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Highlights: 

 Overall average daily gain was optimized at 0.71 (SE = 0.073) standardised ileal 

digestible sulphur amino acid to lysine ratio (SID SAA:Lys) 

 A SID SAA:Lys of 0.73 (SE = 0.065) optimised feed intake 

 Overall gain to feed was optimized at 0.68 (SE = 0.090) SID SAA:Lys 

 

ABSTRACT: This experiment tested the hypothesis that pigs challenged with an 

enterotoxigenic strain of E. coli (ETEC) would require a higher sulphur amino acids 

(SAA) to Lys ratio (SAA:Lys). Pigs (n=120) weighing 7.4 ± 0.52 kg (mean ± SD) and 

weaned at 27 d (Pietrain genotype, mixed sex) were stratified into 1 of 6 treatments 

based on weaning weight, sex and genotype for the F4 fimbria receptor (n=20). Five 

diets were formulated with increasing ratios of standardised ileal digestible (SID) 

sulphurSAA:Lys. Pigs were housed in pens of 4 during an adaptation period of 6 d 

after which time pigs were housed individually. Pigs fed different SID SAA:Lys 

levels were infected with ETEC (5 mL, 1.13 x 108 CFU/mL, serotype 

O149:K91:K88) on d 8, 9, and 10 after weaning. The sixth diet, which contained 0.55 

SID SAA:Lys and corresponded to current NRC recommendations, was allocated to 2 

groups of pigs either with or without ETEC infection, and was considered as the 

infected or non-infected control group respectively. Pigs were fed Phase 1 diets (10.2 

MJ NE, 1.2% SID Lys) ad libitum until d 15 after weaning. Phase 2 diets (10.2 MJ 

NE, 1.1% SID Lys) were fed ad libitum for the following three weeks. Diets did not 

contain any antimicrobial compounds. Corrected SID SAA:Lys determined based on 

analysed amino acid content and the respective standardised ileal digestibility of 



ingredients were found to be 0.47, 0.55, 0.61, 0.69 and 0.77 for Phase 1 diets, and 

0.47, 0.55, 0.63, 0.71 and 0.78 for Phase 2 diets. Following infection, oedema disease 

was diagnosed in all groups including the non-infection control group, therefore data 

from non-infected pigs were combined with pigs infected and fed 0.55 SAA:Lys for 

analysis of production and plasma data. There were no dietary effects of SID 

SAA:Lys on days with diarrhoea or faecal shedding of F4 ETEC (P > 0.05). Overall, 

average daily gain (ADG), feed intake and G:F were optimised at 0.71 (SE = 0.073), 

0.73 (SE = 0.065) and 0.68 (SE = 0.090) SID SAA:Lys, respectively. For pigs 

infected with ETEC and not provided with antimicrobial compounds, and under 

conditions of the current study, it is suggested that the SID SAA:Lys lies above the 

current NRC recommendation of 0.55 for pigs after weaning.  
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INTRODUCTION 

Post-weaning diarrhoea (PWD), which is characterised by watery faeces 

within the first two weeks after weaning, is a multifactorial disease commonly 

associated with proliferation of certain strains of enterotoxigenic Escherichia coli 

(ETEC) that attach to epithelial receptors in the small intestine (Pluske et al., 1997; 

Hopwood and Hampson, 2003; Fairbrother et al., 2005). Weaning is also associated 

with activation of inflammatory cascades (Lallès et al., 2007) that are likely to 

increase requirements for specific essential amino acids (Melchior et al., 2004; Heo et 

al., 2013) such as Met and Cys (sulphur amino acids (SAA)), which are needed for 

immune function, glutathione synthesis and growth (Grimble, 2006). The conversion 



rate of Met to Cys (which is irreversible) increases during immune system stimulation 

to meet the Cys needs for the immune system and thus increases the dietary Met 

requirements to satisfy the needs of protein synthesis (Rakhshandeh et al., 2014). Kim 

et al. (2012a), for example, demonstrated that immune system stimulation caused by 

E. coli-derived lipopolysaccharide (LPS) increased the SAA:Lys requirement of 

finisher pigs from 0.58 to 0.75, to optimize feed efficiency and protein deposition.  

For pigs between 7-11 and 11-25 kg body weight, the recommended 

standardised ileal digestible (SID) SAA:Lys is 0.56 and 0.55, respectively (National 

Research Council, 2012). However and given the various inflammatory challenges 

faced by pigs in the post-weaning period, it is possible that the pigs’ requirement for 

SAA lies above these currently recommended levels. In this regard, the hypothesis 

examined in this experiment was that, relative to Lys, the needs for SAA are increased 

under conditions of a pathogenic ETEC challenge after weaning, and that the negative 

effects of inflammation on pig productivity can be abridged when the dietary 

SAA:Lys is increased.  

 

MATERIALS AND METHODS 

The experimental protocol was reviewed and approved by the Animal 

Experiments Committee Utrecht (DEC Utrecht, Approval number 2009.III.02.018), 

and the Murdoch University Animal Ethics Committee (??). 

Screening for F4 receptors 

At birth, tail samples from piglets farrowed at the Trouw Nutrition Swine 

Research Centre, The Netherlands, were collected to test the pigs’ susceptibility to the 

enterotoxigenic F4 E. coli (O149:K88) used in the infection model. The pigs were 

screened for the presence of F4ab/ac receptor genes using labeled primers and PCR as 



described by Jensen et al. (2006). Pigs were then classified as homozygous resistant 

(RR), homozygous susceptible (SS) or heterozygous (RS) for F4ab/ac. Animals 

selected for the trial were RR or RS genotypes for F4ab/ac receptors.  

Experimental diets, animal housing and management 

A total of 120 pigs (Pietrain) weighing 7.4 ± 0.52 kg (mean ± SD) (1:1 male: 

female) were selected at weaning (27 d of age) and stratified according to weight, sex 

and genotype for the F4 receptor (RR:RS=7:3) into 1 of 6 treatments. Five treatment 

groups were infected with ETEC and fed varying dietary SID SAA:Lys, namely 0.47, 

0.55, 0.61, 0.67 and 0.76. The sixth group was not infected with ETEC and was 

provided a diet containing 0.55 SID SAA:Lys, which is the current recommended by 

the National Research Council (2012). Diets were fed in 2 phases with the first phase 

fed from d 0-15, and the second from d 16-36, after weaning. 

Diet composition and calculated energy and nutrient contents of experimental 

diets are presented in Tables 1 and 2. Analyzed energy, crude protein (CP) and amino 

acid (AA) content are presented in Tables 3 and 4. All diets were provided in pellet 

form with a diameter of 2.2 mm. All diets were formulated to meet the requirements 

for energy and all nutrients with the exception of Lys, which was marginally limiting 

(Boisen, 2003). Phase 1 diets were formulated to contain 10.25 MJ net energy 

(NE)/kg, 20.9%  CP, and a SID Lys content of 1.17%. Phase 2 diets were formulated 

to 10.25 MJ NE/kg, 19.9% CP and a SID Lys content of 1.07%. As Cys can be 

synthesized in the body from Met (Li et al., 2007), only DL-Met was added to the 

diets to increase SAA:Lys. Increased DL-Met supplementation progressively 

increased Met to Cys ratios from 0.47 to 0.54, 0.59, 0.63, and 0.67. Samples of feed 

ingredients were sent for AA analysis (Evonik, Hanau, Germany) and diets were re-



formulated based on the analysed AA contents and values for SID prior to diet 

manufacture (Sauvant et al., 2004). 

It is known that newly weaned pigs have a low and variable feed intake with 

piglets often not meeting their maintenance energy requirements until at least d 7 after 

weaning (Pluske et al., 1997). Therefore, an adaptation period was used to ensure that 

pigs were eating the treatment diets (and thus varying levels of SAA) before 

experimental infection with E. coli.  

During the 6 d adaptation period, pigs were allocated to pens in groups of four 

(5 group pens/treatment). Pigs were supplied with experimental Phase 1 diets ad 

libitum. Each group pen had slatted floors with 0.4 m2 per pig. Each pen had 2 nipple 

bowl drinkers and an upright, single-space feeder. The ambient temperature for the 

periods d 6-15, 16-22, 23-29 and 29-36 were 27.9 ºC, 26.7 ºC, 26.3 ºC and 26.0 ºC, 

respectively.   

At d 6 after weaning, pigs were weighed and moved to individual pens where 

they remained for the rest of the study. Pens had slatted floors with a space allowance 

of 0.8 m2 per pig. Each pen had a nipple bowl drinker and an upright single space 

feeder. Pens were located in three rooms with 40 pens per room. A sanitation bath 

was located outside each room. The pigs allocated in the control treatment were 

housed in the first room of workflow to minimise contamination with experimentally 

infected animals. Experimental diets and water were provided ad libitum. Feed 

wastage was recorded daily. Feed residual and piglet weight was measured on d 0, 6, 

15, 22, 29 and 36. Feed intake was based on feed disappearance.  

Diet analysis 

Diet samples were analyzed using a ballistic bomb calorimeter to determine 

GE content (Invivo Labs, Binh Duong City, Vietnam). Diets were also analyzed for 



CP and AA content by Evonik (Hanau, Germany) as described by Htoo et al. (2007). 

The dietary SID SAA: Lys ratios were then corrected based on the analyzed dietary 

AA contents using the following formula; 

Corrected SID SAA:Lys = (calculated SID SAA:Lys x analyzed total SAA:Lys) / 

calculated total SAA:Lys. 

Experimental infection with E. coli 

A 900 µL aliquot of 15% glycerol ETEC (serotype O149:K91:F4ac) stock 

solution was used to inoculate 50 mL of sterile brain heart infusion medium. Cultures 

were then incubated at 37 ºC on an orbital shaker for 2 hours and 40 minutes so as to 

enter the mid-log phase of growth. This culture was then diluted 1:10 with a 2.5% 

sucrose solution before being transported on ice to the piggery. Experimental 

infection with ETEC was conducted at d 8, 9 and 10 after weaning via daily oral 

dosing using a syringe. Each infected pig received 5 mL/d of freshly prepared broth to 

provide 1.13 x 108 cfu/mL of E. coli per pig.  

Faecal scoring and faecal swabs 

A visual assessment of faeces was conducted daily. Faecal consistency was 

assessed on a four-point scale with scores 0 (solid), 1 (soft), 2 (sloppy), and 3 (liquid). 

Diarrhoea was defined as pigs having a score of 3. The incidence of PWD was 

defined as the number of days with a score of 3 over the time period. Faecal swabs 

were taken on d 8, 10, 12, 15, 17 and 20 by inserting a sterile cotton bud into the anus. 

Swabs were streaked out onto sheep blood agar plates and incubated overnight to 

ascertain the amount of faecal shedding of F4 E. coli as described by Heo et al. 

(2009). The presence of β- hemolytic E. coli was then scored using a subjective score 

on a six-point scale ranging from 0 to 5, where: 0 = no growth, 1 = hemolytic E. coli 

in 1st section, 2 = hemolytic E. coli in 2nd 
 
section, 3 = hemolytic E. coli in 3rd 

 
section, 



4 = hemolytic E. coli in 4th section, 5 = hemolytic E. coli in 5th section, present right 

out to the 5th section of the plate.  

Pure colonies of E. coli isolated from faecal swabs confirmed edema disease 

from the presence of F18 E. coli. Hemolytic F18 E. coli was morphologically 

undistinguishable from the F4 E. coli. Therefore a PCR technique was used to screen 

for F4 E. coli in the hemolytic colonies. Within each section of the plate, colonies 

were pooled and suspended in lysis buffer. Samples were incubated for 10 minutes at 

99º C to lyse the cells. After incubation, samples were centrifuged for 2 minutes at 

12,000 g at 4 ºC. Detection for F4 E. coli was performed using a CFX96 Real-time 

system, C1000 Thermal cycler (BioRad Laboratories Inc., Hercules, USA) with a 

primer specific for F4 E. coli (Forward primer: 

GGTTCAGTGAAAGTCAATGCATCT, reverse primer: 

CCCCGTCCGCAGAAGTAAC, probe: Cy5 

CCACCTCTCCCAACACACCGGCAT-BHQ_2) and SYBR green dye (BioRad IQ 

Super Mix #170-8860; West et al., 2007). Samples were cycled 40 times (15 seconds 

at 95 ºC and 30 seconds at 60 ºC). Results were then assessed as either presence or 

absence of F4 E. coli for that section of the plate. This was referred to as the F4 swab 

score. 

Blood sampling 

Blood samples from each pig were taken on d 8, 10 and 20 after weaning. 

Samples were collected from the jugular vein into lithium heparin tubes. Blood was 

processed by centrifugation at 2,000 g at 4 ºC for 10 minutes to separate plasma from 

erythrocytes. Plasma samples were then aliquoted and stored at -20 ºC until analyzed.  

Plasma analysis 



Plasma urea (PU) on d 8, 10 and 20 were determined using an Olympus 

AU400 (Tokyo, Japan) analyzer (Olympus Reagent Kit OSR6134; Beckman Coulter 

Ireland Inc., Co. Clare. Ireland). An Olympus AU400 analyzer was also used to 

determine the plasma levels of haptoglobin (Makimura and Suzuki, 1982) at d 8, 10 

and 20 after weaning. Plasma albumin was measured using a Randox Daytona 

analyzer (Crumin, UK) and a commercial kit (Cat #AB3800, Randox, Crumin, UK). 

Levels of tumor necrosis factor alpha (TNF-α) were measured using a commercial 

ELISA kit (Cat # DY690-B, R & D Systems, Minneapolis, USA). 

Amino acids from plasma samples from d 10 were analyzed (Animal Health 

Laboratories, DAFWA, Perth, Western Australia) using HPLC on a reverse-phase C-

18 column (Laich et al., 2002). Cysteine is unstable and readily oxidizes to cystine 

(Meister, 1988). The method used to determine AA in plasma used hydrolyzation to 

stop this from occurring, however the effect is not always immediate and thus initial 

reading of Cys cannot be determined. Therefore, results presented are a total of Cys 

and cystine.  

Statistical analyses 

Faecal F4 E. coli score and days with PWD data were analyzed using the 

GLM function in SPSS (Version 20, SPSS Institute Chicago, Illinois, USA) with pig 

as the experimental unit and treatment as the independent variable. Data were further 

analyzed using the repeated-measures function in GLM to determine if there was an 

interaction between time and diet. Mortality of pigs for the overall time period was 

analyzed using Pearson’s Chi squared test in SPSS. As faecal F4 E. coli score, days 

with PWD and mortality of piglets did not differ between pigs infected or not infected 

with ETEC and fed 0.55 SID SAA:Lys, these groups were subsequently combined for 

all further analyses. Production data for the first 6 d were analyzed with pens as the 



experimental unit for ADG, ADFI and G:F using the ANOVA function, to ensure no 

effect of treatment occurred within the first 6 d of weaning. Production data after d 7 

and plasma data were then analyzed using the ANOVA function for linear and 

quadratic effects with pig as the individual unit and dietary SID SAA:Lys as the 

independent variable. Overall treatment means for ADG, ADFI and G:F were fitted to 

quadratic plateau broken line analysis using a Nutrition Response Model Program 

(version 1.1, Vedenov and Pesti, Georgia University, USA). Further analysis of 

plasma urea, haptoglobin, albumin and TNF-α were conducted using repeated 

measures ANOVA to examine sampling time by treatment interactions.  

All means are reported as least square means. Statistical significance was 

accepted at P < 0.05 and 0.05 < P < 0.10 was considered a trend.  

RESULTS 

Diet analysis 

The analyzed GE and CP contents were similar between diets and close to 

calculated values (Tables 3 and 4). The final SID SAA:Lys (corrected after diet 

analysis)  for Phase 1 diets were 0.46, 0.55, 0.61, 0.69 and 0.77 (Table 3). The final 

SID SAA:Lys (corrected after analysis) for Phase 2 diets were 0.47, 0.55, 0.63, 0.71, 

0.78 (Table 4). All data presented hereafter will refer to the corrected SID SAA:Lys 

of Phase 2 diets as SID SAA:Lys.  

Evaluation of infection with E. coli 

Research staff observed that pigs displayed clinical signs of edema disease 

such as neurological symptoms and overt diarrhoea within one day of infection with 

ETEC. Edema disease diagnosis was confirmed by clinical analysis (serotyping of 

culture) and affected all treatment groups including the non-infection control with 

total mortality ranging from 15-40%, however it was not different between treatments 



(P = 0.324; Table 5). Data for pigs that died were completely removed from the 

dataset. 

The faecal swab score for F4 E. coli showed a significant time effect with 

scores on d 8 and 17 after weaning having the lowest values and d 13 having the 

highest value (P < 0.001). No effect of treatment on faecal swab scores for F4 E. coli 

was found at any time point (P > 0.05; Table 5). 

There was an effect of time on days with PWD, with more diarrhoea occurring 

during d 7-15 after weaning than any other time period (P = 0.011). The number of 

days with PWD was not different between treatment groups for any time period (P > 

0.05; Table 5). 

Production traits 

Due to F4 and F 18 E. coli being present and affecting the control as well as 

the experimentally-infected pigs, data for pigs fed 0.55 SAA:Lys regardless of 

experimental infection were combined; data did not differ (P > 0.10) between these 

two treatment groups. No differences between treatments were observed for any 

production traits during the adaptation period (d 0 – 6) after weaning (P > 0.05; data 

not shown). 

On d 6 and 15 after weaning there were no linear or quadratic effects of 

increasing SID SAA:Lys on body weight (BW; P > 0.05). On d 22, d 29 and d 36 

after weaning there were positive linear effects between BW and SID SAA:Lys (P = 

0.035, P = 0.032 and P = 0.020, respectively; Table 6).  

Increasing the SID SAA:Lys showed positive linear and quadratic effects for 

ADG during d 7-15 (P = 0.039 and 0.009, respectively) after weaning. The ADG 

increased linearly between d 16-22 post-weaning in response to increasing SID 

SAA:Lys (P = 0.030). No linear or quadratic effects were found for ADG between d 



23-29 (P > 0.05) after weaning. The ADG between d 30-36 after weaning showed a 

positive linear effect (P = 0.011), whilst ADG for the overall time period showed 

positive linear effects and a trend for a quadratic response to SID SAA:Lys (P = 0.007 

and 0.099, respectively; Table 6).  

A positive quadratic effect for ADFI between d 7-15 (P = 0.030) after 

weaning in response to increasing SID SAA:Lys was observed. The ADFI showed a 

positive linear trend in response to increasing SID SAA:Lys between d 16-22 (P = 

0.086) after weaning, but there were no linear or quadratic effects of ADFI in 

response to increasing SID SAA:Lys between d 23-29 (P > 0.05) after weaning. Feed 

intake showed a positive linear effect between d 30-36 after weaning in response to 

SID SAA:Lys (P = 0.011), and the overall ADFI from d 6-36 after weaning showed 

positive linear effects in response to increasing SID SAA:Lys (P = 0.034; Table 6).  

Feed efficiency (as G:F) during d 7-15 after weaning increased linearly and 

quadratically in response to increasing dietary SID SAA:Lys (P < 0.016 and 0.009, 

respectively). A weak positive linear trend was found for G:F between d 16-22 after 

weaning in response to increasing SID SAA:Lys (P = 0.094). A positive quadratic 

trend was found for G:F between d 23-29 after weaning in response to increasing SID 

SAA:Lys (P = 0.064). No linear or quadratic effects were observed for G:F in 

response to SID SAA:Lys for d 30-36 after weaning (P > 0.05). For the overall time 

period (d 6-36 after weaning) both linear and quadratic positive effects were found for 

G:F in response to increasing SID SAA:Lys (P = 0.002 and 0.025 respectively; Table 

6).  

The dietary SID SAA:Lys to maximize the ADG of 8- to 20-kg pigs was 

estimated to be 0.71 (SE = 0.073, R2 = 0.94) based on the quadratic broken-line model 

(Fig. 1). To maximize ADFI and G:F, the optimal SID SAA:Lys was estimated to be 



0.73 (SE = 0.065, R2 = 0.97) and 0.68 (SE = 0.090, R2 = 0.90) by the quadratic 

broken-line regression, respectively (Fig. 2 and 3).  

 

Plasma haptoglobin, albumin and TNF- α 

There were no linear or quadratic effects of SID SAA:Lys on plasma 

haptoglobin at any time point sampled (P > 0.05). No time effects for plasma 

haptoglobin were found (P > 0.05). A negative linear trend was found of increasing 

SID SAA:Lys  on plasma albumin on d 10 after weaning (P = 0.061). Plasma albumin 

was highest on d 8 and lowest on d 20 (P < 0.001) after weaning. No linear or 

quadratic effects were found between SID SAA:Lys  and plasma albumin for any 

other time point sampled (P > 0.05).  

No significant effect of time was found for TNF-α (P > 0.05), therefore 

plasma levels of each SID SAA:Lys  between sampling days  are presented. No linear 

or quadratic effects of SID SAA:Lys on TNF-α levels were found (P > 0.05; Table 7). 

Plasma urea and amino acids 

Plasma urea levels on d 8, 10 and 20 after weaning showed an interaction 

effect between time and SID SAA:Lys (P = 0.029). Plasma urea levels decreased 

linearly (P = 0.027) and quadratically (P = 0.007) by increasing SID SAA:Lys  on d 8 

after weaning. On d 10 after weaning there was a negative linear trend between 

increasing SID SAA:Lys and plasma urea (P = 0.063). No linear or quadratic effects 

were found on d 20 after weaning between SID SAA:Lys  and plasma urea (P > 0.05; 

Fig. 4).  

Increasing the dietary SID SAA:Lys linearly increased plasma levels of Met 

(P < 0.001), Phe (P = 0.003), Asp (P = 0.022), Glu (P = 0.011), Tau (P < 0.001), 

cysteine plus cystine (P < 0.001) and Pro (P = 0.035) on d 10 after weaning. A linear 



trend for increasing dietary SID SAA:Lys to increase plasma levels of Arg (P = 

0.077) and Trp (P = 0.091) was also found. Increasing dietary SID SAA:Lys had 

negative linear effects on plasma levels of Lys (P < 0.001), Thr (P < 0.001), Val (P = 

0.021) and Ser (P < 0.001). A linear trend effect of increasing dietary SID SAA:Lys 

was found for plasma levels of Gly (P = 0.007). Positive quadratic effects of dietary 

SID SAA:Lys were found for plasma levels of Arg (P = 0.035), Ile (P = 0.016), Tau 

(P < 0.001) and cysteine plus cystine (P < 0.001). Negative quadratic effects of 

dietary SID SAA:Lys were found for plasma levels of Lys (P = 0.001), Thr (P = 

0.001) and Ser (P = 0.020). Positive quadratic trends were found for increasing SID 

SAA:Lys for Glu (P = 0.057) and Gln (P = 0.076; Table 8). 

DISCUSSION 

The general hypothesis tested in the present study was that weaner pigs 

infected with ETEC and presumed to be under inflammatory stress would require 

greater levels of dietary SAA:Lys for modulation of inflammation responses as well 

as maintaining production performance than the level recommended by the National 

Research Council (2012) of 0.55 for pigs of this body weight range. It has been 

documented previously that inflammatory stress can increase the requirement for 

SAA in growing pigs (Li et al., 2007; Rakhshandeh et al., 2007; Kim et al., 2011b; 

Kim et al., 2012b). The present study confirmed the hypothesis and found that 

increasing dietary SID SAA:Lys to the level that are greater than currently 

recommended by National Research Council (2012) improved ADG, ADFI and G:F.  

In accordance with previous statistical analysis of nutritional response 

modeling (Pomar et al., 2003; Pesti et al., 2009), these data were fitted to a quadratic 

plateau broken line to obtain optima of 0.71, 73 and 0.68 SID SAA:Lys for ADG, 

ADFI and G:F, respectively, which are above the currently recommended level of 



0.55 SID SAA:Lys (National Research Council, 2012). The findings of the present 

study are similar, albeit with much younger pigs, to those of Yi et al. (2006) who 

found an optimum SAA:Lys of 0.64 for the ADG of 28–49 kg pigs, Gaines et al. 

(2005) who found an optimum of 0.60 for ADG of 29–45 kg pigs, and Zhang et al. 

(2015) who reported an optimum of 0.62 to optimize ADG and G:F of 25–50 kg pigs. 

In the present study pigs were likely to have experienced a greater level of challenge 

as a result of experimental infection in addition to edema disease, which may help to 

explain the differences in optimum ratios between the present study and other studies 

(Gaines et al., 2005; Owen et al., 1995; Peak, 2005; Yi et al., 2006).  

Infection with E. coli and assessment of inflammation and immune stress 

Escherichia coli (F18) causing oedema disease is known to colonize the small 

intestine, producing a toxin that causes vascular lesions in the intestine leading to 

diarrhoea (Imberechts et al., 1992). Pigs within the current study, regardless of 

treatment group, displayed symptoms of oedema disease, and this was confirmed by a 

strain of F18 E. coli that was isolated from these pigs. The outbreak of oedema 

disease was unexpected and not the focus of this work, however the oedema disease 

undoubtedly contributed to the total health challenge on the animals. Unlike F4 

fimbriae, no genetic screening for F18 fimbriae was able to be conducted in these pigs 

before experimentation, thus receptors for F18 may not have been evenly distributed 

between treatments and may have, in part, caused the varying level of mortality 

between groups.  

The non-infected control animals showed the same levels of F4 E. coli 

shedding and number of days with PWD both prior to (d 8) and after experimental 

infection with F4 E. coli as the animals in the infection groups. Mortality rates of pigs 

fed 0.55 SAA:Lys were the same between pigs infected with F4 E. coli and those not 



infected with F4 E. coli, suggesting that pigs were equally affected by disease. 

Compared to Heo et al. (2009), who used a similar infection model with F4 E. coli, 

faecal swab plate scores had similar values as the present trial. Observations of piglets 

and mortality data also indicated all animals were exposed to oedema disease causing 

F18 E. coli.  

Markers of inflammation and immune stress were measured to ascertain if the 

higher levels of SAA in the diet modulated the inflammatory response in response to 

infection with ETEC. Acute phase proteins (APP) are commonly used as indicators of 

herd health as they sharply respond to inflammation and immune stimulation 

(Eckersall et al., 1996). There are two types of APP: positive APP (e.g. haptoglobin), 

which increase under conditions of inflammation, and negative APP (e.g. albumin) 

that decrease under such conditions (Eckersall and Bell, 2010). Methionine and Cys 

make up 40 g/kg of protein for haptoglobin (a positive APP) and only 35 g/kg protein 

for muscle (Dahl, 1962; Peters, 1985; Reeds et al., 1994), thus an inflammatory 

response would require greater SAA relative to other amino acids than protein 

deposition. Haptoglobin levels in the present study were higher than the upper 

threshold for inflammation (induced by 0.3 mL turpentine/kg BW injection) as 

described by Heegaard et al. (2011). Levels of haptoglobin in the present study were 

also higher than levels reported by Kim et al. (2011a) in weaner pigs also infected 

with ETEC, further supporting the notion that pigs in the present study were suffering 

from a marked inflammatory challenge. However this was not attenuated by 

increasing SID SAA:Lys. The effect of time on haptoglobin level was expected as 

Pomorska-Mól et al. (2012) showed a trend for increased haptoglobin levels in pigs 

from 4 to 6 weeks of age. 



Due to the high cysteine content in albumin (Reeds and Jahoor, 2001), it was 

expected that higher dietary levels of SAA would maintain albumin levels during an 

inflammatory challenge. However, the present study found a decreasing trend of 

plasma albumin with increasing SID SAA:Lys immediately after infection. These 

findings are in contradiction with work by Litvak et al. (2013) who found that higher 

Met:SAA increased plasma albumin. Albumin catabolism produces AA and it is 

thought that the decrease albumin in animals suffering from infection is due to 

increased breakdown rather than decreased synthesis (Reeds and Jahoor, 2001). 

Baynes and Thorpe (1981) used labeled serum albumin in rats to determine the major 

catabolic sites and found the 40-60% of the albumin dose was catabolized in muscle 

and skin. The present study found an increase in daily gain with increasing SID 

SAA:Lys, which would also increase muscle and thus the catabolism of albumin 

which may explain this unexpected finding. Plasma albumin also decreased over time. 

Nevertheless, literature on plasma albumin is contrasting where some authors 

(Heegaard et al., 2011; Rakhshandeh and de Lange, 2012) showed no response of 

immune stimulation (using an LPS injection) on plasma albumin, however, Litvak et 

al. (2013) found that immune stimulation caused by LPS injection decreased plasma 

albumin. Rothschild et al. (1979) found that in cases of myxedema there was evidence 

of tissue trapping of albumin. Thus, the decrease found in the present study in plasma 

albumin over time could be a result of increased tissue retention of albumin caused by 

oedema, increased catabolism caused by infection, or increased muscle mass also 

facilitating albumin catabolism. 

The pro-inflammatory cytokine, TNF-α, did not show a response to increased 

SID SAA:Lys  in the diet, further supporting the notion that SID SAA:Lys was not 



modulating the inflammatory/immune response in the present study. This may have 

been due the unknown effect of mixed infection with both F4 and F18 E. coli. 

Plasma urea and amino acids  

Excess amino acids cannot be stored and are degraded with the production of 

urea, hence PU levels are often used as an indicator of protein utilization efficiency 

and have been used to determine protein requirements (Chen et al., 1995; Heo et al., 

2009). Conversely, lower PU levels can indicate that either nitrogen utilization 

efficiency is increased or muscle protein catabolism is decreased, which can be a 

result of anabolic factors such as growth hormone or protein synthesis or catabolic 

factors such as an immune response (Shen et al., 2012). The interaction effect on PU 

between sampling day and SID SAA:Lys indicates that stage of infection (pre-

infection, during infection and after infection) alters the urea content in the plasma of 

weaner pigs.  

It was unsurprising to find that plasma levels of Met, Cys-Cystine and Tau 

increased with increasing levels of dietary SAA:Lys as they are sulphur-containing 

AA. In the present study, increasing dietary SID SAA:Lys also decreased plasma Ser. 

As Ser is essential for the conversion of homocysteine to Cys (Kim et al., 2012b), it 

suggests that significant amounts of Met were converted to Cys to support whole 

body antioxidant capacity. These patterns of plasma AA in response to 

immune/inflammatory stress are in congruency with Kim et al. (2012a), who also 

reported similar patterns in Met, Tau and Ser in grower pigs given LPS to induce 

immune stimulation. Taurine is metabolized from Cys and represents an irreversible 

loss of Cys (Rakhshandeh and De Lange, 2011). Work by Malmezat et al. (1998) in 

rats using labeled 35S found a 54% increase of 35S in Tau but only a 30% increase in 

35S in SO4 caused by an intravenous inoculation of live E. coli. This indicates that 



under these immune stimulated conditions, there is an irreversible loss of Cys to 

taurine. In a review article by Rakhshandeh and De Lange (2011), the authors 

hypothesized that additional supply of Met would improve whole body protein 

homeostasis and the immune response. The increased level of plasma Tau in response 

to increasing levels of SAA:Lys in the diet in combination with improvements in 

ADG and FCR found in the present study are in agreement with this hypothesis.  

Lysine levels in plasma decreased with increasing SAA:Lys. Lysine has high 

concentrations in haptoglobin and muscle (92 g Lys/g haptoglobin and 92 g Lys/g 

muscle; Dahl 1962; Reeds et al., 1994), and thus is expected to decrease as SAA:Lys 

in the diet increases. This is because once SAA are not limiting more Lys will be 

utilized for production of APP or protein deposition.  

In conclusion, oedema disease and F4 E. coli affected all treatments equally as 

measured by mortality, faecal swab scores and days with PWD, and may have 

increased the requirement for SAA above recommended levels. Under the conditions 

of this experiment, quadratic broken-line analysis determined that feeding a diet with 

average SID SAA:Lys of 0.70 maximized ADG, and G:F of 8- to 20-kg pigs. These 

levels are above those currently recommended by the National Research Council 

(2012) for pigs of this BW, hence pigs subject to an ETEC challenge in the post-

weaning period where diets are devoid of antimicrobials may require higher levels of 

SID SAA:Lys than currently recommended. However, and given the unavoidable lack 

of a non-infected control in the present study, then some caution with regard to the 

overall implications of the study is advised. 
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Fig. 1. The quadratic plateau broken-line model; Eq.: y = 414 - 1,768.5 (0.71 – x)2; 

breakpoint (BP) = 0.71(SE = 0.0.073, R2 = 0.94). If SID SAA:Lys is > BP, then x = 0; 

if SID SAA:Lys is < BP, then x = SID SAA:Lys. 
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Fig. 2. The quadratic broken-line model; Eq.: y = 548 - 1,174 (0.73 – x)2 ; breakpoint 

(BP) = 0.63 (SE = 0.065, R2 = 0.97). If SID SAA:Lys is > BP, then x = 0; if SID 

SAA:Lys is < BP, then x = SID SAA:Lys). 
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Fig. 3. The quadratic broken-line model; Eq.: y = 0.75 – 2.41 (0.68 – x)2 ; breakpoint 

(BP) = 0.68 (SE = 0.090, R2 = 0.90). If SID SAA:Lys is > BP, then x = 0; if SID 

SAA:Lys is < BP, then x = SID SAA:Lys). 
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Fig. 4. Plasma urea levels on d 8, 10 and 20 after weaning of pigs fed varying ratios 

of SID SAA:Lys. An interaction effect of time and SAA level was found (P = 0.029), 

different letters next to data points denote statistical difference (P < 0.05).
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Table 1. Composition of the Phase 1 experimental diets (as fed basis). 

1 SID AA = standardised ileal digestible amino acid, calculated from analyzed AA 

content in feed ingredients and book values (Sauvant et al., 2004) for SID. 

2 Provided the following nutrients (per kg of air-dry diet); Vitamins: A 15,000 IU, C 36 

mg D3 2,000 IU, E 100 IU, K 2mg, thiamine 2 mg, riboflavin 6 mg, pyridoxine 2 mg, 

cyanocobalamin 30 μg, calcium pantothenate 13.8 mg, calcium-D-pantothenate 15 mg, 

nicotinic acid 32 mg, betaine hydrochloride 150mg, folic acid 1 mg, biotin 100 μg. 

Minerals: copper 150 mg (as cupric sulphate), iodine 1.5 mg (as potassium iodine), iron 

160 mg (as ferrous sulphate), Mn 50 mg (as manganous oxide), Se 0.42 mg (as sodium 

selenite), Zn 105 mg (as zinc oxide), butylated hydroxytoluene 104 mg, propyl gallate 

1.67 mg, 6-phytase 600 FTU (BigConc 2, Trouw Nutrition International, Putten, The 

 Calculated SID1 SAA:Lys 

Ingredients, g/kg 0.45 0.55 0.62 0.70 0.78 

Wheat/barley mix 600.4 599.1 598.1 597.1 596.0 

Soybean meal  216.0 216.0 216.0 216.0 216.0 

Hamlet protein 50.0 50.0 50.0 50.0 50.0 

Lactose 40.9 40.9 40.9 40.9 40.9 

Soya oil 32.9 33.0 33.1 33.2 33.3 

Sugar 20.0 20.0 20.0 20.0 20.0 

Mono-calcium phosphate 14.4 14.4 14.4 14.4 14.4 

Piglet premix2 10.0 10.0 10.0 10.0 10.0 

Salt (NaCl) 5.9 5.9 5.9 5.9 5.9 

Calcium formate 3.0 3.0 3.0 3.0 3.0 

Choline chloride 0.3 0.3 0.3 0.3 0.3 

Limestone 0.1 0.1 0.1 0.1 0.1 

Vitamin E absorbate 0.7 0.7 0.7 0.7 0.7 

L-Lys-HCl 3.4 3.4 3.4 3.4 3.4 

L-Thr 1.4 1.4 1.4 1.4 1.4 

L-Trp 0.4 0.4 0.4 0.4 0.4 

DL-Met 0.0 1.2 2.1 3.0 4.0 

L-Val 0.1 0.1 0.1 0.1 0.1 

SID AA content, g/kg1      

Arg 12.2 12.2 12.2 12.2 12.2 

His 4.3 4.3 4.3 4.3 4.3 

Ile 7.6 7.6 7.6 7.6 7.6 

Leu 13.1 13.1 13.0 13.0 13.0 

Lys 12.0 12.0 12.0 12.0 12.0 

Met 2.5 3.7 4.5 5.4 6.4 

Met + Cys 5.4 6.6 7.5 8.4 9.4 

Phe 8.5 8.5 8.5 8.5 8.5 

Thr 7.7 7.7 7.7 7.7 7.7 

Trp 2.6 2.6 2.6 2.6 2.6 

Val 8.4 8.4 8.4 8.4 8.4 

SAA:Lys 0.45 0.55 0.62 0.70 0.78 

NE, MJ/kg 10.25 10.25 10.25 10.25 10.25 

CP, g/kg 205 205.6 206 206.5 207 

Total Ca, g/kg 6.0 6.0 6.0 6.0 6.0 

Total P, g/kg 7.0 7.0 7.0 7.0 7.0 



 33 

Netherlands) 

Abbreviations: SAA:Lys = sulphur amino acid to lysine ratio. 
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Table 2. Composition of Phase 2 experimental diets (as fed basis). 

1 SID AA = standardised ileal digestible amino acid, calculated from analysed AA 

content in feed ingredients and book values (Sauvant et al., 2004) for SID. 

2 Provided the following nutrients (per kg of air-dry diet); Vitamins: A 15,000 IU, C 36 

mg D3 2,000 IU, E 100 IU, K 2mg, thiamine 2 mg, riboflavin 6 mg, pyridoxine 2 mg, 

cyanocobalamin 30 μg, calcium pantothenate 13.8 mg, calcium-D-pantothenate 15 mg, 

nicotinic acid 32 mg, betaine hydrochloride 150mg, folic acid 1 mg, biotin 100 μg. 

Minerals: copper 150 mg (as cupric sulphate), iodine 1.5 mg (as potassium iodine), iron 

160 mg (as ferrous sulphate), Mn 50 mg (as manganous oxide), Se 0.42 mg (as sodium 

selenite), Zn 105 mg (as zinc oxide), butylated hydroxytoluene 104 mg, propyl gallate 

1.67 mg, 6-phytase 600 FTU (BigConc 2, Trouw Nutrition International, Putten, The 

Netherlands) 

Abbreviations: SAA:Lys = sulphur amino acid to lysine ratio.  

 Calculated SID1 SAA:Lys 

Ingredients, g/kg 0.47 0.55 0.62 0.70 0.78 

Wheat/barley mix 678.8 678.0 677.3 676.5 675.7 

Soybean meal  195.0 195.0 195.0 195.0 19.5 

Hamlet protein 30.0 30.0 30.0 30.0 30.0 

Soya oil 35.2 35.2 35.2 35.2 35.2 

Sugar 20.0 20.0 20.0 20.0 20.0 

Mono-calcium phosphate 13.7 13.7 13.7 13.8 13.8 

Piglet premix1 10.0 10.0 10.0 10.0 10.0 

Limestone 4.7 4.6 4.5 4.3 4.2 

Salt (NaCl) 4.4 4.4 4.4 4.4 4.4 

Sodium bicarbonate 2.0 2.0 2.0 2.0 2.0 

Choline chloride 0.3 0.3 0.3 0.3 0.3 

Vitamin E absorbate 0.7 0.7 0.7 0.7 0.7 

L-Lys-HCl 3.5 3.5 3.5 3.5 3.5 

L-Thr 1.3 1.3 1.3 1.3 1.3 

L-Trp 0.3 0.3 0.3 0.3 0.3 

DL-Met 0.0 0.9 1.7 2.6 3.5 

SID AA content, g/kg1      

Arg 11.0 11.0 11.0 11.0 11.0 

His 4.0 4.0 4.0 4.0  4.0 

Ile 6.9 6.9 6.9 6.9 6.9 

Leu 12.0 12.0 12.0 12.0 12.0 

Lys 11.0 11.0 11.0 11.0 11.0 

Met 2.3 3.2 4.0 4.9 5.8 

Met + Cys 5.1 6.0 6.8 7.7 8.6 

Phe 8.2 8.2 8.2 8.2 8.2 

Thr 7.0 7.0 7.0 7.0 7.0 

Trp 2.4 2.4 2.4 2.4 2.4 

Val 7.7 7.7 7.7 7.7 7.7 

SAA:Lys 0.47 0.55 0.62 0.70 0.78 

NE, MJ/kg 10.25 10.25 10.25 10.25 10.25 

CP, g/kg 192 193 193 194 194 

Total Ca, g/kg 6.7 6.6 6.6 6.6 6.5 

Total P, g/kg 6.8 6.8 6.8 6.8 6.8 
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Table 3. Analysed chemical composition of the experimental diets (as fed basis) for 

Phase 1. 

 Corrected SID1 SAA:Lys 

Analysed chemical composition, g/kg 0.46 0.55 0.61 0.69 0.77 

GE, MJ/kg 17.04 17.12 17.04 17.08 17.12 

CP, g/kg 209 210 211 211 210 

Arg 12.9 13.2 13.1 13.3 13.1 

His 4.8 4.9 4.9 4.9 4.9 

Ile 8.4 8.8 8.6 8.8 8.7 

Leu 14.9 15.0 15.0 15.1 15.0 

Lys 
12.6 13.0 12.9 13.1 13.0 

Met 2.9 4.0 4.6 5.7 6.6 

Met + Cys (SAA) 6.0 7.2 7.9 9.0 9.8 

Phe 10.2 10.4 10.4 10.5 10.4 

Thr 8.6 8.9 8.8 8.8 8.8 

Trp 2.9 2.9 2.9 2.9 3.0 

Val 9.3 9.6 9.6 9.7 9.5 

Corrected SID SAA:Lys1 0.46 0.55 0.61 0.69 0.77 
1 Dietary SID SAA: Lys were corrected based on the analysed dietary AA contents 

using the following formula;  

Corrected SID SAA:Lys = (calculated SID SAA:Lys x analysed total SAA:Lys) / 

calculated total SAA:Lys. 

Abbreviations: SID = standardised ileal digestible, SID SAA:Lys. 
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Table 4. Analysed chemical composition of the experimental diets (as fed basis) for 

Phase 2. 

 Corrected SID1 SAA:Lys 

Analysed chemical composition, g/kg 0.47 0.55 0.63 0.71 0.78 

GE, MJ/kg 17.12 17.04 17.21 17.16 17.08 

CP, g/kg 193 193 193 196 180 

Arg 11.8 11.6 11.8 11.8 11.7 

His 4.5 4.4 4.4 4.5 4.4 

Ile 7.8 7.6 7.8 7.7 7.6 

Leu 13.7 13.4 13.6 13.6 13.5 

Lys 
11.8 11.7 11.7 11.7 11.7 

Met 2.7 3.5 4.3 5.2 6.0 

Met + Cys (SAA) 5.8 6.5 7.3 8.2 9.0 

Phe 9.5 9.3 9.4 9.4 9.3 

Thr 8.0 7.9 7.9 8.0 7.8 

Trp 2.7 2.7 2.7 2.7 2.7 

Val 8.7 8.6 8.6 8.6 8.5 

Corrected SID SAA:Lys1 0.47 0.55 0.63 0.71 0.78 
1 Dietary SID SAA: Lys were corrected based on the analysed dietary AA contents using 

the following formula;  

Corrected SID SAA:Lys = (calculated SID SAA:Lys x analysed total SAA:Lys) / 

calculated total SAA:Lys. 

Abbreviations: SID = standardised ileal digestible. 
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Table 5. Mortality, faecal swabs’ score, faecal swab score for F4 E. coli, and the incidence of post-weaning diarrhoea of pigs fed varying levels 

of SID SAA:Lys. 

1 SID = standardised ileal digestible 

2 Treatment = Effect of treatment 
3 Time = Effect of time 
4 Agar plates were scored from 0-5 according to the number of streaked sections that had visible growth of haemolytic E. coli where 0 = no 

growth, 1 = E. coli in first section, and so on 5 = heaviest growth (Heo et al., 2009).  
5 Days with PWD = percentage of days with diarrhoea (faecal score = 3). 

Abbreviation: SAA = sulphur amino acid.   

Infection No    Yes    P-value 

Corrected SID SAA:Lys1 0.55  0.47 0.55 0.63 0.71 0.78 SEM Treatment2 Time3 Time x Treatment 

Mortality (%) 30  15 30 40 35 30  0.649   

Faecal F4 E. coli score4            

d 8 0.23  0.12 0.21 0.17 0.08 0.20 0.104 0.922 <0.001 0.973 

d 10 0.54  0.44 1.36 1.08 0.92 0.93 0.359 0.476   

d 13 1.62  1.50 1.71 1.50 1.58 1.40 0.368 0.993   

d 15 0.77  1.00 0.93 0.75 0.92 0.80 0.361 0.995   

d 17 0.15  0.00 0.21 0.42 0.17 0.33 0.145 0.496   

Days with PWD5, %            

d 7-15  4.6  5.6 7.9 5.6 5.6 4.4 1.23 0.970 0.011 0.483 

d 16-22 5.9  0.0 0.0 1.2 1.2 0.9 0.68 0.151   

d 23-29 3.6  3.6 1.0 0.0 0.0 2.8 0.79 0.589   

d 7-29 4.7  3.3 3.4 2.5 2.5 2.9 0.64 0.943   
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Table 6. Effect of SID SAA:Lys ratio on growth performance from day 6 to 36 after weaning. 

1 SID = standardised ileal digestible. 

Abbreviation: SAA = sulphur amino acid.

 Corrected SID SAA:Lys1  P-value 
 0.47 0.55 0.63 0.71 0.78 SEM Linear Quadratic 

BW, kg         

d 6 8.2 8.4 8.5 8.2 8.5 0.21 0.553 0.863 

d 15 9.9 11.0 11.0 10.6 10.8 0.38 0.253 0.160 

d 22 12.1 12.8 13.3 13.4 13.4 0.51 0.035 0.311 

d 29 14.4 15.6 16.8 16.6 16.3 0.69 0.032 0.105 

d 36 17.2 18.7 20.4 20.2 20.0 0.99 0.022 0.161 

ADG, g/d         

d 7-15 190 291 297 301 269 25.9 0.039 0.009 

d 16-22 312 286 359 437 365 37.1 0.030 0.543 

d 23-29 373 428 480 440 422 38.8 0.370 0.117 

d 30-36 384 439 500 556 534 51.4 0.011 0.431 

d 6-36 313 365 406 428 399 27.7 0.007 0.099 

ADFI, g/d         

d 7-15 279 333 347 330 314 19.9 0.275 0.030 

d 16-22 467 445 463 528 491 35.3 0.086 0.761 

d 23-29 579 564 647 615 599 40.1 0.470 0.449 

d 30-36 618 653 730 775 772 52.9 0.011 0.596 

d 6-36 471 503 540 554 541 28.5 0.034 0.320 

G:F, g/g         

d 7-15 0.65 0.86 0.87 0.92 0.82 0.053 0.016 0.009 

d 16-22 0.70 0.62 0.76 0.83 0.76 0.060 0.094 0.759 

d 23-29 0.63 0.75 0.76 0.72 0.70 0.046 0.440 0.064 

d 30-36 0.63 0.63 0.68 0.71 0.68 0.045 0.185 0.657 

d 6-36 0.65 0.71 0.75 0.77 0.73 0.023 0.002 0.025 
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Table 7. Effect of SID SAA:Lys on plasma haptoglobin, albumin, and TNF- α on d 8, 10 and 20 after weaning. 

 Corrected SID SAA:Lys1  P-value 

 0.47 0.55 0.63 0.71 0.78 SEM Linear Quadratic 

Haptoglobin2, mg/mL          

d 8  1.98 1.67 1.75 1.87 1.50 0.212 0.258 0.934 

d 10 2.03 1.74 1.69 1.70 1.70 0.215 0.294 0.435 

d 20 2.35 2.30 2.00 1.58 2.12 0.255 0.138 0.276 

Albumin3, mg/mL         

d 8  29.74 29.75 28.94 30.40 28.90 0.578 0.569 0.739 

d 10 28.34 27.88 27.54 27.02 26.94 0.620 0.061 0.805 

d 20 27.62 25.34 25.72 25.10 25.71 0.828 0.118 0.134 

TNF- α4, pg/mL 42.78 39.30 52.64 41.34 39.95 4.366 0.789 0.225 
1SID = standardised ileal digestible. 
2 Time effect (P = 0.022) where d 8 = d 10 < d 20. 
3 Time effect (P < 0.001) where d 8 > d 10 > d 20. 
4 No effect of time (P >0.05) therefore means of SID SAA:Lys between sampling points are presented. 

Abbreviation: SAA = sulphur amino acid, TNF-α = tumour necropsy factor-alpha.  
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Table 8. Effect of SID SAA:Lys on plasma amino acid profile for pigs on d 10 after 

weaning.  

 Corrected SID SAA:Lys1  P-value 

 0.47 0.55 0.63 0.71 0.78 SE

M 

Linea

r 

Quadr

atic 

Essential AA 

(μmol/L) 

        

Arg 136.1 139.0 194.3 158.4 158.9 11.

66 

0.0

77 

0.0

35 

His 104.7 94.5 103.0 105.3 98.4 3.

80 

0.8

77 

0.1

17 

Ile 164.6 172.9 199.1 178.8 167.4 9.0

9 

0.6

85 

0.0

16 

Leu 184.9 171.1 193.6 176.4 166.0 8.8

0 

0.2

38 

0.3

30 

Lys 250.9 130.3 145.1 126.0 132.0 16.

48 

<0.

001 

0.0

01 

Met 16.5 45.1 76.1 87.1 109.1 5.

88 

<0.

001 

0.1

45 

Phe 101.6 106.3 123.6 117.9 121.5 5.3

4 

0.0

03 

0.2

21 

Thr 478.5 237.0 245.6 229.9 215.5 32.

03 

<0.

001 

0.0

01 

Trp 40.8 41.2 45.7 42.8 45.8 2.

15 

0.0

91 

0.7

79 

Val 378.5 325.2 383.8 329.1 303.0 20.

06 

0.0

21 

0.4

45 

Non-essential AA, 

μmol/L 

        

Asp 31.1 32.8 48.3 45.0 42.1 4.

72 

0.0

22 

0.1

26 

Glu 303.0 353.4 416.7 443.3 390.4 32.

87 

0.0

11 

0.0

57 

Asn 69.3 62.0 68.6 67.1 59.0 7.

14 

0.4

93 

0.7

21 

Ser 241.4 157.7 180.0 148.8 146.2 11.

94 

<0.

001 

0.0

20 

Gln 122.2 192.5 133.7 145.5 126.0 15.

87 

0.4

26 

0.0

76 

Gly 1,137.4 1,000.4 1,068.1 950.4 950.6 76.43 0.0

77 

0.7

60 

1-methyl L-

Histidine 

19.6 20.6 20.6 20.2 21.5 0.

72 

0.1

29 

0.8

97 

Ala 580.9 607.1 694.7 643.7 674.5 44.

16 

0.1

07 

0.4

46 

Tau 36.1 42.8 52.7 59.7 103.6 3.

66 

<0.

001 

<0.

00

1 

Ty 83.2 89.5 101.9 97.7 94.0 6. 0.1 0.1
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a,b,c,d Means in the same row with different superscripts differ (P<0.05). 
1 SID = standardised ileal digestible. 

Abbreviation: SAA = sulphur amino acid. 

 
 
 

73 57 58 

Cys-Cystine 7.4 12.4 21.0 16.4 17.0 1.

60 

<0.

001 

0.0

01 

Pro 204.6 220.2 240.9 249.1 247.7 17.

30 

0.0

35 

0.4

85 
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