly outperform the corresponding original models.
Moreover, OEA significantly outperforms the original models (α = 0.05).

The main conclusion of the experiment is that with the proposed
approach one can obtain better performance in the classification of ovar-
ian tumours by the extensive use of known diagnostic models. This is
especially evident when diagnosis is based on incomplete data. The ag-
gregation of the diagnostic models exploits the synergy effect and allows
one to deal with fairly large quantities of missing data, up to 50%. The
selected method, OEA, is able to give proper diagnoses despite missing
data. The total cost of 72 is very low compared with the original diagnos-
tic models (142.5–189). In addition, both high sensitivity and specificity
are good indicators for applicability in medical practice. The results pre-
sented here are a part of the project related to the OvaExpert system.
The results obtained for the aggregation strategy will be further gener-
alised when the patient dataset is sufficiently enlarged.
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In the previous chapter I showed how the proposed approach can be suc-
cessfully applied in the problem of supporting ovarian tumour diagnosis.
However, there are three issues of concern regarding the presented solu-
tion. Firstly, due to the sensitivity of medical data, the described process
is only partially reproducible. Secondly, the use of imputation methods
was rejected in the project setup, but in general it would be desirable
to compare possible solutions. Thirdly, the application considers a par-
ticular medical problem, and it might be interesting to check how the
proposed approach performs on datasets from different domains. In this
chapter I present a fully reproducible application of the proposed ap-
proach in various classification problems and compare the results against
imputation as an alternative method.

5.1 Subject of evaluation

The study concerned five datasets from the University of California,
Irvine (UCI) Machine Learning Repository [58]:

1. bank-marketing – the data are related to direct marketing cam-
paigns (phone calls) of a Portuguese banking institution; the clas-
sification goal is to predict whether the customer will subscribe
a term deposit [59];

2. census-income – the goal is to predict whether income ex-
ceeds $50 000 per year, based on United States Census data
from 1994 [60];

3. credit-card – the aim of the classification is to predict whether cus-
tomers in Taiwan will have default payments next month [61];
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4. magic – the goal is to predict whether data from a
Cherenkov gamma-ray telescope are gamma (signal) or hadron
(background) [62];

5. wine-quality – the goal is to assess the quality (good or bad) of red
and white wine from the north of Portugal, based on physicochem-
ical tests of wine samples [44].

The aforementioned data have no missing values, have numeric as well
as categorical features, and were preprocessed and saved as R objects.
All of the preprocessing procedures and generated datasets are publicly
available [45].

The five basic classification methods were the following [63]:

1. generalised linear models (glm);

2. neural networks (nnet);

3. a support vector machines linear model (svmLinear);

4. classification trees (rpart);

5. the k-nearest neighbours algorithm (knn).

The one-rule classifier (OneR) [64] was used as a baseline model. All
classifiers had a threshold value set to 0.5. The classifiers were built with
use of R caret library [65].

The aggregation strategies were selected as in Chapter 4, with a
preference for those not producing NA.

Three imputation methods were chosen for the experiment:

1. median/modal value;

2. random forest [66];

3. multivariate imputation by chained equations (mice) [67].
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5.2 Assumptions on dataset partitioning

The instances from the datasets were sampled so that the distribution
of binary classes was equal (50%/50%). This in particular eliminates the
problem of class imbalance and influences on the meaning of performance
measures such as sensitivity or specificity.

The split of the dataset D can be less formally expressed in the
following form:

D = (Dfs +Dcl) · a+Dob ,

where:

• Dfs is a dataset with 150 instances for feature selection;

• Dcl is a dataset with 450 instances for classification;

• a is the number of classifiers (here, 5 excluding OneR);

• Dob is a dataset with 1000 instances for obscuration.

In this configuration, the datasets have in sum 4000 instances each. This
also serves to reflect the situation described in Chapter 4, where a few
classifiers were previously constructed independently and then had to
classify a new dataset.

5.3 Evaluation procedure

The following steps of the experiment for each dataset are listed in Algo-
rithm 5.1. Firstly, each classifier selects features through random forests
(except cart, which has its own internal method) and learns on a classi-
fication dataset.

Secondly, since the datasets have no missing values, the obscured
sub-dataset Dun must be generated. In this step 1/3 of instances remain
unchanged and the remaining 2/3 are randomly and uniformly obscured.
The obscuration process inserts NA values into attributes used by the
classifiers. This step is performed so that an interval classifier will always
have at least one attribute available – this serves to prevent the generation
of unit interval predictions. In Chapter 4 the observed obscuration level
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Algorithm 5.1: Evaluation procedure for UCI datasets

1 For each dataset Di:
2 For each classifier gj:
3 Select features gj on Dfs

i,j.
4 Learn gj on Dcl

i,j.
5 ĝj := uncertaintified gj.
6 Dun

i := randomly obscured dataset Dob
i .

7 For each gj and ĝj:
8 Calculate performance measures of gj and ĝj on Dun

i .
9 Select best imputation method Imp on Dun

i .
10 Select best aggregation strategy AggStr on Dun

i .
11 Compare performance of all gj, ĝj, Imp, AggStr on Dun

i .

was limited to 50%. Here the obscuration affects from 1 to n − 1 of the
globally used attributes.

Finally, all classification approaches (classifiers, uncertaintified clas-
sifiers, imputation and aggregation strategies) are evaluated on the ob-
scured dataset. All learning steps are carried out with the use of the
nested 10-fold cross-validation procedure described in Algorithm 2.3.

5.3.1 Note on aggregation strategies learning

The key issue in choosing aggregation strategies is enlargement of the
learning dataset by virtual simulation of missing data. If one has knowl-
edge about missing data patterns, this might have a particularly good
impact on future performance. However, usually the patterns cannot be
restored. This might be arbitrarily simulated by, for example, a uniform
obscuration. By k-level data we mean a subset of instances where each
instance has exactly k missing values. In Algorithm 5.2 one can see how
this step can be implemented. An example visualisation of the algorithm
appears in Figure 5.1, where each block refers to k-level data. The algo-
rithm makes extensive use of data that are complete, and hence has good
potential for obscuration. Data with many missing values are used least
often.
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Algorithm 5.2: Simulating missing data patterns for aggregation
strategies

1 n := # attributes used by the classifiers.
2 For k in [0, n− 1]:
3 Take 0-level data n− k times.
4 If k > 0:
5 For l in [1, k]:
6 Take l-level data 1 time.
7 For l in [0, k − 1]:
8 Change l-level data to k-level data.
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Figure 5.1: Visualisation of Algorithm 5.2 for n = 4. k – instances with
k missing values, – new drawn instances in the constructed dataset,

– instances with changed level of data missingness.

5.4 Criteria of performance evaluation

In Chapter 4 the classification performance was evaluated by means of a
cost matrix. Although that approach seems to be acceptable in the par-
ticular case, in this experiment a more general metric should be chosen.

For this reason, accuracy was selected as the main performance cri-
terion for all datasets. When performance is estimated on data with miss-
ing values, the accuracy per level (Acci) is weighted by the decisiveness
per level (Deci) and the sample size of instances with the given level
of missing values (|Di|). This performance metric is simply denoted as
AD-score (accuracy-decisiveness score):

AD-score =
n−1∑
i=0

AcciDeci
|Di|
|D|

.



54 5. Evaluation on UCI datasets

5.5 Technical issues

The statistical evaluation, as well as the implementation of the
proposed methodology, were performed using Microsoft R Open1,
version 3.3.1 [57]. All scripts, documentation and data are available on
the GitHub repository2. All computations were performed with the use
of computing infrastructure provided by the Faculty of Mathematics and
Computer Science at Adam Mickiewicz University in Poznań. Since the
experiment requires extensive use of various math libraries, benchmark-
ing was performed in order to take advantage of the Basic Linear Algebra
Subprograms libraries [68].

5.6 Results and discussion

This section summarises the results obtained for all datasets. Tables 5.1–
5.3 and Figures 5.2–5.6 present the results obtained with original clas-
sifiers, interval classifiers, imputation and aggregation strategies on the
bank marketing dataset. The plots and tables for the remaining datasets
appear in Appendix D. The line plots with confidence intervals (α = 0.05)
were made with local polynomial regression fitting (LOESS) [69]. The re-
sults of statistical tests for AD-score (α = 0.05) appear in Table 5.4.

The imputation and aggregation strategies significantly outper-
formed single classifiers on each dataset (p < 0.05 for each test). The
interval classifiers were significantly better than the original classifiers on
only two datasets (bank-marketing: p < 0.001; census-income: p < 0.035).
Finally, imputation significantly outperformed the aggregation strategies
only on the magic dataset (p < 0.001).

The empirical results lead to interesting observations. It is worth-
while to perform either imputation or aggregation and thresholding
in place of single classification. The process of uncertaintification is a
step that may improve classification performance. Although aggregation
strategies are as good as imputation, the choice of the latter may lead
to slightly better performance. More importantly, in applications, the
choice between the two should be determined by practical considerations
because the justification of the predictions is different.

1https://mran.microsoft.com
2https://github.com/andre-wojtowicz/agg-vs-imp

https://mran.microsoft.com
https://github.com/andre-wojtowicz/agg-vs-imp
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Attribute Classifier
OneR glm nnet svmLinear rpart knn

day - - X - - X
education - X X - - -
job - - X - - X
marital - - X X - -
month - - X X X X
prev. days - X X - - X
prev. days (bin.) - - X - - X
prev. outcome - X X X - X

age - - X - - -
balance X - X - - X
campaign - - X X X X
contact - X X X X X
housing - X X X - X
loan - - X - - X
previous - X X X - X

Table 5.1: Predictors used by classifiers in the bank marketing dataset.
Features in the first group are always available.

Classifier Acc Sen Spe p-value
OneR 0.524 0.533 0.514 0.045
glm 0.575 0.584 0.566 < 0.001
nnet 0.665 0.717 0.614 < 0.001
svmLinear 0.561 0.698 0.422 0.007
rpart 0.623 0.630 0.617 < 0.001
knn 0.635 0.667 0.604 < 0.001

Table 5.2: Performance of classifiers on the complete bank marketing
dataset

Model Group Acc Dec Sen Spe

glm

Original
classifier

0.653 0.453 0.680 0.627
nnet 0.659 0.334 0.713 0.605
svmLinear 0.679 0.396 0.716 0.643
rpart 0.628 0.529 0.342 0.903
knn 0.643 0.350 0.672 0.612

glm

Uncertaintified
classifier

0.678 0.625 0.659 0.696
nnet 0.658 0.587 0.733 0.585
svmLinear 0.667 0.712 0.790 0.540
rpart 0.621 0.688 0.329 0.900
knn 0.685 0.680 0.721 0.651

svmLinear & mice Imputation 0.666 1.000 0.691 0.640

weighted mean, interval (A.6)
ωmp, r = 0.5, τ̂mp,0.0

Aggregation
strategy

0.630 1.000 0.664 0.593

Table 5.3: Performance of classifiers on the obscured bank marketing
dataset
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Figure 5.2: Accuracy of prediction models on the obscured bank mar-
keting dataset. Whiskers indicate lower and upper bounds of accuracy
of classifiers.
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Figure 5.3: Accuracy of prediction models regarding missing data levels
on the obscured bank marketing dataset. Shaded regions indicate 95%
confidence interval bounds.
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Figure 5.4: Decisiveness of prediction models on obscured bank market-
ing dataset. Whiskers indicate lower and upper bounds of decisiveness
of classifiers.

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Missing data level

D
ec
isi
ve
ne
ss

Model:
Original classifiers
Uncertaintified classifiers

Imputation
Aggregation strategy

Figure 5.5: Decisiveness of prediction models regarding missing data
levels on the obscured bank marketing dataset. Shaded regions indicate
95% confidence interval bounds.
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Figure 5.6: AD-score of prediction models on the obscured bank mar-
keting dataset

Original
classifiers

Uncertaintified
classifiers

Imputation Aggregation
strategy

Original classifiers - < 0.001 < 0.001 < 0.001
Uncertaintified classifiers < 0.001 - < 0.001 < 0.001
Imputation < 0.001 < 0.001 - 0.132
Aggregation strategy < 0.001 < 0.001 0.132 -

Table 5.4: Results of two-sided Student’s t-test with Benjamini–
Hochberg correction concerning whether by-obscurance-level-weighted
means of AD-score differ on the obscured bank marketing dataset

An interesting observation can be made as the level of missing data
increases. With the exception of the magic dataset, the accuracy of the
models remains comparable. Figures 5.7 and 5.8 show that in the magic
dataset the aggregation strategy has imbalanced sensitivity and speci-
ficity, which eventually impair the performance. It might be desirable to
add a condition in the learning procedure to maintain proper balance
between these two factors.

The difference in decisiveness is evident in the case of original and
interval classifiers. This may lead to the conclusion that simple uncer-
taintification will be a sufficient step in some cases.

Lastly, this experiment considered all possible levels of data miss-
ingness. However, in practical situations (for example, in that described
in Chapter 4) it might be reasonable to restrict prediction to cases with
up to, for instance, 50% of missing values. Figure 5.9 shows that on the
wine-quality dataset this may change the prediction performance for the
imputation and aggregation strategies. This restriction may be reason-
able, since the less data is present, the wider intervals are produced by
the uncertaintified classifiers. In consequence, the aggregation strategies
are unable to make good decisions in such situations.
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Figure 5.7: Sensitivity of prediction models on the obscured magic
dataset. Whiskers indicate lower and upper bounds of decisiveness of
classifiers.
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Figure 5.8: Specificity of prediction models on obscured magic dataset.
Whiskers indicate lower and upper bounds of decisiveness of classifiers.
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Figure 5.9: Accuracy of imputation and aggregation strategy regarding
missing data levels on the obscured wine quality dataset. Shaded regions
indicate 95% confidence interval bounds.





6 Summary

In this dissertation I have presented an alternative approach to the clas-
sification of data with missing values. Firstly, I showed how to transform
a classical classifier into an interval version, and how to calculate cor-
responding interval predictions. Secondly, I presented the possibility of
ensemble classification of interval predictions through aggregation oper-
ators and thresholding strategies. Thirdly, I described how the proposed
approach can be successfully applied in the real problem of supporting
ovarian tumour diagnosis. Finally, I showed how the approach behaves in
an experiment performed on datasets from real applications in a range
of fields.

The experiment with UCI datasets confirmed the possibility of im-
provement of classification when the input data have missing values. This
can be achieved either by a simple uncertaintification step, or by impu-
tation/aggregation. In the experiment, the aggregation strategies did not
significantly outperform imputation, giving mostly similar results. How-
ever, each applied classification problem has its own configuration and
priorities. Hence, when one has to construct applied prediction models,
it may be worthwhile to investigate whether aggregation strategies give
better results.

The approach with aggregation strategies provides a new way of han-
dling missing data. In the imputation methods we can see how the classi-
fication performs when we insert new values. In the proposed method this
issue is addressed differently, i.e. we check the performance of predictions
when we remove even more data. We have therefore introduced a novel
approach to the problem of handling missing data. Moreover, the results
obtained in the medical case are the motivation for new research in the
field of handling missing data through the framework of the aggregation
functions [70].





Appendices

A Aggregation operators

This appendix lists all of the aggregation methods evaluated in our re-
search. There are four groups of operators: r-means, OWA, integrals and
t-operations. Each group is represented both in numerical and interval
aggregation mode.

A.1 Weight calculation strategies

Many aggregation operators involve assigning appropriate weights to in-
put values. The problem is the same regardless of the mode of aggre-
gation. Thus, we combine the description of different weight calculation
strategies into one subsection.

The following weight calculation strategies were implemented in this
research:

• constant value:

ω1([a, b]) = 1 ,

• interval length:

ωwid([a, b]) = 1− (b− a) ,
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• interval endpoint distance from 0.5:

ωep([a, b]) =


0, if a ≤ 0.5 ≤ b

2(a− 0.5), if a ≥ 0.5

2(0.5− b), otherwise

,

• interval midpoint distance from 0.5:

ωmp([a, b]) = 2 · |0.5− a+ b

2 | ,

• lower and upper bounds of interval and interval midpoint (ωmin,
ωmax and ωmp, respectively),

• combined interval midpoint and width

ωwm([a, b]) = a+ b

2 · (1− (b− a)) .

A.2 Numerical mode

Aggregation methods that operate in this mode use a single value that
represents the whole interval. Such a representative of the interval x̂ is
denoted by rep(x̂). We evaluated the three most obvious representatives,
namely the lower (repmin) and upper (repmax) bound and midpoint of
the interval (repmp). This procedure simplifies the problem to classi-
cal non-interval aggregation. For more information about the presented
aggregation methods we refer the reader to [51].

A.2.1 Weighted r-means

The weighted mean is probably the most commonly used method of ag-
gregation. r-means generalise this concept by the using r-th power of each
argument (for r = 1 the r-mean becomes the classical weighted mean).
For weighted means, the selection of weights is crucial and determines
the final outcome of the aggregation. The general formula for weighted
r-mean is the following:

Aggmean(x̂1, x̂2, . . . , x̂n) = r

√√√√∑n
i=1 ω(x̂i) · rep(x̂i)r∑n

i=1 ω(x̂i)
. (A.1)



A.2. Numerical mode 65

A.2.2 Ordered weighted average (OWA)

This class of aggregation operators was developed by Yager in 1988 [71]:

AggOWA(x̂1, x̂2, . . . , x̂n) =
∑n
i=1 ωi · rep(x̂π(i))∑n

i=1 ωi
. (A.2)

In contrast to the arithmetic mean, in the ordered weighted average the
weight vector is constant, while the input variables are ordered with
respect to a certain criterion. Our implementation of OWA supports the
ordering of input values with respect to any of the weights introduced in
Section A.1. Such an ordering obtained from weight ω is denoted by πω.
The following predefined weight vectors are used in medical evaluation:

• (0, 0.25, 0.5, 0.5, 0.75, 1) – denoted by ωinc,

• (1, 0.75, 0.5, 0.5, 0.25, 0) – denoted by ωdec,

• (0.1, 0.5, 1, 1, 0.5, 0.1) – denoted by ωhill,

• (1, 0.5, 0.1, 0.1, 0.5, 1) – denoted by ωpit.

In the UCI datasets evaluation, the following predefined weight vectors
are used:

• (0, 0.25, 0.5, 0.75, 1) – denoted by ωinc,

• (1, 0.75, 0.5, 0.25, 0) – denoted by ωdec,

• (0.1, 0.55, 1, 0.55, 0.1) – denoted by ωhill,

• (1, 0.55, 0.1, 0.55, 1) – denoted by ωpit.

The vectors are afterwards normalised so that their elements sum to 1.

A.2.3 Choquet and Sugeno integrals

These are two classes of aggregation operators defined with the use of a
measure µ. Their main advantage is that they are able to model interac-
tions between input variables.

The Choquet integral is given by

AggCho(x̂1, x̂2, . . . , x̂n) =
n∑
i=1

[µ(Hi)− µ(Hi−1)] · rep(x̂π(i)) (A.3)
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and the Sugeno integral is defined by

AggSug(x̂1, x̂2, . . . , x̂n) = max
i=1 to n

[
min

(
µ(Hi),rep(x̂π(i))

)]
, (A.4)

where Hi = {π(1), π(2), . . . , π(i)}, π is a non-decreasing permutation of
input variables and µ is a measure. The following measures are imple-
mented in this research:

• set cardinality

µcard(H) = |H|
n

,

• (in medical evaluation) the additive measure

µAUC({h1, h2, . . . }) =
∑
i=1

µ({hi}) ,

where the measure of a singleton was determined using the area
under the ROC curve (AUC) [72] of the original diagnostic models
(the greater the AUC, the higher the measure).

A.2.4 Triangular operations

An operation t : [0, 1] × [0, 1] → [0, 1] is a t-norm (triangular norm)
if t is commutative, associative, non-decreasing and has 1 as neutral
element. A similarly defined operation s : [0, 1] × [0, 1] → [0, 1]
is a t-conorm (triangular conorm) if it has 0 as neu-
tral element. T-norms together with t-conorms we call
t-operations (triangular operations), and denote them as Φ1.

The last class of numerical aggregation operators is based on the
triangular operations, namely:

• t-norms (for α = 1),

• t-conorms (for α = 1),

• soft t-norms (for α < 1),

• soft t-conorms (for α < 1).
1A comprehensive discussion on triangular operations, soft triangular norms and

conorms can be found in [73] and [74, Sections 2.4.3 and 4.3.2].



A.3. Interval mode 67

This class of operators is given by the formula

AggΦ(x̂1, . . . , x̂n) = 1− α
n

n∑
i=1

rep(x̂π(i)) + α · Φ(rep(x̂1), . . . ,rep(x̂n)) .

(A.5)

A.3 Interval mode

Interval mode utilises the whole of the interval information. The literature
contains two approaches to adapting numerical aggregation strategies to
operate on interval data. The first involves the use of interval arithmetic,
and the second the application of the original operator to the lower and
upper bound separately. Both methods are presented below.

A.3.1 Interval weighted r-means

These aggregation operators are obtained from numerical r-means by the
use of interval arithmetic for all calculations. The formula is as follows:

Âggmean(x̂1, x̂2, . . . , x̂n) = r

√√√√∑n
i=1 ω(x̂i)× x̂ir∑n

i=1 ω(x̂i)
, (A.6)

but now ∑ denotes the sum of intervals, and multiplication (division) is
replaced by multiplication (division) of an interval by a constant.

A.3.2 Interval OWA

A generalisation of OWA to operate on intervals was proposed by Yager
[75], [76]:

ÂggOWA(x̂1, x̂2, . . . , x̂n) = [AggOWA(x
¯1, x¯2, . . . , x¯n

),

AggOWA(x̄1, x̄2, . . . , x̄n)] . (A.7)

The main idea is to apply an OWA operator to the lower and upper
bounds of the input intervals separately, and to form an interval from
the two results.
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A.3.3 Interval Choquet and Sugeno integrals

An analogous approach was applied to define the interval Choquet and
Sugeno integrals [75]. They are defined by

ÂggCho(x̂1, x̂2, . . . , x̂n) = [AggCho(x¯π(1), x¯π(2), . . . , x¯π(n)),

AggCho(x̄π(1), x̄π(2), . . . , x̄π(n))] (A.8)

and

ÂggSug(x̂1, x̂2, . . . , x̂n) = [AggSug(x¯π(1), x¯π(2), . . . , x¯π(n)),

AggSug(x̄π(1), x̄π(2), . . . , x̄π(n))] . (A.9)

A.3.4 Interval triangular norms and conorms

This approach can also be used to obtain interval aggregation operators
based on triangular operations:

ÂggΦ(x̂1, x̂2, . . . , x̂n) = [AggΦ(x
¯1, x¯2, . . . , x¯n

),AggΦ(x̄1, x̄2, . . . , x̄n)] .
(A.10)



B Thresholding strategies

Thresholding has the aim of converting a numerical or interval decision
into a final decision. This appendix lists all implemented and evaluated
strategies for both numerical and interval modes.

B.1 Numerical mode

For numerical decisions there is only one class of thresholding strategies,
i.e. thresholding with margin ε ∈ [−0.5, 0.5] given by

τε(a) =


y1, if a > 0.5 + ε

y2, if a ≤ 0.5− ε

NA, otherwise

.

B.2 Interval mode

For interval mode we evaluated three thresholding strategies. The first
approach is to apply a numerical threshold to the interval representative,
which results in

τ̂rep,ε([a, b]) = τε(rep([a, b])) .

The second is the interval version of thresholding with a margin given
for each ε ∈ [−0.5, 0.5] by

τ̂ ε([a, b]) =


y1, if a > 0.5 + ε

y2, if b ≤ 0.5− ε

NA, otherwise

.
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The last approach involves calculation of the common part between inter-
vals. Let |[a, b]| denote the length of interval [a, b]. Then this thresholding
strategy is given by

τ̂ cp([a, b])



NA, if |[a, b] ∩ [0.5− ε, 0.5 + ε]| ≥

max (|[a, b] ∩ [0.5 + ε, 1]|, |[a, b] ∩ [0, 0.5− ε]|)

y1, if |[a, b] ∩ [0.5 + ε, 1]| > |[a, b] ∩ [0, 0.5− ε]|

y2, otherwise

.



C Algorithm complexity analysis

The algorithms presented in Chapter 4 and Chapter 5 rely extensively on
simulation data. In such a process, it might be interesting to investigate
the algorithms in terms of the number of obscurations to perform on
a data subset, i.e. how many times NA must be inserted in the data.
With this additional knowledge one can make a rough estimation of the
required computational resources and time.

Section 4.3 describes the simulation steps in the medical experiment.
We can formulate this more generally: with r repetitions, for each k levels
of obscurations we randomly draw n1 +n2 instances and in each instance
we obscure exactly k features. The total number of obscurations is then
equal to r(n1 + n2)k(k+1)

2 .

A more interesting case is described in Algorithm 5.2. Let us see how
the number of obscurations s(n) looks for the first few n’s, assuming the
data has exactly one instance:

for n = 2, s(n) = 1 ,

for n = 3, s(n) = 2 + 3 ,

for n = 4, s(n) = 3 + 5 + 6 ,

for n = 5, s(n) = 4 + 7 + 9 + 10 ,

for n = 6, s(n) = 5 + 9 + 12 + 14 + 15 ,

for n = 7, s(n) = 6 + 11 + 15 + 18 + 20 + 21 ,

. . .

One can see that this can be expressed as

s(n) = [n− 1] + [2(n− 1)− 1] + [3(n− 1)− 3]

+[4(n− 1)− 6] + [5(n− 1)− 10] + . . . ,
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and finally we can formulate it as

s(n) =
n−1∑
x=1

x(n− 1)− (x− 1)x
2

=
n−1∑
x=1

x(n− 1)− 1
2

n−1∑
x=1

x2 + 1
2

n−1∑
x=1

x

= n(n− 1)2

2 − n(2n− 1)(n− 1)
12 + n(n− 1)

4

= n3

3 −
n2

2 + n

6 .



D Results for UCI repository datasets

This section contains additional results from the experiments carried out
on UCI datasets.

D.1 Census income

Attribute Classifiers
OneR glm nnet svmLinear rpart knn

education - X X X - X
marital status X X X X X X
occupation - - X X - -
race - X - X - -
sex - X X X X -
work class - - X X - -
age - X X X X X
capital gain - X X X - X
capital loss - - X X - -
final weight - - - - - -
hours per week - X X X - X
relationship - X X X X X

Table D.1: Predictors used by the classifiers in census income dataset.
Features in the first group are always available.

Classifier Acc Sen Spe p-value
OneR 0.704 0.660 0.747 < 0.001
glm 0.727 0.703 0.751 < 0.001
nnet 0.762 0.734 0.792 < 0.001
svmLinear 0.782 0.747 0.818 < 0.001
rpart 0.758 0.670 0.847 < 0.001
knn 0.758 0.711 0.805 < 0.001

Table D.2: Performance of classifiers on the complete census income
dataset
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Model Group Acc Dec Sen Spe

glm

Original
classifier

0.774 0.376 0.734 0.814
nnet 0.766 0.354 0.756 0.775
svmLinear 0.734 0.354 0.665 0.803
rpart 0.728 0.511 0.616 0.835
knn 0.785 0.376 0.761 0.809

glm

Uncertaintified
classifier

0.804 0.515 0.741 0.860
nnet 0.794 0.564 0.725 0.858
svmLinear 0.789 0.937 0.739 0.837
rpart 0.758 1.000 0.676 0.840
knn 0.808 0.630 0.792 0.825

glm & random forest Imputation 0.796 1.000 0.753 0.838

OWA, interval (A.7)
ωpit, πwid, τ̂mp,0.0

Aggregation
strategy

0.803 1.000 0.747 0.858

Table D.3: Performance of classifiers on the obscured census income
dataset

Original
classifiers

Uncertaintified
classifiers

Imputation Aggregation
strategy

Original classifiers - 0.035 < 0.001 < 0.001
Uncertaintified classifiers 0.035 - 0.040 0.040
Imputation < 0.001 0.040 - 0.798
Aggregation strategy < 0.001 0.040 0.798 -

Table D.4: Results of two-sided Student’s t-test with Benjamini–
Hochberg correction concerning whether by-obscurance-level-weighted
means of AD-score differ on the obscured census income dataset
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Figure D.1: Accuracy of prediction models on the obscured census in-
come dataset. Whiskers indicate lower and upper bounds of accuracy of
classifiers.
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Figure D.2: Accuracy of prediction models regarding missing data levels
on the obscured census income dataset. Shaded regions indicate 95%
confidence interval bounds.
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Figure D.3: Decisiveness of prediction models on the obscured census
income dataset. Whiskers indicate lower and upper bounds of decisiveness
of classifiers.
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Figure D.4: Decisiveness of prediction models regarding missing data
levels on the obscured census income dataset. Shaded regions indicate
95% confidence interval bounds.
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Figure D.5: AD-score of prediction models on the obscured census
income dataset

D.2 Credit card

Attribute Classifier
OneR glm nnet svmLinear rpart knn

age - - - - - -
bill amount 1 - - - - - -
bill amount 2 - - - - - -
bill amount 3 - X - - - -
bill amount 4 - - - - - -
bill amount 5 - X - - - -
bill amount 6 - X - - - -
education - - - - - -
limit balance - - - - X -
marriage - - - - - -
pay 0 X X X X X X
pay 2 - X - - X -
pay 3 - - - - - -
pay 4 - - - X X -
pay 5 - - - X X -
pay 6 - X - X X -
pay amount 1 - - X - - -
pay amount 2 - X - - - -
pay amount 3 - - - - - -
pay amount 4 - - - - - -
pay amount 5 - X - - - -
pay amount 6 - - - - - -
sex - - - - - -

Table D.5: Predictors used by classifiers in the credit card dataset
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Classifier Acc Sen Spe p-value
OneR 0.547 0.636 0.457 0.030
glm 0.643 0.711 0.575 < 0.001
nnet 0.682 0.858 0.506 < 0.001
svmLinear 0.691 0.885 0.496 < 0.001
rpart 0.632 0.897 0.367 < 0.001
knn 0.702 0.854 0.551 < 0.001

Table D.6: Performance of classifiers on the complete credit card dataset

Model Group Acc Dec Sen Spe

glm

Original
classifier

0.660 0.362 0.735 0.586
nnet 0.662 0.547 0.825 0.496
svmLinear 0.657 0.428 0.749 0.563
rpart 0.642 0.402 0.937 0.335
knn 0.662 0.681 0.833 0.485

glm

Uncertaintified
classifier

0.660 0.424 0.724 0.602
nnet 0.662 0.642 0.857 0.448
svmLinear 0.679 0.586 0.675 0.682
rpart 0.625 0.718 0.890 0.351
knn 0.662 0.681 0.833 0.485

glm & mice Imputation 0.620 1.000 0.751 0.489

t-operation, interval (A.10)
smin, α = 0.75, τ̂min,0.0

Aggregation
strategy

0.622 1.000 0.758 0.486

Table D.7: Performance of classifiers on the obscured credit card dataset

Original
classifiers

Uncertaintified
classifiers

Imputation Aggregation
strategy

Original classifiers - 0.171 0.002 0.002
Uncertaintified classifiers 0.171 - 0.002 0.002
Imputation 0.002 0.002 - 0.888
Aggregation strategy 0.002 0.002 0.888 -

Table D.8: Results of two-sided Student’s t-test with Benjamini–
Hochberg correction concerning whether by-obscurance-level-weighted
means of AD-score differ on the obscured credit card dataset
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Figure D.6: Accuracy of prediction models on the obscured credit card
dataset. Whiskers indicate lower and upper bounds of accuracy of clas-
sifiers.
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Figure D.7: Accuracy of prediction models regarding missing data lev-
els on the obscured credit card dataset. Shaded regions indicate 95%
confidence interval bounds.
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Figure D.8: Decisiveness of prediction models on the obscured credit
card dataset. Whiskers indicate lower and upper bounds of decisiveness
of classifiers.
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Figure D.9: Decisiveness of prediction models regarding missing data
levels on the obscured credit card dataset. Shaded regions indicate 95%
confidence interval bounds.
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Figure D.10: AD-score of prediction models on the obscured credit
card dataset

D.3 Magic

Attribute Classifier
OneR glm nnet svmLinear rpart knn

f -alpha X X X X X X
f -asym. - X - X X X
f -conc. - X - X X X
f -conc.-1 - X - X X X
f -distance - X - - X X
f -length - X X X X X
f -M3-long. - X - X X X
f -M3-trans. - X - - X -
f -size - X - X X X
f -width - X - X X X

Table D.9: Predictors used by classifiers in the magic dataset

Classifier Acc Sen Spe p-value
OneR 0.556 0.563 0.550 0.009
glm 0.704 0.755 0.653 < 0.001
nnet 0.778 0.783 0.773 < 0.001
svmLinear 0.773 0.849 0.697 < 0.001
rpart 0.755 0.720 0.790 < 0.001
knn 0.774 0.850 0.698 < 0.001

Table D.10: Performance of classifiers on the complete magic dataset
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Model Group Acc Dec Sen Spe

glm

Original
classifier

0.793 0.334 0.856 0.731
nnet 0.785 0.531 0.802 0.768
svmLinear 0.802 0.349 0.858 0.746
rpart 0.751 0.334 0.802 0.701
knn 0.788 0.340 0.842 0.734

glm

Uncertaintified
classifier

0.789 0.407 0.841 0.738
nnet 0.787 0.600 0.762 0.808
svmLinear 0.796 0.432 0.832 0.763
rpart 0.735 0.589 0.694 0.772
knn 0.797 0.444 0.821 0.778

svmLinear & mice Imputation 0.748 1.000 0.751 0.744

t-operation, numeric (A.5)
repmin, smin, α = 1.0, τ0.0

Aggregation
strategy

0.673 1.000 0.796 0.550

Table D.11: Performance of classifiers on the obscured magic dataset

Original
classifiers

Uncertaintified
classifiers

Imputation Aggregation
strategy

Original classifiers - 0.068 < 0.001 < 0.001
Uncertaintified classifiers 0.068 - < 0.001 < 0.001
Imputation < 0.001 < 0.001 - < 0.001
Aggregation strategy < 0.001 < 0.001 < 0.001 -

Table D.12: Results of two-sided Student’s t-test with Benjamini–
Hochberg correction concerning whether by-obscurance-level-weighted
means of AD-score differ on the obscured magic dataset
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Figure D.11: Accuracy of prediction models on the obscured magic
dataset. Whiskers indicate lower and upper bounds of accuracy of clas-
sifiers.
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Figure D.12: Accuracy of prediction models regarding missing data
levels on the obscured magic dataset. Shaded regions indicate 95% con-
fidence interval bounds.
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Figure D.13: Decisiveness of prediction models on the obscured magic
dataset. Whiskers indicate lower and upper bounds of decisiveness of
classifiers.
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Figure D.14: Decisiveness of prediction models regarding missing data
levels on the obscured magic dataset. Shaded regions indicate 95% con-
fidence interval bounds.
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Figure D.15: AD-score of prediction models on the obscured magic
dataset

D.4 Wine quality

Attribute Classifier
OneR glm nnet svmLinear rpart knn

alcohol X X X X X X
chlorides - - - X X -
citric acid - X X X - X
colour - - - - - -
density - X X X X X
fixed acidity - - - - X X
free sulphur dioxide - - - X - -
pH - - - - - -
residual sugar - - - - - -
sulphates - - - X X X
total sulphur dioxide - - - X X X
volatile acidity - X X X - X

Table D.13: Predictors used by classifiers in the wine quality dataset

Classifier Acc Sen Spe p-value
OneR 0.648 0.735 0.560 < 0.001
glm 0.691 0.697 0.684 < 0.001
nnet 0.734 0.733 0.735 < 0.001
svmLinear 0.711 0.770 0.653 < 0.001
rpart 0.658 0.733 0.583 < 0.001
knn 0.687 0.681 0.694 < 0.001

Table D.14: Performance of classifiers on the complete wine quality
dataset
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Model Group Acc Dec Sen Spe

glm

Original
classifier

0.727 0.425 0.737 0.718
nnet 0.720 0.425 0.727 0.713
svmLinear 0.753 0.360 0.730 0.775
rpart 0.729 0.380 0.880 0.574
knn 0.724 0.362 0.740 0.707

glm

Uncertaintified
classifier

0.737 0.494 0.737 0.737
nnet 0.733 0.491 0.731 0.735
svmLinear 0.758 0.418 0.730 0.785
rpart 0.724 0.651 0.865 0.583
knn 0.734 0.413 0.801 0.663

svmLinear & mice Imputation 0.678 1.000 0.631 0.724

weighted mean, interval (A.6)
ωmin, r = 0.5, τ̂mp,0.0

Aggregation
strategy

0.658 1.000 0.596 0.721

Table D.15: Performance of classifiers on the obscured wine quality
dataset

Original
classifiers

Uncertaintified
classifiers

Imputation Aggregation
strategy

Original classifiers - 0.064 < 0.001 < 0.001
Uncertaintified classifiers 0.064 - < 0.001 < 0.001
Imputation < 0.001 < 0.001 - 0.811
Aggregation strategy < 0.001 < 0.001 0.811 -

Table D.16: Results of two-sided Student’s t-test with Benjamini–
Hochberg correction concerning whether by-obscurance-level-weighted
means of AD-score differ on the obscured wine quality dataset
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Figure D.16: Accuracy of prediction models on the obscured wine qual-
ity dataset. Whiskers indicate lower and upper bounds of accuracy of
classifiers.
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Figure D.17: Accuracy of prediction models regarding missing data
levels on the obscured wine quality dataset. Shaded regions indicate 95%
confidence interval bounds.
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Figure D.18: Decisiveness of prediction models on the obscured wine
quality dataset. Whiskers indicate lower and upper bounds of decisiveness
of classifiers.
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Figure D.19: Decisiveness of prediction models regarding missing data
levels on the obscured wine quality dataset. Shaded regions indicate 95%
confidence interval bounds.
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Figure D.20: AD-score of prediction models on the obscured wine
quality dataset
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