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Abstract

Attacks on operating system access control have become a significant and in-

creasingly common problem. This type of security threat is recorded in a foren-

sic artifact such as an authentication log. Forensic investigators will generally

examine the log to analyze such incidents. An anomaly is highly correlated to

an attacker’s attempts to compromise the system. In this paper, we propose a

novel method to automatically detect an anomaly in the access control log of an

operating system. The logs will be first preprocessed and then clustered using

an improved MajorClust algorithm to get a better cluster. This technique pro-

vides parameter-free clustering so that it automatically can produce an analysis

report for the forensic investigators. The clustering results will be checked for

anomalies based on a score that considers some factors such as the total mem-

bers in a cluster, the frequency of the events in the log file, and the inter-arrival

time of a specific activity. We also provide a graph-based visualization of logs

to assist the investigators with easy analysis. Experimental results compiled on

an open dataset of a Linux authentication log show that the proposed method

achieved the accuracy of 83.14% in the authentication log dataset.
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1. Introduction

Access controls limit what actions user can perform in a specific environment

such as an application or operating system. In this research, we mainly consider

the access controls in an operating system. For example, this log is available

in auth.log under the /var/log/ directory in a Debian-based Linux environ-5

ment or /var/log/secure in RedHat family distributions. It provides a log of

Pluggable Authentication Modules (PAM) that record the user’s granted access

[1] and also secure shell (SSH) accesses, both failed and successful ones. This

artifact is important evidence for the forensic investigators or security analysts

to trace the attackers and analyze the incidents in a server.10

For auth.log analysis, there is OSSEC (Open Source Host-based Intrusion

Detection System Security), which also considers other log files to detect sus-

picious activities in a host [2]. Some examples of OSSEC implementation to

detect access violations and multiple failed logins were presented in [3] while its

complete guide is described in [4]. Other research on auth.log investigation15

was proposed by Sato and Yamauchi [5]. They first provided an architecture

for securing log files and then proposed tampering detection of system logs in-

cluding auth.log. In addition, Basin et al. gave a brief explanation of possible

attacks and a simple examination using existing tools to check the traces for

attempted attacks. As a result, we can see a trail in the security log such as20

auth.log [6].

One of the applications that record activities in auth.log is the SSH server.

Detection of brute force attacks is critical because recent reports show this type

of attack is frequently conducted where SSH service is widely targeted [7]. In-

stead of doing forensic analysis, most research have conducted a proactive mech-25

anism to prevent the dictionary attack [8, 9]. The authors presented a detection

and defense architecture for SSH threats based on the authentication log. An-

other attempt to create a model for brute force profiling was proposed by Javed

and Paxson where the model accounted the detection and user authentication

failures [10].30
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The application of text clustering in digital evidence has also been proposed

to increase the relevance of the search results [11]. Several papers have tried to

cluster the event log and detect its outliers, but the threshold for the anomaly

scores was not sophisticated since the user must tune it manually to get the

best results [12, 13].35

In this paper, we consider SSH records as well as PAM authentication in

auth.log. The proposed method identifies any log activities that are suspicious

and labels them as outliers after the clustering phase. We propose a parameter-

free algorithm to cluster this log and conduct anomaly detection, which refers

to establish a baseline norm and detecting deviations from it. These deviations40

can be an attack or other strange events which need attention from the forensic

analysts. However, the experiments focus on brute force password attacks as this

is the most common type of access control violation [7]. The term parameter-

free means that the clustering algorithm will run without any initial guess or

any parameter supplied.45

Most existing techniques need a manual input of the number of clusters.

The classical k-Means and its variants still need the number of clusters as a

parameter to run [14] while hierarchical clustering requires a specific level at

which to cut the generated tree or dendrogram [15]. Density-based clustering

and its extensions are other alternatives, but they require the neighborhood size50

to be passed as a user-defined variable [16].

Another technique, namely MajorClust, is a parameterless method that clus-

ters nodes based on its natural structure in the graph [17]. MajorClust has been

extended to a fuzzy version [18] and probability-based approach, so it can work

well with several structures on the local scale [19]. However, we will improve55

MajorClust by adding a condition when the processed node’s cluster is not the

same as the heaviest neighbor node’s cluster, we will force it to follow the clus-

ter of the heaviest one. Therefore, an event will stick to the most similar one

instead of following the others, which are not so similar but has more edge

weight aggregation. This will improve the performance of clustering so that it60

will be suitable with the log record. The next section will describe the proposed
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method based on refined MajorClust.

2. Proposed method

We define some formal terms in this paper. An event log or a log file is a file

that records activities from an application or services such as authentication log65

from SSH server application. A record is defined as a single entry in the event

log. Then, an event is defined as a message in a record.

The proposed method is illustrated in Figure 1. First, the raw log will be

preprocessed and converted into a graph model. Second, we enter the clustering

phase which consists of four steps:70

1. Cluster graph using improved MajorClust (Phase 1);

2. Create new representation of graph based on multiple longest common

substring (MLCS) to solve the overfitting problem (Phase 2);

3. Refine the new form of cluster by running improved MajorClust once again

(Phase 3);75

4. Produce clustering result using initial graph representation (Phase 4).

After that, we conduct anomaly calculation on the clustering results based on a

score considering several properties that characterize each cluster. An estimated

threshold for anomalousness is provided to detect this behavior automatically.

The last step is to provide a visualization of the detected outliers. The details80

of each phase are described in the following subsections.

2.1. Log preprocessing and proposed graph model

In this paper, the digital evidence to be investigated is the authentication

log file (auth.log) in a Linux environment. It is assumed that the log file has

not been tampered with or modified by the attackers. The full set of features85

for analysis are datetime, hostname, service or process name, process identifier

(PID), and the event. The feature used in log preprocessing step is only the

event since we focus on the content of the log and we do not consider other

fields. It should be noted that we do not delete any fields from the log, rather
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Figure 1: Block diagram of proposed method

only temporarily omit these features in the clustering process. For example, we90

need datetime property for calculating the anomaly score later. Other ignored

properties include the hostname of the server, type of log and its process ID

(PID), e.g., sshd[2790] and CRON[2839]. We filter all events, so it will produce

only the unique one and attach the row log identifier to every unique event.

Furthermore, all numeric characters and stopwords in unique events are re-95

moved. We include some additional words that are not included in standard

English stopwords but exist in the log record, e.g., preauth, from, for, port, sshd,

ssh, and root. To identify non-standard stopwords, we conducted the experi-

ments and checked the results of the graph clustering. If the results are not

formed well, we analyze the string message and add the stopwords in order to100

increase the clustering accuracy. The added stopwords commonly appear in the

string and if not removed it will send the different messages into one cluster.

Moreover, a tf−idf (term frequency−inverse document frequency) proce-

dure is implemented in every filtered line to produce its numerical representa-

tion. Note that in our case, document d refers to a single line of log record l.

First, term frequency, tf , is not only the number of occurrences of term t in log

l but it is normalized with the total number of terms in l, which is denoted as

5
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Figure 2: Proposed graph model for authentication log

len(l) so that:

tft,l =
tf

len(l)
(1)

Second, we need to calculate inverse document frequency of term t, idft, as

shown in the equation below:

idft = 1 + log
N

dft
(2)

where N is the number of lines in the event log, and dft is the total number

of lines in which the term occurs. We modify a basic formula of tft,l and idft

from [20] to conform with the real event log and avoid a zero value. Finally, we

calculate tf−idf of term t as follows:

tf−idft,l = tft,l × idft (3)

The next step is to build a graph G = (V,E,w) where V , a set of vertices,

represents each unique event, E, a set of edges, depicts relationship between

6
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two vertices where its weight, w, is the cosine distance to measure the similarity

between two events in a single log record l as seen below [20]:

w(l1, l2) =
~V (l1) · ~V (l2)

|~V (l1)||~V (l2)|
(4)

where the numerator denotes the dot product of the vector ~V (l1) and ~V (l2)

which is represented as
∑p

i=0
~Vi(l1)~Vi(l2). On the other hand, the denominator

is the product of their Euclidean lengths and defined as

√∑d
i=0

~V 2
i (l) where d105

is the total number of the term calculated in a record l. This cosine similarity

distance becomes the edge weight of two vertices. An example of the proposed

graph model is shown in Figure 2. We can see that every vertex is connected to

other vertices except its zero distance since the edge is only created when the

cosine similarity is greater than zero.110

To provide a more clear illustration of cosine similarity in the event log, we

give a step by step example of how this measurement is calculated between two

events as follow.

Step 1: Two events from an event log115

Dec 1 23:05:20 ip-172-31-27-153 sshd[28547]: Invalid user test from 192.208.179.82

Dec 1 23:36:42 ip-172-31-27-153 sshd[28578]: Invalid user admin from 187.76.79.142

Step 2: Preprocessing

l1: invalid user test120

l2: invalid user admin

Step 3: Calculating term-frequency (tf)

Event invalid user test admin

l1 1 1 1 0

l2 1 1 0 1

125
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Step 4: Calculating normalized term-frequency (tf) based on Equation 1

Event invalid user test admin

l1 0.3 0.3 0.3 0

l2 0.3 0.3 0 0.3

Step 5: Calculating inverse document frequency (idf) based on Equation 2

idfinvalid = 1 + log 2/2 = 1

idfuser = 1 + log 2/2 = 1

idftest = 1 + log 2/1 = 0.693130

idfadmin = 1 + log 2/1 = 0.693

Step 6: Calculating tf − idf based on Equation 3

Event invalid user test admin

l1 0.3*1 0.3*1 0.3*0.693 0

l2 0.3*1 0.3*1 0 0.3*0.693

Event invalid user test admin

l1 0.3 0.3 0.208 0

l2 0.3 0.3 0 0.208

Step 7: Calculating the numerator of cosine similarity

|~V (l1)| · |~V (l2)| = 0.3*0.3 + 0.3*0.3 + 0.208*0 + 0*0.208135

= 0.09 + 0.09 + 0 + 0

= 0.18

Step 8: Calculating the denominator of cosine similarity

|~V (l1)| = sqrt(0.32 + 0.32 + 0.2082 + 02)140

= sqrt(0.09 + 0.09 + 0.043 + 0)

= sqrt(0.223)

= 0.472
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|~V (l2)| = sqrt(0.32 + 0.32 + 02 + 0.2082)

= sqrt(0.09 + 0.09 + 0 + 0.043)145

= sqrt(0.223)

= 0.472

Step 9: Calculating the cosine similarity based on Step 7, 8, and Equation 4

w(l1, l2) = numerator / denominator150

= 0.18 / (0.472 * 0.472)

= 0.18 / 0.228

= 0.789

2.2. Event log clustering based on improved MajorClust155

The first phase to detect the anomaly is to cluster the generated graph using

the MajorClust algorithm. For the sake of completeness, we include a brief

technical description of MajorClust. For details of the algorithm, the reader is

referred to [17]. Initially, each node is attached to its own cluster. For each

vertex, the procedure will accumulate the edge weight of the neighboring nodes

as denoted below:

ci =

n∑
j=1

w(eij ), 0 ≤ i ≤ m (5)

where ci is the ith neighboring clusters, w(e) is the edge weight for each neigh-

boring node in a particular cluster, m is the total of the neighboring cluster i,

and n is the total member of vertices in the cluster ci. The next step is assigning

each vertex to a cluster, which has maximum weight aggregation and is defined

as:

c∗ = arg maxi(ci) (6)

This process is continued until all possible combination checking for current and

assigned clusters for each node is accomplished.

However, we identified a major drawback in the original MajorClust tech-

nique when we applied it in a auth.log file. It will fail to cluster a large number
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Figure 3: The drawback of MajorClust with more vertices

of nodes since it only depends on the accumulated weight of the neighboring160

vertices. A node will only depend on the aggregate weight of the neighbors al-

though it is less relevant and does not consider the more similar cosine distance.

This shortcoming is illustrated in Figure 3 and indicated by a large green

node with label pam_unix(cron:session): session closed for user root.

This node should create its own cluster since it is closer with another vertex165

with a more similar event.

Therefore, we improve the MajorClust by supplying the additional require-

ment that when the current cluster is not the same as the heaviest neighbor

node, we force the operating node to follow the cluster of the heaviest one.

The heavier the edge weight, the closer the distance between two events in the

log record since it represents the cosine similarity. By deploying this improve-

ment, an event will stick to the most similar one instead of following the others,

which are not so similar but has more edge weight aggregation. We then refine

10
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Figure 4: The improvement of MajorClust algorithm

Equation (6) as follows:

c =

arg maxi(ci) if c∗ = ci(h)

ci(h) if c∗ 6= ci(h)

(7)

where c is the current cluster considering additional checking, h is a neighbor

node with the heaviest edge weight, and c(h) is the cluster label of h. The

illustration of this improvement is depicted in Figure 4. We can see that the

node in the previous figure has created a new cluster as expected (indicated by170

vertices in red).

Nevertheless, this improvement triggers another problem. The generated

cluster is overfitting since it produces many small clusters with only two or

three vertices as shown in Figure 5. This issue was found when the proposed

procedure processed the first 500 records of the first-day log in the dataset. We175

solve this problem by running one additional round of MajorClust called the

11
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Figure 5: Overfitting cluster produced by improved MajorClust

refine cluster phase and is described as follows. First, we represent each cluster

as a single node. We maintain the start and end time of the overall event log for

each cluster to be considered for the anomaly score calculation. The frequency

of an event occurring in all nodes in the cluster and updated tf−idf is also180

counted.

To represent an event of a newly formed node, we need a string which reflects

all events in a cluster. We can consider this as the longest common subsequence

problem with many strings, or well-known as the multiple longest common sub-

sequence (MLCS) technique. Solutions of this classical problem have been pro-185

posed in the recent literature [21, 22]. For each cluster c, we will check for the

most common substring occurring in the raw log. The terms ”subsequence”

and ”substring” will be used interchangeably since the substring has the same

meaning as a subsequence in our case, and we then describe MLCS concisely.

Let l = l1l2 . . . lp be a single log string in a particular cluster where the

12
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subscript number represents the index of a character in l, s = sw1sw2 . . . swq ,

p and q are their length respectively, s is called subsequence of l, sub(l, s), if it

meets the following:

sub(l, s) =

1 ≤ v ≤ q if 1 ≤ wv ≤ p

1 ≤ t < u ≤ q if wt < wu

(8)

Furthermore, let L = {l1, l2, . . . , lo} be a set of raw events in the specific c,190

o is total number of logs within each c, multiple longest common subsequence

for set L is a sequence of s if and only if (i) s is the subsequence of li for 1 ≤ i ≤ o

and (ii) s is the longest one satisfying (i). We then apply MLCS to all clusters

to find the longest substring of L.

After that, we run the MajorClust algorithm again using current graph com-195

position. The result of the refine cluster phase is given in Figure 6. After this

phase is complete, we convert the generated graph back to its original nodes rep-

resentation since we still maintain the initial vertices of the formed new node.

This technique will provide us with a better clustering result as shown in Figure

7. The output of this phase is a complete graph where each node has its own200

cluster label property.

It should be noted that the algorithm converges smoothly. The reasons are

two-fold. First, the clustering algorithm works on a node by node basis. When

a node is processed, the node is flagged, and the algorithm moves to the next

node and so on. Second, the proposed improvement of MajorClust will ensure205

a node to have the same cluster as its heaviest edge neighbor. Using these two

conditions, the algorithm will smoothly converge without any oscillation.

2.3. Anomaly detection of possible attacks

The nature of an anomaly is that it is different from other clusters [23].

Ideally, it will have a fewer members than others, but this assumption is not210

always true. Based on our extensive experiments and analysis on the public

datasets from Security Repository (SecRepo) [24], the anomaly is the biggest

cluster which has many nodes and the smallest cluster as well. In the context

13
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Figure 6: The result of refine cluster phase

of the access control log, the anomaly is highly correlated with total attacks or

failed authorization of login attempts. The proposed technique will assist the215

forensic investigator to examine the real-life log that usually has a very large

size.

One approach to discover the anomaly from the clustering result is to check

the number of cluster members. If the number is below the given threshold,

then it can be decided that there is an outlier in the cluster [25]. However, this220

procedure is not suitable for the access control case since the anomaly can occur

with a large number of members in a cluster. Thus, we develop our own score

to determine whether or not a cluster is an anomaly.

To achieve good outlier detection results, we define some parameters to cal-

culate the anomaly score in every cluster, i.e., total event frequencies, total225
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Figure 7: The final clustering of improved MajorClust algorithm

nodes, total members, and the inter-arrival rate of the event time. Note that

the anomaly score measurement is conducted after the refine cluster phase and

before it is converted back to the original graph representation.

We define the anomaly score as the ratio of event frequency per cluster

to the total frequency in the graph. It is then multiplied by the inter-arrival230

rate between the first and the last events in a cluster. The high or low event

frequency is likely to be an anomaly because the legal event will have a normal

frequency. Furthermore, a very high or a very low inter-arrival rate can also be

regarded as an anomaly. The event frequency and inter-arrival time between

events are mainly used to detect SSH brute-force attacks. For example, some235

research include the event frequency [9] and inter-arrival rate of the events [26]

as a part of the score to detect the malicious SSH activities. Both variables are

considered in [10] as well.

First, we need the mean of frequency, µf , to characterize the number of

15
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members in a cluster ci and define it as:

µf =

∑n
i=1 fi∑n
i=1Ni

(9)

where fi and Ni are frequency and total nodes per vertex from the refine cluster

phase, respectively. In addition, n is the total member of vertices in the cluster

ci. The anomaly will occur when there are so many events occurring in the

adjacent time while the normal event shows the opposite behavior. Formally,

the inter-arrival rate of all events in a cluster, I, is formulated as follows:

I =

∑n
i=1 fi

tn − t1
(10)

where t1 is the first time an event occurred, tn is the last one, and both of

them are measured in seconds. When the denominator produces a zero value,240

it means that there are several events in a second, and we set tn − t1 with very

small value to show that its arrival rate is very high in the short time frame.

Furthermore, the anomaly score per cluster a is calculated based on the

formula below:

a =
M× µf∑z

i=1 Ni ×
∑z

i=1 Fi
× I (11)

where M is total members in c, N is total nodes in a cluster, F is total frequencies

in c, and z is total clusters in the analyzed log data. We refer to Equation (9)

and (10) for µf and I, respectively.245

2.3.1. Estimation of anomaly threshold

To decide whether or not a cluster is an anomaly, we estimate a threshold

to provide a recommendation for the forensic investigator or security analyst.

We introduce an estimation for the anomaly parameter. There are three types

of activities recorded in the log file: low intensity, normal, and high intensity250

[10, 27]. Low intensity refers to a sporadic attack while high intensity usually

related to a brute-force attacks. In addition, the normal activities will produce

a non-suspicious log.

First, the anomaly score that is calculated before is normalized to [0,1] as

16
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below. This will make a number of scores to fall in the same range.

a′i =
ai −min(A)

max(A)−min(A)
(12)

where ai is an anomaly score in a cluster i, A is a set of anomaly scores for all

clusters, and a′i is a normalized score of ai.255

Next, we fit this normalized score to a quadratic equation since this equation

fits the characteristics of the dataset where low and high intensity event will be

defined as anomalies. The quadratic equation fits a′ as axis to [0,1] and a′′ as

ordinate to [0,1]. The higher a′′ score, the more normal the events.

a′′i = a′2i + 4a′i − 4 (13)

Subsequently, we have a second normalization step for anomaly score a′′ to

range [-1,1] where 0 is the threshold for the anomaly decision. The final anomaly

score per cluster αi is depicted below where p = −1 and q = 1 as the range

boundaries.

αi = p+
(a′′i −min(A′))(q − p)

max(A′)−min(A′)
(14)

If the αi score is less than 0, then a cluster i is set as an anomaly and vice versa.

Thus, the user is not required to enter the parameter to calculate the anomaly

score.

2.4. Visualization of access control anomaly

In order to help the investigators in analyzing and getting a better under-260

standing of the security log, there are some methods available for log visualiza-

tion. For example, Takada and Koike created Tudumi, a visualization tool for

auditing syslog, wtmp, and sulog based on layered concentric disks [28]. For

each layer, there were some notations such as spheres and cubes to represent the

user and his activities. The treemaps model to display clustering result from265

the Simple Log file Clustering Tool (SLCT) [12] of the event log was introduced

and named LogView [29]. Another approach was using parallel coordinates to

plot several logs, e.g., network, database, and syslog.
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Elvis (Extensible Log Visualization) is a recent implementation to display an

Apache log, syslog, and auth.log [30]. This technique was based on a custom270

organization (categorical and geographical) and log augmentation. Visual Filter

enabled the security analyst to inspect the whole logs, creates a filter visually,

performs navigation, and sub-selects the part of the log interactively [31]. In

addition, Trethowen et al. introduced VisRAID to visualize remote access logs,

especially for intrusion detection purposes and focused on timeline visualization275

[32].

However, existing methods do not apply graph visualization to the assistance

tool for log analysis. Naturally, since the clustering is based on a graph, the

proposed visualization also heavily relies on this model. Therefore, we propose

analysis and anomaly display of the authentication log based on graph visualiza-280

tion. We categorize the visualization into two types: static and dynamic. The

static model displays the graph after the analysis is complete while the dynamic

one provides live visualization when the analysis is running.

We use Gephi for the graph visualization for both types [33]. We then exploit

the streaming server plugin [34] and its Python client implementation [35] to285

support a dynamic model. In the static mode, the visualization is displayed

after the clustering and anomaly detection process is finished. The output of

the forensic analysis is a graph file, i.e., dot file and then it is exported to Gephi.

To get the intuitive display, we use two steps of the graph layout algorithm: first

Force Atlas 2 [36] and then Fruchterman Reingold [37]. These two algorithms290

have been natively integrated into Gephi.

Force Atlas 2 produces clustered nodes, but there are still many overlaps

between them, Fruchterman Reingold will remove these obstacles, and provide

a clearer layout. While in the dynamic mode, the visualization follows the

analysis process starting from creating nodes, edges, graph clustering, refining295

the cluster, and anomaly detection. The result is clean and concise since the

procedure has removed unnecessary edges that connect one cluster to the other

one. For example, Figures 2 to 7 are produced in the static mode.
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Figure 8: Initial clustering result of the first day in the dataset (November 30, 2014)

3. Experimental results and discussions

3.1. Functionality testing for SecRepo dataset300

The dataset for the experiments is taken from the public and open Security

Repository (SecRepo). It includes 86,839 lines of auth.log taken from Novem-

ber 30 to December 31, 2014, and mainly contains failed SSH login attempts

[24]. This kind of attack will be flagged as an anomaly in the whole log file. We

utilize NetworkX to create and manipulate the graph [38], Gephi as graph visu-305

alization tools [33], a Gephi streaming server plugin [34] and Gephi streaming

client [35] to dynamically draw a graph to Gephi, and Natural Language Toolkit

(NLTK) to provide English corpus for log text preprocessing, especially in pro-

viding stopwords [39]. We utilize the Python programming language version 2.7

to assemble all of these libraries and provide this log forensic tool.310

Figure 8 shows the initial clustering result of the first day in the dataset
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Figure 9: The result of refine cluster phase from Figure 8

(November 30, 2014) while Figure 9 illustrates the refine cluster phase. There

are too many small clusters in the initial step and it is fixed in the next phase.

The anomaly detection result is depicted in Figure 10 where the red vertices

represent the anomaly and the green represents the normal events. This figure315

is completed with the label of an event in the access control log. The outlier is

measured when a cluster is on the refine cluster phase based on the estimated

threshold.

We can see in Figure 10 that the detected anomaly is an invalid user

event as shown in the largest cluster. There are small clusters with similar320

events such as invalid user tomcat, invalid user cms, invalid user dev,

and invalid user google. These clusters create their own cluster since the

nodes inside them have the neighbor with the heaviest weight and do not follow
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Figure 10: Anomaly detection in refine cluster phase

the bigger cluster, which has less cosine similarity.

In addition, the pam_unix(cron:session) session is a daemon event run325

in the background so it is successfully categorized as normal. The other two

nodes in green, i.e., connection close by and connection reset by peer

is a false positive since these events will only happen when there are failed

authorizations. The calculation of the accuracy and performance of the proposed

method will be explained later in this section.330

Figure 11 is the full version of Figure 10 which is converted back to its ini-

tial graph representation where it has 688 rows of the event log and is modeled

into 173 nodes and 9,694 edges. To produce a good display of anomaly detec-

tion, these visualizations are generated after two runs of the layout algorithm,

i.e., Force Atlas 2, then followed by Fruchterman Reingold, and successfully335

implemented in the Gephi graph editor for both static and dynamic modes.
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Figure 11: Final result of the forensic analysis in the first day of authentication log (November

30, 2014)

3.2. Evaluation metrics

Furthermore, we use some standard measurements to evaluate the perfor-

mance of the proposed method such as true positive (tp), true negative (tn),

false positive (fp), false negative (fn), sensitivity, specificity, and accuracy. The340

sensitivity and specificity are defined in Equation (15) and (16), respectively

[20]:

Sensitivity =
tp

tp+ fn
(15)

Specificity =
tn

fp+ tn
(16)

While sensitivity is focused on measuring the improved MajorClust’s ability

to detect a normal event, the specificity and accuracy will provide an overall
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measure since it also includes true negative (tn) as denoted below:345

Accuracy =
tp+ tn

tp+ fp+ fn+ tn
(17)

In this case, true negative refers to detected anomaly record is also defined

as anomaly in the dataset. Before calculating tp, tn, fp, and fn, we label the

dataset with normal and anomaly then compare it to the proposed method’s

decision.

3.3. Comparison with existing methods350

To compare the robustness of the improved MajorClust and proposed anomaly

score, we evaluate other methods to the same testing dataset. We run the Simple

Log Clustering Tool (slct) version 0.05 [12] and LogCluster version 0.03 [40] as

the clustering-based anomaly detection in event logs. In addition, we also com-

pare the proposed method with two rule-based anomaly detections, i.e., OSSEC355

version 2.8.3 [2, 3, 4] and swatch version 3.2.3 [41]. These two applications

can be turned into forensic analysis tools since they were initially designed to

monitor real-time log file. We also compare the proposed method with standard

MajorClust and improved MajorClust without refine cluster phase. They will

be combined with the proposed outlier detection mechanism since they do not360

have one.

3.3.1. Parameter tuning for sclt and LogCluster

To objectively compare those methods, we have trained other tools’ param-

eter to get their best accuracy. Therefore, the dataset was divided into two

parts. The first part is November 30 to December 14 as the training set and365

the second one is December 15 to 31 as the testing set. The training set is

used for parameter tuning while the testing set is for performance comparison

as presented in Subsection 3.3.2.

The parameter -support or -s in slct and --support in LogCluster have been

tuned from 10 to 100. Then we checked which value generates the best accuracy.370

Based on the experiments, parameter -s for slct is set to 100 which means that
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Table 1: Parameter tuning -s for slct and --support for LogCluster

Value of -s or Accuracy Accuracy

--support for slct (%) for LogCluster

10 2.38 5.06

20 2.32 3.47

30 3.04 3.56

40 2.99 4.82

50 3.43 6.23

60 2.64 6.00

70 3.34 7.65

80 3.26 8.28

90 3.36 9.51

100 3.62 10.23

the threshold for the number of cluster member is 100 lines. As a consequence,

log lines that do not belong to any cluster will be defined as an anomaly. The

similar parameter is applicable to LogCluster and we set the option --support

to 100 since it produces the best accuracy. The result of parameter tuning for375

slct and LogCluster is presented in Table 1.

The rules used in OSSEC and swatch are based on regular expressions. Since

the swatch tool does not provide any standard rules, we set them by adding

three most frequent malicious strings in the event log. They are ([iI]nvalid [uU]ser,

Did not receive identification string, and reverse mapping). On the380

other hand, the OSSEC tool has provided the set of rules in an XML file. We

followed these default rules.

3.3.2. Comparison results

The comparison of the proposed technique and the state of the art is given

in Table 2. As shown in Table 2, the best sensitivity value was achieved by385

swatch. This indicates that it has a very good capability to detect the normal

activities in the log since we manually configure the regular expression rules that

commonly occurred in the testing set. The proposed method achieved the best
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Table 2: Comparison of proposed technique and the other methods

Methods Sensitivity (%) Specificity (%) Accuracy (%)

Proposed method 70.59 82.21 83.14

Proposed method without 88.24 50.25 52.43

refine cluster phase

Standard MajorClust [17] 0.00 78.08 73.61

slct [12] 87.50 4.88 13.54

LogCluster [40] 73.21 17.94 23.73

OSSEC [2] 25.11 30.12 29.59

swatch [41] 100.00 54.13 58.94

sensitivity and specificity rate of 70.59% and 82.21%, respectively. On the other

hand, the other techniques produce lower specificity. The improved MajorClust390

is able to provide highest accuracy value (83.14%) while the others do not. The

difference in accuracy is significant which indicates that existing methods are

unable to properly detect the suspicious logs in the testing data.

We can see that the standard MajorClust without modifications does not

work well and even it gives zero sensitivity. On the other hand, the refine395

cluster phase is hardly needed to improve the accuracy. Note that these two

methods use the proposed anomaly score estimation.

The drawback of previous clustering-based anomaly detection is the assump-

tion that the outlier is the data residing on a small cluster. This idea does not

work in the authentication log with a high number of attacks since these viola-400

tions produce many records and can create the largest cluster in the analysis.

Moreover, the rule-based anomaly detections contribute to the poor performance

of anomalous discovery when the supplied regular expressions do not suit with

the case. The default rule should be updated regularly by the network ana-

lysts in order to make sure all security breaches are detected. However, it can405

produce good true positive rates (sensitivity).

To supply the forensic investigator with more insight, we also enumerate the

most frequent events when processing the auth.log file as presented in Table
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Table 3: The most frequent events in the authentication log (testing dataset)

No Event Frequency

1 Invalid user 12,743

2 Received disconnect 11,464

3 pam_unix(cron:session) 2,708

4 IP does not map back to the address 1,328

5 Reverse mapping checking getaddrinfo failed 1,216

3. The invalid user shows that there is an attempt from an unregistered

user to login to the server. The event received disconnect means that an410

error occurred in the authentication process. The attacker is usually trying to

conduct SSH brute force and the server decides to disconnect the connection.

There are warning messages such as IP does not map back to the address

and reverse mapping checking getaddrinfo failed in the event. The sys-

tem records these two events because the client’s reverse DNS record does415

not match with the hostname used to identify the client’s identity. Event

pam_unix(cron:session) means that the daemon activity is generated from

the default configuration of Linux operating system. This record is written

when the system checks the authentication mechanism and it happens every

hour by default. From this analysis, we can infer that there are so many at-420

tempts to violate the access control, especially SSH, in the server.

3.4. Experiment on the Kippo log

In this section, we present one more experiment to another dataset, i.e.,

Kippo log, to prove that the proposed method works well to another dataset

with another attack. Kippo is an SSH honeypot and created in Python [42].425

We install and configure Kippo on DigitalOcean droplet with public IP address

so everyone including real attackers and botnet can reach this server. All the

activities were recorded from 14 to 20 February 2017.

Beside the attack from the internet, we add one more activity that is usu-

ally done by the attacker before attempting penetration. The attack is a part430
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of reconnaissance step to get banner or fingerprint of the SSH server version

using the telnet application. This experiment shows that the proposed method

performs well with 52.89% sensitivity, 92.77% specificity, and 87.35% accuracy.

4. Conclusion and future works

We propose an improved MajorClust algorithm to cluster the authentication435

log as the basis of anomaly detection of suspicious activities related to access

control violations. The experimental results show that the proposed method is

able to provide assistance to the forensic investigator, security analyst, or system

administrator in inspecting and visualizing the log file. In the experiment, it

achieves 70.59% of sensitivity, 82.21% of specificity, and 83.14% of accuracy.440

In future, we would like to improve the similarity measure between two log

records using semantic analysis since it considers the meaning, context, and

linguistic aspect while tf−idf only calculates the frequency of terms. This mea-

surement is expected to increase the accuracy of the anomaly detection phase.

The clustering of the log file is still an open challenge for good performance of445

the analysis since the improved MajorClust, in some circumstances, failed to

produce a precise cluster. In addition, the proposed method can be deployed

to other types of event logs such as syslog, web server log, web proxy log, and

many more.

Since the log data has been converted to graph data structure, we will add450

tamper detection using graph watermarks in the future. This method works

by adding a subgraph to the main graph completed with a graph key and the

instance’s key [43]. The instance can be another process which saves the log files

and it can reside in the same server as event log or in other servers. Watermarks

guarantee the integrity of the log files and also provides a leak detection, so the455

suspected instance will be easily detected.

It is also worth noting that the runtime of the authentication log forensic

analysis can still be improved. Some research in the digital investigation area

has considered this problem [44]. We plan to implement the parallel version of
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the proposed method to increase the processing time so that the authorities will460

receive the result and report it immediately. This is one of our priorities since

we believe that the evidence not only originates from a single host but can also

be obtained from a cluster environment.
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