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Abstract. Computer simulations can be carried out with various aims. Perhaps

the most challenging is prediction under conditions where experiments are difficult

or inaccessible, especially when failure to predict adequately may have unhappy

consequences. There is, probably, not much confidence at present in the capability

of low-temperature plasma physics simulations in such a context. Other fields have

attempted to meet this challenge using a collection of techniques collectively known as

“Verification and Validation,” or “V&V.” These are methods for enhancing confidence

in the correctness and fidelity of computer simulations. This paper surveys these

techniques and discusses their application to improvements of simulation capability in

low-temperature plasma physics.
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1. Introduction

The potential of numerical calculations as a technique for scientific investigation

was appreciated early in the development of modern science. Application of such

methods, however, was limited by the laborious manual effort involved, until modern

programmable computers became widely available during the nineteen-fifties. Since

then, the importance of numerical approaches to technical calculations has increased,

and the ambition of such calculations has also increased, in proportion to the

computational resources that have become available. At present, so-called exascale

computers are expected to be operational in the foreseeable future. These machines will

deliver in excess of 1018 floating point computations per second. Even a fraction of these

resources allows simulations to address physical systems so complex that analytic insight

into their behaviour is extremely difficult. Consequently, one may be in the position

of reaching important conclusions or making important decisions informed primarily

by the results of computer simulations [29]. Calculations relating to the safety of

nuclear devices might be an extreme example. Under these conditions, the fidelity of the

computer simulations is of obvious and vital importance. Here, the essential opacity of

the computational process is a challenge. A strictly mathematical argument can be fully

published, and consequently checked by any interested party. In computational work,

questions arise not only about the correctness of the computer program (which may

contain many thousands of lines of code): Other factors than the correctness of the code

influence the results. These include the mathematical model that the computer program

is designed to solve, and the physical and numerical parameters of the simulation, which

may be numerous. A widespread and customary assumption is that these concerns

are addressed as a matter of course by diligent practioners, and need not be discussed

systematically and explicitly whenever computational results are reported. Over the last

decade or two, however, this position has been undermined by evidence that the diligence

of even expert practitioners may be insufficient protection against faulty computations

[32, 10, 11, 27, 29]. This impression is reinforced by a number of well-documented

failures, attributed to computation, e.g. [13, 19, 3]. This has led (from 1986 onwards)

to both calls for more detailed reports of computational work [36, 6, 44], and careful

consideration of the kind of evidence that should be advanced to sustain the assertion

that a computational result is “correct” (or at least “fit for purpose” ) [29]. Clearly, if

we cannot make a convincing argument that computation leads to “correct” results, the

ambitions of computational science will be seriously limited.

There has been some divergence between scientific and engineering communities

[29] concerning these matters. In scientific communities, the primary purpose of

simulation is often seen as developing insight that will lead towards, for example, analytic

understanding. In this context, the validity of the analytic understanding need not

depend on whether or not the simulations were strictly correct: Major results in the

physical sciences are rarely if ever established solely on the basis of computation, for

example. If the system under investigation defies analytic understanding, or if expert



Computer Simulation in Low-Temperature Plasma Physics: Future Challenges 3

judgement cannot otherwise distinguish between a correct and a faulty result, then the

simulations must stand alone. In this case, the correctness of the simulations becomes a

crucial question. This often the case in an engineering context, in which simulation

is used to establish a number (such as a breaking strain), rather than to explore

qualitative behaviour. Serious engineering failures with grave legal consequences have

been attributed to faulty computations [19]. Clearly, great dangers await if simulations

developed under the rather relaxed standards of scientific communities are applied to

problems in this second category.

The experience of the computational fluid dynamics community is highly relevant.

This is a computational specialisation where engineering prediction is a central goal.

This is also the community that experienced the so-called “numerical wind tunnel

debacle,” an episode during which hubristic claims were made about the imminent

replacement of physical wind tunnels by simulations [4]. The computational tools

and practices in use at the time, however, proved embarrassingly insufficient. This

realisation was an important motivation for the development of the techniques known

today as “Verification and Validation,” or “V&V.” These are unfortunate terms, as

similar looking words whose meanings in ordinary usage are indistinct. Indeed, they

often treated as interchangeable in the scientific literature. However, in recent usage

“verification” refers to the process of testing a computer program, while “validation”

is concerned with the testing of mathematical models. In this context, we assume that

the purpose of the computer program is to solve some mathematical model, in which

case verification is the process of demonstrating that the program executes this solution

correctly. Validation is the process of establishing that the solutions that are found

are consistent with experimental observations. Clearly, a computer program must be

verified before any meaningful validation can occur, since otherwise no distinction can

be drawn between errors in the computer program, and deficiencies in the mathematical

model.

A simple metric for the “correctness” of a computer program is the number of

defects per line of code. Best practice leads to defect densities of around one per

ten thousand lines of code [11]. Scientific and engineering code has been shown to

exhibit defect densities that are typically ten to a hundred times larger than this

[10, 11]. In extreme cases, defect densities as high as one per ten lines have been

observed[10]. These metrics refer to professionally maintained code, employed as an aid

to making economically consequential decisions. Moreover, the presence of these defects

demonstrably affects the results of calculations, to a degree that materially influences

decisions based on these calculations [10]. There are, therefore, grounds for serious

concern.

Of course, the mathematical structure of the underlying model and correct

computer programming are not the only factors contributing to effective computer

simulation. The mathematical model will usually contain physical parameters that

are not known with certainty, and this uncertainty may limit the predictive capability

of the simulation as much or more than any other consideration. When the number
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of uncertain parameters is large, special techniques may be needed to investigate how

uncertainty infects the computed results, and to determine which parameters are causing

the uncertainty. An obvious example of this kind of problem arises when complex

chemistry models are employed [48, 49], which may feature hundreds of uncertain

parameters, in the form of rate constants and other related data. Investigations of

these matters use techniques of “Uncertainty Quantification,” or “UQ.” In essence, the

aim of UQ is to associate error bars with the computed results. Evidently, UQ is

required to establish a meaningful concept of “agreement” of computer simulations and

experiments in the context of validation. Fields such as combustion science, where

complex chemistry models are common, routinely use UQ methods in combination

with validation and optimisation of such models to develop “reaction mechanisms” with

demonstrated predictive power.

These considerations suggest that there is large scope for improved practice in

computer simulation as employed by the low-temperature plasma physics community.

Indeed, one might argue that changes in custom and practice are urgently needed in

light of the developments in other fields outlined above. The aim of this paper is to

survey the main ideas associated with “V&V” and point to examples of their use in low-

temperature plasma physics and nearby communities. An important point that emerges

from this discussion is that V&V is expensive. Consequently, the benefits must be at

least proportionate to the expense. Although this paper is concerned primarily with

V&V, this is not the only area where improved practice may be desirable. Improved

practice in code development is also likely to have a place [51], but this is beyond the

scope of the present paper.

In what follows, we present a brief survey of some of the main ideas that “V&V”

has thrown up. Whenever possible, we refer to examples drawn from low-temperature

plasma physics, but the present state of development, such examples are rare. In

section 2, we discuss techniques for code verification, and we note some special problems

that arise in the context of low-temperature plasma physics. We then go on to discuss

uncertainty quantification, in section 3, sensitivity analysis, in section 4 and validation

issues in section 5. Some implications of these ideas are elaborated in section 6, and

concluding remarks are in section 7.

This paper can only glance at the main concepts. There are at least three book

length treatments of V&V techniques [16, 35, 29], and hundreds to thousands of pages

of writing in journals. Sensitivity analysis is a field with similar scope. A paper of

the present length cannot offer a comprehensive overview of all this material, and some

important ideas have necessarily been omitted, or treated superficially. The intention of

the paper is not be critical of past work in the field of low-temperature plasma physics

that was carried out according to the prevailing view of good practice. Rather, the aim

is to show that other fields have developed new ideas, the adoption or adaption of which

may lead to more powerful computational approaches.
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2. Verification

Verification is concerned with testing of computer programs. The general approach

involves demonstrating that a particular program can reproduce an exact solution of

some suitable test problem. In embarking on such an exercise, we assume that the

solution procedure implemented by the program is conceptually valid, so that the only

question is whether or not the implementation is correct. When the model equations are

solved explicitly, as in the example discussed below, this is almost self-evident. But some

approaches do not explicitly solve the model equations. This is the case, for instance,

with Monte Carlo solutions of the Boltzmann equation, in which the Boltzmann equation

is not explicitly expressed in the computer program. In some such cases, the existness

of a convergence proof provides assurances that a correct implementation will lead to

the expected solution [50, 23]. Consequently, verification and formal convergence proof

are complementary but distinct activities.

Probably everyone involved in computational work recognizes that a complex

computer program cannot be assumed to be correct. Testing is always required. An

obvious procedure is to compare the results of a computation with a solution that is

indisputably valid, such as an exact analytic calculation. The natural method is to plot

a graph, and see whether the two solutions coincide. There are many examples of this

approach in the low-temperature plasma physics literature. However, the computed

solution cannot be expected to agree “exactly” with the analytic result, because there

will be effects of both numerical parameters and finite precision arithmetic (at least).

Whether the two solutions agree acceptably, or not, then appears to be a matter of

judgement and possible disagreement. There is a stronger method available, however.

A well designed numerical procedure will include some analysis of the accuracy of the

scheme. For instance, the Laplacian operator may be expressed

d2Φ

dx2
=

Φi+1 − 2Φi + Φi−1

∆x2
+O

(

∆x2
)

. (1)

A measure of the distance between a numerically derived solution defined at spatial

locations xi = i∆x and an exact solution, Φ(xi), is the L2 norm:

L2 =
∑

i

√

[Φi − Φ(xi)]
2 /

∑

i

Φ(xi)2. (2)

Equations 1 and 2 imply that

L2
∝ ∆x2, (3)

and this relation holds if and only if the numerical solution converges to the exact

solution at the expected rate. In practice, this scaling is observed only for a finite range

of ∆x. For ∆x too large, higher order terms in the error polynomial are important. For

∆x too small, finite precision effects will become influential. Nevertheless, observing

the relationship of equation 3 constitutes a strong test for correct implementation of a

numerical solver, amounting, in the view of some [34], to a correctness proof. Whether

this be accepted or not, this is a far more rigorous and convincing approach than
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inspecting a graph comparing two solutions. This idea is the basis of modern concepts

of verification.

An indicative application of this technique is shown in figure 1. This example refers

to the calculation of single particle orbits in given electric and magnetic fields, in this

case a fixed magnetic field making a certain angle with an electric field that oscillates

in time. The particle trajectory is computed using a second order accurate leapfrog

procedure [1], and the L2 norm is computed relative to an exact solution for this case.

As can be seen, the relationship between the L2 norm and the integration time step

follows the expected relationship, which shows that the numerical solver is correctly

implemented.

An obvious difficulty with this technique is that we must know of an exact

solution. Since we often mean to solve, for instance, coupled systems of nonlinear partial

differential equations, this seems a serious challenge. However, the exact solution need

not be physically significant, and this insight has led to the idea of the “method of

manufactured solutions” as the basis for correctness tests [34]. As a simple example,

suppose we desire to solve

∂n

∂t
= D

∂2n

∂x2
− kn2, (4)

in some region 0 ≤ x ≤ L, with n(t, x = 0) = n(t, x = L) = 0. This transport equation

might model a recombining afterglow. For a manufactured solution, we may assume any

function satisfying the boundary conditions, although a combination of transcendental

functions is desirable, because no difference scheme of finite order can reproduce the

solution exactly. For instance,

nmanu(x, t) = n0 exp(−Dπ2t/L2) sin(πx/L). (5)

This proposed solution of course does not satisfy equation 4, but it will do so if we add

on the right hand side the artificial source term:

S(x, t) = knmanu(x)
2. (6)

Then equation 5 is an exact solution of the modified equation, and we can use the

technique discussed above to verify that any proposed numerical solver behaves in the

expected way. Once we have performed this step, the artificial source term can be set to

zero. This example is trivial, but the procedure can be applied to arbitrarily complex

systems of partial differential equations [38, 24, 14, 5], and so the verification challenge

appears to be met for problems in this category. Advantage may even be found in the

unphysical character of these manufactured solutions. For instance, the physical problem

may involve equations with terms that differ significantly in magnitude. A manufactured

solution can be constructed so that all the terms are of similar magnitude, such that all

are exercised in the same test.

The foregoing remarks apply to the problem of verifying a computer program,

which is referred to as “verification of code.” Even if this procedure produces certifiably

correct code, this does not guarantee that every calculation carried out with the code
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gives a result that is fit for purpose. This is because each such calculation (presumably)

has distinct physical parameters, and in general the numerical parameters must be

chosen appropriately for each case. So some method is needed to demonstrate that the

numerical parameters have been appropriately selected. A simple and robust procedure

is to calculate solutions for three set of related numerical parameters. In the example

discussed above, for instance, we might choose ∆x = H, 2H, 4H, for some H that we

deem suitable. Presumably the finest grid gives the most accurate solution, and we can

estimate the error in that solution by comparison with the solution on a coarser grid.

The motivation for computing three solutions (and not two) is to check that the rate of

convergence is as expected. This step is known as “verification of calculations.” Many

journals nowadays mandate that this integrity check be demonstrated as an absolutely

minimal requirement for computational results to be accepted as publishable.

For mathematical problems consisting of coupled sets of partial differential

equations, the verification problem appears to be substantially solved by the methods

outlined above. This does not mean that the problem has been made easy. For instance,

an obvious difficulty is that codes may have complicated options, particularly when

boundary conditions for multi-dimensional cases must be specified. In principle, each

logically distinct configuration of the code requires a separate verification test case.

Designing a code that can solve a usefully wide range of problems without generating an

unreasonable number of test cases may be difficult. Hatton [10], for example, discovered

a program with 500 000 000 paths, each in principle requiring a verification test case.

Clearly, such a program is practically unverifiable.

These remarks apply to programs designed to solve coupled systems of partial

differential equations. However, not all problems are in this category, including several

of great importance in low-temperature plasma physics, as we now explain.

2.1. Hybrid Models

Perhaps the single most important type of simulation used in low-temperature plasma

physics is the so-called hybrid model [18]. This is, in effect, a technique for addressing

simulation problems that encompass widely varying scales, for instance in length or

time or both. The typical structure of a hybrid model includes several loosely linked

modules, each of which is more-or-less autonomous. A module finds convergence on its

own length and time scale, and exchanges data with other modules that may operate on

either larger or smaller scales. A common example is a plasma simulation in which

macroscopic parameters, such as species densities and fields, are found by solving

moment equations, while microscopic information, such as particle energy distribution

functions, are obtained at the kinetic level by solving the Boltzmann equation. These

modules may be coupled to still more disparate scales, such as microelectronic features

(on nanometre length scales), or gas dynamics (on second time scales). Most likely, one

can devise a verification strategy for each module using the principles outlined above, but

the problem of verifying the simulation as a whole appears challenging. There are two
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difficulties. The simulation as a whole is generally not based on a coherent mathematical

model. For instance, the procedures connecting different modules are often informally

specified, and indeed establishing that different modules do not make contradictory

assumptions might be difficult. Consequently, manufacturing an exact solution for

verification purposes appears impossible. Even if the mathematical foundations of

the simulation could be clarified, the diversity of solution procedures, with different

and perhaps incompatible numerical parameters, will make a coherent concept of

convergence difficult to establish. Finally, a hybrid model appears particularly prone to

the problem of unreasonable multiplication of verification test cases that was discussed

above. The diversity of modules that might be included in a hybrid model allow

many different configurations of the simulation, each of which will require a separate

verification test case. For these reasons, verifying a hybrid model using established

approaches [29] appears difficult, and there would be advantage in research into the

mathematical foundations of hybrid models.

2.2. Monte Carlo Codes

There is relatively little writing on the problem of verifying Monte Carlo codes. The

challenges are different from those discussed in connection with hybrid models. Monte

Carlo codes typically solve a well-defined mathematical model, and therefore a process

resembling the method of manufactured solutions could be used. However, in some

cases, the process of convergence is complicated by some mixture of statistical and

numerical effects. For example, many Monte Carlo codes integrate the trajectories of

test particles in time using a numerical procedure involving a finite time step, with

the desired outcome a distribution function expressed as a sum over a large number of

such trajectories. The distribution obtained in this way is influenced both by statistical

effects, and by effects of the finite time step, in ways that are generally not analytically

well understood. In some Monte Carlo codes, such as particle-in-cell simulations, the

particle trajectories are not independent. The means of demonstrating that such a

simulation converges to an expected solution are not straightforward [31]. Moreover,

the method of manufactured solutions is not so easy to apply either. This is because

implementing an arbitrary source term is not simple. In particular, a source term that

is negative in some region of phase space may be problematic. Avoiding such problems

will place challenging constraints on the kind of manufactured solutions that may be

used. These are not obviously insurmountable difficulties, but at the present time no

Monte Carlo code seems to have been verified in this way. In this context, we note

that direct solutions of the Boltzmann equation without Monte Carlo elements (such

as the convective scheme [12]) do not appear to encounter these difficulties and could

presumably be verified using the method of manufactured solutions.

One may well discover exact solutions that exercise some subset of the functions

of a Monte Carlo code, and this may permit the assembly of a suit of verification test

problems that collectively exercise all the functions of a code. For instance, the nuclear
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physics community has developed a large suite of such test problems [42] which exercise

many important functions of a Monte Carlo transport code. This approach can certainly

increase confidence in the correctness of a code. However, a tempting recourse in the

absence of a comprehensive exact test problem is benchmarking, which has some special

problems that we will now discuss.

2.3. Benchmarking as a verification technique

Benchmarking is a comparison of codes applied to some test problem. There are

difficulties with this natural procedure, relative to verification against an exact solution,

which have made this approach unpopular with writers on verification techniques [46].

Perhaps the greatest of these difficulties arises in the case where none of the codes is

known to be correct in advance, but the results on the test problem are found to be

divergent. This is a distressingly common occurence in benchmarking exercises, and if,

as also often happens, the differences cannot be resolved, the result cannot be regarded

as verifying anything [43, 10, 37]. For this reason, verification against an exact solution is

preferable to benchmarking, when the former is an option. However, there does appear

to be a case for benchmarking, when an exact solution is not available, and if there is

a clear concept of agreement. A minimum requirement in this case seems to be that

all the benchmarked codes should implement the same mathematical model, so that an

idea of agreement within a margin of numerical uncertainty defined by a “verification

of calculation” approach can employed. In general, agreement at this level appears

difficult to find, but even when such agreement is achieved, some caution is warranted.

For instance, there is evidence that errors in independently written computer codes

tend to cluster (perhaps because some algorithmic elements are psychologically hard to

implement accurately) so that simultaneous error in independent codes, although not

likely, is not as improbable as one might hope [15].

An example of a benchmark calculation involving particle in cell simulations with

Monte Carlo collisions [47] is shown in figure 2. In this case, all of the benchmarked

codes implement nominally the same algorithm using the same numerical and physical

parameters, and, consequently, if all the codes are correct then the results should be

different only for statistical reasons. One can therefore ask whether the results are

different by applying statistical tests. In this case, a X2 test was used, with the

conclusion that the codes under test give statistically indistinguishable results. For

an earlier (and arguably less rigorous) attempt to develop a benchmark, see Lawler and

Kortshagen [20].

Benchmarking appears a tempting technique for hybrid models when the method

of manufactured solutions cannot be used. A serious challenge in this context is that

while there are many hybrid models in present use, probably no two of them implement

the same model in detail. A concept of agreement between such models thus appears

difficult to establish.
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3. Uncertainty Quantification

A simulation of any complexity depends on a large number of physical parameters.

Important examples include chemistry models, which may contain hundreds or

thousands of parameters in the form of rate constants and similar data [39, 22, 33, 48, 49].

All these parameters are more or less uncertain, and this uncertainty necessarily

propagates into the results of simulations incorporating such models. Clearly, it would

be unsafe to draw any conclusions from an uncertain simulation result without having

at least characterized the uncertainty. Both quantitative and qualitative features of a

simulation may be uncertain, and if the scope of such uncertainty is not known, there

is a risk of drawing invalid conclusions. For these reasons, uncertainty quantification,

or “UQ,” is a usual practice in disciplines that attempt to used complex simulations

for predictive purposes. Combustion science and environmental science are examples.

Raw quantification of uncertainty is useful, but further analysis allows the uncertainty

in simulation results to be associated with the simulation parameters. That is, we can

discover which simulation parameters are causing uncertainty in particular simulation

results. This procedure is known as “ranking,” where the parameters are being ranked

in order of their influence on the simulation results [49].

Figure 3 shows an example drawn from Turner [48]. These data are obtained used

a chemistry model for mixtures of helium and oxygen. The figure shows a selection of

trajectories for helium metastable densities as a function of time. In these calculations,

each rate constant in the chemistry model has an associated uncertainty, constructed,

for example, using an experimental error bar. These uncertainties are used to associate

a probability distribution with each rate constant, and each trajectory in figure 3 is

computed with a different set of rate constants drawn from these distributions. Each

trajectory is therefore consistent with the available information about the rate constants.

Clearly, any attempt to compare this model with an experiment should account for the

variety of possible trajectories. A summary view of the variety of possible trajectories

appears in figure 4. In this representation, trajectories show in a figure 3 are ordered

at each time coordinate, and the shaded area represents the two middle quartiles, i.e.

at each time time coordinate, 50 % of the trajectories fall in the shaded region. Of

course, this means that the other 50 % of the trajectories are outside this region. The

width of the shaded region is therefore a representative error bar for the simulation

results. As has been shown elsewhere [48], the margin of uncertainty in this kind of

calculation varies with species and simulation conditions in ways that do not appear

easy to predict. However, the relative uncertainty can exceed a factor of ten in some

circumstances, which is likely to be important for almost any computational purpose.

A broader view of uncertainty can be taken. For example, most computer

simulations omit some features of the corresponding physical system, for instance

by reducing the number of dimensions. These and similar simplifications can also

be regarded as sources of predictive uncertainty, but they are not susceptible to

quantification by the techniques discussed above [45], and this interesting problem will
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not be further discussed in the present paper.

4. Sensitivity Analysis

The data shown in figures 3 and 4 indicate the magnitude of the uncertainty in the

model due to the uncertainty in the rate constant data, but they offer no insight into

the processes that cause the uncertainty. The procedure for associating the uncertainty

in model predictions with particular model parameters is known as “screening.” A

screening algorithm computes various metrics that quantify the contribution of each

model parameter (or “factor”) to the uncertainty in each predicted quantity (or “model

output”). The basic method is essentially a Monte Carlo procedure in which, at each

step, a single randomly selected factor is changed, while all the others are held constant.

In general, changing one factor will change all the model outputs. The changing of one

factor in this fashion is known as an “elementary effect.” To fully explore the influence of

each factor, elementary effects needs to be evaluated at several places in the parameter

space, i.e. for a selection of values of each of the factors that are held constant while the

elementary effect is evaluated. One could do this by randomly selecting the constant

factors, but in practice there are more efficient ways to proceed, which will not be

discussed here [28, 39]. The leading result of such a process is a coefficient µi,j , which

characterizes the effect of the ith factor on the jth model output. This coefficient may

be positive or negative, and it is basically the rate of change of the output with respect

to the factor, averaged over all possible values of the other factors. That is, µ is a global,

and not a local, characteristic. This procedure leads to a “ranking” of the factors in

terms of their influence on the model outputs. An example of ranking applied to the

example discussed above is shown in figure 5. These data will not be discussed in

detail, but inspection will show that the results are not intuitively obvious. This kind

of ranking is, of course, distinct from principal pathway analysis [21, 26]. For instance,

elastic collisions of electrons with helium appear in the ranking of figure 5. This reaction

clearly cannot appear in any relevant reaction pathway: But it affects the uncertainty

by influence on the electron energy balance.

5. Validation

Validation aims to test the physical fidelity of the mathematical model that is solved

by a computer program. This commonly means that the model predictions are to

be compared with experimental measurements. Clearly, for this to be a meaningful

activity, the computer program that solves the mathematical model must have been

verified (section 2), the particular calculations executed for comparison purposes must

have been verified (section 2), and an uncertainty quantification must be available

(section 3). When these conditions are satisfied, we are unambiguously testing the

model, and not either the computer program, or the choice of numerical parameters.

Moreover, since the uncertainty quantification associates error bars with the model
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predictions, and the experimental measurements also (presumably) have error bars,

there is a clear criterion for agreement between the model and the experiments. Most

writers on the subject argue that validation is most effective as a collaborative procedure

between experimentalists and simulationists [29]. Among other reasons, this is because

few experimental reports in the literature are so detailed that all the parameters

required by a simulation are clearly specified. If the simulationist is required to

estimate (guess) some parameters, the value of the exercise is degraded. Furthermore,

an effective collaboration between experimentalists and simulationists should lead to

mutual criticism of a constructive kind, that may improve both the simulation and the

experiments. Examples of the difficulties that may reduce the value of experiments as

validation targets are discussed by Golda et al. [8].

A special problem of validation occurs when the question of optimising a complex

model arises. When a model contains uncertain parameters, varying such parameters

within their margin of uncertainty to improve the fit of a model to experiments is a

legitimate procedure. Uncertainty quantification and sensitivity analysis can be used

to guide such a process. The combustion community tends to use the term “reaction

mechanism” to describe a model that has passed through this process of validation and

optimisation. A well-known and important example is “GRI Mech 3.0,” a model for

natural gas combustion containing some 325 reactions [41]. GRI Mech 3.0 is optimised

using an automated procedure [7] against approximately 100 “targets.” A target is

essentially a particular validation experiment. Clearly, the development of a reaction

mechanism in this sense entails a commitment to a careful and detailed experimental

study of the system of interest, in order to establish such targets. There are few examples

of sufficiently detailed studies in low-temperature plasma physics. Studies of the chlorine

system represent a recent initiative in this direction [2, 40, 25], but remain a work in

progress.

The low-temperature plasma physics community probably does not have any model

that counts as a “reaction mechanism” in the sense discussed above. One can find

examples of careful collation of rate constants [17, 48], uncertainty quantification

[48], sensitivity analysis [49], validation against experimental targets [9], and limited

optimisation [30], but none of these works combines all the features discussed above

in a systematic fashion. But there are chemistries of probably sufficient importance to

justify the exertion required, such as the mixtures of rare and atmospheric gases that

have become important in biomedical applications of plasmas, and certain chemistries

of interest for microelectronic manufacturing.

An important sub-field of low-temperature plasma physics in which validation has

been pursued vigorously is swarm physics. The practice of testing suites of cross

sections by computing transport coefficients for comparison with experimental data

has been established since the nineteen-sixties. Even in this area, however, there might

be advantage to applying some of the techniques discussed above.
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6. Discussion

The preceding sections show that the development of a simulation using best practice,

as understood by, for example, the computational fluid dynamics community, follows

this procedure:

(i) Formulation of a mathematical model

(ii) Development of a code to compute solutions of the model

(iii) Verification of the code, against exact (including manufactured) solutions of the

mathematical model

(iv) Specification of a protocol for verification of calculations using the code

(v) Uncertainty quantification with respect to the physical parameters of the

mathematical model

(vi) Validation of the mathematical model by reference to experiments

(vii) Optimisation of the physical parameters with respect to “target” experiments

These steps aim towards a mature predictive capability. In practice, as we have seen, in

the context of low-temperature plasma physics, there are difficulties at almost every

point. For instance, the structure of hybrid models, with no formal mathematical

basis, and diverse (possibly incommensurate) numerical parameters, makes verification

of either code or calculations difficult (perhaps infeasible) according to these principles.

Other important categories of code in wide use in low-temperature plasma physics are

also difficult to verify using the techniques recommended in other fields. Clearly, there

are problems here requiring research. Uncertainty quantification, sensitivity analysis,

and optimisation are all possible, but have not been widely used. It is doubtful whether

sufficient data of appropriate quality exist to either validate or optimize any particular

chemistry, certainly not to the degree seen in GRI-Mech 3.0, for example. None of these

obstacles is obviously insurmountable, but collectively they are a formidable challenge.

In this context, the resources required for verification, validation, and uncertainty

quantification are a relevant consideration. There is no doubt that the procedures

discussed above greatly increase the resources required to carry out computer

simulations. This is true at several levels. Verification requires both the identification of

suitable test solutions, and demonstration that the computer code under test converges

to these solutions in the expected way. A code convergences to the expected solution

at the expected rate only if the implementation is accurate even in subtle details to a

degree that is difficult to achieve. For instance, in a finite difference procedure, an error

at a single grid point is enough to reduce the order of convergence, and such mistakes

are easy to make but difficult to find. The verification procedure will show that there is

an error in the code, but not where it is to be found. So verification greatly increases the

human resource required to develop a code. Verification of calculations is likely to be

easier, because this step can be automated, and usually will be done by coarsening the

grid (or other numerical parameters), which need not greatly increase the computational
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expense. Uncertainty quantification, however, even with an efficient procedure, is likely

to require the examination of around ten cases per uncertain parameter, which is

a serious increase in computational effort, especially when hundreds or thousands of

parameters are involved. Similarly, validation and optimisation requires some mixture

of critical evaluation of the existing literature and (preferably) design and execution of

fresh experiments to build a set of validation “targets.” From these considerations, it

will be clear that the expense (in any of several senses) of pursuing predictive simulation

through verification and validation is likely to be large. Indeed the factor involved may

be two or three orders of magnitude beyond the effort required to produce a simulation

at the minimal level with a code that does not (usually) crash, and with results that

appear reasonable to an expert judge (the traditional validity criterion for physicists).

We assume that simulations are always carried out in order to substantiate certain

conclusions. The important point is then to demonstrate that the conclusions are not in

doubt because of error or uncertainty in the simulations. How much of the programme

outlined above must be delivered to support this demonstration will vary, depending

on the context. If the simulations were done as a conceptual crutch for an analytic

model, which will eventually stand by itself, then possibly none of the programme needs

to be delivered. If the simulations alone will inform engineering design decisions with

important human or economic consequences, then it may be imperative to deliver the

whole programme. This is a matter of risk management. Well-known epistemological

considerations show that no categorical guarantee can ever be given against predictive

failure. But the risk of such a failure can be minimized by best practice.

7. Concluding Remarks

The low-temperature plasma physics community has achieved major advances in

simulation capability in recent decades. These advances have, in general, been towards

greater realism in simulation. We now have simulations with detailed representations

of complex geometry combined with rich physical and chemical models. The drift of

this work is from scientific exploration and towards engineering prediction. Against

this background, and in view of the discussion above, it may be timely to consider

the methodological changes that have occurred in other fields, and their potential

application in low-temperature plasma science. As we have seen, other fields have made

important advances that have contributed substantially to the acceptance of computer

simulation as a predictive tool. These techniques are undoubtedly expensive to apply,

which suggests that individual investigators should consider carefully the consequences

for their research goals of adopting, or not adopting, such methods. The experience

of other fields shows that it is reasonable to question the significance of computational

results that ignore issues of verification and validation.

The community might consider collective actions. Possibly the development of

an elaborate code with full verification is beyond the resources of any single research

group. Similarly, developing “reaction mechanisms” for important chemistries may be
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a goal more appropriately pursued collectively than individually. By these means we

may achieve a significantly more powerful computer simulation capability than we enjoy

today.
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Figure 1. A correctness demonstration showing convergence of the trajectory of

a charged particle moving in crossed electric and magnetic fields towards an exact

solution. In this example, the magnetic field is stationary, while the electric field

oscillates in time with frequency ω = ωc/4, where ωc is the cyclotron frequency. The

upper panel shows one component of the exact particle trajectory, while the lower panel

shows the L2 norm relative to this exact solution as a function of the integration step

∆t. The solid line shows the expected result L2 ∝ ∆t2, while the points are computed

results.
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Figure 2. An example of a verification benchmark from Turner et al. [47]. This

benchmark refers to a one-dimensional capacitively coupled discharge in helium at

a pressure of 300 mTorr. Simulations have been carried out using five independently

written particle-in-cell simulation codes for the same physical conditions and numerical

parameters. The data shown here are for the ion density averaged with respect to time.

The error bars are statistical. The five codes tested here agree within the error bars,

and it can be shown that the simulation results are statistically indistinguishable. The

lower panel is an expanded view of the central region.
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Figure 3. These trajectories of helium metastable density as a function of time were

obtained using a Monte Carlo procedure that chooses a random set of rate constants

in a manner consistent with the associated uncertainties [48]. Each trajectory thus

represents a solution for the same physical conditions, using different randomly chosen

rate constants. The set of trajectories therefore show a range of possible outcomes, all

consistent with the state of knowledge of the rate constants. Clearly, the trajectories

exhibit both quantitative and qualitative differences, to a degree suggesting that

comparison with experiments should proceed with great caution.
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Figure 4. The helium metstable density as a function of time in a model of a helium-

oxygen plasma, as in figure 3. In this representation, the shaded region is bounded

by the upper and lower quartile values of the distribution of trajectories at each time

point. These data therefore indicate the magnitude of the uncertainty in the computed

density, due to the uncertainty in the rate constant data included in the chemistry

model.
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Figure 5. A ranking of rate constants by their influence on the uncertainty in

the density of helium metastables, evaluated using the Morris method [28, 49]. The

horizontal axis represents the coefficient µ discussed in the text.
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