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Abstract
Stratification reduces the variance of sample estimates for population parameters by creating ho-

mogeneous strata. Often, surveyors stratify the population using the most convenient variables such
as age, sex, region, etc. Such convenient methods often do not produce internally homogeneous
strata, hence, the precision of the estimates of the variables of interest could be further improved.
This paper introduces an R-package called ’stratifyR’ whereby it proposes a method for optimal
stratification of survey populations for a univariate study variable that follows a particular distri-
bution estimated from a data set that is available to the surveyor. The stratification problem is
formulated as a mathematical programming problem and solved by using a dynamic programming
technique. Methods for several distributions such as uniform, weibull, gamma, normal, lognormal,
exponential, right-triangular, cauchy and pareto are presented. The package is able to construct
optimal stratification boundaries (OSB) and calculate optimal sample sizes (OSS) under Neyman
allocation. Several examples, using simulated data, are presented to illustrate the stratified designs
that can be constructed with the proposed methodology. Results reveal that the proposed method
computes OSB that are precise and comparable to the established methods. All the calculations
presented in this paper were carried out using the stratifyR package that will be made available on
CRAN.

Key Words: Optimal stratification, Mathematical programming problem, Dynamic program-
ming technique, Stratified random sampling, Optimum sample sizes, Univariate populations.

1. Introduction

Determination of optimum stratum boundaries (OSB) and optimum sample sizes (OSS) to
be selected from each stratum are two inherent optimization problems in optimal stratifica-
tion. Once the OSB have been determined, OSS can easily be computed using a particular
sample allocation method. When stratification is based on a single study variable (y), its
distribution can be utilized as the best characteristic to determine the OSB, i.e., by cutting
the range of the distribution at suitable points. The basic consideration involved in deter-
mining OSB is that the strata should be as internally homogenous as possible. Thus, in
order to achieve maximum precision, the stratum variances should be as small as possible
Cochran (1977).

This univariate problem of determining the OSB was first discussed by Dalenius (1950)
and then notable contributions to these problems were made by Dalenius and Gurney (1951),
Mahalanobis (1952), Hansen, Hurwitz and Madow (1953), Aoyama (1954), Ekman (1959),
Dalenius and Hodges (1957, 1959), Cochran (1961), Sethi (1963). They used the frequency
distribution of the study variable to determine the OSB under various allocations of the
sample sizes. Most of these authors achieved calculus equations which were not suitable for
practical computations. They were only able to obtain approximate solutions under certain
assumptions.

In statistical literature, several techniques to determine the OSB are available to the
surveyors. An early and popular method is the Cumulative Root Frequency Method (Cum√
f) of Dalenius and Hodges (1959), which approximates the implicit equations derived in

Dalenius (1950). To date, this is one of the most widely-used techniques available. Lavallée
and Hidiroglou’s (1988) algorithm (L-H) is also a popular iterative procedure which gives
the OSB and OSS that minimize the total sample size required to achieve a target level of
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precision.
Gunning and Horgan (2004) proposed an alternative method to approximate stratifi-

cation based on a geometric progression. They demonstrated an extremely simple way
of stratifying skewed populations. Horgan (2006) compared this approach with Dalenius
and Hodges (1959), Ekman (1959) and Lavallée and Hidiroglou (1988) and confirmed that
geometric progression method is more efficient. However, Kozak and Verma (2006) stud-
ied the usefulness of Gunning and Horgan’s geometric progression method and obtained a
different result that the geometric progression approach is less efficient than Lavallée and
Hidiroglou’s algorithm (see Kozak et al (2007)).

Kozak (2004) presented a random search algorithm as a method of obtaining OSB and
determined the OSS with Neyman allocation. Each iteration produced a set of random
OSB, so a non-random version of the original was implemented by Baillargeon and Rivest
(2011). Kozak (2004) tested the algorithm and concluded that the efficiency of the random
search methods was similar to that of the L-H algorithm (Lavallée and Hidiroglou (1988)).
Baillargeon and Rivest (2009) found that Kozak’s algorithm produced better results than
Lavallée and Hidiroglou, however, for small populations, Kozak’s algorithm often yields a
local minimum rather than global.

Another method of stratification method that has been proposed in the literature is
due to Khan et al (2002, 2005, 2008, 2009, 2015) and Nand & Khan (2008). When the
distributions or frequency functions of the study variables are known, they formulated the
problems of determining the OSB as optimization problems using many different distribu-
tions. They considered the problem of finding OSB as an equivalent problem of determin-
ing Optimum Strata Width (OSW), which is formulated as a Mathematical Programming
Problem (MPP) and solved by the Dynamic Programming (DP) technique, which was first
proposed by Bühler and Deutler (1975). The advantage of this method is that it gives the
optimum solution of the objective function and it does not require an initial solution, if the
frequency distribution of the study variable is known and the number of strata (L) is fixed
in advance. Collectively, the following distributions have been addressed in all their papers
thus far: uniform, cauchy, exponential, pareto, right-triangular, weibull, gamma, normal
and log-normal.

It may be a somewhat unrealistic assumption that stratification can be based on the
frequency distribution of study variable because often the study variable is not available
to the surveyor until the survey is done. Thus, to determine the OSB in such cases, the
distribution of the study variable and it’s approximate parameters could be ascertained from
a previous or a recent survey. In this paper, all of the above distributions are implemented in
a stratifyR package for the open-source R software. The package is able to determine OSB
and OSS either directly from the data or when essential information such as the type and
range of the distribution are provided. Simulated data are used to demonstrate numerical
illustrations of the package.

2. Formulation of the Univariate Stratification Problem

Let the target population of the variable under study be stratified into L strata where the
estimation of the mean of this study variable (y) is of interest. If a simple random sample
of size nh is to be drawn from hth stratum with sample mean ȳh, then the stratified sample
mean, ȳst, is given by

ȳst =
L∑
h=1

Whȳh, (1)

where Wh is the proportion of the population contained in the hth stratum.

When the finite population correction factors are ignored, under the Neyman (1934) allo-
cation,

nh = n
Whσh∑L
h=1Whσh

. (2)
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The variance of ȳst is given by

V ar(ȳst) =

(∑L
h=1Whσh

)2

n
, (3)

where σ2
h is the stratum variance for the study variable in the hth stratum and n is the

preassigned total sample size.
For a single study variable, if the data is available, the nature of distribution is easily

estimated and the range over which OSB are constructed is known. In many practical
situations, constructing OSB based on the study variable may not be feasible since the
variable of interest is unavailable prior to conducting the survey. Thus, the estimates of
the distribution and its range could be obtained from recent or past surveys and left to the
judgement of the surveyor.

The problem of finding the OSB is formulated as Mathematical Programming Problem
(MPP) that seeks minimization of the variance of the estimated population parameter under
Neyman allocation. The MPP is then solved for OSB by developing a solution procedure
using a dynamic programming technique.

Let f(y); a ≤ y ≤ b be the frequency function of the study variable on which OSB are
to be constructed. If the population mean of this study variable is estimated under Neyman
allocation given in (Neyman (1934)), then the problem of determining OSB is to cut up the
range, d = b− a, at (L− 1) at intermediate points a = y0 ≤ y1 ≤ y2 ≤, ...,≤ yL−1 ≤ yL = b
such that (3) is minimum. The lower and upper bounds of the study variable are denoted
by a and b respectively.

For a fixed sample size n, minimizing the expression of the right hand side of (3) is
equivalent to minimizing

L∑
h=1

Whσh (4)

If f(y) for the study variable is known and if this function is integrable, Wh, σ2
h and µh

can be obtained as a function of the boundary points yh and yh−1 by using the following
expressions:

Wh =

∫ yh

yh−1

f(y)dy ; (5)

σ2
h =

1

Wh

∫ yh

yh−1

y2f(y)dy − µ2
h (6)

where µh =
1

Wh

∫ yh

yh−1

yf(y)dy (7)

and (yh−1, yh) are the boundaries of hth stratum.
Thus, the objective function in (4) could be expressed as a function of boundary points

yh and yh−1 only. Further defining lh = yh − yh−1; h = 1, 2, ..., L where lh ≥ 0 denotes the
range or width of the hth stratum and the range of the distribution, d = b− a, is expressed
as a function of stratum width as:

L∑
h=1

lh =
L∑
h=1

(yh − yh−1) = b− a = yL − y0 = d (8)

The hth stratification point yh; h = 1, 2, ..., L is then expressed as yh = yh−1 + lh and from
(8), the problem can be treated as an equivalent problem of determining optimum strata
widths (OSW), l1, l2, ..., lL. Due to the special nature of functions, the problem may be
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treated as a function of lh alone and can be expressed as:

Minimize
L∑
h=1

φh(lh),

subject to
L∑
h=1

lh = d,

and lh ≥ 0; h = 1, 2, ..., L. (9)

3. Dynamic Programming Solution Procedure

The MPP (9) is a multistage decision problem in which the objective function and the
constraint are separable functions of lh, which allows us to use a dynamic programming
technique (Khan et al., 2008). Dynamic programming determines the optimum solution of
the MPP by decomposing it into stages, each stage comprising of a single variable subprob-
lem. A dynamic programming model is basically a recursive equation based on Bellman’s
principle of optimality (Bellman, 1957). This recursive equation links the different stages
of the problem in a manner which guarantees that each stage’s optimal feasible solution is
also optimal and feasible for the entire problem (Chapter 10, Taha, 2007).

Consider the following subproblem of (9) for first k(< L) strata:

Minimize
k∑
h=1

φh(lh),

subject to
k∑
h=1

lh = dk,

and lh ≥ 0; h = 1, 2, ..., k. (10)

where dk < d is the total width available for division into k strata or the state value at
stage k. Note that dk = d for k = L.

The transformation functions are given by

dk = l1 + l2 + ...+ lk,

dk−1 = l1 + l2 + ...+ lk−1 = dk − lk,
dk−2 = l1 + l2 + ...+ lk−2 = dk−1 − lk−1,

...
...

d2 = l1 + l2 = d3 − l3,
d1 = l1 = d2 − l2.

Let Φk(dk) denote the minimum value of the objective function of (10), that is, for
h = 1, 2, ..., k and 1 ≤ k ≤ L,

Φk(dk) = min

[
k∑
h=1

φh(lh)

∣∣∣∣ k∑
h=1

lh = dk, and lh ≥ 0

]
.

With the above definition of Φk(dk), the MPP (10) is equivalent to finding ΦL(d) recursively
by finding Φk(dk) for k = 1, 2, ..., L and 0 ≤ dk ≤ d. Hence, for lh ≥ 0; h = 1, 2, ..., k,

Φk(dk) = min

[
φk(lk) +

k−1∑
h=1

φh(lh)

∣∣∣∣ k−1∑
h=1

lh = dk − lk

]
.

For a fixed value of lk; 0 ≤ lk ≤ dk, and lh ≥ 0; h = 1, 2, ...(k − 1) and 1 ≤ k ≤ L,

Φk(dk) = φk(lk) + min

[
k−1∑
h=1

φh(lh)

∣∣∣∣ k−1∑
h=1

lh = dk − lk

]
.
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Using the Bellman’s principle of optimality, a forward recursive equation of the dynamic
programming technique for k ≥ 2 and minimizing on 0 ≤ lk ≤ dk could be written as:

Φk(dk) = min [φk(lk) + Φk−1(dk − lk)] . (11)

For the first stage (k = 1),

Φ1(d1) = φ1(d1) =⇒ l∗1 = d1. (12)

where l∗1 = d1 is the optimum width of the first stratum. The relations (11) and (12)
are solved recursively for each k = 1, 2, ..., L and 0 ≤ dk ≤ d, and ΦL(d) is obtained. From
ΦL(d) the optimum width of Lth stratum, l∗L, is obtained. From ΦL−1(d− l∗L) the optimum
width of (L− 1)th stratum, l∗L−1, is obtained and so on until l∗1 is obtained.

4. Results and Discussion

This section demonstrates the application of the stratifyR package that implements the
prosed method. Together with the simulated data sets, the number of strata (h), fixed sam-
ple size (n) and population size (N) were used as the input arguments to the strata.dp()
function in the package. When executed, the package outputs the OSB and OSS, amongst
other quantities such as stratum weight (Wh), stratum variance (S2

h), etc.

4.1 Distributions and their Datasets

The package deals with a total of nine distributions commonly found in surveys, namely,
uniform, weibull, gamma, normal, lognormal, exponential, right-triangular, cauchy and
pareto. Table 1 below presents the frequency functions (pdf) for all of the above distri-
butions found in the package. The associated parameters, to be estimated via Maximum
Likelihood Estimation (MLE) method (using ‘fitdistrplus’ package in R), are also provided
in the table.

4.2 The stratifyR Package

Under the proposed method, in order to construct optimum stratum boundaries and op-
timum sample sizes for a given population, its best-fit frequency distribution needs to be
estimated. The problem of OSB is then formulated as a mathematical programming prob-
lem, where the objective function is minimised on the range of the data set subject to the
constraints given in Equation (9). Both the estimation of the distribution and the MPP
formulation (for the indicated distributions) are implemented in the proposed stratifyR
package. An example of the command used and its output from the package is given below
in Table 2. The problem uses UScities data (Cochran (1961)) to construct a 3-strata solu-
tion with a fixed sample size of n = 300 from a population of N = 1000:

> strata.dp(data = UScities, h=3, n=300, N=1000)

Output:

Optimum Strata Boundaries for h = 3
Data Range: [10, 198] with d = 188
Best-fit Frequency Distribution: lnorm
Parameter estimates are:
meanlog sdlog
3.231552 0.642034

To demonstrate the useablity of the package, several data sets were simulated (using
random generators in R) for uniform, exponential, normal, and weibull distributions. Only
four distributions are presented to basically show the results for these four. Similar distri-
butions and subsequent results can be presented for the remaining distributions. Table 3
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Table 1: Distributions, Frequency Functions and their Datasets

Distribution Frequency Function (pdf) Parameters

Uniform f(x) =

{
1
b−a ; x ∈ [a, b]

0; otherwise
min(a), max(b)

Right-triangular f(x) =

{
2(b−x)
(b−a)2 ; x ∈ [a, b]

0; otherwise
location(a), scale(b)

Exponential f(x) =

{
1
λe
− xλ ; λ ∈ (0,+∞)

0; otherwise
rate(λ)

Cauchy f(x) = 1

πγ
[
1+( x−x0γ )

2
] ; x, x0, γ ∈ (∞,+∞) location(x0), scale(γ)

Pareto f(x) = αβα

(x+β)α+1 ; x ∈ [β,∞); α, β ∈ (0,+∞) shape(α), scale(β)

Gamma f(x) = xr−1

θrΓ(r) e
− xθ ; x, r, θ ∈ (0,+∞) shape(r), scale(θ)

Weibull f(x) = r
θ

(
x
θ

)r−1
e−( xθ )

r

; x, r, θ ∈ (0,+∞) shape(r), scale(θ)

Normal f(x) = 1
σ
√

2π
e−

1
2 ( x−µσ )

2

; x, µ ∈ R, σ > 0 location(µ), scale(σ)

Log-normal f(x) = 1
xσ
√

2π
e−

1
2 ( ln(x)−µ

σ )
2

; x, µ ∈ R, σ > 0 location(µ), scale(σ)

Table 2: An Example Output from stratifyR Package

Strata(L) OSW OSB Wh S2
h WhSh nh Nh

1 18.2308 28.2308 0.493361 25.5601 2.49428 168 335

2 27.1656 55.3964 0.321352 55.5140 2.39432 161 322

3 142.6036 198.0000 0.110648 533.8481 2.55653 172 343

Total WhSh: 7.44513

below provides the objective functions that are minimized for these distributions subject to
the constraints stated in Equation (9).
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Table 3: Objective Functions and Estimated Parameters of Simulated Datasets

Distribution Objective Function (WhSh)

Uniform
∑L
h=1

y2h

2
√

(3)(b−a)

Exponential
∑L
h=1 e

−
xh−1
λ

√
λ2
(

1− e−
yh
λ

)
− y2

he
− yhλ

Weibull



∑L
h=1 Sqrt

{
θ2 Γ

(
2
r + 1

) [
e−(

xh−1
θ )

r

− e−
(
xh−1+lh

θ

)r]
×
[
Q
(

2
r + 1,

(xh−1

θ

)r)−Q( 2
r + 1,

(
xh−1+lh

θ

)r)]
−
[
θ Γ
(

1
r + 1

) [
Q
(

1
r + 1,

(xh−1

θ

)r)−Q( 1
r + 1,

(
xh−1+lh

θ

)r)]]2}

Normal



∑L
h=1 Sqrt

{
σ2

2
√

2π

[
erf

(
xh−1 + yh − µ

σ
√

2

)
− erf

(
xh−1 − µ
σ
√

2

)]
×

[(
xh−1 − µ

σ

)
exp

(
−
(
xh−1 − µ
σ
√

2

)2
)

−
(
xh−1 + yh − µ

σ

)
exp

(
−
(
xh−1 + yh − µ

σ
√

2

)2
)]

+σ2

4

[
erf

(
xh−1 + yh − µ

σ
√

2

)
− erf

(
xh−1 − µ
σ
√

2

)]2

−σ
2

2π

[
exp

(
−
(
xh−1 − µ
σ
√

2

)2
)
− exp

(
−
(
xh−1 + yh − µ

σ
√

2

)2
)]2}

Table 4 provides the outputs (which presents only essential items such as OSB and OSS)
provided by the package for a fixed sample size of n = 300 from a population of N = 1000.
The input parameters to the strata.dp() function of the stratifyR package are the data,
number of strata, n and N . The OSB and OSS are provided for the four distributions given
in Table 3.
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Table 4: OSB and OSS for Uniform, Exponential, Weibull and Normal Distributions Using
Proposed Method in stratifyR Package

Uniform Exponential Weibull Normal

L OSB OSS OSB OSS OSB OSS OSB OSS

2 2.97423 150 1.18353 142 1.40886 146 4.96836 149
150 158 154 151

3 2.43835 101 0.716667 96 1.04878 101 4.42763 103
3.51621 98 1.893383 97 1.82909 94 5.51739 92

101 107 106 105

4 2.14827 76 0.516607 73 0.860306 77 4.11097 78
2.97433 74 1.229601 73 1.424337 71 4.97401 71
3.81278 74 2.399734 73 2.089903 72 5.84278 71

76 81 80 81

5 1.96159 61 0.404407 59 0.740139 62 3.89201 63
2.65156 59 0.918335 59 1.198009 58 4.64429 57
3.29814 59 1.628727 59 1.672368 58 5.30841 57
4.00485 60 2.791513 59 2.276567 58 6.07075 57

61 65 65 65

6 1.83 51 0.332389 49 0.655387 52 3.7276 53
2.43035 50 0.734577 49 1.047475 48 4.41077 48
2.97363 50 1.246974 49 1.430015 48 4.97763 48
3.52205 50 1.954457 49 1.856256 48 5.54731 48
4.14085 50 3.10936 56 2.42033 49 6.24443 48

50 54 54 55

To compare the OSB and OSS obtained in Table 4 via the stratifyR package, ‘stratifica-
tion’ package (Baillargeon & Rivest (2011)) is used to construct OSB using Cum

√
f method

and calculate OSS under Neyman allocation given by Equation (2). Table 5 provides these
results and the computed values reveal that the OSB and OSS obtained via the proposed
method implemented in the stratifyR package is very similar to the Cum

√
f method, that

is, they are quite comparable to each other. It is able to successfully create OSB and OSS
for the simulated populations and can surely be used on any real population.
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Table 5: OSB and OSS for Uniform, Exponential, Weibull and Normal Distributions Using
the Cum

√
f Method

Uniform Exponential Weibull Normal

L OSB OSS OSB OSS OSB OSS OSB OSS

2 2.01 150 1.23 146 1.45 150 4.94 145
150 154 150 155

3 2.36 102 0.77 104 1.03 90 4.4 103
3.64 95 1.99 99 1.87 106 5.61 103

103 97 104 94

4 1.96 71 0.46 60 0.87 77 4 64
3 79 1.23 84 1.45 72 4.94 84

3.96 69 2.3 67 2.2 78 5.88 74
81 89 73 78

5 1.8 61 0.46 77 0.7 48 3.87 58
2.6 58 0.92 48 1.2 77 4.67 66
3.4 57 1.68 64 1.7 58 5.34 57
4.2 63 2.76 57 2.37 57 6.14 62

61 54 60 57

6 1.64 44 0.31 47 0.62 39 3.73 55
2.36 58 0.77 67 1.03 55 4.4 48

3 47 1.23 41 1.45 57 4.94 39
3.64 47 1.84 47 1.87 42 5.61 58
4.28 48 2.91 52 2.45 49 6.28 43

56 46 58 57

5. Conclusion

The stratifyR package successfully implements the proposed method to construct OSB
and OSS by minimizing the formulated MPP for the best-fit distribution of a given data
set. Results for the four simulated data sets with different distributions illustrate that the
stratified designs can be constructed with the proposed methodology. The package is able
to handle a total of nine different distributions and all of their performances, in terms of
precision and comparability, are on par with the established Cum

√
f method. Since the

study variables are not easily available in practice, the package also has the advantage of
being able to create OSB and OSS based on the distribution (ascertained from past surveys)
over a particular range.
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