

The role of musical aptitude in the pronunciation of English vowels among Polish learners of English

Mateusz Jekiel and Kamil Malarski

Adam Mickiewicz University in Poznań, Poland

- musical hearing in the acquisition of EFL pronunciation
- 2015 2017
- Polish advanced learners of English
- NATIONAL SCIENCE CENTRE

- music and language evolution (Brown 2001, Mithen 2005)
- music and neurolinguistics (Patel 2008, Fadiga et al. 2009)
- music and L1 acquisition (Carlton 2000, Strait et al. 2012)
- music and L2 acquisition (Pastuszek-Lipińska 2008)
- music in didactics and pedagogy (Franklin et al. 2008)
- popular science

Issues to address

- difficult to measure and define
- difficult to control and assess
- scarcity of empirical data for musical hearing
- scarcity of longitudinal studies
- general language proficiency vs specific aspects of pronunciation
- general musical aptitude vs specific aspects of musical hearing

Research questions

- What is the influence of musical hearing on the acquisition of EFL pronunciation?
- To what extent are pitch perception, melodic memory and musical rhythm correlated with the acquisition of English vowels, intonation and language rhythm?
- To what extent do musical experience and musical education influence the process of second language acquisition?

Project roadmap

Participants

- 80 Polish advanced learners of English
- 1BA English studies programme
- 19-20 years old
- General British model
- intensive two-year pronunciation course
- extensive one-year phonetics and phonology course

Recording sessions

- Polish spontaneous speech (casual conversation)
- Polish wordlist (six vowels in different consonantal contexts)
- English spontaneous speech (casual conversation)
- English reading passage (Please Call Stella)
- English dialogues (four dialogues with different intonation patterns)
- English wordlist (ten vowels in different consonantal contexts)

Musical tests (Mandell 2009)

- pitch perception ~ vowel production
- melodic memory ~ intonation
- musical rhythm ~ language rhythm

Vowel measurements

- sample: 100 tokens per vowel (h_d context) in 20 speakers
- Praat (Boersma and Weenink 2015)
- forced-alignment method | NORM | Vowels in R (Tyler and Kendall 2015)
- all vowels plotted (10 English monophthongs)
- participants' formant values vs GB model formant values (Cruttenden 2014)
- pitch perception test vs Euclidean distance

Results Pitch perception test

Results All vowels (Bark difference normalized)

Results P045 (female, adaptive pitch test result: 3 Hz)

Results P041 (female, adaptive pitch test result: 19.2 Hz)

P037 (male, adaptive pitch test result: 1.8 Hz)

Results P043 (male, adaptive pitch test result: 20.4 Hz)

Results Euclidean distances

Results pitch perception test ~ Euclidean distance

Vowel	R	P-Value
KIT	0.2056	0.045
FLEECE	0.1963	0.711
DRESS	0.2456	0.010
TRAP	0.0002	0.879
STRUT	0.1686	0.102
START	0.0003	0.997
FOOT	0.128	0.213
GOOSE	-0.230	0.024
LOT	-0.152	0.141
THOUGHT	0.010	0.918

Conclusions

- mixed effect for pitch perception ~ production of EFL vowels
- KIT and DRESS most stable in production
- THOUGHT most prone to variation
- GOOSE and LOT stand out
- good pitch perception can be helpful in acquisition of certain vowels
- other factors as important in the acquisition of EFL vowels

To be continued...

- look more carefully into individual speakers
- analyse vowels in other consonantal contexts
- compare with the next two recording sessions
- check for other possible factors:
 - musical experience
 - language exposure
 - stress level

References

Boersma, P. and D. Weenink. 2015. Praat: doing phonetics by computer, Version 5.4.01.

Brown, S. 2001. "The "musilanguage" model of music evolution", in: Nils Wallin et al. (eds.), The Origins of Music, Cambridge: MIT Press, 271-301.

Carlton, E. 2000. "Learning through music: The support of brain research", Child Care Exchange 133: 53-56.

Cruttenden, A. 2014. Gimson's pronunciation of English. (8th ed.) London: Routledge.

Fadiga L., Craighero L. and A. D'Ausillo. 2009. "Broca's area in language, action, and music", Annals of the New York Academy of Sciences 1169: 448-458.

Fonseca-Mora, M., Toscano-Fuentes, C. and K. Wermke. 2011. "Melodies that help: The Relation between Language Aptitude and Musical Intelligence", *Anglistik International Journal of English Studies* 22, 1: 101-118.

Franklin, M., Moore, K., Yip, C. and J. Jonides. 2008. "The effects of musical training on verbal memory", *Psychology of Music* 36, 353-365.

Kendall, T. and E. R. Thomas. 2013. Package 'vowels'. R-package version 1.2.

Mandell, J. 2009. Electronic Music and Medical Education. (http://jakemandell.com) (date of access: 9 November 2014).

Mithen, S. 2005. The Singing Neanderthals: The Origins of Music, Language, Mind and Body. London: Weidenfeld and Nicolson.

Pastuszek-Lipińska, B. 2008. "Musicians outperform nonmusicians in speech imitation", Lecture Notes in Computer Science 4969: 56-73.

Patel, A. 2008. Music, Language, and the Brain. New York: Oxford University Press.

Strait, D., Parbery-Clark, A., Hittner, E. and N. Kraus. 2012. "Musical training during early childhood enhances the neural encoding of speech in noise", *Brain and Language* 123: 191-201.

Thomas, E. R. and T. Kendall. 2007. NORM: The vowel normalization and plotting suite.

Zatorre, R. and S. Baum. 2012. "Musical melody and speech intonation: singing a different tune", PLoS Biology 10, 7: e1001372.