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Highlights

• A new compact shape signature that is built from multiple
vocabulary.

• A mechanism for reducing both the impact of vocabulary
correlation as well as the size of the signature.

• Experiments on standard shape retrieval benchmarks show
that the proposed approach outperforms the state-of-the-
art.
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ABSTRACT

Bag of Covariance matrices (BoC) have been recently introduced as an extension of the standard Bag
of Words (BoW) to the space of positive semi-definite matrices, which has a Riemannian structure.
BoC descriptors can be constructed with various Riemannian metrics and using various quantization
approaches. Each construction results in some quantization errors, which are often reduced by in-
creasing the vocabulary size. This, however, results in a signature that is not compact, increasing
both the storage and computation complexity. This article demonstrates that a compact signature, with
minimum distortion, can be constructed by using multiple vocabulary based coding. Each vocabulary
is constructed from a different quantization method of the covariance feature space. The proposed
method also extracts non-linear dependencies between the different BoC signatures to compose the
final compact signature. Our experiments show that the proposed approach can boost the performance
of the BoC descriptors in various 3D shape classification and retrieval tasks.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in 3D acquisition technology, the wide-
spread of online 3D repositories, such as Trimble 3D Ware-
house, and the impact of Web3D on various domains, have been
important drivers to the growing need for efficient 3D shape
classification and retrieval techniques. Among existing tech-
niques, Bag of Words (BoW), motivated by their success in im-
age retrieval and classification, are widely used in 3D shape
classification and retrieval tasks. Their advantage is that they
enable the aggregation of local descriptors, of the same type,
computed at different locations on a given shape, into a single
global descriptor, which then inherits the invariance and robust-
ness properties of the local descriptors.

Standard BoW approaches assume that features are elements
of Euclidean spaces and thus one can use the L2 metric for
building the dictionary and for computing the BoW signa-
tures. In the past years, however, several authors showed that
the use of features that are elements of non-linear Rieman-
nian manifolds can lead to substantial improvement in classi-

∗∗Corresponding author: Tel.: +0-000-000-0000; fax: +0-000-000-0000;
e-mail: hedi.tabia@ensea.fr (Hedi Tabia)

fication and retrieval performances. Examples of such features
include covariance-based descriptors, originally introduced for
image analysis (Porikli et al., 2006), and recently extended to
3D shapes (Tabia et al., 2014; Tabia and Laga, 2015). Tabia
et al. (2014); Tabia and Laga (2015) extended the standard BoW
paradigm that operates on Euclidean spaces to the space of
positive semi-definite matrices, which has a Riemannian struc-
ture. They studied four different quantization methods and con-
cluded that k-means using the geodesic distance and linear up-
date of centers produces less distortion and thus is a suitable
way for vocabulary construction. However, this distortion gen-
erally depends on the codebook size. The larger the codebook
is, the smaller the distortion will be. Nevertheless, when using a
very large codebook, signatures become non compact and thus
the retrieval system loses the benefits of the BoC representation.

In this paper, we demonstrate that the distortion caused by the
quantization, when using BoC representation, can be reduced
by fusing multiple BoC signatures each one is computed with a
different quantization method and using a different metric. In-
deed, codebooks are computed while taking into account the
different geometries of the space of covariance matrices (e.g.
Riemannian and Euclidean). By computing multiple BoC sig-
natures with different codebooks, more candidate features are
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recalled, which enables to gain rich and effective 3D shape rep-
resentation while reducing quantization distortions and errors.

Contributions. The contributions of this article are; (1) A
new compact shape signature that is built from multiple BoC
vocabularies, each one constructed with a different metric and
a different quantization method. By using multiple BoC vocab-
ularies, more features are recalled, which corrects quantization
artifacts. (2) A mechanism for reducing both the impact of vo-
cabulary correlation as well as the size of the signature. (3) We
show that using multiple vocabularies one improves the 3D re-
trieval and classification performance over existing individual
BoC signatures. (4) Finally, our experiments on standard 3D
shape retrieval benchmarks show that the proposed approach
outperforms the state-of-the-art.

Figure 1 overviews the proposed approach. Below, we detail
each step of the pipeline.

2. Bag of Covariance matrices (BoC)

We use covariance-based descriptors (Tabia et al., 2014) as
local features that encode the local geometry of a 3D shape.
Covariance descriptors are computed on local patches {Pi, i =

1 . . .m}, which may be overlapping. Each patch Pi is extracted
around a representative point pi = (xi, yi, zi)t. We denote by
Xi the Symmetric Positive Definite (SPD) covariance matrix
which corresponds to our descriptor. In our implementation,
Xi encodes the covariance of a (dim = 5)−dimensional feature
vector f j of all points p j = (x j, y j, z j)t, j = 1 . . . , ni, belonging
to the patch Pi. The dimensions correspond to (1) the location
of the point p j with respect to the patch center pc = 1

ni

∑ni

k=1 pk.
It is given by p j − pc, (2) the distance of the point p j to pi, and
(3) the volume of the parallelepiped formed by the coordinates
of the point p j. We then compute the covariance matrix Xi of
these features. The diagonal elements of Xi represent the vari-
ance of each feature while its off-diagonal elements represent
their respective co-variations. It has a fixed dimension (5 × 5)
independently of the size of the patch Pi.

The space of covariance matrices M = S ym+
d is a special

type of homogeneous space which carries a natural Riemannian
structure. The geodesic distance, d2

g (X,Y), between two points
X and Y onM is given by:

〈
logX (Y) , logX (Y)

〉
X = trace

(
log2

(
X−

1
2 YX−

1
2

))
(1)

Since the space of covariance matrices M carries a Rieman-
nian structure, Tabia and Laga (2015) proposed the extension
of the vocabulary construction paradigm, originally designed
for Euclidean spaces, to non-linear Riemannian manifolds of
covariance matrices. They proposed to compute the vocabulary
while taking into account the geometry of the manifold. Four
construction methods have been proposed:

K-medoid with geodesic distance (KM). Instead of the K-
means, the KM constrains the center of clusters to be one of the
data points. Using KM requires the computation of the pairwise
geodesic distances between all training data, which can be time
consuming. The final set of medoids is used as vocabulary.

K-means on the tangent space (KTS). The KTS first maps
all the training points to the tangent space of the manifold at

one point (e.g. the mean point), resulting in an Euclidean rep-
resentation of the manifold-valued data. K-means algorithm is
then applied to construct a set of clusters with minimum aver-
age distortion in the tangent space. Finally the cluster centers
are projected back to the SDP space to form the vocabulary.

K-means with geodesic distance and linear update of cen-
ters (KGL). The KGL uses the geodesic distance with the
Frobenius distance when computing the centers of k-means.
The idea is that the Euclidean average of covariance matrices
lies in the Riemannian manifold. Indeed, any non-negative
linear combination of SPD matrices is an SPD matrix. This
implies that the linear average X̂ of X1, ..., XN given by: X̂ =
1
N (X1 + ...+ XN) is an SPD matrix. The Frobenius distance from
which the linear average came is given by:

d2
F(X1, X2) =

∑

1≤i, j≤dim

∣∣∣(X1 − X2)i j

∣∣∣2 . (2)

When assigning a data point Xi to its closest center X̂, KGL
uses the geodesic distance.

K-means with Frobenius distance (KF). The KF algorithm
considers the Euclidean ambient space of SDP matrices and ig-
nores its Riemannian structure. It uses Frobenius distance for
both K-means steps; assignment, and center computing.

It has been shown in Tabia and Laga (2015) that different
effect on the clustering can be observed based on the choice
of distance. This demonstrates that different quantizers have
different effects on the data. We aim in this article to exploit
these differences to build an efficient shape descriptor.

3. Multiple vocabulary fusion

In the training step of the BoC approach, we use the four
algorithms presented in Section 2 to learn four codebooks from
all the features. Depending on the distance measure used, Each
algorithm attempts to minimize the following distortion:

min
X̂k

1
|T |

K∑

k=1

∑

X∈Ck

d2(X, X̂k), (3)

where K is the number of codewords in each codebook, |T |
represents the cardinality of the input training data set, and X̂k

is the center of the cluster to which X is assigned to (i.e. Ck ={
X|d(X, X̂k) < d(X, X̂k′ ), ∀k′ , k

}
). Here, d(·, ·) is the distance

measure (or metric) used for clustering. A good set of visual
words is the result of a clustering that has minimum distortion
with respect to the training features. For L different codebooks,
with K words per each codebook, then the minimization of the
total distortion from all codebooks can be written as :

min
X̂l

k

1
L|T |

L∑

l=1


K∑

k=1

∑

X∈Cl
k

d2
l (X, X̂k)

 . (4)

Here Cl
k =

{
X|d(X, X̂l

k) < d(X, X̂l
k′ ), ∀k′ , k

}
.

It is well known in Nearset Neighbour (NN) search prob-
lems (Jegou et al., 2010; Xia et al., 2013) that minimizing the
distortion from multiple quantizers such as in Eqn. (4) is more
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Fig. 1. Overview of the framework; Instead of using a single vocabulary for covariance descriptor coding, we proposed the use of four vocabularies
constructed from different ways. We then jointly concatenate 3D signatures from each vocabulary, decorrelate them using KPCA like algorithm. Finally,
we binarize the signature to speedup the process.

effective an leads to better recall and precision (Wu et al., 2009;
Babenko and Lempitsky, 2012) than minimizing the distortion
from a single quantizer (Eqn. (3)). Typically, multi-vocabulary
merging can be performed either at score level, e.g., by con-
catenating the BoW histograms, or at rank level, e.g., by rank
aggregation (Jegou et al., 2010). By analogy with NN search
problems, we propose to use a multiple vocabulary-based cod-
ing approach for the BoC-based 3D shape retrieval. First, it is
necessary to generate L different codebooks using the same set
of covariance descriptors. Diversity can be obtained by using
the same algorithm and varying initializations. It is very un-
likely that these different initializations give the same solution
for a big data, as the algorithm converges to a local minimum.

Various codebooks can be also obtained by using the differ-
ent algorithms presented in section 2. This latter, which we
develop in what follows, is particularly more interesting since
it allows the codebook construction from different quantization
methods, each one using a different metric (e.g. Riemannian or
Frobenius). Each metric captures different aspects of the data
space. To illustrate this idea, we consider the simple 2D data
exampled shown in Figure 2. Suppose we have two quantizers
each with two codewords. The first quantizer is constructed us-
ing the Euclidean distance (Figure 2 (a)) while the second one
is constructed using a non-linear Riemannian distance (Figure 2
(b)). The space partitioning of the two quantizers are quite dif-
ferent ((a) and (b)), and thus the gain of having the second quan-
tizer is effective. If objects, such as Q = {q1, q2}, S = {s1, s2}
and T = {t1, t2}, have local descriptors located very close to the
partitioning boundary of one quantizer, they will be correctly
managed by the second quantizer. In Figure 2-(a), by consid-
ering hard assignment, the objects Q,S, and T are represented
by (2, 0), (2, 0) and (0, 2), respectively. From this representa-
tion, Q and S are identical, yet S and T are orthogonal. On the
other hand, in Figure 2-(b) when using the Riemannian quan-
tizer Q = (2, 0) and S = (0, 2) will be considered orthogonal
yet T(0, 2) and S(0, 2) are considered identical. This is in con-

(a) Euclidean quantizer (b) Geodesic quantizer (c) Multiple quantizers

Fig. 2. We illustrate two quantizers with two codewords in each quan-
tizer. (a) Clustering using Euclidean-based quantizer, which contains two
codewords {CE

1 ,C
E
2 }. (b) Clustering using a non-linear Riemannian-based

quantizer, which has also two codewords {CG
1 ,C

G
2 }. (c) Multiple quantizers

from the joint vocabulary merging {CE
1 ,C

E
2 ,C

G
1 ,C

G
2 }. Here, Q = {q1, q2},

S = {s1, s2} and T = {t1, t2} are three shapes.

tradiction with the results from the Euclidean quantizer. Now
when using multiple quantizers (in Figure 2-(c)) one can no-
tice that S = (2, 0, 0, 2) and Q = (2, 0, 2, 0) are not identical
but share some local descriptors. Same for S = (2, 0, 0, 2) and
T = (0, 2, 0, 2), which are not orthogonal.

With this motivation, we propose a new multiple vocabulary-
based coding for BoC-based 3D shape retrieval: once the vo-
cabularies have been constructed, 3D shapes are described us-
ing vectors of visual word frequencies. In our case, each visual
word is a representative covariance matrix. For a given vocab-
ulary, each point Pi on a given 3D model, represented by its
covariance descriptor, is assigned to its closest center using the
geodesic distance for KM, KTS and KGL algorithms and using
the Frobenius distance for KF algorithm. Mathematically, we
associate each point Pi with a vector wi of size K such that:

wi
j = 1 if j = arg min

k∈[1..K]
d(g,F)(Xi − X̂k), otherwise, wi

j = 0. (5)

where d(g,F) is either the geodesic or the Frobenius distance
depending on the clustering algorithm used for quantization.
From each vocabulary, a signature vector W of a 3D model is
computed as the sum over i of the vectors wi. It encodes the
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number of times a given visual word appears in that model.
We then propose to serially aggregate the signature vectors

produced from the different codebooks and reduce its dimen-
sionality using KPCA while retaining its discriminative power.
Formally, we starts by integrating the different BoC represen-
tations into one single vector. Let Wl, l = 1, . . . , L, be the BoC
vectors produced from L different codebooks. The proposed
new signature is defined by the vector V = (W1,W2, . . . ,WL)T ,
the the concatenation of the L signatures. If the BoC represen-
tation Wl is of dimension dl, then the produced signature V is
of dimension d =

∑L
l=1 dl.

Beside the fact that the straightforward concatenation of the
BoC vectors linearly increases the storage needs, it improves
only slightly the retrieval accuracy. This is due to the large
correlation between the BoC representations constructed us-
ing the four quantizers. To overcome this issue, we proceed
as follows. We compute the Gram matrix G where Gi, j =

exp(−γ
∥∥∥Vi − V j

∥∥∥2
), i, j ∈ S . Here {Vi}i=1..N is the set of con-

catenated signatures representing a collection of shapes S =

{S i}i=1..N , and γ is empirically set to 0.1. Then, we compute
a low rank approximation of G. We denote by Dt the diago-
nal matrix whose diagonal elements are the t-largest eigenval-
ues: Dt = diag (λ1...λt) . We also denote by Λt the matrix of
the first t eigenvectors: Ut = [Λ1...Λt] . We can then define
Gt as an approximation of G: Gt = UtDtU>t . Then, we com-
pute the projectors of the signatures in approximated subspace
Pt = VUtD

−1/2
t , with V = [V1...VN] is the matrix of the sig-

natures. For each 3D shape, we compute the projection of the
signature in the sub-space as: V′i = P>t Vi.. Here, V′i contains
an approximate and low dimensional version of Vi. The sub-
space defined by the projectors preserves most of the similarity
even for very small dimension. It also improves the discrimina-
tion power of the concatenated signatures since there is a large
correlation between the BoC representations constructed from
the earlier presented quantizers.

4. Binary Quantization

Finally, for efficient similarity search, we propose to learn
similarity-preserving binary codes using the iterative quantiza-
tion (ITQ) approach of Gong et al. (Gong et al., 2013). The goal
is to compute hash codes such that the difference between the
hash codes and the original data items, by considering each bit
as the quantization value along the corresponding dimension, is

minimized. The smaller the quantization loss
∥∥∥sign(V ′) − V ′

∥∥∥2

is, the better the resulting code will preserve the original local-
ity structure of the data.

ITQ estimates a rotation matrix R in such a way that the dis-
tortion due to binarization, i.e. the mapping from the origi-
nal real-valued space to the Hamming space, decreases. We
perform 40 iterations to estimate the relevant rotation. Then,
the signature V ′ is hashed into a binary code B according to;
B = sign(V ′R), where sign(V ′) is a vector whose element i is
equal to one if the element i of V ′ is strictly positive. It is zero
otherwise. The similarity between the 3D shapes in database
and a given query is efficiently computed using the binarized
signature. Given the signature vector V ′ obtained after vocab-
ulary fusion and dimensionality reduction of a shape query Q,

V ′ is hashed into a binary code B. The distance between the
query Q and the 3D shape S in the database is computed as the
Hamming distance between their respective binary codes.

5. Experimental results

We evaluate the performance of the proposed multiple
vocabulary-based 3D shape retrieval using different standard
benchmarks, study and discuss its benefits, and perform a
comprehensive comparison to the state-of-the-art. We con-
ducted experiments on five different datasets; (1) The Mcgill
dataset (Siddiqi et al., 2008) composed of 255 articulated 3D
shapes divided into ten classes. Each class contains one 3D
shape but in different poses. (2) The WM-SHREC07 dataset2

containing 400 shapes grouped into 20 classes. (3) The PM-
SHREC07 dataset5 composed of 400 models and a query set of
30 composite models. It will be used to test the performance
of the proposed method in partial 3D shape retrieval. (4) The
SHREC14LSCTB dataset (Li et al., 2015), which contains 8987
polygon soup models categorized into 171 classes with an aver-
age of 53 models per class. (5) SHREC’15 (Godil et al., 2015)
containing 1200 models and 180 range scans of 60 physical ob-
jects.

Given a ground-truth classification, we use different metrics
such as Nearest Neighbor (NN), First Tier(FT), Second Tier
(ST), and Discounted Cumulative Gain (DCG), in addition to
precision-recall graphs, to evaluate and compare the classifica-
tion performance of our method and other state-of-the-art shape
retrieval algorithms:

5.1. Evaluation and parameter study

We have evaluated several scenarios of possible vocabulary
merging, with at least two vocabularies. All the experiments
have been done with a 128-dimensional signatures after KPCA
based merging, unless another setup is specified. The distance
between two shapes in this setting is given by the L2 distance
between their signatures. We first randomly sample m = 1000
points on each 3D model and extract one patch Pi around each
sample point pi. Each patch has a radius r = 15% of the ra-
dius of the shape’s bounding sphere. We then compute a 5 × 5
covariance matrix from the features defined in Section 2. We
build different vocabularies using three construction methods:
(1) k-means on the tangent space of the mean data point (KTS),
(2) k-means using the geodesic distance and linear update of
centers (KGL), and (3) k-means using Frobenius distance (KF).
We do not report results about the KM since the minimization
in the k-medoid problem is computationally very expensive as
it uses exhaustive search.

Single versus multiple vocabularies. Table 1, which reports
results on the WM-SHREC07 dataset, shows how the retrieval
performance of the proposed method varies with respect to mul-
tiple vocabularies. It shows that fusing multiple vocabularies
imporoves the performance of the retrieval system in all cases.
Note that the individual vocabularies in this experiment have

2http://watertight.ge.imati.cnr.it/
5http://partial.ge.imati.cnr.it/
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Table 1. Same size vocabulary fusion size (256). Results are on WM-
SHREC07 dataset.

Vocabularies NN 1-Tier 2-Tier DCG

KTS 0.9000 0.5826 0.6951 0.8380
KF 0.8750 0.4799 0.6086 0.7712
KGL 0.9300 0.6237 0.7374 0.8639
KTS and KGL 0.9325 0.6351 0.7432 0.8648
KTS and KF 0.9125 0.6484 0.7566 0.8741
KGL and KF 0.9550 0.6788 0.7989 0.8945
KTS, KGL and KF 0.9575 0.6437 0.8140 0.8995
KGL and KGL 0.9425 0.67132 0.8093 0.8750
KF and KF 0.8925 0.6484 0.7523 0.8641
KTS and KTS 0.9250 0.6675 0.7512 0.8877

Fig. 3. Precision/recall curves of our method for the WM-SHREC07
dataset with comparison with state-of-the-art methods.

equal sizes of 256 words. From Table 1, we note that the KF-
based vocabulary, which is based on the Frobenius distance,
gives lower performance compared to both KTS and KGL taken
separately. When using both KTS and KGL jointly, the perfor-
mance is lower than using KF and KGL or KF and KTS. Using
KF and KGL gives higher performance than using KGL and
KGL or KF and KF. This behavior is mainly due to the comple-
mentarity between the different types of quantizers, which use
different distances (e.g. Riemannian and Frobenius) in the as-
signment step. By using three vocabularies, the retrieval system
achieves the best performance.

The influence of the vocabulary sizes. Table 2 presents the
performance of the retrieval system using multiple vocabular-
ies having different sizes. The results are reported on WM-
SHREC07 dataset. From this table, one can notice that the per-
formance slightly improves when increasing the size of both vo-
cabularies. This behavior was predictable since distortion is re-
duced while increasing the vocabulary sizes. Table 2 also shows
that increasing the size of the KF vocabulary has more effect on
the performance after fusion. This may be due to the Euclidean
propriety of KF, which does not take into account the Rieman-
nian structure of the space of covariance matrices. Thus, the
KF quantizer needs more centers than KGL to be sufficiently
representative of the whole feature set.

Weighting vocabulary signatures. We also study the perfor-
mance of the proposed method using various fusion weights
when concatenating BoC signatures. Table 3, which reports

BoC representation

Lavoue 2012

Toldo et  al. 2009

Tierny et  al. 2009

ERG

CORNEA

0 50 100 150 200 250 300 350

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Tabia et al. 2011

Improved BoC

Fig. 4. NDCG curves of our method compared to recent state of the art
methods, for the PM-SHREC07 dataset.

Table 2. Different size vocabulary fusion. Results are on WM-SHREC07
dataset.

Vocabularies (size) NN 1-Tier 2-Tier DCG

KGL (256) and KF (256) 0.9550 0.6788 0.7989 0.8945
KGL (128) and KF (256) 0.9425 0.6410 0.7654 0.8466
KGL (256) and KF (128) 0.9375 0.6454 0.7532 0.8253
KGL (512) and KF (256) 0.9550 0.6632 0.7943 0.8934
KGL (256) and KF (512) 0.9575 0.6342 0.7384 0.8645
KGL (256) and KF (1024) 0.9625 0.6934 0.8346 0.8694
KGL (512) and KF (1024) 0.9650 0.6965 0.8354 0.8989
KGL (1024) and KF (1024) 0.9650 0.6878 0.7890 0.8541

results on WM-SHREC07 dataset, shows that adding different
weights to the fusion process does not drastically increase the
performance. Using hard assignment with same weights the
method gives slightly better results than using inverse document
frequency (IDF) weighted signatures.

The influence of signature reduction and binarization.
Fig. 5 presents the influence of the KPCA and the binarization
of the final shape signatures on the retrieval performance. We
use four different metrics (NN, 1-Tier, 2-Tier and DCG) to eval-
uate the proposed method, denoted by Improved BoC, before
KPCA, after KPCA, and after binarization. Figs. 5-(a), (b), (c)
and (d) show that the improved BoC after KPCA achieves bet-
ter results than the improved BoC before KPCA starting from
128-dimensional signatures. This can be explained by the fact
that applying KPCA de-correlates the vocabularies and thus im-
proves the performance. One can notice in Figure 5 that the
binarization is effective for generating compact and accurate
binary codes. Fig. 5-(b) shows that with only 512 bits one can
reach the same performance of the non-reduced signatures in
terms of 1-Tier. The improved binarized BoC (with 256-bit sig-
nature size) achieves better results than the BoC method.

5.2. Comparison with the state-of-the-art
We compare our method with the results from state-of-the-

art method on the five datasets described earlier. Our approach
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Fig. 5. The influence of the KPCA and the binarization on the retrieval performance using different metrics. Reported results are on WM-SHREC07
dataset. Note that the performance of both “Improved BoC before KPCA” and the “BoC” method are presented without dimension reduction (i.e they are
constant with respect to the dimension).

Table 3. Weighted vocabulary fusion (KGL (512) and KF (1024)). Reported
results are on WM-SHREC07 dataset.

Vocabularies (Weight) NN 1-Tier 2-Tier DCG

KGL (1) and KF (1) 0.9650 0.6965 0.8354 0.8694
KGL (id f ) and KF (id f ) 0.9550 0.6543 0.7343 0.8562
KGL (1) and kF (0.5) 0.9600 0.6342 0.8330 0.8732
KGL (1) and kF (0.75) 0.9650 0.7435 0.8890 0.8954

gives competitive results with respect to the state-of-the-art
methods.

On the WM-SHREC07 as shown in Table 4, the proposed
approach outperforms the state-of-the-art in terms of 1-Tier, 2-
Tier and DCG measures. It gives the second best performance
in term of NN measure behind the Kernel on Extended Reeb
Graphs (KERG) method by (Barra and Biasotti, 2013). This
later achieved 100% in NN but the performance in terms of 1-
Tier and 2-Tier drops to 62.44% and 82.92%. Our methods
achieves 96.5% in NN, which 3.5% lower than the approach

of (Barra and Biasotti, 2013). However it outperforms signif-
icantly the work of (Barra and Biasotti, 2013) in terms of 1-
Tier, 2-Tier with 12% and 6% respectively. Compared to seven
state-of-the-art methods, ours achieves the best performance on
the McGill dataset, see Table 5, even though our method does
not consider structural information of shapes. Our approach
improved the BoC results on all the metrics (more than 11%
in 2-Tier measure). Using the NDCG curves (Marini et al.,
(2007), we compared the performance of our approach in partial
3D shape retrieval against other state-of-the-art methods. The
NDCG curve of Fig. 4-(c) shows that our improved BoC boosts
the performance of the BoC method and clearly outperforms the
state-of-the-art. This demonstrates that BoC signature fusion
leads to high descriptive power. Table 6 compares our method
with the methods benchmarked in (Li et al., 2015) for large-
scale 3D shape retrieval. It demonstrates that the improved BoC
outperforms the original BoC approach and the MFF-EW and
KVLAD methods on most of the different evaluation metrics.
The improved BoC is ranked three in terms of average precision
measure. Note that except MFF-EW method, which combines
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Table 4. Global shape retrieval performance on WM-SHREC07 dataset.

Methods NN 1-Tier 2-Tier DCG

Tabia et al. (Tabia et al., 2011) 0.853 0.527 0.639 0.719
Hybrid BoW (Lavoué, 2012) 0.918 0.600 0.740 0.847
KERG (Barra and Biasotti, 2013) 1.000 0.6244 0.8292 -
Bai et al. (Bai et al., 2014) 0.955 0.690 0.807 0.901
BoC(Tabia and Laga, 2015) 0.9325 0.6628 0.7728 0.8795
Improved BoC 0.9650 0.7435 0.8890 0.8954

Table 5. Performance of our method on the McGill dataset.
Method NN 1-Tier 2-Tier DCG

2D/3D Hybrid (Papadakis et al., 2008) 0.925 0.557 0.698 0.850
Hybrid BoW (Lavoué, 2012) 0.957 0.635 0.790 0.886
PCA-based VLAT (Tabia et al., 2013) 0.969 0.658 0.781 0.894
TLC + J-Pair (Bai et al., 2015) 0.988 0.795 0.921 0.956
TLC + I-Pair (Bai et al., 2015) 0.980 0.807 0.933 0.956
BoC (Tabia and Laga, 2015) 0.977 0.732 0.818 0.937
Improved BoC 0.988 0.809 0.935 0.962

geometric features, all others use features from 2D views cap-
tured around the shapes.
Since our covariance-based method is generic and allows in-
cluding features from other modalities, we have specifically
designed a 2D view-based BoC method and compared its per-
formance with same state-of-the-art methods. After normal-
izing the input shapes for translation and scale, we extract 80
views and capture depth images of size 256 × 256. From the
depth images, we extract a set of covariance descriptors on a
dense regular grid at three different scales (16 × 16, 24 × 24,
32 × 32). We then obtain a large unordered set of local de-
scriptors. Covariance descriptors are computed from the feature

vector
[
x, y, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
I2

x + I2
y , arctan( |Ix |

|Iy | )
]
, where x,

y are pixel locations and Ix, Iy, |Ixx| and |Iyy| are intensity deriva-
tives. The covariance matrix for an image patch of arbitrary
size is an 8 × 8 SPD matrix. We then use our improved BoC to
estimate the dissimilarity between 3D shapes.

The last two rows in Table 6 shows that the performance
of the BoC and the improved BoC methods when using 2D
features has been significantly improved. The improved BoC
still outperforms the BoC method. These results also demon-
strate that using 2D features improves competitiveness of both
methods when compared to state-of-the-art. The improved BoC
ranked first in terms of 1-Tier and 2-Tier measures and ranked
second in terms of average precision measure. Note that the
LCDR-DBSVC (Li et al., 2015), which is a boosted version
of DBSVC (Li et al., 2015), uses a learning scheme such as
the conventional manifold ranking methods and requires more
computation time because of calculating a matrix product re-
peatedly. The LCDR-DBSVC signatures have 270k dimen-
sions, which is a very high compared to the improved BoC in
which signatures are of size 128. Note also that similar boosting
scheme can be applied to our approach. The results, after ap-
plying a similar LCDR to our method are: NN = 0.892, 1-tier =
0.545, 2-tier = 0.719, E= 0.310, DCG = 0.853, and AV = 0.570.
This clearly shows the higher performance of our method com-
pared to the LCDR-DBSVC approach.

Table 6. Performance of our method on the SHREC14LSCTB dataset.
Method NN 1-Tier 2-Tier E DCG AP

KVLAD (Li et al., 2015) 0.605 0.413 0.546 0.214 0.746 0.396
MFF-EW (Li et al., 2015) 0.566 0.138 0.204 0.076 0.570 0.114
DBNAA DERE (Li et al., 2015) 0.817 0.355 0.464 0.188 0.731 0.344
MR-D1SIFT (Li et al., 2015) 0.856 0.465 0.578 0.234 0.792 0.464
ZFDR (Li et al., 2015) 0.838 0.386 0.501 0.209 0.757 0.387
LCDR-DBSVC (Li et al., 2015) 0.864 0.528 0.661 0.255 0.823 0.541
BoC (Tabia and Laga, 2015) 0.707 0.421 0.461 0.330 0.764 0.412
Improved BoC 0.754 0.425 0.480 0.364 0.772 0.437

BoC 2DF 0.801 0.498 0.582 0.254 0.781 0.476
Improved BoC 2DF 0.852 0.531 0.687 0.312 0.815 0.539

Table 7. Performance of our method on the SHREC’15 dataset.
Method NN 1-Tier 2-Tier DCG

P-SV-DSIFT (Godil et al., 2015) 0.639 0.413 0.558 0.712
Silouettes-66views-100DCT (Godil et al., 2015) 0.478 0.190 0.275 0.541
BoF-FPFH harris-MSD (Godil et al., 2015) 0.072 0.036 0.064 0.336
Fpfh1 r0.01 (Godil et al., 2015) 0.033 0.018 0.037 0.316
SNU 1 (Godil et al., 2015) 0.167 0.076 0.119 0.388
Continuous-hough bw-0.5 (Godil et al., 2015) 0.139 0.075 0.124 0.389
BoC (Tabia and Laga, 2015) 0.721 0.634 0.742 0.787
Improved BoC 0.761 0.653 0.767 0.816

Additional experimental results on SHREC’15 are reported
in Table 7. The objective of this experiment on SHREC’15 is to
retrieve 3D models that are relevant to a query range scan. This
task corresponds to a real life scenario where the query is a 3D
range scan of an object acquired from an arbitrary view direc-
tion. We use the 2D view-based BoC method and compared its
performance with state-of-the-art methods. Table 7 shows that
the BoC and the improved BoC methods give the best perfor-
mance. The DSIFT-based and the DCT-based methods achieve
moderate results compared to our method. The performance
gap between our method and the other four approaches is very
important.

6. Conclusion

We proposed a mechanism for early as well as late fusion
of Bag of Covariance signatures. While covariance-based de-
scription of 3D shapes provides an elegant mechanism for early
fusion of heterogeneous features, different metrics and quanti-
zation methods can be used for building BoC vocabularies. We
showed that the retrieval performance can be significantly im-
proved by fusing multiple BoC signatures. These signatures are
produced from multiple vocabularies constructed using differ-
ent metrics that take into account the different geometries of
the space of covariance matrices. We demonstrated the perfor-
mance of the proposed improved BoC on different shape re-
trieval tasks including global, partial, non-rigid as well as large
scale ones. The improved BoC clearly boosts the performance
of the original BoC approach and outperforms the state-of-the-
art. The results reveal that different types of quantizers that use
different metrics are indeed complementarity.
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