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Abstract

Background: Biological/genetic data is a complex mix of various forms or topologies which makes it quite difficult
to analyze. An abundance of such data in this modern era requires the development of sophisticated statistical
methods to analyze it in a reasonable amount of time. In many biological/genetic analyses, such as genome-wide
association study (GWAS) analysis or multi-omics data analysis, it is required to cluster the plethora of data into
sub-categories to understand the subtypes of populations, cancers or any other diseases. Traditionally, the k-means
clustering algorithm is a dominant clustering method. This is due to its simplicity and reasonable level of accuracy.
Many other clustering methods, including support vector clustering, have been developed in the past, but do not
perform well with the biological data, either due to computational reasons or failure to identify clusters.

Results: The proposed SIML clustering algorithm has been tested on microarray datasets and SNP datasets. It has
been compared with a number of clustering algorithms. On MLL datasets, SIML achieved highest clustering accuracy
and rand score on 4/9 cases; similarly on SRBCT dataset, it got for 3/5 cases; on ALL subtype it got highest clustering
accuracy for 5/7 cases and highest rand score for 4/7 cases. In addition, SIML overall clustering accuracy on a 3 cluster
problem using SNP data were 97.3, 94.7 and 100 %, respectively, for each of the clusters.

Conclusions: In this paper, considering the nature of biological data, we proposed a maximum likelihood clustering
approach using a stepwise iterative procedure. The advantage of this proposed method is that it not only uses the
distance information, but also incorporate variance information for clustering. This method is able to cluster when data
appeared in overlapping and complex forms. The experimental results illustrate its performance and usefulness over
other clustering methods. A Matlab package of this method (SIML) is provided at the web-link http://www.riken.jp/en/
research/labs/ims/med_sci_math/.

Background
In an unsupervised learning procedure, the class label of
a training sample is not known and the aim is to parti-
tion the data into clusters. The unsupervised learning
scheme uses the relationship between samples to per-
form partitioning. In many biological data (e.g. transcrip-
tome data, genomic data etc.), the number of clusters
and class labels are unknown. However, the distribution
is sometimes known, which is usually normal. Therefore,
it would be an advantage to build a technique that
utilizes distance and variance information as it can track
clusters with different conformations.

Over last several decades, the k-means clustering algo-
rithm has been used quite significantly in partitioning
the biological data. In the most recent multi-omics data
analysis tools, like iCluster, and iClusterPlus [1], the
underlying clustering method used was also k-means.
Some tools in cancer research, like ConsensusCluster
(CC) and CCPlus [2, 3], also utilize k-means as one of
the common clustering algorithms. Though the k-means
clustering algorithm has been extensively applied [4] due
to its simplicity and reasonable level of accuracy, it
cannot track clusters when samples of different groups
are overlapping to each other (i.e., data points of adja-
cent groups are spread in a way that the groups partly
coincide over each other). In biological data, this is
sometimes the case, and thereby leads to clusters which
may not be accurate. This has a significant implication
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in biological findings, particularly in cancer subtypes
analysis, population stratification analysis in GWAS and
multi-omics data analysis. In general, k-means has
played a significant role in carrying out analysis for
various types of biological data over several years. Since
data complexity and quantity are increasing, it is import-
ant to develop techniques that can perform clustering by
following data topologies.
In the field of unsupervised learning and clustering,

several wonderful techniques have emerged. Some of the
techniques are briefly summarized here as follows: 1)
clustering using some criterion functions e.g. i) sum-of-
squared error criterion; ii) related minimum variance
criterion, iii) scattering criterion; iv) trace criterion; v)
determinant criterion; and, vi) invariant criterion [5, 6];
2) clustering using iterative optimization [7–9]; 3) hier-
archical clustering [10–13]; several hierarchical-based
algorithms can be found in the literature; e.g., single-
linkage [14], complete-linkage [15], median-linkage [16]
and so on. Single linkage (SLink) [14] merges two
nearest-neighbor clusters at a time in an agglomerative
hierarchical fashion. It uses Euclidean distance to meas-
ure the closeness between two clusters (if it is less than
an arbitrary threshold). This method is very sensitive to
data position, which sometimes creates problem by
forming a cluster in a long chain (known as the chaining
effect). The complete linkage (CLink) hierarchical
approach [15] depends on the farthest-neighbor and
reduces the effects of long chains. This technique is also
sensitive to outliers. The use of average or median dis-
tance could be a way to overcome this sensitiveness.
This was done in median linkage (MLink) hierarchical
approach [16]; 4) clustering is also performed using
Bayes classifier [17–21]; 5) clustering iterative max-
imum likelihood [22–24]; and, 6) support vector clus-
tering [25–27].
In the recent literature, support vector clustering has

gained a lot of attention [26–31]. However, it is expen-
sive in processing time and sometimes fails to find
meaningful clusters. In general, clustering methods
based on Bayes classifier and maximum likelihood are
still the preferred choice compared to support vector
clustering for many applications. There are various
approaches to implement these clustering methods.
In this paper, we focus on maximum likelihood esti-

mate. There are three ways to implement the maximum
likelihood method. 1) Analytic way: likelihood functions
are differentiated and equated to zero and the equations
are solved to find extrema. The second derivative is then
taken to ensure if maxima has reached rather than
minima. 2) Grid search: an exhaustive search over a re-
gion is conducted to find the parameters that produce
largest likelihood. 3) Numerical analysis: an initial value
of parameter is used in a hill climbing algorithm or

gradient ascent algorithm (e.g. Newton-Rapson, BHHH,
DFP) to find the maxima. Maximum likelihood is also
estimated via EM algorithm [5, 22, 32–39].
In general, it is impossible to use an analytic approach

to find maximum likelihood estimates as the parametric
form of data is unknown. Grid search is only possible
when the dimensionality of the data is very small. Most
of the time, maximum likelihood is computed by a hill
climbing algorithm or by the EM algorithm. The poten-
tial problem with gradient algorithms is that when likeli-
hood is not differentiable then it is not possible to find
gradient to convergence. Considering this, in this paper,
we propose a stepwise iterative maximum likelihood
(SIML) procedure which does not require derivatives of
likelihood functions. It can find all unknown parameters
without solving first derivative and second derivatives of
likelihood. The experimental results also show promising
when compared to many state-of-the-art clustering
methods.

Methods
Description of Maximum Likelihood Clustering
Here, we briefly discuss maximum likelihood method
for clustering [5]. Assume a d -dimensional sample
set χ = {x1, x2,…, xn} having n unlabelled samples, and, c is
the number of clusters. Let Ω = {ωj} (for j = 1, 2,…, c) be
the state of the nature or class label for j th cluster χj.
Suppose θ = {θj} (for j = 1… c) is any unknown parameter
(having mean μ and covariance Σ). Then the mixture
density is given by

p xjθð Þ ¼
Xc

j¼1
p xjωj; θj
� �

P ωj
� � ð1Þ

where p(x|ωj, θj) is the conditional density, and P(ωj) is
the a priori probability. The log likelihood can be repre-
sented by joint density

Suppose that the joint density is differentiable
with respect to θ then from Eqs. 1 and 2

∇ θi L ¼
Xn

k¼1

1
p xk jθð Þ∇ θi

Xc

j¼1
p xk jωj; θj
� �

P ωj
� �h i

ð3Þ
where ∇θi L is the gradient of L with respect to θi . If θi
and θj are independent and suppose a posteriori prob-
ability is given as

P ωijxk ; θð Þ ¼ p xk jωi; θið ÞP ωið Þ
p xk jθð Þ ð4Þ

then from Eqs. 3 and 4, we have

(2)
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∇ θi L ¼
Xn

k¼1
P ωijxk ; θð Þ∇ θi logp xk jωi; θið Þ ð5Þ

The gradient of likelihood (Eq. 5) can be equated to zero

(∇ θi L ¼ 0 ) to obtain maximum likelihood estimate θ̂i .
The solution can be therefore obtained by

P ωið Þ ¼ 1
n

Xn

k¼1
P ωijxk ; θ̂
� �

ð6Þ
Xn

k¼1
P ωijxk ; θ̂
� �

∇θi logp xk jωi; θ̂i

� �
¼ 0 ð7Þ

P ωijxk ; θ̂
� �

¼
p xk jωi; θ̂i

� �
P ωið ÞXc

j¼1
p xk jωj; θ̂ j

� �
P ωj
� � ð8Þ

In the above equations, θ is replaced by unknown
mean and covariance parameters for normal distribution
case, to yield maximum likelihood estimates. In the lit-
erature, parameter θ is iteratively updated to reach the

final value θ̂ using hill climbing algorithms such as the
Newton-Raphson method. In general, the computation
of first and second derivatives of likelihood is required
to find the solution. If the likelihood is differentiable and
the a priori probability is non-zero, then convergence
can be obtained. However, there is always a possibility of
being trapped in a local optima.

Stepwise iterative maximum likelihood method
In this section, we describe our proposed method. This
method seeks the most optimal partitions in an iterative
way. We begin with an initial partition of data and shift
a sample from one partition to another partition, and
test if such a shift improves the overall log-likelihood. A
simple illustration of SIML is given in Fig. 1.

If we define class-based log-likelihood of two clusters
χi and χj as

Li ¼
X

x∈χi
log p xjωi; θið ÞP ωið Þ½ � ð9Þ

and

Lj ¼
X

x∈χ j
log p xjωj; θj

� �
P ωj
� �� �

; ð10Þ

then we would be interested in knowing how the class-
based log-likelihood functions (referred as log-likelihood
function hereafter) change if a sample is shifted from χi
to χj. In order to know this, let us define mean and
covariance of χi and χj as μi and μj, and, as Σi and Σj,
respectively. The following equations describe mean and
covariance:

μi ¼
1
ni

X
x∈χi

x ð11Þ

μj ¼
1
nj

X
x∈χ j

x ð12Þ

Σi ¼ 1
ni

X
x∈χ i

x−μið Þ x−μið ÞT ð13Þ

and

Σj ¼ 1
nj

X
x∈χ j

x−μj

� �
x−μj

� �T
ð14Þ

where ni and nj are number of samples in χi and χj, re-
spectively. If the component density is normal and let
P(ωi) = ni/n (where n is the total number of samples)
then Eqs. 9 and 10 can be written as

Li ¼
X

x∈χi
log

1

2πð Þd=2 Σij j1=2
exp −

1
2

x−μið ÞTΣi−1 x−μið Þ
� 	" #

þni logP ωið Þ
or ¼ −

1
2
tr Σ−1

i

X
x∈χ i

x−μið Þ x−μið ÞT
h i

−
nid
2

log2π−
ni
2
log Σij j

þni log
ni
n

where tr() is a trace function. Since tr Σ−1
i

X
x∈χ i

x−μið Þ
h

x−μið ÞT
i
¼ tr niId�dð Þ ¼ nid we can write Li as

Li ¼ −
1
2
nid−

nid
2

log2π−
ni
2
log Σij j þ ni log

ni
n

ð15Þ

Similarly, we can write Lj as

Lj ¼ −
1
2
njd−

njd

2
log2π−

nj
2
log Σ j



 

þ nj log
nj
n
; ð16Þ

and the total log-likelihood for c clusters can be writ-
ten as

Fig. 1 An illustration of stepwise iterative maximum likelihood method
using a c= 2 cluster case. In this illustration, two clusters and are
given with likelihood functions L1 and L2, respectively. The center of
clusters are depicted by μ1 and μ2 (shown as ‘+’ inside two clusters).
Initial total likelihood is Lold which is the sum of two likelihood functions
(L1 + L2). A sample x∈ is checked for grouping. It is advantageous to
shift sample x to cluster only if the new likelihood (Lnew = L1

* + L2
*) is

higher than the old likelihood; i.e., Lnew> Lold
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Ltot ¼
Xc

k¼1
Lk ð17Þ

where Lk is from Eq. 15 or 16.
If a sample x̂∈χ i is shifted to χj, then the mean and

covariance will change as follows (from Eqs. 11, 12, 13
and 14):

μ�
j ¼ μj þ

x̂−μj

nj þ 1
ð18Þ

μ�
i ¼ μi−

x̂−μi

ni−1
ð19Þ

Σ�
j ¼

nj
nj þ 1

Σ j þ nj

nj þ 1
� �2 x̂−μj

� �
x̂−μj

� �T
ð20Þ

Σ�
i ¼

ni
ni−1

Σi−
ni

ni−1ð Þ2 x̂−μið Þ x̂−μið ÞT ð21Þ

where μi
*, μj

*, Σi
* and Σj

* are means and covariances after
the shift.
In order to find the change in log-likelihood functions

Li and Lj, we first introduce the following Lemma.
Lemma 1 If a sample x̂∈χ i is shifted to cluster χj and the

changed covariance of χj is defined as Σ�
j ¼ nj

njþ1Σ j þ nj

njþ1ð Þ2

x̂−μj

� �
x̂−μj

� �T
then the determinant of Σj

* can be given

as Σ�
j




 


 ¼ nj
njþ1

� �d
jΣ jj 1þ 1

njþ1 x̂−μj

� �T
Σ−1
j x̂−μj

� �� �
.

Proof By taking determinant of Σj
*, we get

Σ�
j




 


 ¼ j nj
nj þ 1

Σ j þ nj

nj þ 1
� �2 x̂−μj

� �
x̂−μj

� �T
j ðL1Þ

since for m ×m square matrices |AB| = |A||B| and for a
scalar c, |cA| = cm|A|. We can write Eq. L1 as

Σ�
j




 


 ¼ nj
nj þ 1

� �d

jΣ jjjId�d

þ 1
nj þ 1

x̂−μj

� �
x̂−μj

� �T
Σ−1
j j ðL2Þ

From Sylvester’s determinant theorem, rectangular
matrices A ∈ℝm × n and B ∈ℝn ×m in |Im ×m +AB| is
equal to |In × n + BA|. Therefore, we can write

Id�d þ 1
nj þ 1

x̂−μj

� �
x̂−μj

� �T
Σ−1
j












¼ 1þ 1
nj þ 1

x̂−μj

� �T
Σ−1
j x̂−μj

� �
ðL3Þ

since |c| = c.
Substituting right hand side of Eq. L3 in Eq. L2 proves

the Lemma.
As similar to Lemma 1, the determinant of the change

in covariance of χi can be written as

Σ�
i



 

 ¼ ni
ni−1

� �d

jΣij 1−
1

ni−1
x̂−μið ÞTΣ−1

i x̂−μið Þ
� �

ð22Þ
We can now observe the change in Lj (Eq. 16) due to

the shift of a sample x̂ from χi to χj as

L�j ¼ −
1
2

nj þ 1
� �

d−
nj þ 1
� �

d

2
log2π−

nj þ 1

2
log Σ�

j




 



þ nj þ 1
� �

log
nj þ 1
n

ð23Þ
From Lemma 1 and Eq. 16, we can rewrite Eq. 23

after doing algebraic manipulation as

L�j ¼ Lj þ ΔLj þ C
� � ð24Þ

where ΔLj is given by

ΔLj ¼ −
1
2
log Σj



 

− nj þ 1
2

log 1þ 1
nj þ 1

x̂−μj

� �T
Σj−1 x̂−μj

� �� �

þ log
nj
n
þ nj þ 1
� � d

2
þ 1

� �
log

nj þ 1

nj

ð25Þ
and constant C is given by

C ¼ −
d
2
−
d
2
log2π ð26Þ

In a similar manner, change in Li can be obtained by
using Eqs. 15 and 22 as

L�i ¼ Li− ΔLi þ Cð Þ ð27Þ
where ΔLi is given by

ΔLi ¼ −
1
2
log Σij j

þ ni−1
2

log 1−
1

ni−1
x̂−μið ÞTΣ−1

i x̂−μið Þ
� �

þ log
ni
n
− ni−1ð Þ d

2
þ 1

� �
log

ni−1
ni

ð28Þ

and C is same as of Eq. 26.
By adding Eqs. 24 and 27, we can get the change in

total log-likelihood (Ltot
* ) since there is no change in any

other clusters apart from χi to χj; i.e., from Eqs. 17, 24
and 27 we have

L�tot ¼ Ltot þ ΔLtot ð29Þ
where ΔLtot = ΔLj − ΔLi. Therefore, the shift of a sample
x̂ is advantageous if ΔLtot > 0. This will give the following
algorithm (Table 1):
The following sections discuss the characteristic of the

SIML method.
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Initial settings of the procedure
Similar to any other iterative based optimization tech-
nique, this technique also depends on the initial settings.
Therefore, it is important to put consideration into the
initial settings. In this paper, we implemented three ways
of initializing the partitions: 1) random initialization, 2)
k-means based initialization, and 3) initialization based
on the solution of c − 1 partitions and the mean. These
schemes are described as follows:

1. Random initialization: In this scheme, we create c
random means around the center of the data. This
technique works well when the number of clusters is
small. If c is very large then it can miss clusters.

2. K-means initialization: In this scheme, the data is
first partitioned into c clusters by using the k-means
algorithm. The solution of k-means is used as an
initial setting for the SIML method. This method
works well even if the number of clusters is large.
Most of the time this initialization technique
provides good results. However, since the k-means
algorithm does not track the data based on
covariance information, it has limitations.

3. Initialization based on the solution of c − 1 clusters:
The initialization of c clusters is done by using the
solution of c − 1 clusters, which would give c − 1
locations. The c th location is the mean of the
overall data itself. If only two clusters are required to
find, then 2 locations around center of the data is
used since the solution of 1-cluster is the center of
the data itself.

In this paper, we used all the three schemes for
initialization and in general schemes 2 and 3 provide sat-
isfactory results for most of the data conformations.

Numerical stability
Due to numerical difficulties the convergences of an itera-
tive algorithm can be missed (e.g. convergence problem for
EM algorithm is discussed in [40]). The problem of
numeral difficulties is of particular issue when data
dimensionality is high. In this situation, iterative algorithms

sometimes do not converge properly. This problem usually
appears due to the small numerical values of the covariance
matrix. If the eigenvalues of a covariance matrix Σ are
small, then its determinant can give a value close to zero
due to the fixed point architecture of the hardware. How-
ever, this problem can be easily overcome by first conduct-
ing eigenvalue decomposition of Σ and using the
summation of the logarithm of eigenvalues. It is described
as follows:
The eigenvalue decomposition of Σ ∈ℝd × d will give

EDET where E ∈ℝd × d is the eigenvector matrix and D ∈
ℝd × d is the diagonal matrix of eigenvalues. The deter-
minant of Σ will be

Σj j ¼ EDET


 

 ¼ Dj j ¼

Yd
k¼1

λk

where λk is the k th eigenvalue of Σ. If the values of λ
are small then |Σ| = 0. This problem can be overcome by
simply taking logarithm as

log Σj j ¼
Xd
k¼1

logλk

In a similar way, the inverse of Σ can cause problems
in the term of Eq. 28; i.e., the computation of the term

log 1− 1
ni−1

P
� �

(where P ¼ x̂−μið ÞTΣi−1 x̂−μið Þ) when the

size of the covariance matrix is large. In order to make
this numerically stable a small quantity ϵ > 0 can be in-
cluded as follows:

log 1−
1

ni−1þ �PÞ
�

This will ensure that 1− P
niþ1þ� > 0.

Small sample size case
When the dimensionality d is much greater than the
number of samples n (d≫ n) then small sample size
problem appears [41–44]. Let a sample set χ = {x1, x2,…,
xn} be drawn independently and let the mean and co-
variance of χ be denoted by μ and Σ, respectively. In the
normal density we have a term P = (x − μ)TΣ− 1(x − μ) to
compute which cannot be solved due to singular covari-
ance matrix as its inverse does not exist. A simple exten-
sion could be to use the pseudo-inverse of Σ (denoted
here as Σ+). However, this doesn’t solve the problem. If
samples x are from χ then P+ = (x − μ)TΣ+(x − μ) will
always be equal to the rank of Σ or basically n − 1 (for
d≫ n). This means that all the samples in a particular
cluster would have the same probability and it would
not be possible to justify classification of samples based
on probability. A second way would be to regularize Σ,
however, computing optimal regularization parameter

Table 1 Stepwise iterative maximum likelihood method
procedure

1. Initialization: select initial partitions with means μ1, μ2,…, μc and
covariance matrices Σ1, Σ2,…, Σc

2. Loop: Select a sample x̂∈χ i .

3. If ni > 1 then compute

4. δj ¼ ΔLj ; j≠i
ΔLi; j ¼ i


5. Transfer x̂ to χk if δk =max δj for all j.

6. Update Ltot, μi, μk, Σi and Σk.

7. If Ltot doesn’t change in n attempts then stop otherwise go to Loop.
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could be a challenging task. One way could be to apply
principal component analysis (PCA) procedure on a
d -dimensional sample set χ ∈ ℝd to transform it to a
parsimonious sample set Y ∈ ℝh where h < min(d, n)
h < min(d, n). Thereafter, the clustering procedure
can be performed.

Determination of the number of clusters
It is potentially important to estimate the number of
clusters c present in the sample set. Since this informa-
tion is usually not provided, it is important to obtain the
value of c with whatever information we have at hand.
Basically, the only information we have is the sample it-
self. In the maximum likelihood procedure we compute
likelihood from sample set. Therefore, this information
can be utilized to estimate the number of clusters. In
order to evaluate c, we can run the SIML algorithm for
a range of clusters e.g. 1 ≤ c ≤ K to see at what point the
likelihood function stabilizes or reaches maximum. In
this paper, we investigated two ways to compute c. In
the first way, we compute the maximum log-likelihood
MaxLtot(c) achieved for all values of c ∈ [1, K]. At a par-
ticular value of c the MaxLtot reaches maximum and
does not change much. This would be the estimated
value of c. In the second way, we compute the difference
between the maximum log-likelihood MaxLtot achieved
and the first value of Ltot after SIML procedure (exclud-
ing the initial Ltot value computed from initial settings as
this value is based on the first random guess). Therefore,
for a particular number of cluster c, we will get this dif-
ference likelihood and we denote it as DelLtot which is
equal to MaxLtot − Ltot(1) or max(Ltot) − Ltot(1), where
Ltot(r) defines the value of Ltot at an iteration r. The
curve of DelLtot as a function of c would give a peak at
some value of c which would be its best value. In most
of the data conformations, MaxLtot gives reliable results.
Nonetheless, both the graphs of MaxLtot and DelLtot (as a
function of c) are illustrated in the experimental section of
the paper.

Results
In order to evaluate the algorithm, we carried out exper-
iments on normal Gaussian data as well as on biological
data. We divide this section into 5 subsections. In sub-
section 1, we illustrate the performance of various
methods using three cluster case. Subsection 2 indulges
on maximum likelihood plots as a function of number
of clusters. In subsection 3, we discuss the processing
time of the algorithm. In subsection 4, we discuss the
performance in terms of clustering accuracy and rand
score of various methods; and, in subsection 5 (parts I
and II), we discuss SIML on biological data.

An illustration using three clusters
Since data distribution of GWAS can appear as approxi-
mately Gaussian, we generated normal distribution data
with 3 different mean and covariance for simulation pur-
poses. Furthermore, if we consider GWAS data from a
continent (e.g. Europe) as one cluster, from a country
(e.g. Germany) as second cluster and from a city (e.g.
Berlin) as a third cluster, then third cluster (Berlin data)
will reside inside second cluster (Germany data), and
second cluster (Germany data) will reside inside the first
cluster (European data). Therefore, clusters will overlap
with each other. To simulate this scenario, we generated
a sample set with 1, 500 samples, 2 dimensions and 3
clusters as shown in Fig. 2a, and applied various
methods on it. Cluster 1 is the least dense (or sparse)
and Cluster 3 is the most dense. Cluster 1 has mean
[0.1, 0.1] and variance 3 in each direction. Similarly,
mean and variance of Cluster 2 and Cluster 3 were
[−1, − 1] and 0.8, and, [−0.1, − 0.1] and 0.05, respect-
ively. The clusters overlap each other and the goal is to
track these clusters. It can be seen (from Fig. 2b) that
k-means clustered the 3 clusters without considering
the distribution information. The processing time to
perform the k-means algorithm was 0.82 s. Support
vector clustering (CG method) [25] was difficult to
perform as it is not possible to provide number of class
information. The parameters were tuned so that 3 clus-
ters are outputed. The processing time by this method
was 1183.1 s (excluding the tuning time). It can be ob-
served from the Fig. 2c that this method was failed to
track the clusters. Next, support vector clustering
(using SEP method) [26] was performed. The default
parameters gave 45 clusters. Therefore, as similar to the
previous CG method, tuning of parameters was carried
out to extract only 3 clusters. Processing time was
25.2 s excluding the tuning time. This method also
misses the clusters (Fig. 2d). Then we performed the
proposed SIML method. This method was able to track
all the 3 clusters in 4.49 s per repetition (Fig. 2e). The
likelihood plots are discussed in the following section.

Likelihood plots
Here we discussed three plots: log-likelihood (Ltot) ver-
sus sample (Fig. 3a), maximum log-likelihood (MaxLtot)
as a function of number of clusters (Fig. 3b) and DelLtot
as a function of number of clusters (Fig. 3c).
Figure 3a depicts Ltot plot for 3 clusters. When a

sample is moved from one cluster to another cluster the
value of Ltot is updated. This is an increasing function
and the maximum value of Ltot is defined as MaxLtot in
this paper.
Figure 3b depicts MaxLtot plot. Since in general, the

number of cluster c information is unknown, it is there-
fore crucial to estimate this value. In this paper we
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showed that by using MaxLtot plot and DelLtot plot, it is
possible to estimate c. For this, one can provide a range
of c values and the value for which MaxLtot curve con-
verges (reaches highest peak or does not change much)
is the estimated c. We use the same data we generated
in Fig. 2a and provide 10 values of c as 1 ≤ c ≤ 10. It
can be seen from MaxLtot plot that it converges or
peaks at c = 3.

Processing time
Here we discuss the processing time of the SIML algo-
rithm. In order to give a complete picture, we investi-
gated the clock time in seconds for samples n = 3, 000,
9, 000, 27,000, 54,000 and 102,000 having 3 clusters. We
use the same conformation of data as depicted in Fig. 2a,

however, we increased the dimensionality to d = 10, 20,
100 and 200. Figure 4 shows the processing time of the
algorithm when processed in Linux platform (Ubuntu
14.04 LTS, 64 bit) with 6 processors (Intel Xeon R CPU
E5-1660 v2 @ 3.70 GHz) and with 128 GB memory for a
repetition.

Clustering on artificial data
We performed clustering accuracy and rand score test
on a set of artificial data. For artificial data, we generated
d -dimensional, 4 cluster data such that cluster samples
are overlapping to each other (in a similar way as shown
in Fig. 2). There are in total 2000 samples (where each
cluster having 500 samples). We computed cluster ac-
curacy and rand score for various methods. For
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statistical stability, we generated data 20 times for a par-
ticular dimension d by changing random seed of the
normal data. Thereby, we computed average clustering
accuracy and average rand score over these 20 attempts
for dimension d. We then varied dimension d = 2, 3,…,
20 and reported average clustering accuracy and average
rand score in Fig. 5. For comparison, we used centroid-
based technique like k-means, hierarchical-based tech-
nique like SLink [14], CLink [15] and MLink [16] and
model-based technique (using EM algorithm) like mclust
[39]. It can be observed from Fig. 5a that mclust and
SIML methods perform quite well on Gaussian data. K-
means algorithm also performs reasonably well on this
data. MLink and SLink couldn’t perform well. For aver-
age rand score (Fig. 5b), CLink, k-means, SIML and
mclust are exhibiting reasonable performance. However,
mclust and SIML are superior reaching almost 100 rand
score. Since mclust and SIML are derived from Gaussian
model, their performance on Gaussian data are well
compared to other techniques.

Clustering on real data-I (publically available biological data)
In this section, we utilized various biological data and re-
ported clustering accuracy and rand score. We employed
several methods such as k-means, SLink, CLink, MLink
and mclust for comparison. The description of biological
data is given as follows:
SRBCT dataset [45]: the small round blue-cell tumor

dataset consists of the expression of 2308 genes from 83
samples. This is a four class classification problem. The
tumors are Burkitt lymphoma (BL), the Ewing family of tu-
mors (EWS), neuroblastoma (NB) and rhabdomyosarcoma
(RMS). The dataset consists of 11, 29, 18 and 25 samples of
BL, EWS, NB and RMS respectively.
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MLL leukemia [46]: This dataset has 3 classes, namely
ALL, MLL and AML leukemia. The dataset contains 24
ALL, 20 MLL and 28 AML. The dimension of MLL
dataset is 12,582.
ALL subtype dataset [47]: this dataset consists of the

expression of 12,558 genes of subtypes of acute lympho-
blastic leukemia. The dataset has seven classes namely
BCR-ABL, E2A-PBX1, hyperdiploid >50 chromosomes
ALL, MLL, T-ALL, TEL-AML1 and other (contains
diagnostic samples that did not fit into any of the former
six classes). Samples per class are 15, 27, 64, 20, 43, 79
and 79 respectively.
To vary the data dimensionality (number of features),

we utilized Chi-squared feature selection method to
rank the attributes. The dimensionality investigated was
d = 2, 3,…, nm/2, where nm is the cluster with minimum
number of samples. We then performed cluster analysis
(to evaluate clustering accuracy and rand score) on
these datasets and compared SIML with the k-means,
SLink, CLink, MLink and mclust methods. The results
are reported in Tables 2 and 3 (for SRBCT dataset),
Tables 4 and 5 (for MLL dataset), Tables 6 and 7 (ALL
subtype dataset) and Table 8 (for estimation of number
of clusters by SIML). Clustering accuracy is depicted in
Tables 2, 3, 4, 5, 6 and rand score is shown in Tables 2,
3, 4, 5, 6 and 7. The methods achieving highest results
are depicted in bold faces.
It can be observed from Tables 2 and 3 that SIML

achieved the highest clustering accuracy and rand score
in 3/5 cases, and MLink and CLink achieved the highest
performance in 1/5 case each. For the MLL dataset
(Tables 4 and 5), mclust achieved the highest clustering
accuracy and rand score in 4/9 cases and 3/9 cases, re-
spectively. SIML was able to achieve 4/9 times highest

clustering accuracy and rand score. Apart from SIML
and mclust, k-means was also able to get reasonable
performance especially for higher dimensions. For ALL
subtype dataset (Tables 6 and 7), k-means achieved the
highest clustering accuracy in 2/7 cases and highest rand
score in 3/7 cases. SIML reported the highest clustering
accuracy and rand score in 5/7 cases and 4/7 cases, re-
spectively. These results show that SIML can perform
reasonably well for many datasets employed in this
work. In Table 8, we provided the summary of the num-
ber of clusters estimated by SIML. The corresponding
MaxLtot plots are given in the Additional file 1. It can be
seen from Table 8 that SIML estimates correctly the
number of clusters most of the time.

Clustering on real data-II (SNPs data)
In this section, we attempt to illustrate the use of SIML
on real data case. In practical situation, there are two
problems to address in a dataset: 1) how many clusters
are present; and, 2) what are the locations of the clus-
ters? [48–50]. Sometimes, it is also necessary to identify
or remove some sub-population from the data in order
to solve the issue of population stratification. The exist-
ence of population stratification unmatched between

Table 5 Rand score on MLL dataset

Dim K-means SLINK CLINK MLINK mclust SIML

2 63.6 35.0 41.1 41.1 80.6 72.3

3 67.5 35.0 45.7 45.7 68.1 72.6

4 64.0 36.3 47.2 36.3 95.8 77.5

5 80.4 36.3 75.2 70.2 94.4 94.7

6 80.4 36.3 80.4 70.2 55.6 94.7

7 79.6 35.3 80.4 75.7 91.7 93.1

8 80.6 36.3 78.4 67.7 90.3 69.9

9 81.2 41.1 79.3 82.6 65.3 71.6

10 80.3 36.3 66.1 73.2 61.1 90.1

The methods achieving highest results are depicted in bold faces

Table 4 Clustering accuracy on MLL dataset

Dim K-means SLINK CLINK MLINK mclust SIML

2 56.3 40.3 45.8 45.8 80.6 58.3

3 58.8 40.3 50.0 50.0 68.1 61.1

4 59.5 43.1 54.2 43.1 95.8 72.2

5 81.9 43.1 72.2 69.4 94.4 95.8

6 81.9 43.1 81.9 69.4 55.6 95.8

7 80.0 41.7 81.9 72.2 91.7 94.4

8 81.7 43.1 79.2 68.1 90.3 62.5

9 82.8 48.6 80.6 84.7 65.3 63.9

10 80.4 43.1 58.3 63.9 61.1 91.7

The methods achieving highest results are depicted in bold faces

Table 3 Rand score on SRBCT dataset

Dim K-means SLINK CLINK MLINK mclust SIML

2 69.5 32.9 69.9 60.0 62.7 68.5

3 77.2 32.0 76.6 78.4 69.9 75.3

4 80.5 51.3 71.4 74.8 72.3 82.7

5 78.3 53.1 81.8 53.1 65.1 75.0

6 72.4 35.8 56.5 56.5 57.8 78.7

The methods achieving highest results are depicted in bold faces

Table 2 Clustering accuracy on SRBCT dataset

Dim K-means SLINK CLINK MLINK mclust SIML

2 60.4 34.9 62.7 54.2 62.7 63.9

3 67.9 39.8 69.9 71.1 69.9 66.3

4 77.1 49.4 65.1 67.5 72.3 81.9

5 70.3 50.6 72.3 50.6 65.1 67.5

6 64.0 39.8 53.0 53.0 57.8 69.9

The methods achieving highest results are depicted in bold faces

Sharma et al. BMC Bioinformatics  (2016) 17:319 Page 10 of 14



cases and controls can produce false positives and nega-
tives in GWAS [51]. For this exercise, we utilize data
from a collection of 7001 individuals from the BioBank
Japan (BBJ) project and 45 Japanese HapMap (JPT)
samples [51]. The total number of single nucleotide
polymorphisms (SNPs) was 140,387, genotyped via the
Perlegen platform. We also included 45 Han Chinese
HapMap (CHB) samples and merged these data using
PLINK v1.9 (https://www.cog-genomics.org/plink2) on
140,367 common SNPs. Prior to PCA, we performed
filtering using similar criteria as of that used by
Yamaguchi-Kabata et al. [51]. We removed SNPs with a
call rate < 99 %, a MAF < 0.01, and a Hardy-Weinberg
equilibrium (HWE) exact test p-value > 10− 6. Individuals
with missing calls for > 5 % of SNPs were also removed.
After filtering, 6998 BBJ, 44 JPT and 45 CHB samples
sharing 117,758 SNPs remained. Consequently, the
population consists of 6891 main land Japan (Hondo)
samples, 45 CHB samples and 151 Okinawa samples re-
ferred as the Ryukyu (RYU) cluster. The Hondo samples
can be further subdivided into 628 Kyushu, 908 Kinki,
358 Tokai-Hokoriku, 3975 Kanto-Koshinetsu, 466
Tohoku, 512 Hokkaido and 44 JPT samples. The aim
here is to classify RYU and CHB from Hondo so that
Hondo only data can be explored for further analysis.
We first performed PCA on the filtered data using the R
package SNPRelate [52] to reduce the data dimensional-
ity and conducted analysis on 2 dimensional data.
Linkage disequilibrium (LD) pruning with a threshold of

0.2 was used to define a representative set of 32,090
SNPs for PCA.
In summary, this two dimensional data contain three

clusters: Hondo, RYU and CHB. Here we first computed
true positives (and its corresponding accuracy) for
Hondo, RYU and CHB clusters. This would provide us
information regarding correctly labelled samples in each
cluster. For this purpose, we executed all the methods to
provide 3 clusters of the data. The true positives for
various methods are depicted in Table 9.
From Table 9, we can see that k-means was able to

cluster all CHB samples correctly and also attained high
true positive for the RYU cluster. However, it displayed
comparatively inferior performance for the Hondo clus-
ter. SLink reported very high true positive for Hondo
and CHB clusters. However, it completely missed the
RYU cluster. CLink, MLink and SIML were able to label
all 45 samples of CHB correctly. SIML achieved the
highest true positive for RYU among these 3 methods

Table 9 True positives for Hondo, RYU and CHB cluster on BBJ
and HapMap data

Hondo RYU CHB

Methods (6891) (151) (45)

71.4 % 85.5 % 100 %

K-means 4922 129 45

99.9 % 0 % 100 %

SLINK 6886 0 45

97.9 % 92.7 % 100 %

CLINK 6746 140 45

95.8 % 92.1 % 100 %

MLINK 6603 139 45

97.3 % 94.7 % 100 %

SIML 6707 143 45

66.8 % 94.7 % 0 %

mclust 4602 143 0

Table 8 The estimation of the number of clusters by SIML

Dim SRBCT MLL ALL subtype

2 4 3 7

3 4 2 7

4 4 2 8

5 4 3 4,7

6 2,4 3 7,9

7 3 3,8

8 3 7

9 3

10 6

Table 7 Rand score on ALL subtype dataset

Dim K-means SLINK CLINK MLINK mclust SIML

2 73.1 37.1 68.2 49.9 34.3 71.8

3 79.2 20.5 73.5 62.7 34.9 77.6

4 81.6 20.4 78.3 72.4 33.3 81.2

5 79.6 22.0 69.0 47.3 44.7 82.8

6 79.9 21.6 69.5 67.5 45.3 83.1

7 79.9 21.0 75.2 40.6 49.5 80.2

8 77.8 21.7 70.3 60.6 74.9 82.2

The methods achieving highest results are depicted in bold faces

Table 6 Clustering accuracy on ALL subtype dataset

Dim K-means SLINK CLINK MLINK mclust SIML

2 44.8 32.1 42.8 36.1 34.3 44.0

3 53.3 25.1 45.3 46.2 34.9 56.9

4 57.4 25.1 51.7 49.9 33.3 61.5

5 60.4 26.0 42.8 34.6 44.7 62.4

6 58.9 25.4 38.8 41.0 45.3 63.6

7 58.7 24.2 47.4 36.1 49.5 56.3

8 54.5 25.7 42.8 34.8 41.9 61.2

The methods achieving highest results are depicted in bold faces
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and CLink was slightly better (97.9 %) than SIML
(97.3 %) for the Hondo cluster. In this case, mclust did
not perform well. Nonetheless, mclust gave a high true
positive for RYU cluster. It should be noted here that
this data is highly imbalanced. Out of 7087 samples,
6891 samples belong to the Hondo cluster (i.e., almost
97 %) leaving only 3 % of samples for the RYU and CHB
clusters. This imbalance creates a problem in a way that
majority of samples turn to be labelled under the larger
cluster leaving the smaller clusters. Nonetheless, SIML
has shown encouraging results.
In the next analysis, we did not provide the number of

clusters information to study the characteristics of SIML
method. The resulting clustering is illustrated in Fig. 6. For
this case, the MaxLtot plot gives peak at 3 clusters (Fig. 7)
and therefore 3 clusters were used in this case. The true
RYU and CHB labels are shown on the plot as circles and
diamonds, respectively. Most of Hondo samples are in Clus-
ter 2. There are around 6715 samples in Cluster 2 represent-
ing the Hondo region. Almost all CHB are clustered in
Cluster 3 and most of RYU are clustered in Cluster 1.
Around 8 RYU are clustered in Cluster 2 giving a false nega-
tive (FN) error of 8 samples (5.3 %) and no CHB sample is
misclassified giving FN error of 0 samples (0 %). Cluster 1
and Cluster 3 can be classified easily and analysis can be
conducted on Cluster 2 (Hondo) with very less FN error.
In summary, SIML successfully estimates the num-

ber of clusters as well as the locations. The SIML
package was tested on Ubuntu 14.04 LTS OS (with
128 GB memory and Intel Xeon R CPU E5-1660 v2
@ 3.7 GHz x 6). The OS type is 64-bit. For Matlab
we used ‘Statistics and Machine Learning Toolbox’.

Conclusions
In this work, through considering conformations of
many biological data, we developed a clustering algo-
rithm based on maximum likelihood estimate. The pro-
posed stepwise iterative maximum likelihood (SIML)
method is different from other maximum likelihood
methods as it does not require the computation of first
and second derivative of likelihood functions. This
avoids the necessity to have differentiable likelihood
functions for convergence. The SIML method was tested
on artificial and real data to evaluate its performance.
We show that SIML was able to produce promising
results over state-of-the-art methods. The SIML method

Fig. 7 MaxLtot Plot for 2-dimensional BBJ and HapMap data

Fig. 6 Clustering by SIML on 2-dimensional BBJ data
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was also able to estimate the number of clusters success-
fully. The Matlab package of SIML is available from our
webpage.

Additional file

Additional file 1: Estimation of number of clusters using SIML method.
(DOCX 408 kb)
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