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A B S T R A C T

Social Networking Sites (SNS) are ubiquitous within modern society,

forming communications networks that span across cultural and

geographical boundaries. The information posted to these sites

provide useful insights into individuals, but can also provide a

wealth of information that can be used for further analysis into the

surrounding environment. Three main challenges limit the use of

this information in applications: the quantity of data is often

unmanageable, there is a significant amount of data unavailable for

use due to a lack of generic interfaces for access, and there is

difficulty in integrating multiple disparate social data sources.

The overall aim of the research described in this thesis is to

advance the field of data science and improve accessibility of social

data in analytical applications, in both academic and commercial

settings. This aim has been addressed with three primary

contributions; new algorithms to efficiently locate and collect

relevant social data, new methods of performing unsupervised data

extraction from generic social sites, and the development and

subsequent empirical evaluation of a framework to facilitate the

collection, integration, storage and presentation of social data for use

in applications.

The first contribution was the presentation of a search query

optimisation algorithm designed to reduce the amount of noise

resulting from social data collection by learning from collected

content and iteratively building new query keyword sets. The

algorithm was empirically evaluated and the results indicated that it
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provides significantly more data than existing search tools while

minimising signal-to-noise ratio.

The second contribution aimed to improve access to social data

available on Web 2.0 sites but without any existing interface access

to the data. The algorithm is designed to extract social data from

sites without any a priori knowledge of design or page layout. Its

efficacy was empirically evaluated against a testbed consisting of

popular news and current affairs websites. Results indicated that the

algorithm was very effective at unsupervised retrieval of social data.

The third major contribution presented a framework that

integrated the previous two contributions into a framework

designed to streamline use of social data in academic and

commercial applications. The generic, component-based design was

evaluated in real-world scenarios and determined to provide a full

social collection and analytics workflow in an extensible and scalable

manner.

This research has theoretical and practical implications for the use

of social data in analytical research and commercial use. It extends

the data extraction field to include user-generated content, while

providing new avenues for performing semi-intelligent social data

sourcing, and significantly improves the accessibility of social data.
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1
I N T R O D U C T I O N

1.1 overview

Social media has begun to form an integral part of our society. Social

networking sites (SNS) are the most common interface to social

media, used by hundreds of millions of people per year - nearly 65%

of US adults (Perrin, 2015). Users share aspects of their life,

including pictures, video and general comments, to friends and the

wider public. This provides a rich, available source of data from

users across the world, often with embedded metadata such as

location, age and gender. While this is traditionally heavily used for

marketing, new social analytics fields are rapidly expanding the

applications leveraging this data. The analysis of this rich source of

data is commonly referred to as "social data mining" (Amento et al.,

2003).

While much of this data is relevant only to those with a social

connection to the author, publicly-posted data has previously been

used to great effect. Social sensing uses social media posts from

users to detect events - social, geopolitical or environmental. It has

been used to organise civic protests, such as during the Arab Spring

(Huang, 2011), to discover and isolate disease outbreaks (Parker

et al., 2013; Kautz, 2013; Li and Cardie, 2013), to detect earthquakes

(Robinson et al., 2013; Aki, 1995; Sakaki et al., 2010), and manage

bushfire maps (Cameron et al., 2012). All of these applications use

1



2 introduction

public posts by users to detect events with much more widespread

use, with a number of early applications specifically focusing on the

ability to detect emergencies from social media posts, such as using

Twitter to provide rapid response during the Boston Marathon

Bombing (Cassa et al., 2013).

In addition to widespread event detection, applications have been

developed that focus specifically on individual users. Previous work

has provided early detection of depression (De Choudhury et al.,

2013b) and post-partum depression (De Choudhury et al., 2013a) by

examining users’ Twitter feeds, demonstrating that the applicability

of social data mining and analytics ranges from society-scale to

individual use. Hence, there is significant focus in research on the

benefits that can be provided by analysing social media.

While there has been a wide range of social analytics applications

developed, the majority of studies are limited to a single data source

(as discussed in Section 1.2). This is primarily due to the challenge of

integrating multiple disparate and heterogeneous data sources,

which is outside the scope of most research. It is highly likely that if

data collection and integration between multiple social networks

was simpler, authors would be more inclined to use data from a

broader range of sources - an important consideration, given that

different social networks cater to different demographics

(Greenwood et al., 2016) and relying on a single source can skew

results.

The aim of the research presented in this thesis is to advance the

field of social data mining by facilitating the utilisation of

heterogeneous SNS and social media as data sources for social

analytics. This research has significant practical and research

implications by dramatically expanding the set of easily-accessible



1.2 background 3

social data sources available for use in social analytics. It provides

the ability to use multiple diverse data sources for research

purposes, eliminating demographic bias between individual social

networking sites. It also vastly expands the potential for using users

as sensor nodes in wide-scale event detection. It does this by

providing the design of a framework capable of collecting,

integrating and processing social data from disparate sources into a

format suitable for use in real-time analytics, developing techniques

for exploiting previously-inaccessible social data sources and

optimising the process of finding social data to enhance efficiency

and reduce the need to handle irrelevant data. The new algorithms

and techniques presented in this research are then evaluated against

real-world data for efficacy and to examine their potential use in

both research and commercial applications.

1.2 background

Interaction with social media has emerged as a regular activity for

many Internet users (We Are Social Singapore, 2014). A vast and

diverse range of information is shared between participants, relating

to many different topics. Users share life events, rich media and

thoughts over social media, as well as managing their schedules. The

near-ubiquitous acceptance of social media within developed society

has led to strong userbase growth across all platforms, with 56% of

Americans across all age groups now using at least one social

network and 96% of Americans aged between 18-35 (FormulaPR,

2011; Edison, 2012). Globally, 26% of the population use social

media, including 57% of Australians and 46% of Chinese (We Are

Social Singapore, 2014).
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The data made available on SNS comes in many different shapes,

sizes and formats. At their simplest, the networks are used as a

communications platform in which short messages between users or

within groups are passed around in plain-text. With the integration

of media content delivery networks into social media, entirely new

streams of data have become available, including video, photos,

hyperlinks and games. These streams are data are often uploaded by

users and passed around amongst networks through friend

connections and public links, with some media going "viral" - in

which a piece of content is continually passed across friend networks

and reaches significant public exposure (Guerini et al., 2011).

Not all of this data is publicly available or easily accessible. Users

often upload private photos and only share them to a subset of their

friend connections, and thus are not available to users outside those

circles. Even accounting for this portion of private data, social

networks share an enormous amount of content and user

information publicly (DOMO and Column Five Media, 2012) - data

that can be leveraged for other purposes - such as integration in

sensor networks. In addition, a significant amount of data created by

users is published onto Web 2.0 sites that do not provide

Application Programming Interfaces (APIs) 1 to access

user-generated content, such as news websites.While data privacy is

paramount, data that is not intentionally hidden can be made

accessible to provide additional data sources for sensor networking.

In order to use social media data as a data source for sensor

networking, data across the disparate range of social platforms must

be integrated into a cohesive dataset. Not only does this reduce the

complexity of having to manage structurally-diverse platforms as

1 APIs allow computer programs to directly interface and query data sources,
providing a simple method of accessing information related to a site or platform.
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separate entities, it prevents a number of shortfalls that occur within

existing social media research - primarily, that most research only

occurs over a single platform, severely limiting the demographic of

participants. Using Google Scholar, the citations of the three most

cited social event detection papers (Fung et al., 2005; Chen and Roy,

2009; Sayyadi et al., 2009) were analysed. Of the 140 papers related

to social event detection, only 6 papers used more than a single data

source during the experimental phase. By abstracting away the

platform entirely, the demographic is expanded to include all users

of social media. The integration process can also enable filters to be

applied to data - these filters can be comprised of a number of

algorithms designed to clean data produced by sensor networks

(Jeffery et al., 2006; Deligiannakis et al., 2008), as well as providing

functionality for data enrichment functions such as sentiment and

gender analysis2.

Existing data querying and analysis technology can be used to

handle interaction with the integrated dataset, including database

query engines (Arasu et al., 2006). These engines make it possible for

users to execute queries to select, analyse, process and output

desired data. This completely abstracts the data sources being

queried, removing any need for the user to manually interact with

the data or specifically tailor queries to particular data sources.

Query languages executed by a database engine provide a generic

interface, granting the ability to perform virtually any analysis of the

data required.

Systems designed to collect, integrate and query social datasets

already exist, but involve a number of trade-offs that can

significantly affect their usage within applications (DataSift, 2010;

2 Sentiment analysis provides insight into how speakers feel towards the topic
analysed by returning positive and negative sentiment scores. Gender analysis
attempts to determine the gender of a speaker through name analysis and NLP.
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Gnip, 2008). All of these systems function as Extract-Transform-Load

(ETL) (Vassiliadis, 2009) processes, which can take significant

amounts of time to make new data available for use. Social media

data, which is nominally event-based and real-time, is effectively

flattened into delayed data warehouses. This additional latency can

compromise any potential use of real-time monitoring of integrated

social sources, necessitating use of low-latency real-time streams

straight from the sources themselves. Solving this problem will open

up new applications in social sensing and data science.

1.3 aims

The research presented in this thesis is intended to advance the field

of social data mining, by investigating and evaluating the use of

social data as part of a sensor network. In order to leverage social

data for this use, various data-cleansing and integration techniques

can be adapted from traditional sensor networks, since they can be

considered conceptually similar to social networks.

Previous research on social networks has involved very specific

querying of single social networks, since there is a lack of

interoperability between social media platforms. It would be

desirable to integrate social networks and other social data sources

into a unified data-set to ensure the widest possible coverage of

users, devices and geographical area. To this effect, some method of

agglomerating data from differing social data sources should be

determined. In addition, new data sources should be located and

integrated to further broaden the scope of social data sources

available for use.

The aims of this thesis are as follows:
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aim 1 : Develop and evaluate methods of efficiently collecting

and integrating generic social data for analysis.

Data collection and analysis scripts used in current research have

a number of issues. Due to integration difficulty, research using

social analytics often only operate using a single SNS as a source

(Robinson et al., 2013; Sakaki et al., 2010; De Choudhury et al.,

2013b). This results in heavily skewed demographics and limited

geographical and cultural variety. For global analytical applications,

this is an important consideration. Hence, a method of collecting,

integrating and presenting generic social data in an accessible

manner is desired.

While some commercial applications (Gnip, 2008; DataSift, 2010)

are capable of performing collection and integration of social data

sources, they often have prohibitive or infeasible hardware

requirements due to the sheer amount of social data available.

Hence, it is also desirable that methods be developed to collect social

data for sensor applications in an efficient and intelligent manner,

only collecting data that is relevant.

aim 2 : Develop new techniques to access alternative and

untapped social data sources for use in social data mining.

By further expanding the scope of social data sources able to be

used in sensor networking, the range of potential applications is

broadened. There are a significant number of data sources on the

internet that allow the submission and publication of social data in

the form of User-Generated Content (UGC) that do not provide data

in an accessible manner, such as the comment sections of news
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websites and blog comment systems. The data submitted to these

sources is often timely and relevant, so collection would prove

useful. While there are simple wrapper-based methods to extract

data from individual sites (Ferrara et al., 2014), this incurs a

significant development time to integrate each new source. Hence, it

would be desirable to develop an automated method of extracting

and presenting this social data in an accessible manner.

aim 3 : Develop and evaluate a framework that integrates

work from the previous two aims to provide an extensive and

generic social data sourcing, collection and querying framework.

After the methods for social data sourcing, collection, integration

and querying have been evaluated, these techniques should be

combined into a cohesive framework that supports the use of social

data sources in sensor networking applications. This would then

allow querying of social data for research purposes or for use in

event-driven notification and alerting systems, such as those used in

emergency response scenarios (Cameron et al., 2012).

1.4 justification

There are benefits to supporting real-time querying and analysis of

integrated social media datasets. News media was traditionally a

slow communication - it took approximately a day for a journalist to

investigate an event, and newspapers would publish it the following

day (Meraz, 2009). Smartphones and Internet news have changed

traditional media consumption habits due to much lower response

times (Mayfield, 2008) to "societal events", such as emergencies,
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disasters, disease outbreaks and other important events. By utilising

smartphones and social media as a data source for detecting events,

the reach of wireless sensor networking is extended to anywhere

there are smartphones with a data connection. This reach is

continually expanding as cheap consumer smartphones and data

networks become more prevalent across the world (Voskresensky,

2013).

Developing new techniques for intelligently sourcing social data

can dramatically reduce the amount of processing required to

monitor social media. Early optimisation is paramount in data

analytics, as it reduces the amount of data required to undergo

integration, processing and serialisation. Hence, improving the

relevancy of incoming data reduces the amount of extraneous data

being processed, and can significantly reduce the level of hardware

resources required for deployments, potentially opening up

opportunities for new low-cost sensing applications.

Deploying bespoke collection networks to produce new data

comes at a significant cost, as it can require new sensor hardware

and processing resources. Leveraging existing data is preferred

where possible, as collection cost is minimised. Social media can

provide a plentiful source of data for sensor networking covering a

broad geographic, demographic and cross-cultural area, but a

significant amount of this data remains inaccessible due to a lack of

site APIs for Web 2.0 sites. Developing new techniques to collect this

user-generated content from generic sites can expand the scope of

social data available to sensor networking to include user comments

on news articles relating to current events, which can be particularly

useful for event detection or disaster management.
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Finally, developing a framework capable of sourcing, collecting,

integrating, cleaning, storing and presenting generic social data can

advance the field of data mining and social analytics by allowing

studies to be easily run over multiple integrated networks. This

reduces the potential for demographic bias specific to individual

networks, providing a more holistic picture of social media users on

the internet, as well as providing a framework for writing repeatable

experiments and performing social analytics.

1.5 scope and assumptions

The scope of the research presented in this thesis is limited to

developing new techniques for accessing existing (though

inaccessible) data in an efficient manner, and using data integration

techniques to present the collected data as a single unified schema. It

uses software architecture techniques to provide an efficient, scalable

and reliable solution to the challenges previously discussed.

This thesis presents new algorithms for data sourcing and

extraction, but does not present new algorithms for specific event

detection or data analytics tasks. Rather, it uses existing research to

demonstrate the capability of the proposed framework to handle

these tasks.

1.6 structure and organisation

This thesis is composed of seven chapters. To assist in navigation, Fig.

1 presents an architectural map of the proposed Social Media as a

Sensor (SMAAS) framework, and indicates the parts of the framework

that each Chapter represents.
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Chapter 1 provides a brief introduction to the field of social data

mining and the challenges faced in leveraging social data for sensor

networking. The overall research aims and project scope are also

detailed here. Chapter 2 examines the current state of fields relevant

social sensor networking, including sensor networking, social media,

social data mining, data sourcing, data extraction and event

detection.

Chapter 3 discusses potential solutions to the broader aims

described in Section 1.3 and defines a set of requirements for

candidate solutions to meet. It presents the SMAAS framework,

designed to intelligently source social data, perform unsupervised

collection from generic sources, integrated data into a unified

schema, allow for cleaning and post-processing and serialise the

resulting social events - the combination of which satisfy all aims of

the research.

Chapter 4 describes the intelligent sourcing algorithm used in the

SMAAS framework to efficiently locate social data sources relevant

to a predetermined topic. A new method of extracting the social data

available from these data sources is then presented in Chapter 5.

The SMAAS framework, the intelligent sourcing and

user-generated content extraction algorithms are then evaluated in

Chapter 6. Two real-world scenarios are then designed to

demonstrate the use of the SMAAS framework, including a real-time

event detection algorithm and a delayed political sentiment analysis

scenario.

Finally, Chapter 7 considers how the primary research aims have

been met. The three contributions of the research to the field are

discussed, including how the evaluation indicates that the

framework advances the field of social data mining.
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Figure 1: Architecture map to chapters in thesis.

This thesis makes a significant contribution to the field by making

social data significantly more accessible for use in research and

real-world applications, improving future social data mining

research and opening up new opportunities for social sensor

networking applications. This is proven to be viable through an

extensive evaluation of the individual algorithms developed, as well

as the use of the complete framework in real-world scenarios.
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L I T E R AT U R E R E V I E W

2.1 overview

This chapter reviews the core concepts crucial to social sensing, in

which four main research areas are considered. Section 2.2 examines

the role of social media in society and its use in research, including

methods of collection and analysis, and the concepts of sensor and

social networks are conflated. Section 2.3 briefly explores existing

data sourcing methods, while Section 2.4 reviews and examines the

multitude of state-of-the-art data integration techniques, particularly

where applicable to social data. Section 2.5 analyses the current

state-of-the-art in web data extraction algorithms for retrieving

social data from generic pages. The concepts and techniques

described in this chapter form the foundational groundwork of the

systems featured later in the research.

2.2 social media

2.2.1 Overview

Social networks were originally developed to facilitate global

communications amongst users, providing a persistent platform for

people to re-connect with old friends and share their life in detail

13
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online. After the popularisation of Web 2.01 in 2005 and the global

shift from static web content to participatory sharing and

communications (o’Reilly, 2009), social networks became highly

integrated with most large web systems for third-party

authentication and other means. Combining elements of

communications networks, content delivery and content creation,

social networks co-opted the term "social media" to more fully

describe their role in modern society.

With much of the content on the Internet now being created directly

by users in the form of media or discussion, there is an increased

focus on utilising social media as a data source for decision-making.

While advertisers and marketing have always been an integral part

of social media (Stelzner, 2011), government entities are also tapping

social media to drive the creation of populist policy proposals and

gauge public reaction to social events (Hall, 2014).

Effectively deriving useful data points from social media is a topic

of much discussion, and presents a number of challenges (Maynard

et al., 2012). Posts by users on social media are usually free-form - the

data comes in no particular standard format, as they often represent

part of a stream of consciousness from a user. Additionally, posts are

not limited to text and users often share pictures, videos, diagrams or

graphs which present unique challenges to data analysis.

The proliferation of social media has driven content and context

creation, but has also made it more difficult to locate appropriate

data sources (Wandhöfer et al., 2012). Where topics were once

discussed in semi-centralised locations such as Usenet, the

integration of commenting systems into many different news and

blog sites has dispersed information to this point where it is

1 Web 2.0 is widely seen as the shift in online communications from site-generated
content to user-generated content, such as comments on news websites.
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unrealistic to attempt collection of all relevant discussion relating to

a topic. Instead, discussion centers can be discovered by tracking the

spread of topics across the Internet and monitoring the most active

communities.

Finally, the majority of social networks approach data storage and

content formatting in dissimilar ways and often have little

interoperability. There is no API standard to allow programs to

easily retrieve data from social networks, and some do not provide

an API at all. Because of this, data integration between networks can

be difficult and there is no easy way of retrieving and mapping data

structures from generic social networks.

2.2.2 Social Media Demographics

Many existing studies on using social media for event detection tend

to focus on a single social network (Li and Cardie, 2013; Cameron

et al., 2012; Sakaki et al., 2010; Robinson et al., 2013; Xu et al., 2016;

Rosser et al., 2017), limiting collection specifically to the

demographics represented on the chosen platform. Cultural

demographics can vary significantly per platform - Facebook holds

79% of internet users in America and Twitter holds 24% (Greenwood

et al., 2016), while Cyworld is estimated to host 50% of the social

networking profiles of South Korean users, and Mixi is more

popular in Japan while 20% of Orkut’s population is Indian (Vasalou

et al., 2010). In order to develop a truly global and cross-cultural

social media monitoring system, data collection mechanisms should

be extensible to any form of online social media, rather than a

specific few platforms.



16 literature review

In order to realise this concept of global generic social sensor

networking, a diverse set of data collection and integration

techniques need to be utilised. Different social networking platforms

operate on different data structures, using different storage engines

and producing entirely different output. Even considering this,

social media data is conceptually similar across platforms, consisting

of a number of common constructs (users, friends, connections,

messages, events). Because of this conceptual similarity, it is possible

to integrate this data into a single queryable dataset through the use

of data sourcing, collection and integration techniques.

2.2.3 Data Collection

Social media has previously been used as a data source in a number

of research applications. Data collection and analytical techniques

vary significantly between studies, with some studies opting for

real-time collection and analysis (Sakaki et al., 2010; Li and Cardie,

2013) and others opting for more manual off-line processes

(Wandhöfer et al., 2012). The approach taken is usually dependent

on the use of the data - while purely analytical projects can afford to

be off-line, alerting systems are real-time so that they can provide

real-time alerts. In both instances, data collection usually uses two

techniques: retrieving data from Web APIs and web scraping.

2.2.3.1 Web Application Programming Interfaces

Web development has largely shifted away from monolithic

server-side web systems (Fielding, 2000), with many new

technologies emphasising clear separation of server-side logic,

client-side logic and presentation logic (MacCaw, 2011). One of the
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key technologies involved in this shift has been the adoption of

AJAX (Asynchronous Javascript And XML) (Garrett, 2005) to

dynamically update client-side presentation by asynchronously

polling server-side resources for updates in real-time.

To improve scalability of server resources and take advantage of

little-used client-side resources, the server often sends only the

minimum required data, with presentation left to the client. To easily

facilitate this, server-side web systems now operate more as web

services rather than traditional web systems, with many opting to

present server resources using REpresentational State Transfer

(REST) (Fielding, 2000). RESTful servers then provide application

programmers with a standardised format for requesting data from

web services. The data returned is also standardised, with most new

services opting to return data in JSON (JavaScript Object Notation

(Crockford, 2006)) format rather than XML.

Data collection tends to rely on these network-provided APIs to

streamline experimental setup and provide standardised output for

the chosen social network, such as the output from the Facebook API

(Facebook, 2007) seen in Fig. 2. While this is to be encouraged in

most cases (as that is what the API is provided for), there are some

drawbacks to relying solely on API-provided data. In some instances,

the API provides less information than is publicly available through

the graphical user interface to the social network eg. Facebook’s API

does not always provide user location even if accessible through the

user’s About page.
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1 {

2 "_request": "GET /100001806305913",

3 "id": "100001806305913",

4 "name": "James Meneghello",

5 "first_name": "James",

6 "last_name": "Meneghello",

7 "link": "https://www.facebook.com/murodese",

8 "gender": "male",

9 "locale": "en_GB",

10 "updated_time": "2013-09-24T03:37:58+0000",

11 "username": "murodese"

12 }

Figure 2: Data available from the Facebook API

Most web APIs follow similar principles, with similar

authentication methods (such as OAuth1) and similar data

formatting for results. While the output format of Facebook’s API

(Fig. 2) and Twitter’s API (Fig. 3) appear similar due to the use of

JSON, the underlying data structure differs greatly and requires

semantic re-mapping prior to combined use.

1 {

2 "_request": "GET

/users/show.json?screen_name=murodese",↪→

3 "id": 158337652,

4 "id_str": "158337652",

5 "name": "Murodese",

6 "screen_name": "Murodese",

7 "location": "Australia"

8 }

Figure 3: Data available from the Twitter API

2.2.3.2 Web Scraping

Prior to the development and widespread introduction of Web APIs,

data had to be taken from the user-viewable web page and parsed

using regular expressions for desired information. This technique,

commonly known as web or screen scraping, still enjoys widespread
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use for websites that do not provide an API or those whose API

does not provide requisite data.

As an example, the Facebook API does not provide location

information through the API even if that information is publicly

available. Because this information is still available on a user’s

public profile page, web scrapers are able to collect employment and

education data from this page instead of the API. Using both the

network APIs and web scraping, a more complete profile of the user

is able to be constructed, allowing for enhanced associations

between users by matching data that would otherwise be

unavailable (such as mutual workplaces).

Web scraping has its own set of drawbacks - there is significant

resource wastage compared to API access, as the scraper has to

process a large amount of content included to format the data in a

manner appropriate for user viewing. This content needs to be

rendered regardless of the fact that scrapers are headless and have

no need to actually display content, so this only serves to slow the

scraper down. Scraping usually also requires the developer to

manually write regular expressions or parsing code that can retrieve

the desired data and strip out unnecessary clutter, which can be a

significant time investment. In the event that both techniques are

available, API access is usually preferred.

2.2.3.3 Collection and Integration

In order to utilise data from different web services, integration

between social media platforms is required. While programmatic

access to web services has vastly improved since the introduction of

Web 2.0 paradigms, interoperability and data integration between

social networks remains to be an issue. There is limited
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interoperability of services provided for the purposes of open

authentication (Facebook, 2014), content sharing is usually limited.

There have been some attempts to apply semantic web2 principles to

the problem, including Semantically-Interlinked Online

Communities (SIOC) (Breslin et al., 2009a) which describes social

networks using the Resource Description Framework (RDF) to

improve interoperability. While RDF has yet to reach widespread

adoption and is unavailable for use with many social media systems,

the data structures and principles in use provide a good platform

upon which to base further work.

There are also challenges surrounding the matching of social

media profiles between networks. The FOAF (Friend-of-a-Friend)

Project (Brickley and Miller, 2000) attempts to extend Semantic Web

efforts to social media by providing a base for user profile matching

across networks. It does this by combining names and user metadata

(such as location, email addresses or education details) to provide a

more substantial set of data to improve accuracy of matches. As with

the SIOC project, few social networks actively support such efforts

and most do not provide FOAF output for users.

The majority of studies conducted using data collected from social

media follow a reasonably similar process: conduct (manual or

automated) searches of a social network, save or export returned

data in a simple format, and perform analysis (online or offline) to

determine answers to a particular query. Query engines have been

developed for a range of other purposes (Khoury et al., 2010;

Madden, 2012) with the intention of providing a standard querying

interface and abstraction layer on top of complex datasets. Because

this process is reasonably generic, there is an opportunity to develop

2 The Semantic Web is an initiative to rebuild the web to use entirely structured data
formats.
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a query engine for integrated social data that could improve the

quality and quantity of data available to researchers using social

media data.

2.2.4 Event Detection

One of the primary advantages of social media is the ease and speed

with which information can propagate from a source to a large part

of the Internet. While content that "goes viral" is often just

entertainment content, news and current events also feature heavily

in discussions on social media. In some instances, the content spread

is just notification of the event, but has also previously been used to

organise protests (Huang, 2011; Grossman, 2009), aid in the planning

and deployment of emergency infrastructure during disasters

(Cameron et al., 2012) and help to track the spread of disease

amongst the populace (Li and Cardie, 2013; Chew and Eysenbach,

2010).

Events that are tracked by social media can be broadly sorted into

two categories: global events and user-localised events. Global

events are those triggered by discussion of a topic amongst a large

number of users, such as earthquakes (Robinson et al., 2013; Sakaki

et al., 2010) and societal uprisings (Jurgenson, 2012; Grossman, 2009),

and can be discovered through monitoring trending topics.

User-localised events are discovered by tracking individual users

and deeply analysing submitted content, performing textual analysis

to determine user state, such as depressive episodes (De Choudhury

et al., 2013b).

Many existing implementations of global event monitoring use

burst detection for phrases on social media. Essentially, the system
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tracks trending topics and establishes a historical baseline for used

words. An event is detected when a positive distortion in that

baseline occurs - when people start using certain words much more

frequently than normal (Robinson et al., 2013). Phrases such as

"earthquake" or "quake" or "shaking" start to appear more frequently

in a localised geographical area, indicating the presence of a seismic

disturbance. How this data is stored and treated depends on the use

- some studies opt to compress the data into a form only useful for

alerting (Weng and Lee, 2011) and opting not to store whole data for

future use, while others do store data but operate over a more

limited subset of social media (Cameron et al., 2012; Sakaki et al.,

2010).

User-centric event monitoring requires in-depth collection and

analysis of data specific to a single user over a longer period of time,

depending on the application. In the instance of detecting

depression in Twitter users, one year’s worth of historical data prior

to official diagnosis was analysed (De Choudhury et al., 2013b) - a

mean of 4533 posts per user. When considering applying this level of

analysis to a broader group of individuals, some appreciation of the

processing time required to perform analysis is garnered.

Both types of analysis are useful. Global events tend to be

monitored in order to perform damage mitigation or optimise

responses to emergency situations, potentially saving lives or

reducing burden on infrastructure. User-centric events can be

considered in a similar manner - widespread analysis of users can

provide important foresight into problem demographics, aiding in

the early treatment of mental illness and combating criminal activity.

Due to the depth of analysis required for user-focused event

monitoring, implementation of widespread user analysis would be
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extremely difficult and require significant processing resources - but

could also derive positive results.

2.2.5 Participatory and Opportunistic Sensing

Participatory sensing uses users with mobile devices as

environmental event sensors (Burke et al., 2006) by encouraging

users to gather, analyse and share local knowledge in what is

commonly referred to as "crowdsourcing". By treating users as

sensor nodes, participatory sensing takes advantage of resources

that already exist for a number of purposes, including urban

planning and policy development. Smartphones also come with a

number of sensors that can be made available for participatory

sensor networks, including important contextual metadata sensors:

location and time.

Participatory sensing requires direct and active participation of

users, which comes with a number of problems. One of the key

issues with using people as nodes in sensor networks is that they

cannot be treated as reliable. Users are able to choose whether to

provide data on a requested topic, and may choose not to do so.

Participatory sensing is named as such for a reason - without active

participation, the system is unable to produce useful outcomes.

Malicious users may also be a potential challenge in deployments

using participatory sensing. In some instances the data being

produced may be tampered with in order to align with the goals of a

particular group (Ubermotive, 2012), particularly if data is being

collected and analysed to form the basis of governmental policy.

Finally, data provided by humans is rarely in a standard format and

usually has to be processed heavily to derive a useful data point.



24 literature review

While these processes have been continually improved, they are not

completely reliable (Harper et al., 2009).

2.2.6 Analysis and Deriving Intent

Collecting large datasets from social media is generally not useful

without extensive analysis. The sheer scope and quantity of data

completely overwhelms any attempts to perform manual analysis

without significant filtering. In order to combat this problem, further

research is being performed into analysing data streams such as

those provided by social media - an area typically known as natural

language processing (NLP).

natural language processing is an automated approach to

analysing text by utilising human-like language processing and

machine learning techniques (De Choudhury et al., 2013b). NLP

aims to provide an artificial intelligence-based approach to analysing

natural text, such as that posted on social media by users. Social

media analysis commonly uses NLP techniques to categorise and

analyse posts for intent and attitude, enabling analysis programs to

determine what users are talking about and how they feel about

those things.

Some studies have previously used NLP-like techniques to

perform opinion analysis on social media posts about political

articles (Wandhöfer et al., 2012), including affective computing

techniques that determined the overall "mood" of posts. Other

studies have used similar statistical techniques to monitor the

language and frequency of posts (as well as user metadata) to

attempt to predict depression in Twitter users (De Choudhury et al.,

2013b). The same authors have used similar statistical and analytical
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methods to detect significant post-partum changes in mood amongst

new mothers based on social media posts (De Choudhury et al.,

2013a). There is growing interest in using NLP techniques to analyse

social media at a population-scale for the public good, with some

systems even going so far as to predict the spread of influenza based

on a user’s physical proximity to social connections that have

expressed signs of illness in social media posts (Kautz, 2013).

For the purposes of this research, existing NLP implementations

can be utilised to determine message intent and context. natural

language processing toolkits exist for a number of languages,

including NTLK (Bird et al., 2008) for Python and GATE

(Cunningham, 2002) for Java. There are also toolkits for lexical

analysis that do not use NLP techniques, such as Wolfram Alpha,

which generally has to deal with linguistic fragments rather than full

messages.

2.2.7 Ethics of Social Data Collection

One of the challenges around collecting social data from social

media is whether privacy is a major factor around information that

is publicly available. While the majority of data collection is

performed on entirely-public datasets, many people still expect their

conversations between friends to remain relatively local.

Previously, some studies that have collected large amounts of social

data have attempted to anonymise both the data source and any users

within the set, to varying degrees of success (Zimmer, 2010). If this

data is released to the wider public, de-anonymisation can occur quite

quickly, depending on the data involved and the scale of collection.

Ultimately, users must expect that anything posted to public media
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can be (and are) subject to large-scale collection and storage, and the

data can remain archived for long periods of time.

Governmental organisations have also been known to mine social

media for biometric data for use in both facial and pattern-matching

applications (Lauder, 2015). Many users are unaware that their data

is being used for this purpose, and it potentially opens the door to

misuse of data by governmental and criminal elements - not every

server storing their personal data will be as secure as the social

networks that originally stored it. The usage of data after it has been

published into the future is currently a concern (as seen in a number

of "revenge porn" cases (Citron and Franks, 2014)), and will continue

to be a concern into the future.

2.3 data sourcing

2.3.1 Overview

There is a significant amount of data published on the Internet, but

isolating high-quality, relevant data sources remains a challenge. The

diversity of topics and general lack of guiding metadata attached to

websites limit the relevance of collected data fairly substantially, even

with well-crafted search terms.

This section examines techniques used to locate data sources on

social media and the Internet, including efforts to improve the

relevance of returned results and extract high-quality information

from raw data.
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2.3.2 Existing Methods

Software exists that integrates multiple data streams including social

media for queryable use in applications, such as DataSift (DataSift,

2010) and Gnip (Gnip, 2008). Both of these platforms use Firehose 3

data for integration and querying - essentially, they receive direct

streams of all actions on partner social networks and store them for

historical purposes. While this ensures complete access to all

available social data, it also requires immense hardware

infrastructure investment to process and store incoming data

streams - Facebook alone is producing almost half a petabyte of data

per day (Ching et al., 2012). Such an investment is generally

infeasible for use in a bespoke, isolated sensor network deployment.

Social research experiments tend to take a different route to

sourcing useful data by relying on existing search APIs. Wandhöfer

et al. use the Google Custom Search Engine to find news articles

related to government policy for aggregation and analysis of user

comments (Wandhöfer et al., 2012). Sakaki et al. use the Twitter

search engine to return results only containing keywords related to

earthquakes, classifying the results in order to detect real-time

earthquake events (Sakaki et al., 2010).

Other experiments take something of a hybrid approach, by

collecting the entire real-time stream of incoming data from a social

network but performing basic preliminary filtering to narrow the

scope of returned results. Robinson et al. restrict the Twitter

real-time stream by a set of geographical locations in order to detect

burst events relating to earthquakes (Robinson et al., 2013).

3 A "Firehose" is a direct real-time stream of data being produced by a network,
effectively allowing those accessing the firehoses to monitor all actions on the
network and record all social data being produced.
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2.3.3 Challenges

Existing integrated social data providers (DataSift, 2010; Gnip, 2008)

operate in an ETL process, providing semi-real-time access to

integrated social data. This presents a number of problems for

certain applications, particularly those requiring very low-latency

access to data. High frequency trading algorithms, for example, are

unable to use integrated social data due to the lengthy

post-processing steps that can delay the delivery of data by seconds.

In addition, there is a limited number of providers authorised to

provide firehose data from social networks. Access to data through

these providers can be quite expensive, particularly for academic

applications, and there are forced limitations on the amount of data

able to be drawn from these services. For applications that need to

ingest a broad spectrum of social data for long periods, use of these

providers is potentially infeasible.

There are also no generic extraction methods available from these

services, limiting their collection of data to those networks for which

adapters have been developed and maintained. While this represents

a significant portion of social data available on the Internet, it

generally does not provide access to site-specific data sources such

as product reviews or bespoke commenting systems.

2.4 data integration

2.4.1 Overview

Data integration is the process of taking diverse sets of data from

multiple sources and providing a user with a unified view of the
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resulting dataset (Lenzerini, 2002). This is relevant to the problem of

querying generic social networks, as each network is designed with

different specifications and data structures. In order to properly

query social media for a broad range of purposes, the datasets taken

from social media must be presented in a unified manner, and data

integration supports this goal.

Integration of diverse datasets has long been a pervasive challenge

faced by academia and industry alike (Lenzerini, 2002). Industrial

applications have used data integration to great effect, with

substantial systems integration being performed during mergers or

acquisitions or consolidation of information technology

infrastructure assets. Academics have often performed manual data

integration to combine datasets resulting from experiments, in order

to draw comparisons between related data. Manual data integration

often involves direct manipulation of datasets, including

approximation or interpolation of missing data, while automated

integration can use a number of techniques tailored to the situation,

such as semantic mapping or machine learning classification.

The remainder of this section examines some relevant data

integration techniques and their application to social media data, as

well as required prerequisite steps such as;

• preprocessing data to clean it and ensure high data quality,

• integrating diverse datasets from different source schemas, and

• presenting a unified interface for data querying.
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2.4.2 Data Cleaning and Preprocessing

Data mining can be used to discover and extract knowledge from

extremely diverse datasets, including archived data, but the process

of doing so can be challenging. Integrating datasets from

long-standing systems pose a particular problem, as they often

experience significant schema changes over their history - a problem

that has also become prevalent with new systems that undergo

extremely rapid growth. Repeated changes in schema without

proper data curation can result in significant amounts of dirty data

being left in a dataset, such as old location types,

non-daylight-savings compliant datetimes and even typographical

errors (Rahm and Do, 2000).

Schema changes can also result in a significant amount of missing

data (Rahm and Do, 2000). Beginning the collection of metadata

partway through a system’s life can leave old results with blank

fields, and no way of refilling those blank fields. Changes to field

structure designed to improve relational design can also result in

very confusing values being left in archived data. Data can also

expire, such as user addresses or contact details.

All of these factors can dramatically affect the success of data

mining and analytical operations. Some of these issues are more

costly than others - using the results of analysis based on

poor-quality data for decision-making can result in disaster,

depending on the application. It is therefore imperative that data

used in any operations is as high-quality as possible.
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2.4.2.1 Data Quality

Determination of data quality is largely subjective, with data

generally required to be fit-for-purpose. In some organisations, data

quality is managed by data governance and document control teams

whose sole purpose is to ensure that data remains of high-quality

and able to support analytical needs. These teams work by

developing a series of effective data quality metrics that allow them

to evaluate existing data quality and provide a benchmark for

improvement (Pipino et al., 2002). These metrics include:

validity How well the data conforms to defined rules and

constraints. Many of these constraints are implemented as part

of the database design process, such as unique constraints,

foreign-key constraints or null constraints. This can also

include whether the data adheres to validation constraints, e.g.

"is the value between 1 and 10?"

accuracy If the data is an accurate representation of the truth.

This often requires some kind of manual check: e.g. verifying

the accuracy of email addresses requires users to validate them

manually by sending an email to their address and requiring

them to click a confirmation link.

completeness Whether all relevant data is known. Using data

cleaning to fill in missing data in this fashion is possible in

some instances (e.g. using metadata from closely related

records and making assumptions), but can produce misleading

data when heavily extrapolating.

consistency Whether the data is consistent across sources. When

integrating multiple data sources and encountering conflicting

information (e.g. one person with two different addresses), a
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strategy should be developed to decide which source is more

reliable - usually the newest.

uniformity How closely the data follows the same standard units

of measurement. Values containing like-units (such as km/h

and m/s) can be directly converted, but data is sometimes in

completely different units hence is incomparable.

freshness How old is the data? Is it still relevant?

Data entry errors remain to be an issue even with trained and

experienced operators. Social media poses a further problem, in

which users are inexperienced and non-technical and so are even

more susceptible to data quality concerns. It can also be difficult to

determine whether social media content has been created by a user

rather than a computer program for the purposes of advertising or

spreading malware (Yardi et al., 2009). All of these issues conspire to

lower the quality of data being produced by social media,

demanding extensive preprocessing of social data before it is used in

analytical applications.

2.4.2.2 Cleaning Techniques

The process of cleaning low-quality data can be broken into four

general steps (Müller and Freytag, 2005):

auditing Discovery of data quality problems. This can be for

individual rows (e.g. is this value acceptable, or does it require

cleaning?) to more general queries, such as using statistical

analysis to determine where data quality issues lie.

specifying Upon discovery of low-quality fields, specify the steps

to improve each element to higher quality. This may require

data conversion, value conversion or even lexical analysis to
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determine the true, useful value of the field. This should

describe the current states of the data and the desired final

state, as well as the process to increase quality to the desired

level.

executing Iterate over all low-quality data and execute the

specification to convert it to the desired format.

controlling Migrate the data schema to our final result and

enforce all appropriate constraints upon the data. In doing so,

find any remaining data errors that exist within the dataset

and amend the specification to eliminate these issues.

The techniques used to clean data prior to use in analysis are

tailored specifically to the challenges presented by particular

datasets. In some cases, this may require the development of

conversion scripts for each affected field, while others may simply

require a re-definition of the field type.

Fig. 4 presents an example process for cleansing an inconsistent

enumerated field in a database table, broken into the four general

steps mentioned previously. In this scenario, a field that was

previously a plain-text free-form field has later been modified to

only accept certain values (an example being a gender field, which

may only accept MALE, FEMALE or UNSPECIFIED), but was never

directly constrained to these values at a database-level.
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Figure 4: An example data cleaning process for one field

The following steps (represented in Fig. 4) can be used to convert

this field with inconsistent values into a clean field:

1. Determine the current state of the data: is it in a form that we

can already without conversion? Is the field’s type correct? Does

its value match to our predefined list of acceptable values? Can

the data be used without modification?

2. Define a specification for the data, handling two possible cases:

a) If the value is an old format, convert it to our new values.

Some data precision may be lost, or conversion may be

straight-forward (e.g. "other" becomes "UNSPECIFIED").

b) If the text is an old format that was entirely free-form,

attempt to convert it into an appropriate value (e.g. "m" or

"male" or "man" or "Mr" becomes "MALE").

3. If value conversion was complete, continue to the next record. If

all have been completed, migrate the field schema to enforce the
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new standards. If the conversion failed, either delete the record

entirely or set it to a default value (e.g. "UNSPECIFIED").

Each part of this process can be fluid and be comprised of many

steps. Auditing can be a manual process in which a user personally

checks for data quality issues in fields, or can be automated through

the use of scripts that look for common problems. In most cases,

examination of individual values to determine quality is automated,

due to the volume of data being cleaned.

Specification development can be developed manually by writing

mapping algorithms to convert datasets, directly handling the

transition of data from its original state to the desired state.

Mappings can also be automatically generated using mapping

toolkits (Xu and Embley, 2004). Machine learning techniques can

alternatively be used to classify values, allowing for more informed

decision-making around conversion - though this usually requires a

substantial training dataset (Doan et al., 2001).

The data cleaning process ensures that the multiple sources of data

undergoing integration adhere strictly to a set of defined schemas,

making integration a much less arduous and more reliable process.

This also significantly reduces the complexity of integration systems,

as it is far easier to integrate known data sources than inconsistent

sets. After this preprocessing phase is complete, the cleaned data sets

are integrated using several different techniques.

2.4.3 Integration Techniques

Data integration can be a complex process, depending on the

complexity, relevancy and size of the converging datasets.

Numerous techniques exist to handle the process of querying
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integrated datasets, designed with different operating requirements.

Some techniques require the offline transformation and storage of

data for later querying, while others can handle-queries in real-time

by inferring the goal of the query and transforming appropriate data

as required. Some of these techniques are detailed below.

2.4.3.1 Extract-Transform-Load and Data Warehousing

Extract-Transform-Load (ETL) systems are commonly used in data

warehousing, where data is initially cleaned and transformed for

storage and later use (Vassiliadis, 2009). Due to the extensive

processing that data undergoes in order to be in a clean state with

unified schema, this process is generally not real-time, and can

suffer from data freshness issues. This approach is therefore only

useful for use in delayed queries, and its use with social media

would exclude any real-time sensing systems.

The three primary steps of ETL are as follows:

extract Extract data from original sources and transport it for

storage in data warehouses.

transform Transform source data into the new schema, possibly

including computation of new values, merging/splitting of

fields and occasionally creation of new records based off

existing data. This step also includes the isolation and cleaning

of problematic tuples to ensure adherence to constraints,

which is not completed as part of preprocessing in ETL.

load Load the cleansed, transformed data into defined relations

within the warehouse, including the construction of

appropriate indexes and views.
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These processes are manually designed and run at regular intervals

to retain some measure of data freshness. Once stored, the data is

presented to users as a unified dataset following a single schema that

is able to be queried much like any other database, so the querying

process is simple.

2.4.3.2 Data Mapping

Data mapping is a concept in which multiple different data sources

are overlaid with a virtual schema that provides a mapping between

the real data elements and the conceptual, queryable elements.

There are two different approaches to this integration technique:

Global-as-view (GAV) and Local-as-view (LAV). Both are based on

the same formal integration system definition, in which: the system

I is defined as a triple (G,S,M) where G is the global (virtual)

schema, S is the heterogeneous set of source schemas, and M is the

mapping that maps queries between S and G. Effectively, users

create queries operating over G, and M handles the internal query

rewriting to suit S (Lenzerini, 2002). The exact operation of M is

defined by the technique used.

In all techniques based on this model, the concepts of mediators

and wrappers are also introduced. Wrappers wrap external data

sources in order to bring them to the format represented by S, while

mediators handle the mappings controlled by M and define the

global mediated schema, G.

Local-as-View: In LAV systems, M represents a mapping from

entities in the original source schema S to entities in the virtual

schema G. This approach scales well with the addition of new data

sources, but introduces significant complexity into query processing

and can result in significant performance losses during query
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execution compared to GAV. It relies on the existence of a stable,

well-formed global schema in order to support mappings. LAV

prioritises scalability and the addition of sources over performance.

Global-as-View: In GAV systems, M represents a mapping from

entities in the virtual schema G to entities in the original sources S.

This has the benefit of allowing for much simpler and faster query

processing, but requires updates to the global schema upon addition

of new data sources. Scalability is a concern with GAV approaches,

because the continuous addition of data sources requires constant

updating of the global schema and leads to many of the data issues

dealt with during integration preprocessing. GAV prioritises

performance over scalability and the addition of sources.

Combinations: There are several data integration techniques that

combine elements of these two concepts in an effort to reduce the

penalties associated with them. BGLAV (Xu and Embley, 2004) is

one such attempt that isolates the global schema by ensuring it is

developed independently of any source schema S. In contrast, GAV

approaches expand the global schema to ensure it includes all data

elements from sources and LAV approaches minimise the global

schema to only include common elements from sources. When new

data sources are added, BGLAV uses automated schema matching

algorithms to reduce the amount of wrapper development required,

effectively automating (with oversight) the development of M. As

there is a well-defined and unchanging global schema G (as in GAV),

query processing is simplified. This approach is particularly useful

for integrating social media, as independent data models have

already been developed that can be adapted for use as the global

mediated schema G, such as SIOC (Breslin et al., 2009a). Automated

schema matchers can be applied to platform-provided Application



2.4 data integration 39

Programming Interfaces and the source schemas S to develop the

wrappers supporting M.

2.4.3.3 Ontology-based Mapping

Ontology-based mappings work in much the same way as standard

data mapping techniques (Noy, 2004), but are designed to integrate

the flow of information across ontologies rather than data within

integration systems. Ontology-based mapping expresses the map

between the original ontology and the target ontology as either

relational queries or a tuple map, allowing fairly direct translation

from one ontology to another.

These mappings are of interest for use in social media integration

because a number of social media networks have previously had their

data expressed as part of ontologies, both specifically (in projects such

as SIOC (Breslin et al., 2009a)) and in wider semantic web research

(Mikroyannidis, 2007).

2.4.3.4 Machine Learning Classification

Machine learning algorithms have previous been used to find

semantic mappings between different data schemas. Using these

classification algorithms require a training dataset (an initial set of

schemas with completed mappings) and can then attempt to

perform auto-matching for future datasets (Doan et al., 2001). This is

of particular use in social media integration, as the training set can

consist of schematic mappings for initial network integrations (such

as Facebook and Twitter), and the resulting algorithm can attempt to

map the schemas for future networks.

Many of these algorithms can be implemented in conjunction with

data mapping integration techniques to improve auto-mapping
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abilities, reducing wrapper development time and improving the

range of data sources able to be integrated into the main set.

Extracting data from web pages is a well-researched field that has

been driven by the rapid expansion of online data presentation.

There are two problem areas that have particular focus: automated

interaction (commonly referred to as the "accessing the deep

web"(Baumgartner and Ledermiiller, 2005)) and structure

recognition/extraction, both of which are discussed at further length

in Chapter 5.

2.5 data extraction

2.5.1 Overview

Data extraction is the process of finding and retrieving relevant data

from structured and unstructured sources. While requesting data

from a web API is simple and provides well-formatted structured

data, collecting data from web pages and unstructured sources

requires significant effort. This section evaluates the state-in-the-art

of data extraction techniques designed to ease this process, and

provide the user with well-structured data from unstructured

sources.

2.5.2 Mining Dynamic Sources

To extract data from pages using data extraction algorithms, raw

data must first be collected from the desired source. Early efforts

toward this task consisted primarily of "web crawling", in which

pages were collected using simple HTTP requests and parsed to
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identify hyperlinks in an iterative process (Heydon and Najork,

1999). While the principles behind crawling are still in use, the rapid

expansion of AJAX requests to fill page content (Ihm and Pai, 2011)

has ensured that standard HTTP requests are no longer able to

retrieve all relevant data from sites. In many cases, this approach

only retrieves basic page structure and design that is used to render

AJAX results into a complete page.

There have been a number of proposed solutions to this problem.

Xia (Xia, 2009) proposes using an embedded headed browser (such

as Firefox or Chrome) to render the page off-screen, including all

javascript content. Increased usage of Test-Driven Development with

heavily client-interactive web sites has also driven the development

of automated testing tools that are able to utilise browsers to render

dynamic content, such as Selenium (Holmes and Kellogg, 2006).

Headless browser agents such as PhantomJS have also been

developed to reduce memory and software requirements, of

particular use when executing distributed tests from server clusters

(Hidayat, 2013). Each of these methods allow automated scripts to

collect post-rendered content from web sites.

Increased use of AJAX to render page content has introduced

another concept: pagination. Where content was previously

retrieved during the initial web request and immediately rendered,

browsers now have to make additional requests to fill content panes.

As additional data can only be requested after all associated

Javascript has been retrieved and executed, this can lead to a

significant lag time between first page request and content visibility.

To reduce this lag time, dynamic data is requested in smaller chunks

- rather than load 150 comments in a single request, the page instead

requests the first 20 comments and then presents the user with a
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series of numbered index buttons to request the rest of the comment

stream. Hence, to retrieve web data from a page, scraping systems

need to be able to navigate these pagination fields and directly

interact with pages in a complex way.

2.5.3 Mining Interactive Sources

Complex interaction has been investigated in previous studies. A

series of articles by Baumgartner et. al. (Baumgartner and

Ledermiiller, 2005; Baumgartner et al., 2009) introduce Lixto, a

software package that assists in the creation of data extraction

wrappers including user interaction. This can be used to record user

interaction and repeat it against other pages in order to collect data

from pages, but the interaction must be manually trained. Wrapper

languages have also been developed that support user interaction,

such as OXPath (Furche et al., 2011), but also require manual rule

creation. Projects such as Crawljax (Mesbah et al., 2012) enable web

crawling through AJAX pages by evaluating possible user

interactions, but do not directly support intelligent interaction -

because the aim is to collect every page of a page, it tries to interact

with every element on a page.

There has been no previous research on intelligent automated

interactivity with pages for the purpose of social data extraction.

2.5.4 Structure Recognition

The majority of algorithms developed for Web Data Extraction focus

on structure recognition, in which an attempt is made to group data

regions on a page according to similarity. Both manual and
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automated solutions to this challenge have been developed, each

with benefits and drawbacks. Both types of solution tend to operate

by extracting information from the page’s Document Object Model

(DOM) tree, which is a tree-based representation of page design and

content.

2.5.4.1 Manual Methods

Manual wrapper generation involves the development of an

interface wrapper for each individual page structure e.g. one

wrapper per website. They often involve the use of Regular

Expressions or XPath to extract data from pages, but entire

languages and language frameworks have also been developed in

early research towards WDE. One such framework is EDITOR

(Atzeni and Mecca, 1997), which allowed users to write wrappers in

a script-like language to extract data from HTML tags. Much of the

functionality from frameworks like this was later built into

DOM-parsing libraries. EDITOR was also used in further research to

write extracted data directly into relation data tables (Crescenzi and

Mecca, 1998). These solutions, as with others that required manual

wrapper development, require wrapper creation for every individual

data source as well as regular maintenance on the wrappers

themselves. Any change in page design or structure would usually

render the wrapper useless until updated.

To streamline this process of wrapper development and

maintenance, several partially-automated and assistive solutions

were developed. STALKER (Muslea et al., 1999) used supervised

training sets to identify certain extraction rules that could be applied

to pages, limiting user input to developing the training sets. Assisted

wrapper development software like OLERA (Chang et al., 2004)
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presented a visual interface to wrapper generation and tag

alignment, allowing less technical users to perform data extraction.

These wrappers still had to be maintained and individually

developed, though the development process took less time than

purely manual solutions.

More recently, manual methods have focused on providing

end-to-end extraction, while making the level of user interaction

required as small as possible. Such applications allow users to

provide simple configuration files to extract data from sites such as

web forums for pharmacological research (Audeh et al., 2017),

though user intervention and configuration maintenance are still

required.

2.5.4.2 Automated Methods

Further research focused on unsupervised wrapper generation and

data extraction, as this would completely remove the need for

developers to create and maintain wrappers. Research on these

solutions focused on two primary methods: DOM tree comparison

algorithms and visual identification of data regions.

Similar data regions on a page can be identified by comparing the

similarity of different parts of the DOM tree. By breaking the tree up

into branches and performing tree-similarity comparisons between

branches, repeating structures on the page can be identified. These

structures often contain template-generated data, which often

represent data regions. In identifying these regions, there were two

approaches: single-page algorithms and multi-page algorithms.

2.5.4.3 Single-Page Wrapper Induction

Single-page data region identification algorithms used a single DOM

tree to derive a wrapper and extract data, meaning that the
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algorithm was required to focus on repeating structures within the

same page. Pages containing a large number of data rows are useful

for this approach, as the same type of visual container is used for

each data row - resulting in a large number of similarly-structured

DOM branches. Mining Data Records (MDR) (Liu et al., 2003) was

an early attempt of this approach that used a tree edit-distance

comparison algorithm to identify the distance between branches.

Branches that had minimal distance between them were considered

similar structures, and were grouped for data extraction.

Data Extraction through Partial Tree Alignment (DEPTA) (Zhai

and Liu, 2005) builds on MDR by using partial tree alignment to

identify optional and mandatory data fields within structures,

improving the reliability of extraction. This assists in the

identification of fields such as special product sales prices, which

show up optionally, versus the standard price which should be

present on every item on an e-commerce site.

More recent techniques have also been developed that build in

text-mining or subject-identification algorithms to improve accuracy

of wrapper generation, such as Bottom-Up Wrapper (BUW)

(Thamviset and Wongthanavasu, 2014a). Because these algorithms

work on a single page, some difficulty can be encountered in

instances where a page contains a small number of data records,

because they are often unable to sufficiently differentiate themselves

from other elements of page design.

2.5.4.4 Set-based Wrapper Induction

Multi-page data region identification algorithms used a set of similar

pages to generate extraction wrappers. Given a number of pages

built using the same page template, some of these algorithms
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examine the differences between pages to assist in aligning data

records (Crescenzi et al., 2001; Arasu and Garcia-Molina, 2003),

while others use multiple pages as a training set to develop

wrappers (Ma et al., 2003; Sleiman and Corchuelo, 2014). Because

these pages require multiple pages from the same site to design a

wrapper, they are often unsuitable for fire-and-forget extraction

duties, and are more suited to use in web crawlers that collect data

from entire websites.

Visual extraction algorithms attempt to identify data regions by

identifying visually-similar regions. VIDE (Liu et al., 2010) uses this

approach to identify data regions and then performs data alignment

between similar regions to identify optional fields.

2.5.4.5 Hybrid Approaches

There are also algorithms that combine elements of the three

previous approaches. Generalised Simple Tree Matching (G-STM)

(Jindal and Liu, 2010) can automatically develop wrappers from both

single pages and multiple-page sets. Tag Path Clustering breaks

down the DOM tree into a signal representing tree depth and uses

signal analysis to locate repeating patterns, which indicate repeating

data regions (Miao et al., 2009).

2.5.5 Machine-learning Extraction

In addition to these traditional approaches, the rise of

machine-learning-based (ML) algorithms has led to their use in

many different fields, including data extraction. The majority of

these algorithms are supervised learning algorithms, which require

a set of tagged training data to teach the model before use. Some of
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these perform this task by asking the user to provide a basic set of

sample input, which it uses to infer the correct extraction regions

(Raza and Gulwani, 2017). Others use deep learning to train a

generalised extraction model (Gogar et al., 2016), though the ability

of learning-based models to extract data accurately is highly

dependent on the quality of training data supplied to it. Others

focus more specifically on text-mining, retrieving data from

unstructured text (Poria et al., 2016) - but without the ability to

extract object-oriented data.

2.5.6 Social Extraction

There is little research that specifically focuses on the extraction of

social data from pages. One study collected social data from weblogs

for analytical purposes, but used manually-developed wrappers to

collect the data from a small number of data sources (Kao and Chen,

2010). Likewise, another study examined the identification of high-

quality social data, but used a manual wrapper for Yahoo! Answers,

a single data source (Agichtein et al., 2008).

Most of the web data extraction techniques previously mentioned

are specifically designed to locate tabular data or data records, which

do not precisely fit social data. While these techniques may be used

to identify the blocks that store social data, isolating it from irrelevant

results requires further processing.

Social data (such as user comments) often appear differently on

the page to the data targeted by these collection algorithms, which

are primarily designed to extract tabular information from pages.

User comments are often hierarchical and are made up of far more
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complex fields than tables, requiring a more in-depth collection and

filtering algorithm.

2.6 areas of improvement

As highlighted throughout this chapter, there are a number of key

gaps in the currently available research:

1. The majority of studies using social data focus on the use of a

single social data source, due to difficulty of collection and

integration (see Section 1.2). Even using APIs for collection is

rare, due to diverse data schemas between platforms. As a

result, population demographics are limited to the platform

used.

2. There is a significant amount of social data currently unused

due to difficulty of access, such as social comments on news or

eCommerce websites, because there is no API to access them

and collection would require the writing of a manual scraping

wrapper per-site (see Section 2.5.6).

3. Collection of social data can be challenging due to the sheer

scale of data available, putting any large-scale social data

collection efforts out of reach of most researchers (see Section

2.3.3).

4. Existing methods of integrating multiple social data sources are

high-latency, providing integrated data too slowly to be used in

some applications, such as high frequency trading algorithms

(see Section 2.3.3).

This thesis aims to develop solutions for these challenges. Chapter

3 details a set of requirements for a framework aimed at solving
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these problems, and provide additional benefits for both academic

and commercial social data mining applications.

2.7 conclusion

This chapter has presented a review of the state-of-the-art research

in key areas of interest relevant to the work described in this thesis.

The chapter considers the ability for a social network to function in

the same role as a sensor network, using users under passive

observation as sensors for a range of applications. Techniques for

finding, collecting, integrating and cleaning the resulting social data

was explored for use in the following chapter, which defines a set of

primary requirements needed to facilitate the primary aims of this

thesis, and presents a framework to enable the use of social data in

sensor networking.

In the process of completing this review, social media was

identified as a potential source of data for global opportunistic

sensor networking, but key challenges to sourcing, collecting and

integrating social data were identified. The initial method of data

sourcing used dictates the amount of processing resources required

to integrate, clean and post-process the data collected, as early

filtering can dramatically reduce the set of data sources to be

collected from. Collecting data from identified sources also poses a

challenge, as most existing solutions use manually-written bespoke

wrappers and only collect from a set of predefined sources. The next

chapter describes a framework to source, collect, integrate, clean and

query social data that attempts to alleviate these considerations.





3
S O C I A L M E D I A A S A S E N S O R

3.1 overview

The use of Social Networking Sites (SNS) is ubiquitous within

modern society, providing communications that span across cultural

and geographical boundaries. Users post a large quantity of

information online about their lives, environment and thoughts. This

information provides useful insights into individuals, but can also

provide a wealth of information that can be used for further analysis

of the surrounding environment (Breslin et al., 2009b).

Sensor networking applications collect useful data from the

environment using sensors, requiring new deployments of sensor

nodes for new applications (Akyildiz et al., 2002). These

deployments can be costly, and the deployed networks rarely

support generic applications. To avoid the cost of new deployments

and support new applications without the provisioning of new

hardware, existing datasets can be used. By using the data produced

by SNS users in sensor networking, applications can reach anywhere

that social media is used (Burke et al., 2006).

This chapter presents a justification of the use of social media as a

data source for sensor networking. Functional and quality

requirements to support this goal are defined. A framework

designed to source, collect, integrate and query social data in

adherence to these requirements is proposed, intended to integrate

51
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with sensor networks and perform both historical and real-time

querying and event-detection.

3.2 background

The scope of sensor networking applications is constrained by the

availability of data sources. Supporting new applications often

requires new deployments of sensor hardware that are able to collect

new types of data. This data can then be used in analytical

applications or used to extend and enhance existing applications.

Using existing data sources to enhance sensor networking is

potentially beneficial, as this does not require the expense associated

with developing, implementing and maintaining a new sensor

deployment.

SNS are candidates for use as data sources in sensor networking.

They are comprised of a number of isolated networks covering much

of the global population, providing better coverage within diverse

communities. They produce very large amounts of variable-quality

data with accompanying metadata. When properly filtered and

cleaned, they can be a source of good-quality, relevant data for use

in sensor networking applications. SNS also follow similar design

patterns to sensor networking, being primarily event-based, and can

conceptually be treated much the same way as a traditional sensor

network (Sakaki et al., 2010).

A major obstacle to the widespread use of social data in sensor

networking is the need for the integration of disparate SNS. There

have been attempts to ease the migration of data between SNS, as

identified in Section 2.4, but these have generally had little industry

support. Most SNS have an interest in "locking-in" customers
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(Zauberman, 2003), to dissuade them from migrating between

networks, taking with them associated advertising revenue.

Improving data integration processes would ease migration between

competing networks, so efforts to standardise export formats are

unlikely to ever achieve industry co-operation. Therefore, new

techniques supporting inter-network social data integration need to

be developed in order to facilitate the integration of social data into

sensor networking.

3.3 bespoke vs repurposed sources

Data collection for sensor networking falls into two categories; i)

bespoke deployments, and ii) re-use of existing data sources.

Bespoke hardware deployments require the creation and installation

of sensor hardware designed to collect data specific to the

application, and can incur significant hardware and deployments

costs. Repurposing existing data sources alleviates those costs, but

locating relevant and accessible sources can be difficult.

Bespoke deployments are appropriate when there are no existing

methods of collecting data required for research, and collection

requires abnormal processes (such as sensors able to withstand

immense heat). For example, deployments such as these have

previously been used to monitor volcanoes (Werner-Allen et al.,

2005). Wireless sensor motes were constructed specifically for the

application and deployed over an active volcano. Sensors collected

vibrations using specialised infrasonic sensors and transmitted the

results wirelessly back to a monitoring station. Results were then

used to map volcanic eruptions, providing early warning to

surrounding population areas. In this case, the sensor hardware was
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developed for a specific application and only monitored a very

specific set of environmental data, and so the network is unlikely to

be used for other applications.

When appropriate data sources are available, existing devices and

networks can be re-purposed to good effect. This technique is used

by Google Maps, which repurposes existing devices such as GPS

locators in smartphones (Google, 2009). Users that are running

Google Maps automatically send data (including location, direction

and speed) back to the Maps servers, allowing optimal routing

calculations based on current traffic conditions. The broad scope of

environmental data collected by smartphones allows for their re-use

in similar applications, such as road surface monitoring (Strazdins

et al., 2011) and improving the precision of weather monitoring

(Demirbas et al., 2010).

Some applications will always require new bespoke deployments,

as existing data sources do not always provide appropriate data.

However, the associated costs of new hardware deployments can be

minimised by replacing or augmenting parts of the sensor network

with existing data sources. Using social data can open up

opportunities for new applications, as SNS cross cultures, providing

a diverse set of potential data points about the users, their

environments and experiences.

3.4 applications

Social data is being used to drive many new sensing applications.

The use of social data in these applications can be categorised into

three broad actions; i) widespread event detection, ii) individual

event detection, and iii) contextual augmentation.
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3.4.1 Widespread Analytics

Widespread event detection mass-monitors the social feeds of users

for bursts in activity around certain topics, effectively treating users

as nodes within a sensor network. Widespread analytics can be very

useful for discovering mass-interest events, but also requires

significant resource investment.

This process has been used to detect earthquakes and provide early

warnings by monitoring Twitter users in Japan and detecting activity

bursts that mention earthquakes (Sakaki et al., 2010). Algorithms used

with sensor networks to approximate event location were also used

to detect the earthquake’s epicenter. This form of event detection is

used to detect events with widespread effect by watching for a burst

of relatively localised activity around a single topic.

3.4.2 Individual Analytics

Individual event detection is used to analyse a specific subject,

usually a set of social accounts being monitored. Because the

collection of data is far more focused and specific, far fewer resource

are required to perform useful analysis. This eliminates any kind of

wide-spread event detection, but can be useful for deeper analysis.

This technique has previously been used to detect the onset of

depression in Twitter users by analysing their post content, usage

patterns and relationships with other social media users (De

Choudhury et al., 2013b). This type of application examines the

node and its communications with other nodes to detect significant

events related to a specific subject, rather than an event affecting

multiple nodes.
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3.4.3 Sensor Augmentation

Contextual augmentation uses social data to augment existing sensor

networks by providing additional contextual information or assisting

in missing-data estimation. The users effectively fill the gaps in sensor

networks, requiring a smaller outlay of sensors to be deployed in

order to create a functional application.

One application using this technique is WeatherSignal

(OpenSignal, 2013), which uses a collaborative network of

smartphone users to perform far more granular weather monitoring

than traditional meteorological stations, which tend to be sparsely

distributed across wide geographic areas. The accuracy and

specialised results of the meteorological stations can be combined

with the collaboratively-collected data to form a more holistic

picture of weather patterns over the area, providing contextual

augmentation of sensor data.

Most social analytics applications tend to be consistent but

isolated in their function - meaning that any new application has to

go through the same process of sourcing data, collecting it,

integrating it (if required), processing it, filtering it and presenting it

for use. While this processing flow remains the same for the majority

of applications, there is no generic framework to support these

applications. The development of a generic framework for

integrating social data into sensor networking applications could

greatly expand the interest in social sensing and drive the creation of

new applications that are useful to society.
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3.5 requirements

To use social data as a data source for sensor networking, the

challenges previously stated need to be solved. To provide solutions

to these challenges, a framework capable of finding and collecting

from heterogeneous data sources, integrating the data and

presenting appropriate output for use must be designed.

The solution to each of these challenges represents a process in

the framework. A core requirement to solve each challenge is defined

below. Any candidate solution must meet the following requirements:

1. As discussed in Section 2.6, collecting data from all available

sources for use in sensor networks can be infeasible due to the

sheer amount of data being produced (Ching et al., 2012). To

query social media data in an efficient manner while retaining

the ability to query as much relevant data as possible, some

way of reducing the incoming flow of data to exclude irrelevant

sources is needed.

R1. Capability to locate application-relevant social data sources

in an efficient and extensible manner.

2. To use social media for analytical applications, data needs to

be retrieved from identified relevant sources. Retrieving social

media data can be straightforward if an API is provided, or

require web scraping if information desired by the intended

application is not provided by the API (Russell, 2013).

User-generated content should be collected from web pages

automatically, without requiring manual wrapper

development.
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R2. Capability to automatically collect data from identified

sources (both SNS and other media) in a generic and extensible

manner, regardless of platform.

3. Social media data is noisy because it is almost entirely

user-generated and does not adhere to a standard structure or

format (see Section 2.4.2.1). This data requires extensive

cleaning to remove spam and bring low-quality content up to a

usable standard (Agichtein et al., 2008). Additionally, some

data sources require follow-up processing to fill missing data.

Without performing this cleaning, using the data in automated

applications becomes significantly more difficult.

R3. Support for extensible data cleaning and post-processing

methods to ensure integrity of collected data.

4. To present the collected data in a format that can be integrated

with sensor networking applications, there must be a way of

comparing diverse datasets (Breslin et al., 2009a). A method is

needed to mediate schematic differences between data sources,

so that individual applications do not require manual mapping

of data structures (see Section 2.4).

R4. Support for the integration of heterogeneous data sources,

such that applications are not required to manually handle data

from different sources.

5. Processed data should be available both in real-time and

historically. This supports the use of real-time event detection

algorithms in addition to longitudinal analytical applications

(see Section 3.6.6). It is expected that data available in real-time
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may be missing attributes and won’t have undergone

post-processing, and that any filtering of the real-time

datastream should be completed by the requesting application.

Historical data should accessible through a query interface

able to provide more complex search and aggregation

functionality.

R5. Provision of unprocessed data in real-time and

post-processed data historically, with advanced querying

available to historical data.

6. Using social data in a range of different applications can

require different methods of data presentation to the

requesting application. Some sensor networking applications

can integrate data in simple formats such as JSON, but others

require more complex presentation techniques to use the data

effectively.

R6. Support for presentation of data in extensible formats for

compatibility, including standard formats (XML/JSON) and

more complex methods (AMQP, event-passing).

7. Enabling social data mining in an accessible manner for a broad

range of applications requires a framework that can be run on a

very diverse set of hardware platforms and configurations. This

can range from datacenter-level platforms to ad-hoc networks

of commodity-level mobile devices and home workstations.

R7. Support for scaling to a wide range of hardware, from high-

resource clusters to commodity and mobile hardware.

Each of these requirements represents a key area of functionality,

respectively: Sourcing, Collection, Cleaning, Integration, Querying

and Presentation. A framework designed to support the integration
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of social data and sensor networking should fulfill all these

requirements.

3.6 smaas framework

The following section proposes a framework designed to support the

integration of social data and sensor networking, and aims to fulfill

the requirements defined in Section 3.5, and meet the research aims

described in Section 1.3. The architecture of the framework is

described, with each major component and all connecting interfaces

defined.

3.6.1 Architecture

The overall architecture of the proposed SMAAS framework is

presented in Fig. 5. Of particular note is the divide between

real-time and delayed processing portions, identifying the

components which are expected to take additional time to execute.
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Figure 5: The proposed SMAAS framework architecture

The sourcing component is visible on the left of Fig. 5, and provides

data sources in a generic format to the collection APIs. A number of

platform-specific APIs are provided that form a proof of concept for

a variety of different authentication and platform access mechanisms,

in addition to the generic scraper capable of extracting social data

from generic sources (described in Chapter 5). These APIs provide

functionality used by the sourcing component (e.g. search functions),

as well as data extraction functionality used by the collection and

post-processing components.

Once data has been collected using the platform or generic APIs,

it passes through integration. While identified as a separate logical

component, the integration for each platform is included within the
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collection API for organisational reasons. All data that exits

integration conforms to a standardised schema.

Integrated data is immediately copied and published to two

endpoints: the event bus, which is a message queue that holds data

to be passed between framework components, and into a buffer for

post-processing. Real-time event detection monitors the event bus

for new events, and hence requires data to be made available as soon

as possible. Multiple event detection filters can operate over the

event bus and take immediate action if required.

Historical querying is not real-time, and can afford to take extra

time to be run through post-processing for data enrichment before

being stored for querying. Post-processing filters are also extensible,

and often consist of sentiment analysis filters, gender determination

and lexical analysis. Post-processing can also involve more complex

operations, such as additional data collection to fill missing data. Data

is only provided to a persistent storage and querying engine once all

applicable post-processing has been completed.

Resource-intensive processes can take advantage of a generic

worker pool capable of executing sourcing, collection and

post-processing. Tasks can be prioritised to focus on collection and

integration over post-processing as required.

The framework aims to support the development of sensing

applications using social data, not to automate the entire process.

For this reason, every component is entirely replaceable and

extensible - from the sourcing algorithms to the

collection/integration APIs, to the event bus and post-processing

filters. Each component is effectively implementation-agnostic; there

are preferred technology choices for each component, but can be

swapped out to cater for existing solutions without issue, requiring
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only the creation of an adapter between the component and the

underlying event bus architecture. Each of these components is

described more fully in the sections below.

3.6.2 Sourcing

One of the most effective optimisations in large-scale data processing

applications is to filter data early, resulting in reduced processing for

each successive step in the analytical process (White, 2009). As social

data has an extremely broad scope, relevant data sources must be

sourced to efficiently collect social data for use in sensor networking

applications.

There are several approaches to this challenge. The simplest

solution most often used in research is to perform simple keyword

searches of SNS, dramatically reducing the scope of incoming social

data (Sakaki et al., 2010; Robinson et al., 2013; De Choudhury et al.,

2013b). This technique suffers from several drawbacks - while

providing a set of the most relevant data, it is also prone to

over-restriction and will automatically exclude data that is related

but does not precisely contain given search terms. It is not able to

adapt to shifting topics in real-time, and hence can miss important

developments in on-going situations.

A new approach to this challenge, and the one implemented in

this research, is intelligent sourcing. This technique treats SNS users

as sensor networking nodes, allowing for a much higher-level

approach to optimisation by searching for sources of data, rather

than data itself. Intelligent sourcing finds relevant data sources by

refining search queries using natural language processing and
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machine learning techniques. This process is described more fully in

Chapter 4.

Sourcing is an optional component that can be used to define a

specific set of data sources to be used by the framework. These can

be individual accounts on an SNS, or a set of pages across multiple

websites, or any combination of data sources. It utilises the APIs

described in the collection component to access search and collection

functions in each supported source platform. Because the

component only relies on the standardised platform APIs, any

sourcing algorithm can be swapped in if different data collection

methods are required. For example, a sourcing algorithm could be

developed to only find and collect from real-time SNS firehose

streams, rather than finding generic sources of real-time and

historical data across the Internet.

3.6.3 Data Collection

There are three main approaches to data collection; i) the use of

APIs, ii) access to formatted real-time streams, and iii) ad-hoc data

collection.

Using APIs to collect data involves sending a

specifically-constructed request to a provided server. This request

contains a number of parameters used to focus the scope and range

of data returned by the API. The requested data is then returned to

the requester in a well-defined format. Some APIs provide a limited

view of data available to the source, requiring the requester to

follow-up with an ad-hoc request for more data. These initial API

requests often lead to further queries for related data (such as
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collecting user profile data for users that have posted in a comment

thread).

Data can be collected from real-time social data streams by

requesting stream access from a social network server. The source

server then pushes a constant stream of real-time data towards the

requester, in what is often called a "firehose" stream. This data is

presented in a well-defined format that can be mapped to an

appropriate data schema. Many firehose streams consist of all

available real-time data being produced by the social network. The

amount of data provided by this real-time stream can be problematic

for systems operating with restricted bandwidth, processing or

storage resources, and can easily overwhelm low-resource systems.

Ad-hoc scraping of data can be used for data sources that have no

defined format and do not provide an API or formatted data stream

(Pol et al., 2008). This usually requires the manual development of

parsing algorithms tailored to specific sources that are able to

discern useful information from unstructured content. Automated

parsing algorithms can also be used. Ad-hoc scraping can also be

used to enhance data provided by APIs, in instances where there is

data missing or deliberately restricted from API access.

The SMAAS framework is designed to extensibly support all three

methods of collection by defining platform APIs that present a

unified interface for accessing SNS and other platforms, as

presented in Section 3.6.4. Automated collection of social data from

generic web pages is used to greatly broaden the scope of social data

available for use, beyond what is currently available through the use

of SNS APIs. This is described in greater detail in Chapter 5.
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3.6.4 Platform Interfaces

Fig. 6 presents the interface classes forming the platform APIs.

These provide the standard interface through which to access source

platforms in the SMAAS framework, while still retaining flexibility

for each platform implementation.

+connect(): bool
+search(phrase, [limit], […]): List(data)
+get(link, […]): List(Event)

+api: Object
+integrator: BaseIntegrator
+auth: BaseAuth
+config: Map

+stopwords: List(String)

BaseAPI

+auth([…]): bool

+config: Map
+logged_in: bool
+session: Object

BaseAuth

+to_event(data, […]): Event
+to_events(data, […]): List(Event)

BaseIntegrator

Figure 6: UML class diagram of SMAAS base platform API interfaces

The framework exposes the BaseAPI interface with requisite

functionality to complete any sourcing, collection or

platform-specific analytical or cleaning tasks. Additional

functionality supported by all platforms can be added to the

BaseAPI interface. Platform-specific implementations of the BaseAPI

class can then be individually developed.

Source platforms can utilise many different types of

authentication to restrict access - from simple HTTPAuth (Franks

et al., 1999) to open standards such as OAuth1/2 (Hardt, 2012) or
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even custom session handling. The authentication method for each

platform can be developed by subclassing the BaseAuth class, with

specifics handled entirely within the implementation. Common

authentication schemes (such as OAuth) can inherit instead from the

BaseOAuth1/2 classes. The authentication functionality in the

BaseAuth class is flexible, taking any permutation of authentication

parameters, and should return a custom API session that is then

referenced by the implementation’s BaseAPI specialisation.

The framework provides a set of standard authentication

components used by many APIs, but custom components can be

provided if required. Fig. 7 illustrates the simplicity of developing

an auth module for a new interface, e.g. Twitter.

1 class Auth(BaseAuth):

2 def __init__(self, config=None):

3 super().__init__(config)

4

5 def auth(self, **kwargs):

6 session =

twitter.Twitter(auth=twitter.OAuth(**self.config))↪→

7 if not session:

8 log.error(’twitter: login failed’)

9 return None

10 self.session = session

11 return self.session

Figure 7: The Twitter interface Auth module in the SMAAS framework.

Each platform has very different access requirements - some may

only accept API requests, others may not provide an API. Hence, the

BaseAPI class is flexible - it presents a very simple interface to the

framework, preferring to rely on platform convention over

configuration. BaseAPI functions support flexible parameters, opting

to pass through any parameters given and provide warnings for

those unsupported by the platform that processes the call.
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Some platforms may only support a subset of the base interface.

One such example is the Google Custom Search Engine platform

API, which provides full search functionality but passes off all

collection responsibility to the generic HTML platform API.

Similarly, the HTML platform API supports generic collection and

integration, but does not support searching. Any requests for

functionality that is unsupported is designed to warn but not fail, as

it is expected that the majority of usage will involve passing a single

call to a set of platform APIs, rather than individual platform API

calls.

Most components of the SMAAS framework interact with the

platform interfaces in order to source, collect and integrate social

data.

3.6.5 Integration and Data Design

There are several ways to integrate the diverse range of schemas

represented in the collected data, which are discussed in Chapter 2.

For the SMAAS framework, integration is performed by using data

mapping techniques to reconcile all data into a single, unified

schema that has been designed in isolation of the available sources.

As the framework only deals with social data, this task is simplified -

all social data can fit into a certain design frame, with only

occasional extraneous platform-specific elements excluded during

integration.

The schemas defined in this section are only base schemas - they

represent the minimum common set of data that each platform API

must provide. This allows analytical applications to operate with the

base schema and fully support every platform defined within
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SMAAS, while also allowing further analysis per-platform to occur

for specialist usage.

The SMAAS framework defines a global social Event schema as a

JSON (Crockford, 2006) document, which allows it to be easily

passed through the event bus and into the document storage and

querying component. This also makes the design very easy to work

with and extend - without a strictly enforced schema, enrichment

and post-processing filters can append additional structures,

ensuring extensibility. Ultimately, the task of ensuring schema

validation falls to the interface developer in ensuring that the

platform interfaces map data appropriately.

1 {"Headers": {

2 "locale": (String: IETF Language Tag),

3 "id": (String: Platform-assigned ID),

4 "page": {

5 "id": (String: Platform-assigned ID),

6 "uri": (String: URI of page),

7 "site": {

8 "id": (String: Platform-assigned ID),

9 "base_url": (String: Base URL of site)

10 },

11 },

12 "interface": (String: Name of platform interface

used)↪→

13 }}

Figure 8: JSON Schema for Headers structure

Fig. 8 presents the JSON schema designed to represent the headers

for a social event. As with many attributes, if the communication does

not suit the structure, it can be left null. The headers are primarily of

assistance to post-processing, which may require further direct access

to the event. As an example, the headers may include the Twitter ID

of a Tweet, allowing for further collection and analysis to take place

on the raw data.
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1 {"Node": {

2 "id": (String: Platform-assigned ID),

3 "groups": [ (List of Strings: Associated group names)

],↪→

4 "person": {

5 "age": (Int or Intspan: Age or range),

6 "gender": (String: Male, Female, Other),

7 "family_name": (String: ),

8 "given_name": (String: Any given names)

9 },

10 "identifier": (String: Account identifier / name /

nickname),↪→

11 "interface": (String: Name of platform interface

used)↪→

12 }}

Figure 9: JSON Schema for Node structure

Fig. 9 presents the JSON schema designed to represent node

details. This structure gets re-used to represent both the origin and

destination of a communication (where applicable), and handles

information about both the social media account used to

send/receive events, but also the individual behind said accounts.

Much of the data within the Node structure is designed to be filled

during post-processing, for example using gender and age analytics.
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1 {"Time":{

2 "updated": (DateTime: Date and Time event was

updated),↪→

3 "detected": (DateTime: Date and Time event was first

seen),↪→

4 "created": (DateTime: Date and Time event was

published)↪→

5 }}

6

7 {"Location": {

8 "place": {

9 "type": (String: Descriptor of type, e.g. city,

poi, country, landmark),↪→

10 "name": (String: Name of place),

11 "country": (String: Containing country of place)

12 },

13 "geo": {

14 "longitude": (Float: ),

15 "latitude": (Float: )

16 }

17 }}

Figure 10: JSON Schema for Time and Location structures

Fig. 10 presents the JSON schema designed to represent time and

geolocation details. Time is a very common datapoint for virtually

all social events, while geolocation tends to be somewhat more rare.

Both are pivotal for many kinds of social analytics that rely on time or

distance to correlate events. Both can be filled during initial collection,

but geolocation can also be added during post-processing for those

events that did not provide it with the initial communication.
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1 {"Payload": {

2 "description": (String: Descriptor of content,

subject, heading),↪→

3 "extra": (Data: Additional attached data e.g. images,

extra text, tags),↪→

4 "content": (Text: Social event content)

5 }}

6

7 {"Keywords": [ (List of Strings: Common keywords in event)

]}↪→

8 {"Tags": [ (List of Strings: Platform-specific tags

associated, e.g. hashtags, categories) ]}↪→

9

10 (Private:)

11 {"Refs": [ (List of Strings: Platform-specific, used for

cleaning ) ]}↪→

Figure 11: JSON Schema for Payload, Keywords, Tags and Refs structures

Fig. 11 presents the JSON schema designed to represent both the

payload of the social event, plus additional metadata. The payload

itself can store text or data, depending on the type of media

accompanying the event. Keywords can be detected and populated

during post-processing or initial collection, depending on

performance requirements. Tags are often provided directly by the

platform, but can also be generated during post-processing. Refs is a

private, platform-specific datapoint that can be used during the

cleaning phases, if required.

As JSON is being used to define a loose schema, additional data

structures can be added by developers using the framework to allow

for result storage of additional enrichment filters and post-processing

functions.
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1 {

2 "id": (Unique ID associated to this event by

SMAAS),↪→

3

4 "headers": (Headers),

5

6 "origin": (Node),

7 "destination": (Node),

8

9 "time": (Time),

10 "location": (Location),

11

12 "payload": (Payload),

13

14 "keywords": (Keywords),

15 "tags": (Tags),

16

17 "refs": (Refs)

18 }

(a) JSON Schema for Event structure, composed of previously
defined structures

header_id
payload_id
…

Event
id
identifier

Origin

content
…

Payload

…
…

id
given_name
family_name

Person

(b) RDBMS Representation of an Event

Figure 12: Schema for presenting SMAAS Event data, JSON and RDBMS.
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The JSON schema for the main Event object is presented in Fig. 12.

This combines the previously defined structures into a single

structure that can be passed through the event bus and used by

event detection, or through post-processing and queried through the

querying component. The loose schema used allows for

customisation while providing solid cross-platform integration of

social data, even in instances where there is no defined data schema

(such as when collecting directly from web pages). Where required,

additional structures can be added for events undergoing further

post-processing and analytics, such as the sentiment analysis

structure presented in Fig. 13.

1 {"Sentiment": {

2 "polarity": (Float: polarity score),

3 "objectivity": (Float: objectivity score)

4 }}

Figure 13: JSON Schema for additional sentiment analysis post-processing
enrichment filter.

3.6.5.1 Data Cleaning

Data collected from social media and other Internet sources is noisy

(Kietzmann et al., 2011), and can require extensive cleaning and

processing. Most social data is user generated and adheres to no

particular structure, primarily being unstructured conversational

language. Differences in data formats between sources can also be

problematic, such as the use of different date standards between

cultures and platforms. Conceptual differences between individual

data elements across different networks can also require

manipulation of data into a unified standard.

There can also be structural problems with some social sources

depending on the age and nature of data. Legacy data has often
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undergone repeated format and schema shifts, so data collected

from these sources can require extensive cleaning. Modern data

sources adhere to stricter data standards and usually require less

cleaning.

The method of collection can determine the extent of data

cleaning necessary. API-provided results are usually retrieved from

the database and output without presentation, and therefore adhere

to internal database quality standards. Data returned from ad-hoc

scrapers can require extensive cleaning and parsing. This can involve

cleaning of content for undesirable elements, such as HTML tags

and extraneous Unicode characters.

Data can also be cleaned for privacy reasons, for example if

individual users are to be de-identified. Anonymisation of users can

be performed during the cleaning process to ensure user privacy for

sensor networking applications that do not require identifying

information to be stored or processed.

The SMAAS framework requires data to be cleaned during the

integration process, with platform interfaces defining the functions

required to translate and convert data as necessary to move from the

format provided to the schemas defined in Section 3.6.5.

Textual content is retained in a raw format, to ensure that any

analytical applications get access to the original dataset. As such,

text does not go through any text processing (such as stemming or

lemmatising) during integration - though this is often added during

post-processing to perform more complex text analysis.
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3.6.6 Event Handling: Real-time vs Delayed

Once social events undergo integration and cleaning, they exist as a

set of data in memory conforming to the schema defined in Section

3.6.5. Once in memory, there are two possible uses for this data; i)

immediate use in event-detection filters, and ii) to be later stored and

queried after undergoing post-processing. Events can be duplicated

and sent through both processes, as illustrated in Fig. 14.

Integration 

Event Bus

Publisher

Events

Actioning

Delayed/Processed EventsQuerying

Querying
Client

Query,
Results

Post-processing Filters

Sentiment
Analysis

Lexical
Analysis

Gender
Determination

… Event Detection

Burst 
Detection

Anomaly
Detection

…

Unprocessed Events

Events

Processed 
Events

Real-time 
Events

Delayed Processing and Access

Real-time Processing and Access

Figure 14: Event handling for real-time and delayed processing. Post-
processing filters are designed to operate on the delayed queue in
the event bus as they take additional time, allowing applications
that require low-latency access to data to instead use the real-time
queue. The real-time queue then passes events through as soon
as they are integrated, requiring far less time to process than the
fully post-processed events.

Event detection applications are often extremely sensitive to time

latency, as they are designed to detect rapidly-occurring events

(McCreadie et al., 2013). In order to reduce latency to these

applications, data intended for real-time use can be pushed straight
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into the event bus in its base format. Event detection filters can then

take them from the bus, analyse available content and metadata and

perform any required actioning as soon as possible, without having

to wait for events to run through post-processing. This provides

social events to real-time filters as soon as they are collected and

integrated, but the events may be missing additional data. Advanced

querying is also unavailable for real-time events, and may be

implemented by the filters if required.

Delayed applications include analytical applications that do not

require real-time actioning but do require additional data

enrichment and advanced querying. Data can be collected and

integrated as normal, but is then immediately pushed into a

post-processing queue rather than the primary event bus. Data

enrichment and filling filters can then modify the events to add

additional data, as specified by the platform interface that

performed the collection. After events undergo post-processing, they

can be added to the event bus.

All events that pass through the event bus and the appropriate

filters should then be serialised by the storage component. This then

allows the querying component to accept advanced querying

requests from clients over the full set of completed data. All events,

whether real-time or post-processed, should then be sent for storage

- a fully post-processed event should replace a minimal event in

persistent storage, once available.

Post-processing operations can be developed as a post-processing

filter within the SMAAS framework, which allows for work to be

completed in a delayed fashion after collection and integration have

been completed. The filters themselves can be simple modules that

operate on worker machines. Fig. 15 illustrates the intended flow of
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event data along the post-processing pipeline, and demonstrates a

simple sentiment analysis enrichment filter used in the SMAAS

framework that uses the vaderSentiment (Gilbert, 2014) library to

perform entity-based sentiment analysis in social content. The

module should take an event that has yet to undergo sentiment

enrichment as input, perform the appropriate enrichment, and

return the enriched event.

Gender 
Detection

Entity 
Extraction

Sentiment 
AnalysisEvent

Completed
Event

Figure 15: The post-processing flow, with an example sentiment analysis
filter shown.

3.6.7 Querying

Querying is required for analytical applications to request filtered or

aggregated views of the social data collected. Data querying is also

a well-researched and supported field (Florescu et al., 1998; Hartig

and Pérez, 2016; Bartman et al., 2017), with databases and querying

forming an integral part of virtually every information system in use.

Traditional Relational Database Management Systems (RDBMS)

(such as PostgreSQL, MySQL and Oracle) are designed to store

relational data, or data of different schemas that have well-formed

and defined relationships. While social data is able to fit this mould,

the combined real-time/delayed nature of the SMAAS framework

makes the use of relational models more difficult, as continuous

read/write access of the database would be required to maintain

referential integrity.
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As the social data in the SMAAS framework is stored adhering to

JSON schemas, document storage engines (Han et al., 2011) can be

used instead of RDBMS. These storage and querying engines are

designed to store data in more free-form standards, such as

JSON/BSON or key-value documents. Any of these engines could

be used as the querying component in the SMAAS framework, but

ElasticSearch (Kuc and Rogozinski, 2013) was selected due to its

highly scalable nature and advanced querying/aggregation support.

3.6.8 Scalable Processing

In order to scale to application requirements and incoming data

streams, the collection, integration and post-processing components

must be distributable. While post-processing is a delayed

component, collection and integration must be extremely responsive

to incoming data.

The SMAAS framework manages this process by using a

distributed worker pool. A supervisor manages task allocation by

priority, automatically prioritising real-time tasks over delayed tasks.

In the event that workers are unable to keep up with incoming tasks,

additional workers can be seamlessly and automatically spawned to

handle the additional workload and despawned during periods of

inactivity.

Workers are categorised by their resource strengths. Those with

higher bandwidth and reduced memory and processing resources

are used for collection tasks. Workers with greater available

processing and memory resources are used for generic collection

and integration, a processing-heavy task. Well-rounded workers are

used for post-processing tasks, which tend to require a mix of
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network access and processing time. Tasks sent by each different

component (collection, integration and post-processing) are then

forwarded to the appropriate workers and results can be published

into the event bus or on to post-processing, as suitable.

3.6.9 Command Line Interface

1 SMAAS Collectortron 2000.

2

3 Usage:

4 collector.py get [--stream] <links>

5 collector.py search [--stream] <phrase>

6 collector.py stream [--interface=<name>]

7 collector.py intelligent <phrase>

8

9 Arguments:

10 <links> Comma-separated list of links to

collect data from.↪→

11 <phrase> Search query to use.

12

13 Options:

14 -h --help Show this screen.

15 --stream Continue to stream results from

source.↪→

16 --interface=<name> Interface to stream from.

Figure 16: The Command Line Interface to the SMAAS collection module.

The collection functionality of the framework should be accessible

in two ways; through use of the framework API, and a Command

Line Interface (CLI). A proposed CLI is presented in Fig. 16, with all

collection functionality available.
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3.7 conclusion

This chapter defined a set of requirements for efficiently sourcing,

generically collecting, integrating, cleaning and serialising social

data from disparate social data sources. It then proposed the

SMAAS framework, an architecture designed to fulfill these

requirements by providing extensible solutions to each challenge

encountered.

Efficient sourcing of social data is one of the most important

optimisations that can occur, as it reduces the requisite work in each

successive phase of the processing pipeline. The next chapter details

an algorithm designed to intelligently source social data by

iteratively expanding the scope of search queries using machine

learning and natural language processing techniques.





4
I N T E L L I G E N T S O C I A L D ATA S O U R C I N G

4.1 overview

One of the major challenges with collecting social data for analysis is

the sheer volume of user-generated content being created. Facebook

alone collects and warehouses almost half a petabyte of data per day

(Ching et al., 2012), and there is substantial social data being created

outside social networks. The total throughput of social data is

overwhelming, with very few services able to supply integrated

social data (Gnip, 2008; DataSift, 2010), and only by using very

substantial processing hardware and a lengthy ETL process with

which to process and store the data. These services take the

"collect-all" approach to social data, wherein as much data as

possible is collected and stored for later use by subscribers, who can

pose searches and queries against the dataset. Even for systems of

this scale, complete collection is infeasible - DataSift archives 2TB of

data per day across all sources (DataSift, 2010), approximately 0.4%

of Facebook’s daily total or 6.5x Twitter’s daily total1.

The alternative collection method is referred to as the "collect-little"

approach, in which as little data is collected as possible to draw a

conclusion. In existing applications, this involves a simple keyword

search that finds a very narrow scope of relevant data, often missing

relevant data not containing the appropriate keywords. Studies that

1 Assuming 140 UTF-8 chars per tweet (560B) plus half again in metadata (840B total)
at 277,000 tweets per minute (DOMO and Column Five Media, 2012) totalling 312GB
per day.

83
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use this approach often have a very narrow application scope, and

are used with topics that have unambiguous wording (Sakaki et al.,

2010; Robinson et al., 2013).

Developing a system able to collect and query all UGC across the

Internet in real-time is likely infeasible, as it would require a system

capable of scaling to the size of all sources of social data combined.

Hence, a more intelligent and efficient method of collecting data is

required. An intelligent method of sourcing social data would involve

efficiently locating social data semi-relevant to the specified query,

while providing significantly lower noise than collecting all available

data.

Most analytical applications are developed for a specific purpose,

such as determining user opinions related to a product, or detecting

earthquakes. Each of these purposes is distinct and does not require

the collection of all UGC to make a determination. Hence, data

returned from the collect-all approach would require significant

filtering to retrieve data relevant to the topic. Rather than filtering

after collection (and requiring all UGC to be integrated into the

system), filtering early can be an effective method of only retrieving

the data that has a reasonable chance of being used.
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Figure 17: Data processing reduction using early filtering. Resource
consumption is reduced in each successive stage after filtering,
so filtering early reduces the overall resource load required.

Social data collection can be optimised by going back to core

principles and conflating the concepts of SNS and sensor networks.

Users tend to have persistent interests, and discussing a topic on

social media suggests that they will discuss it again in the future.

Hence, the relevance of a source can be identified rather than

individual events, saving considerable processing time. This source

list can then be directly collected from in addition to expanded

keyword searches, providing more relevant data. The collect-all and

intelligent collection processes are illustrated in Fig. 17, which

highlights the reduction in requisite processing time when

early-filtering is used. As shown, resource consumption is reduced

in each successive stage after filtering, so filtering early reduces the

overall resource load required.

There are some disadvantages to this approach over the collect-

all approach. There is a chance that an amount of relevant data will

be missed due to misclassified sources. The collected data is only
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relevant to the query, and subsequent unrelated applications would

have to perform their own data collection rather than repurposing the

collected set. If using queries that collected a broader set of data, the

collected set can be used for multiple applications.

4.2 background

There are three methods currently used to find social data from SNS

for analytical applications. The first is simple keyword searching,

provided by most SNS APIs (Guy et al., 2013). The second is parsing

firehose streams (Zhao, 2013), which provide a fast outlet of all

produced content in real-time. The third is to collect data from user

profiles and lists, which provides all messages written by users (De

Choudhury et al., 2013b). Each of these three methods produces

varying amounts of data, with firehose streams typically providing

the most data (but least relevant), and keyword searches providing

the least data (but mostly relevant). As analytical applications tend

to focus on a very specific topic scope and desire relevant input,

keyword searches are primarily used (Sakaki et al., 2010; Robinson

et al., 2013; Wandhöfer et al., 2012).

Most applications perform a simple search against the SNS API,

using a list of pre-specified keywords (Sakaki et al., 2010). To detect

posts relevant to earthquakes, the words "quake", "shake",

"earthquake" etc. may be used. These searches are quite specific, and

the collected data is unlikely to be of use to many other applications.

Nodes can be extracted from these lists to identify relevant data

sources.

Other applications designed for more broad event detection use

firehose streams as an input for burst analysis algorithms (Cameron
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et al., 2012; Thapen et al., 2015). These algorithms look for

rapidly-growing events around a similar set of topics that may

indicate an important event. Because there is no specific topic to

focus on, filtering cannot occur and the algorithms have to directly

analyse all incoming data. By performing simple checking of

relevancy on incoming messages, this data source can be used to

identify nodes posting relevant data (which can then be further

examined per-user).

Direct access of user streams can be used for analytical

applications designed to perform per-user analysis (De Choudhury

et al., 2013b). These algorithms retrieve a subsection of the user’s

messages and classify them based on factors such as time or

sentiment. While this only retrieves a single user’s messages, it can

be used on a broader scale to collect data from multiple users - if the

users are pre-identified as providing data relevant to the desired

topic.

The majority of social analytical studies tend to source data from a

single SNS (Breslin et al., 2009b), as cross-integration of networks

can be a significant obstacle (Driscoll and Thorson, 2015). By only

sourcing from a single network, the applications used to collect and

analyse data are greatly simplified, at the expense of limiting data

scope and demographics. The research presented in this thesis aims

to propose a generic framework for generic social data analysis, so

generic data sources and cross-platform integration must be

considered. To this end, any techniques developed must be

platform-agnostic.
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4.3 optimisation of social data mining

One of the simplest optimisation steps in large-scale data processing

applications is to filter incoming data, resulting in reduced

processing for each successive step in the integration process. As

social media has an extremely broad scope, only relevant data

sources need to be located in order to efficiently leverage social data

in sensor networking applications. Much of the social data processed

may be irrelevant to the application. As this data must undergo

cleaning, integration, storage and querying, early filtering can result

in significant resource savings. Hence, the process of finding quality

data sources is very important.

Most applications that perform early filtering of social data do so

by using keyword searches. The SNS API is given a short list of

keywords that are used to locate relevant material, excluding

material not containing the keywords. These applications (Sakaki

et al., 2010; Robinson et al., 2013) use a set of predetermined words

related to the topic that are used to search for data. While this

approach usually returns appropriate results, conversations about

ongoing events often evolve new language or metatags, and any

further information using these terms would not be collected. Hence,

a better method of adapting queries to evolving situations is

required in order to retrieve as much relevant data as possible.

Applying machine learning techniques to retrieved content would

allow for iterative adaptation of search queries, ensuring that the

application is kept abreast of new developments in ongoing

situations.

Collecting and classifying UGC and SNS content is

resource-intensive work primarily due to the sheer amount of data
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involved (DataSift, 2011). To further improve the social data

collection process, higher-level collection optimisation can be

performed by isolating and evaluating data sources, rather than

individual pieces of content. By conflating the concepts of Sensor

Networking and Social Networking, SNS users are treated as as

sensor nodes that emit events (messages, statuses) and have

connections (friends, followers).

Most existing systems determine the relevancy of one element:

events, or social messages. By instead considering the relevancy of

nodes, the amount of work required to identify relevant data is

dramatically reduced. Nodes in a sensor network are capable of

collecting and broadcasting many types of data, much like users on

a social network will often talk about similar topics repeatedly. Only

a fraction of the events emitted by a node need to be analysed to

determine relevancy, rather than determining relevancy for every

single event emitted by users. While this allows some irrelevant data

to pass through the filter, it narrows the scope of collection

considerably while also broadening collection beyond a simple

keyword search. This approach provides a welcome middle-ground

to the collect-all and collect-little techniques.

Relevancy ranking for nodes is based on the presence of keywords

within content emitted by the nodes. This ties in with the iterative

querying approach: as the algorithm searches with an expanded

keyword set, additional nodes are identified based on their use of

adapted key terms that have been discovered. Nodes can then be

filtered more strictly as required by ranking the appearance of

keywords within content, such as through the use of a TF-IDF2

algorithm (Ramos, 2003).

2 Term-Frequency - Inverse Document Frequency is a measure of how important a
keyword is to a document by examining how many times it appears in a document
compared to its average appearance throughout all documents.
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Figure 18: Applying WSN principles to SNS to find new nodes over
connections. The boxes represent an example JSON structure
exposed by an SNS API, and highlight the number of user
connections that can be derived from a single message.

Once relevant nodes have been located (and hence, relevant

events), the scope of collection can be broadened if required. Fig. 18

illustrates three different ways that additional nodes can be

discovered from existing classified nodes. Connections (followers) of

existing nodes can be examined for relevancy and added to the

source list, if required. Nodes that have expressed an interest (by

"liking" events) are likely to share similar interests to the relevant

node, and can be examined. Nodes that have directly replied to

relevant events are also candidates, and are likely to produce

relevant information themselves. These nodes can all be evaluated

for relevancy and added to the source list.
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4.3.1 Platform Agnosticism

As one of the driving motivations behind this project is to simplify

cross-platform social data mining, the intelligent sourcing process

must be platform agnostic. This allows data to be collected from a

much broader demographic than a single SNS, including websites

and other site not typically used for social analytics.

To simplify cross-platform sourcing, the SMAAS abstraction

framework detailed in Chapter 3 can be used. The framework

provides a set of standard API endpoints that can be applied across

all platforms, providing generic access to search, collection and

metadata functions. By using these standard elements (rather than

specific APIs), any future platforms can be integrated into the

sourcing process simply by building a new interface in the overall

SMAAS framework. Listing 19 presents a simple search in the

SMAAS framework operating over multiple platforms.

1 results = []

2 for api in available_apis:

3 results += api.search(’python’, limit=50)

Figure 19: SMAAS code to execute a simple keyword search across available
APIs

In addition to platform agnosticism, sourcing itself can be cross-

platform. Social data on one platform often links to a second platform,

such as a Tweet linking to a website or a Facebook message linking to

a Tweet. SMAAS provides the ability to traverse between platforms

at-will, providing much richer and more plentiful data.

Users often have multiple accounts on different platforms. These

accounts can be linked together, forming a holistic node from which

to source data. This can further expand the links between nodes
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across platforms, improving metadata surrounding nodes. For

example, a Twitter user may not provide a location in their profile,

but their Facebook account might contain this information. Linking

the accounts and filling the missing metadata can assist greatly with

further querying.

4.4 intelligent sourcing

Intelligently and efficiently sourcing social data is a highly iterative

process. All collected content is used to further optimise the search

queries used to locate data sources, and the sources themselves are

used to locate additional relevant sources. This process is broken into

distinct steps:

1. Initial Search - use a set of seed keywords to initiate searching

across any available SNS or web Search APIs.

2. Extract Metatags - extract any platform-specific tags within the

message for further use, e.g. Twitter hashtags, email addresses,

HTTP URLs.

3. Analyse and Process - use natural language processing to

categorise words and extract nouns for use in query

optimisation.

4. Build Node List - add discovered source nodes to our list.

5. Follow Connections - follow connections out from nodes on our

list to discover other relevant nodes.

6. Iterate to Initial Search - using the collected metatags, the new

common keywords and our set of nodes, improve the search

query and re-iterate the process.
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Initial Search

Extract 
Metatags

Analyse and 
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Build Node 
List

Search 
Parameters

Social APIs
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Node Connections

Node Detail

Keywords and Metatags

Search Query

Figure 20: Finding relevant sources using an iterative learning search
process

Fig. 20 illustrates this sourcing process. The query specifies

relevant keywords, which can be expanded upon by use of

predefined databases and appended to by examining oft-used

keywords on strongly-relevant search results. These keywords are

used to query known search APIs, returning a list of locations that

potentially contain results. The exact method used for data access

and searching can vary for each system, as each platform provides

differing methods of accessing and filtering data. Some examples of

different methods are:

facebook Using the API, search for public posts with related

search terms, popular news feeds and other items of interest.

Additionally collect comment authors.

twitter Using the API, search for public tweets containing related

keywords. Additionally collect information about replies to
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tweets, and also examine hashtags commonly appearing

within the initial set.

blogs Using Google’s Search API, search for public blog posts

containing relevant keywords, including author information

and comments. Additionally collect relevant results from

commenters’ own blogs.

forums Using manual page scraping and authentication for forum

software such as VBulletin and phpBB, search for forums

containing threads relevant to our query.

This initial phase provides a list of relevant places to look for

information relating to a single query. Not all data found is

guaranteed to be useful, and some may be completely irrelevant. By

selecting a fairly wide sub-set of available data, initial collection is

limited to a feasible scope, allowing for more accurate filtering later.

This optimisation can potentially exclude obscure results, but this is

a necessary trade-off. The only data required to start this process is a

set of APIs to be used and an initial seed keyword, and the result of

this sourcing process is a list of relevant data-producing nodes. The

process can be repeated infinitely to locate additional source nodes,

until either the data stream is tapped out or the minimum

acceptable signal-to-noise ratio (SNR) is reached.

Each step in this process is described more fully in the sections

below.

4.4.1 Initial Searching

The initial searching process is virtually identical to existing social

data collection methods used in previous research (Cameron et al.,
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2012; De Choudhury et al., 2013b; Robinson et al., 2013). An SNS

API is given a basic keyword or keyword set, and returns a set of

results. In most research using social data, this is the limit of

collection done - the results retrieved make up the complete dataset

used. Most analytical applications only take from a single API, due

to integration difficulty (Driscoll and Thorson, 2015). Listing 19

shows a simple keyword search using SMAAS’ abstraction

framework. This retrieves 50 results relevant to the given keyword

from each API (e.g. Twitter, Facebook, Reddit, Google Search) in a

standard format.

Using simple keyword searches are fast and easy, but suffer from

problems. Poor choice of keyword can exclude a significant amount

of useful data. The nature of conversation on the Internet often

results in dramatic shifts in language within evolving real-time

situations, meaning that an effective keyword now may not remain

so as an event unfolds. Users often define metatags to denote

messages relevant to current or ongoing events, such as hashtags on

Twitter, which would require a new search to collect. Additionally,

new topics can come up that are relevant to our interest, but do not

contain the keyword specified. Without manual perusal of

conversations (a nigh-insurmountable task given the amount of

content), most of these topics would be missed.

To improve on this, it makes sense to have a search algorithm

capable of evolving to stay current with situations and adapt to suit

user language. Rather than operate on a single keyword or set, our

method should begin with this to get a "feel" for the area, but learn

from any content discovered in order to cast a wide but relevant net.

Common keywords discovered within collected content can then be

integrated into the keyword set to expand the search, in an iterative
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learning process. Before this analysis can take place, special tags

embedded within content need to be extracted so as not to interfere

with the analysis - a process described in the next section.

4.4.2 Metatag Extraction

Metatags often appear within social data to provide overall context

for the message. SNS such as Twitter use metatags to denote who the

message is to and which topics are under discussion. Web URLs also

appear often in social content, as users link to other content. This

content can be very useful, as it provides additional links to new

nodes, keywords and cross-platform content.

These tags can be extracted from content easily, as illustrated in

Fig. 21. Regular expressions can be used to extract metatags on a

per-platform basis, with each platform interface designed to extract

appropriate metatags from its content. The SMAAS interface for that

platform can then be used to follow-up on each metatag, sourcing

further content.
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1 >>> content = ’’’

2 ... .@TonyAbbottMHR branded ’Captain Chaos’ over his

support for a plan to set up another Australian medical

school. http://ow.ly/N2BRg

↪→

↪→

3 ...

4 ’’’

5 >>> mentions = regex.findall(’(@\w+)’, content)

6 >>> mentions

7 [’@TonyAbbottMHR’]

8

9 >>> hashtags = regex.findall(’(#\w+)’, content)

10 >>> hashtags

11 [’#RohingyaCrisis’, ’#refugees’]

12

13 >>> urls = url_regex.findall(content)

14 >>> urls

15 [’http://ow.ly/N2BRg’, ’http://bit.ly/1JS0Zru’,

’http://ow.ly/N1rC6’]↪→

Figure 21: Python code to extract metatags from Twitter content

Some APIs used to access social data already provide the metatags

as an extracted field, generally simplifying the process. In some

instances (e.g. rich HTML content) metatag extraction can take a

substantial amount of time.

These tags generally have to be extracted from content prior to

content analysis, else they can confuse any NLP-based analysis.

Once they have been extracted, saved and removed from the original

content, the content can undergo NLP.

4.4.3 Analysing Content

Analysing collected content can lead us to additional relevant nodes.

These nodes are often mentioned directly in the messages collected,

but natural language processing (NLP) can also be used to extract

keywords from content to improve searches.
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1 >>> content = ’’’

2 ... .@TonyAbbottMHR branded ’Captain Chaos’ over his

support for a plan to set up another Australian medical

school. http://ow.ly/N2BRg

↪→

↪→

3 ...

4 ’’’

5 >>> words = nltk.pos_tag(nltk.word_tokenize(content))

6 >>> words

7 [(’.’, ’.’), (’@’, ’‘‘’), (’TonyAbbottMHR’, ’NNP’),

(’branded’, ’VBD’), ("’Captain", ’JJ’), (’Chaos’,

’NNP’), ("’", "’’"), (’over’, ’IN’), (’his’, ’PRP\$’),

↪→

↪→

8 ...

9 ]

10 ...

11 >>> words = [(word, tag) for word, tag in words if ’NN’

in tag]↪→

12 >>> words

13 [(’TonyAbbottMHR’, ’NNP’), (’Chaos’, ’NNP’), (’support’,

’NN’), (’plan’, ’NN’), (’school’, ’NN’), (’East’,

’NNP’), (’West’, ’NNP’), (’Link’, ’NNP’),

↪→

↪→

14 ...

15 ]

16 ...

17 >>> cn = collections.Counter([word for word, tag in

words])↪→

18 >>> cn

19 Counter({’politics’: 3, ’thought’: 1, ’support’: 1,

’school’: 1, ’Link’: 1, ’RohingyaCrisis’: 1, ’drug’:

1, ’refugees’: 1, ’sea’: 1, ’accompanies’: 1, ’lives’:

1, ’cares’: 1, ’Crime’: 1, ’Chaos’: 1, ’seizures’: 1,

’plan’: 1,

↪→

↪→

↪→

↪→

20 ...

21 })

22 ...

Figure 22: Python code to part-of-speech tag and count frequency of nouns

Fig. 22 demonstrates the process behind identifying keywords.

Collected content can be split by token to isolate words and then put

through a part-of-speech tagger, which can determine the

grammatical type of each word. Words that are tagged as nouns (or

pronouns, adnouns, etc) are kept. A counter can be used to identify

high-frequency words for use in the search algorithm. This word list
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is continually updated as new content is discovered, so that the

most-relevant keywords are used.

The process of extracting nouns from the text allows for expansion

and contraction of the search space as the topic changes in real-time.

People refer to topics by new words, and new information becomes

relevant over time. By using standard search methods that don’t

learn from results, the search queries often become outdated and

can’t adapt to shifting conditions. But by adapting to suit the

language in use by authors writing about events, the search query

constantly evolves to suit the topic. However, this can sometimes

lead to unexpected consequences - if users are talking about two

similar topics, the search query can quickly diverge from its original

focus.

This technique is more effective on longer content such as web

pages, but can be equally effective on shorter content when multiple

pieces of content are combined. Common keywords can be

discovered by evaluating the combined set. Individual content can

then be classified for relevancy using the combined keyword set.

4.4.4 Sourcing through Connections

Social media can be used for event detection (Sakaki et al., 2010),

which is particularly useful for sourcing data. We consider each user

to be a node that emits events and has connections. Hence, related

nodes can be discovered by following each node’s connections. Fig. 23

presents part of a Tweet discovered through a simple search, showing

the text content of the message and the user (node) details.
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1 /* /statuses/show */

2 {

3 "created_at": "Mon May 18 03:13:13 +0000 2015",

4 "id": 600137035781836800,

5 "text": "Journalists hit back: Can sexism or bias

explain outcry over @leighsales ’standard

political interviews’? http://t.co/0H4R8k2W0L

#auspol",

↪→

↪→

↪→

6 "user": {

7 "id": 70617159,

8 "screen_name": "PoliticsFairfax"

9 }

10 }

Figure 23: A tweet found through the Search API, returned in JSON

Figure 24: A social graph depicting a popular Twitter tag for Australian
politics.

Messages can be "liked" or referenced by other users on most SNS,

as shown in Fig. 24, which usually indicates their support of the

message or a reply on the same topic. These connections can be

followed to each event by examining users that have interacted with

the message. Fig. 25 shows an example from a list of interactions

with a message. Users that have interacted with the message are

probably relevant, and their details can be stored for later evaluation

of node relevancy.
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1 /* /statuses/retweets */

2 [{

3 "created_at": "Mon May 18 05:12:44 +0000 2015",

4 "id": 600167111462260700,

5 "text": "RT @PoliticsFairfax: Journalists hit back:

Can sexism or bias explain outcry over

@leighsales ’standard political interviews’?

http://t.co...",

↪→

↪→

↪→

6 "user": {

7 "id": 26469521,

8 "id_str": "26469521",

9 "name": "Rob Giblin",

10 "screen_name": "Tassiebeef",

11 }

12 },

13 ...

14 ]

Figure 25: A list of users that have forwarded the tweet in Fig. 23.

Connections can be followed directly from nodes, finding other

relevant users. Events only flow across SNS connections if the users

make a conscious decision to agree to see the other user’s messages.

As such, a node connected to a relevant node is also possibly

relevant. We can get a list of all nodes following another node, as

seen in Listing 26. This list can then be worked through to find

relevant nodes.

1 /* /followers */

2 {

3 "ids": [

4 411898978,

5 2704323866,

6 293852007,

7 618822342,

8 3004531998,

9 219272010,

10 ...

11 ]

12 }

Figure 26: A list of users following the original author of the tweet.
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This connection-following process can spider out from relevant

sources to any number of levels, increasing the number of data

sources and broadening the source list of social data. This process

can take a significant amount of time, due to the sheer amount of

sources to evaluate and propagate from, but only a single run is

required. After sourcing has been completed, data can be collected

from identified sources and new sources can be incrementally

identified from newly collected content.

4.4.5 Cross-platform Connections

One of the major advantages of using the intelligent sourcing

algorithm through the SMAAS framework is the additional

flexibility gained in cross-platform searches. Not only are the

searches themselves able to be performed against multiple platform

targets, but any cross-platform links (e.g. tweets containing

Facebook post links) can be automatically evaluated and followed.

This provides further enrichment to the search, allowing for a much

broader search to occur - particularly when combined with the

CFH-NS algorithm detailed in Section 5.4.2.

The end result of this sourcing process is a large social graph with

many inter-platform links that can continuously provide useful and

valuable data when continuously monitored, can include any new

sources discovered over time, and can automatically cull those

sources that become irrelevant. When combined with the SMAAS

framework, this can result in a significant amount of relevant social

data with relatively few processing resources required.
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4.5 conclusion

This chapter has discussed the development of an intelligent

sourcing algorithm, designed to improve the efficiency of social data

collection while ensuring that relevant data is collected. The

algorithm uses the platform APIs described in the previous chapter

to execute search queries. These search queries are iteratively built

using machine learning (ML) and natural language processing (NLP)

techniques to identify important entities within the discovered data,

broadening the scope of each search while retaining relevancy.

The next step in the research is to develop a method of collecting

the data from these discovered sources, without having prior

knowledge of the format or design of the pages containing data.

Chapter 5 describes an algorithm capable of doing this.





5
U S E R - G E N E R AT E D C O N T E N T E X T R A C T I O N

5.1 overview

While the majority of research studies using social data collect data

from an API, there remains a significant amount of social data

inaccessible to most research. This data, referred to as

User-generated Content, consists of user comments, testimonials and

content that lay in the comments sections of websites, reviews on

eCommerce platforms and posts on web forums. This thesis aims to

address this problem by increasing the availability of UGC for

academic and commercial applications.

UGC is a promising data source for analytical applications,

providing up-to-date information about a wide range of topics.

There is increasing focus on the use of UGC on Social Networking

Sites (SNS) to drive applications for emergency management (Sakaki

et al., 2010; Robinson et al., 2013; Buscaldi and Hernández-Farias,

2015) and opinion mining (Maynard et al., 2012), amongst other uses.

While previous research has extensively analysed data from

micro-blogging SNS such as Twitter, only a few studies have used

traditional SNS (Wandhöfer et al., 2012) or embedded UGC such as

user comments and reviews (Cao et al., 2008). Since the shift to Web

2.0 paradigms, static content on websites has increasingly been

replaced by UGC (O’reilly, 2007) that is not easily or generically

105
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accessible, resulting in a large amount of UGC being unavailable for

mining.

While this data is timely and relevant, its relative inaccessibility is

a major obstruction to its use in analytics. There are few methods of

retrieving UGC embedded in pages, and there are no unifying

interfaces to perform data collection from such sites. This contrasts

to UGC on SNS, which is usually accessible via APIs - interfaces

specifically made for automated applications to query stored data.

Developing a method of accessing UGC in a standardised and

reliable way would allow for the use of this data in social analytics

applications, and provide the same accessibility as API-provided

data from SNS.

UGC presents an excellent opportunity for providing data about a

wide range of topics, both historical and real-time. Users often post

timely, relevant information on news articles about current events

that can enhance or enable real-time event detection. Similarly, there

is great value to be found in product-related UGC attached to

product pages or reviews for marketing purposes (Tang et al., 2014;

Tuten and Solomon, 2014). With no formal interface to collect this

data, generic collection of UGC is difficult and a significant

proportion of data remains inaccessible, particularly if the data is on

sites not accessible to web crawlers (Liakos et al., 2015).

Web Data Extraction (WDE) algorithms have had success in

extracting template-based data from web pages (Xia, 2009; Ferrara

et al., 2014; Liu et al., 2003; Arasu and Garcia-Molina, 2003; Zhai and

Liu, 2005). Similar techniques could be applied to extract UGC from

pages, but there are several complicating factors, primarily related to

advancing design and rendering techniques. Logical page design

and rendering on the Internet has changed significantly since many
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WDE algorithms were developed, requiring newer structure

detection techniques (Blanvillain et al., 2014). Modern pages are

often dynamically rendered using AJAX, which many web scraping

tools and WDE algorithms do not support. Complex user

interactivity has also become the norm for modern sites, and needs

to be accounted for.

UGC differs substantially to the data typically collected by WDE

algorithms. Most of these algorithms are designed to extract discrete

repeating structures - search record results (Liu et al., 2003),

e-commerce data tables (Zhai and Liu, 2005) or the data from

product detail pages (Crescenzi et al., 2001). These discrete

structures may contain nested data, but rarely contain nested

structures. UGC differs in this way - comments often have replies

that may or may not follow a similar tag structure, and can be

nested to many depths. Thus, there may be nested data, but not

always predictable nested structures. Any algorithm designed to

extract UGC needs to consider and mitigate these problems.

In order to unlock the value of UGC stored within web pages, a

complete data extraction framework is required. Designing a WDE

algorithm specifically for UGC is not enough - a framework able to

automatically navigate pagination structures, expansion links and

render dynamic DOM trees is required in order maximise the

amount of useful data that may be accessed. UGC structures can

then be isolated and filtered to provide a standardised interface for

reliably accessing UGC on web pages.
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5.2 background

WDE algorithms designed to extract semi-structured data from web

pages have been in development for the last 15 years (Atzeni and

Mecca, 1997; Crescenzi et al., 2001; Arasu and Garcia-Molina, 2003;

Liu et al., 2003; Zhai and Liu, 2005; Cao et al., 2008; Miao et al., 2009).

WDE algorithms have had great success in scraping search result

pages in order to facilitate web crawling (Liu et al., 2003), as well as

collecting e-commerce data (such as competitor prices) (Zhai and

Liu, 2005), database detail pages (Thamviset and Wongthanavasu,

2014a) and news articles (Gupta et al., 2015), amongst others.

WDE algorithms use wrappers to extract data from pages, but the

method of creating wrappers has evolved over time. Initially,

wrapper development was manual and required a developer to

write appropriate code to extract the desired fields from a single

page (Atzeni and Mecca, 1997; Crescenzi and Mecca, 1998). Most

wrappers are not generic, and each new data source required the

development of a new wrapper. As this represented a significant

development and maintenance cost, automated techniques were

highly sought after.

Automated WDE algorithms can be classified based on their

method of function and the manner of data input. Functionally,

these algorithms work either by comparing the page DOM trees (Liu

et al., 2003; Zhai and Liu, 2005; Jindal and Liu, 2010; Sleiman and

Corchuelo, 2014; Ferrara and Baumgartner, 2011), by examining and

mining the text directly (Thamviset and Wongthanavasu, 2014b,a),

or by recognising visually-similar page regions (Liu et al., 2005,

2010). Some algorithms also combine several of these techniques to

improve accuracy, such as using text mining to locate data and tree
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comparisons to identify the enclosing environment (Thamviset and

Wongthanavasu, 2014a). Similar techniques can be used to scrape

UGC from pages, hence UGC extraction can therefore be considered

a subfield of Web Data Extraction - henceforth, User Generated

Content Extraction (UGCE).

Prior research in which UGC has been extracted from from web

pages have used manually-developed wrappers to parse page

contents Mishne and Glance (2006); Cao et al. (2008). Due to the

development time involved in this approach, most studies that used

UGC have been limited to platforms that provide an API for data

access. For example, Twitter feeds have been used to detect

earthquakes Sakaki et al. (2010) and predict depression in social

media users De Choudhury et al. (2013b). The data input for these

projects is of course constrained by the presence and functionality of

a vendor supplied API, in this instance, Twitter. Some studies have

accessed web pages as part of social data analytics, but had no

automated method of extracting the data from pages (Meneghello

et al., 2014).

UGC is plentiful on the Internet, but only API-provided content is

easily accessible, and such content only makes up a fraction of UGC

created. By developing an automated method to extract UGC in a

standardised format, web pages such as news articles, blogs and other

widely used media can be unlocked and made accessible as viable

data source. This would greatly broaden the scope of data available

for use in social analytics applications and decision making.
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5.3 challenges

The ability to extract user-generated content can vary greatly

depending on the type of data to be extracted, the intended source,

and the intended usage. While a significant amount of UGC is now

accessible by API, there is a significant amount that exists merely as

rich-text on websites. Data extraction algorithms exist to handle

these cases, but only in a number of specific situations, which are

described below.

• If the content is provided in a structured format (such as XML,

JSON or CSV) then extraction is simple and can be converted

into structured data. This type of data is typically provided by

APIs.

• If the content is originally in a semi-structured format (such as

an HTML table), it can generally be extracted into a structured

format - this is a common use case amongst data extraction

algorithms. This data is typically provided by "listing" sites,

such as auction sites, online stores, or various others. Often,

the extraction process is a manually-written wrapper.

• If the content is originally in an unstructured format (such as

HTML paragraphs or DIVs), the accuracy and effectiveness of

extraction is quite poor. Few options exist to generically extract

this data - usually it requires the development and maintenance

of a manually-written wrapper.

As much of the UGC across the internet is tied up in unstructured

format across millions of websites without APIs to provide the data,

it is desirable to design a method of extracting this data in an

unsupervised fashion. The goal of this research is to satisfy this aim:
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to allow the extraction of unstructured UGC from websites in an

automated and unsupervised fashion, returning structured data.

5.4 user-generated content extraction

UGC can represent current events, peoples’ views and thoughts on

issues or their current state (Subrahmanyam et al., 2008). These

comments, statuses, messages and tweets, although given many

different names, often possess a common set of attributes. While

different sources may provide more or less metadata for a social

event, the minimal set usually includes an origin, a timestamp and

some content. An origin can be a person, an account or commonly a

pseudonym, while a timestamp can be a date, a time, a relative time

or any combination of these. Content usually contains the detail

about the event occurring - a message between friends, a comment

on a topic under discussion or an update on the state of an origin.

Fig. 27 shows an example of UGC, with each user comment

containing each of these attributes - name, date and content.
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Figure 27: Embedded UGC from a popular news website, ABC Australia.

The UGC present on such pages is similar to that on SNS, except it

tends to be anchored around a particular subject or content. This

makes page-based UGC extremely useful for user based analytics

such as intent or sentiment analysis. UGC is already major

consideration for users during eCommerce research (Cheong and

Morrison, 2008), often having significant effect during product

selection. While data from SNS is frequently used for this,

inaccessibility of page-based UGC is an obstacle to providing more

effective social analytics. By developing a reliable, accessible method

of automatically extracting UGC from pages, this research aims to

address this deficiency.

There are three primary steps that must be considered when

developing an automated UGC extraction (UGCE) process:

collection: A method of automatically interacting with and

collecting data from dynamic sources without any a priori

knowledge of the source structure;
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data extraction: An algorithm to detect commonly-occurring data

structures and extract location and data types of fields

contained within, while avoiding nested data complications,

and;

ugc filtering: A rule-based filter that ensures only UGC is

extracted from the page, which enhances precision.

This process does not describe later steps, such as data cleansing,

which occur after the data has been extracted from the page and are

considered out of scope for this research. If the UGC is present and

disassembled into type groups, it can be accessed and manipulated

further.

Each of these steps is described further in the sections below.

5.4.1 Collection

Prior to running any data extraction algorithms on a data source,

significant preparation is required. Because AJAX and dynamic

DOM manipulation are in heavy usage on modern sites, it is no

longer possible to simply issue an HTTP request and save any raw

page data returned. The advent of the "‘single page website"’

requires that any method of extracting UGC needs to fully emulate a

user by emulating the browser rendering, Javascript engine and any

required user interaction in order to expose linked UGC hidden

behind pagination fields.
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5.4.1.1 Accessing Deep Data

Figure 28: Proposed architecture for pagination handling

In order to interact with these elements, they first need to be reliably

identified. Fig. 28 depicts the preparation process. Once the page

and all AJAX requests have been completed and rendered,

expansion and pagination elements can be identified. This process

must be performed recursively - new content injected dynamically

into the DOM from an AJAX request may itself contain further

expansion or pagination elements, which must also be processed.

New page states are stored. Once this process has been completed,

page states may be passed to any extraction algorithm - even older

algorithms not designed to operate on dynamic DOM trees.

Pagination serves to limit the size of requests required to

dynamically render pages, but also to restrict the amount of content

available to the user. While a user may not want to view 600
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comments at once, applications analysing social comments desire

access to every available piece of data, and therefore requires a

method of identifying and triggering pagination and expansion

elements so that comprehensive data can be collected.

Fortunately, the frequent use of Cascading Style Sheets (CSS) and

Javascript frameworks has led to similarities between pagination

structures and expansion links. By designing broad rules, most of

these structures can be identified regardless of page design. This

research identifies three primary structures that require handling:

pagination: Pagination elements generally consist of a numeric

sequence containing links to data pages, sometimes within a

select box, as seen in Fig. 29.

expansion link: An expansion link is often interleaved throughout

nested comment trees, and can be clicked by a user to expand

the replies within that thread.

redirection link: A redirect link is used on some pages when

comments are completely isolated from the page, and provides

a link to another page consisting primarily of social content.

(a) (b)

Figure 29: Examples of pagination elements
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Figure 30: An example of an expansion link within a social data structure

To effectively collect the raw data required to extract UGC, the

collection process must be robust and able to properly handle the

above structures. Each part of this process is described in the

following sections.

5.4.1.2 Scraping Dynamic DOMs

To retrieve the fully-rendered page, a method of emulating user

interaction and standard browser processes (such as Javascript and

page rendering) is required. Solutions have previously been

suggested that use an embedded browser to render page content

before further processing takes place (Xia, 2009; Mesbah et al., 2012).

Automated approaches have no need for actual presentation of the

page, so a headless solution is preferable in order to reduce external

dependencies and resource usage.

To satisfy these requirements, PhantomJS is used. (Hidayat, 2013).

PhantomJS is a headless browser emulator capable of dynamically

rendering pages, including handling any requisite Javascript

requests.
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5.4.1.3 Locating and Interacting with Data Links

In order to extract all possible data from a page, user interaction

with pagination and expansion elements needs to be simulated. The

interaction should cause the browser emulator to dynamically

modify the DOM tree, which can then be stored for later parsing by

extraction algorithms.

To facilitate this interaction emulation process, Selenium (Holmes

and Kellogg, 2006) is utilised, a real-time interactive web testing

framework. Selenium is able to emulate user interaction while

rendering pages. Combined, PhantomJS and Selenium provide a

virtual browser and testing agent that is able to load and render

content and interact with it in a realistic manner, while still

providing common DOM manipulation and parsing tools such as

XPath and CSS selectors.

discovering data links Content expansion elements can be

identified by searching for elements containing certain text

patterns, which allows a reasonable estimation of redirection

and expansion links to be made. Links that lead to additional

data are often identified by a qualifier followed by a certain

noun, such as “more comments”. While there are several

English words synonymous to “more” and “comments”, a

regular expression is able to match combinations of these

words in order. Similar principles can also be applied to

languages other than English.

Regular expressions can be generated that can be applied to a

page to locate data link candidates. The candidates can then

be filtered further to exclude any words that can lead us to
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unwanted content. Of the discovered elements, those that are

able to respond to user interaction are stored.

Once appropriate data link elements have been discovered,

Selenium is used to simulate a user “click” on these elements.

The resulting data from this interaction - whether a new page

or dynamically-loaded content - is stored in an set of page

content for later use.

navigating through pagination Identifying and interacting

with pagination elements on a page is more difficult than the

data links in the previous section. While some pagination

blocks contain names or classes that can be matched to regular

expressions, many structures do not contain relevant

identifiers. To detect these blocks, features that define a

pagination structure should be searched for instead.

Listing 31 presents a simple algorithm designed to locate these

structures. Pagination blocks typically consist of a list of

elements containing consecutive ordered integers representing

data pages. Because values are often skipped for presentation,

the entire list is unlikely to be consecutive - formations like this

can be included by instead checking for spans, e.g. 1,2,3,7,15

becomes 1-3,7,15. These numbers can either be the values of

individual clickable elements or option fields within a select

box, which are both common designs for pagination blocks.

Structures that contain value lists following these rules are

searched for, which identify pagination blocks. These blocks

can also contain “previous”, “next” and “all” buttons, which

can be used. Repeatedly interacting with the "next" button

cycles through every available page, while the “all” button

often redirects to a view showing all available data.
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1: function FindPaginationNumbers(domtree)
2: for each tag in domtree do
3: values← tag.children.strings
4: digits ← list(value for value in values if value is an

integer)
5: spans← intspan(digits) . converts [1,2,3,5] into [1-3,5]
6: if length(digits) > length(spans) then . found

consecutive ints
7: if sorted(digits) == digits then . ints appeared in

order
8: links← buttons or links in tag.children
9: if length(links) > length(digits) then

10: pagination← tag
11: return pagination
12: end if
13: end if
14: end if
15: end for
16: end function

Figure 31: A simplified example of finding a numbered pagination block

Elements in the DOM tree are matched against these candidate

structures. To optimise this process, a regular expression

search can be used to quickly locate any possible candidate

elements, followed by a slower (but more thorough) iterative

search. An example search algorithm is presented in Listing 31,

which searches for consecutive integer spans representing

clickable elements, such as the example in Fig. 29a. Listing 32

presents a similar algorithm designed to locate pagination

select boxes, like the example in Fig. 29b.
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1: function FindPaginationSelect(domtree)
2: for each tag in domtree do
3: select← tag.find("select") . find a single child tag of type

select
4: if select then
5: options← FindAll(select, "option") . find all children

of tag select that are type option
6: values ← list(tag.value for tag in options if tag.value

is an integer)
7: if length(values) = length(options) and
length(options) > 1 then

8: pagination← tag
9: return pagination

10: end if
11: end if
12: end for
13: end function

Figure 32: A simplified example of finding a select-box pagination block

The pagination block can be expressed as an identifying XPath

(Meneghello, 2015) which allows the block to be located again

easily on new pages. Links such as "next" or "all" are expressed

as direct relative XPath (Meneghello, 2015), while numbered

elements are expressed as grouped relative XPath. These XPath

are then passed to Selenium, which handles the interaction.

Using this process, interaction with sites for the purpose of

gathering UGC can be automated. Redirection links are

identified and new page states collected. Expansion links are

recursively interacted with to expand the DOM tree with

additional UGC. Pagination structures are interacted with to

include additional UGC pages. Upon completion of this

process, a full set of page states are available that can undergo

the Data Extraction process presented in the next section.
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5.4.2 Canopied Feature Hashing with Nested Structure Detection

A structure detection algorithm such as those described in Section

5.2 can be applied to find UGC structures within collected HTML

blocks. CFH-NS is a new UGC extraction algorithm developed in

isolation from previous research, specifically targeting

user-generated content. To implement this algorithm, the Python

(Van Rossum and Drake, 2003) programming language was used,

along with a heavily modified BeautifulSoup (Richardson, 2013), a

DOM tree parsing library, to provide additional functionality.

1 <li>

2 <a id="m_ucMessageDisplay1548290_m_anchMessageAnchor"

name="m1548290"></a>↪→

3 <h3 class="">Patrick:</h3>

4 <p class="date">29 Jan 2015 3:15:55pm</p>

5 <p>Abbott displays all the hallmarks of a highly

delusional right-man. He appears egotistical in the

extreme and it should now be obvious to all that he

is an extremely dangerous individual and one who

should never be in a position of power, let alone

being leader of a nation</p>

↪→

↪→

↪→

↪→

↪→

6 <p>

7 <span>

8 <a class="popup"

href="NewMessage.aspx?b=69&amp;t=12532">↪→

9 Reply

10 </a>

11 </span>

12 <span>

13 <a class="popup"

href="AlertModerator.aspx?b=69&amp;m=1548290">↪→

14 Alert moderator

15 </a>

16 </span>

17 </p>

18 <ul></ul>

19 </li>

Figure 33: An example DOM tree for a single comment
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Structure matching operates by breaking a DOM tree into

individual branches, anchoring at different nodes within the tree. An

example DOM tree for a single social comment is presented in Fig.

33, in which the desired anchor would be the top-level LI tag. To

locate similar structures, an attempt is made to match the structure

derived from that branch with other branches in the tree. A quick

and effective means of comparing these branches is through the

generation of a canopied feature hash, henceforth known as a

TagHash.

5.4.2.1 Tag Hashes

TagHashes express the structure of a tree and its associated tags in a

simplified manner, stripping out unique features. Rather than

attempting to match element attribute values directly (which may

include unique attributes, such as an ID) the existence of attributes,

specifically ID and name, are matched. This provides a level of

differentiation not present if only matching tag types, and assists in

tree comparison.

TagHashes are expressed as a Javascript Object Notation (JSON

(Crockford, 2006)) string. Figs. 34 presents two example TagHashes

of the same structure, Fig. 33, to different depths. Each TagHash is a

simplified representation of the DOM tree for that structure,

genericised to allow for partial-tree matching whilst retaining some

differentiating features. Each TagHash is effectively a signature for

the DOM block.
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1 {’li.00’: [

2 {’a.11’: []},

3 {’h3.00’: []},

4 {’p.00’: []},

5 {’p.00’: []},

6 {’p.00’: []},

7 {’ul.00’: []},

8 ]}

(a) Depth 1

1 {’li.00’: [

2 {’a.11’: []},

3 {’h3.00’: []},

4 {’p.00’: []},

5 {’p.00’: []},

6 {’p.00’: [

7 {’span.00’: []},

8 {’span.00’: []},

9 ]},

10 {’ul.00’: []},

11 ]}

(b) Depth 2

Figure 34: TagHashes of the structure in Fig. 33

5.4.2.2 Comparing Tag Hashes

To match similar structures together and identify as many UGC

structures as possible, a method of comparing DOM structures must

be developed. Several techniques have been used in previous

research (Jindal and Liu, 2010; Bille, 2005; Zhai and Liu, 2005).

Initially, a simple tree-comparison algorithm was used that checked

for an identical match between structures. Due to the

structurally-variable nature of UGC and page design (such as the

use of BR or P tags to structure paragraphs), this was later expanded

to allow for partial matches.

The TagHashes are compared using text diffing tools. Using a text

representation of each TagHash and computing the difference

between them using standard tools provides surprisingly good

results, including the ability to ignore unaligned branches. The

string representations of TagHashes ensure that the type of

difference (whether an attribute change, a full branch change or a

node change) is easily distinguishable. This even allows for variance

in scoring penalties for different tree modifications, similar to how

tree edit-distance comparisons (Bille, 2005) function.
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1 {’li.00’: [

2 {’div.01’: []},

3 {’div.00’: []},

4 {’p.00’: []},

5 {’a.00’: []},

6 {’div.00’: []},

7 {’a.00’: []}

8 ]}

(a) TagHash 1

1 {’li.00’: [

2 {’div.00’: []},

3 {’p.00’: []},

4 {’dl.00’: []},

5 {’p.00’: []}

6 ]}

(b) TagHash 2

1 --- a

2 +++ b

3 {

4 ’li.00’: [

5 @@ -0,3 +0,5 @@

6 +{’div.01’: []},

7 {’div.00’: []},

8 {’p.00’: []},

9 {

10 +’a.00’: [],

11 -’dl.00’: [],

12 },

13 {

14 +’div.00’: [],

15 -’p.00’: [],

16 },

17 +{’a.00’: []}

18 ],

19 }

(c) Diff

Figure 35: Example diff: two TagHashes and their resulting diff, showing
node and branch modifications

Fig. 35 shows the result of a text diff between two TagHashes. As

illustrated, a node addition or subtraction is represented by a line

starting with “+" or “-" respectively, with accompanying braces. A

tag modification is represented by two lines starting with “+" and “-"

and no accompanying braces. These are seen in Fig. 36. The addition

or subtraction of a branch is represented similarly to a node addition

or subtraction, but contains multiple tags on the diff line. Hence, by

checking the number of tags on a diff line the number of tags made

up the branch can be determined and scored appropriately - which

can be accomplished with a simple regular expression. The diff

format provides a simple way of performing scored comparisons by

assigning each action (tag modification, tag addition/subtraction,

branch addition/subtraction) with a penalty score. By comparing

this penalty with the number of tags involved in the comparison, a
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similarity score between the trees can be determined - if over a

specified threshold, the two trees are deemed similar.

1 +{’div.01’: []},

2 -{’div.00’: []},

(a) A branch addition/modification

1 +’div.00’: [],

2 +’li.00’: [],

(b) A node addition/modification

Figure 36: Examples of diff syntax for branch modifications

5.4.2.3 Finding Repeating Structures

To detect repeating UGC structures on a page, a list of TagHashes is

first built - a TagHashList. This can be built using every possible tag

on a page, or restricted to a subset of tag types likely to hold UGC

items. The TagHashList class contains additional functionality that

automatically groups together structures into buckets based on their

TagHash, and can then output common structural XPaths

(Meneghello, 2015). The TagHashList also provides the ability to

apply custom filters over the data to ensure that the identified

structures contain certain items - this is particularly useful when

dealing with UGC.

With a populated TagHashList, structural XPath can be generated

to match discovered structures. These XPath can then be constructed

into wrappers and used to locate structures to extract data from

additional pages.

5.4.3 UGC Filtering

Upon conclusion of the structure-matching process, a set of similar

data structures remains, but little information as to what they contain.

As social data is the primary focus of this process, it is desirable to

be able to filter the detected data records to only those that are likely
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to contain social data. These same principles can be applied to other

data types as well - filters can be developed to limit the data records

to those containing e-commerce data, for example.

As discussed previously in the section, social data is defined to be

a structure that contains at least three primary elements: an origin, a

timestamp and a message. In terms of datatypes, this is a string

(origin), a date/time/datetime (timestamp) and text (message). To

expand the applicability of filters, fields within the discovered

structures can be typed and filters designed to match these types.

5.4.3.1 Type Discovery

Determining the datatype of a single field is difficult - a set of three

words could be a short string, or a block of text. For UGC, the

difference is important - a string can represent a user identifier or

location, while text usually indicates content. To ensure that fields

are not mistyped, individual fields cannot be examined in isolation,

but rather grouped with the same fields from other structures that

have a matching signature.

With multiple values available per-field, the probability that a field

is of a certain datatype can be determined and compared to a

predetermined threshold. Using this method of probabilistic

type-checking, the type of the field can be inferred.

To perform this type determination, the value of each descendant

tag is first extracted from the parent structure. By iterating through

the tree below the parent, all descendant tags are extracted. This

presents a further challenge: if a UGC structure is nested within a

parent structure, such as replies to a comment, fields from within

the nested structure can be accessed. To ensure that this does not

occur, the TagHash of possible nested children are compared against
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their ancestors - if a match exists, a nested structure has been

discovered. This approach does not work for nested children that

have a different structure to parents, however.

Some types require more work to validate than others. Text can be

discovered by checking for the presence of newline characters or BR

tags and having high average word count, while strings are short

and generally do not contain punctuation. Dates can be particularly

problematic, as they can be represented in standard ways (e.g.

ISO8601 (Klyne and Newman, 2002)) or just as times (e.g. 5:12am) or

even in relative terms (e.g. 16 minutes ago). Very lenient date

parsing must be used, and the probability-based checking can be

used to exclude some fields that contain dates embedded within text

content - while some content fields may contain a time or date, it’s

not likely that every instance will.

The type determinations for each instance of the field are

represented as boolean values in a list, and a simple calculation is

used to determine the percentage of instances that identify as each

type. If any of these types exceeds the predetermined threshold, the

field is considered to be of that type. Once an appropriate type has

been decided upon, the relative field location and the position of the

data (e.g. within a certain attribute, or the text value of the tag) is

noted.

During this process, additional data alignment and cleaning is

performed. If the field is only aligned with a few structures, it gets

tagged as an optional field. Fields that have constant templated

values are discarded. Any tag that contains a series of text-like tags

is noted as a text parent, and children are discarded from the list -

this prevents individual paragraphs being included as separate

fields, preferencing the enclosing tag instead.
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5.4.3.2 Field Cleansing

1 {

2 ’datetime’: [’p[1]/inner_text’],

3 ’url’: [

4 ’p[3]/span[2]/a[1]/@href’,

5 ’p[3]/span[1]/a[1]/@href’

6 ],

7 ’text’: [’p[2]/text’],

8 ’string’: [’h3[1]/string’]

9 }

Figure 37: Field types discovered from a set of UGC structures similar to Fig.
33

Fig. 37 presents a completed set of type-checked fields. With each

valid field sorted into type-buckets, a filter checking for the existence

of certain types can be applied. For UGC, a string field, a datetime

field and a text field are required, all of which are present in the

figure. Hence, the structure being tested satisfies the requirements of

a UGC field and is appended to a list of discovered fields.

1 {

2 ’// li [ count(a)=1 and count(h3)=1 and count(p)=3 ]’: {

3 ’other’: [],

4 ’content’: [’p[2]/text’],

5 ’datetime’: [’p[1]/inner_text’],

6 ’name’: [’h3[1]/string’]

7 }

8 }

Figure 38: A wrapper constructed from an expanded version of Fig. 33,
including fields

Using the discovered set of UGC structures and their fields, data is

extracted and aligned. In this phase of filtering, the most appropriate

instance of each type is automatically selected. Once completed, the

resulting structure and list of fields is generated into a wrapper, seen

in Fig. 38.
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5.4.3.3 Filtered Extraction

1 [

2 {

3 ’other’: [],

4 ’content’: [’Abbott displays all the hallmarks of a highly

delusional...’],↪→

5 ’datetime’: [’29 Jan 2015 3:15:55pm’],

6 ’name’: [’Patrick’]

7 },

8 {

9 ’other’: [],

10 ’content’: ["Every footy team needs a head-kicker but you

do not make him captain"],↪→

11 ’datetime’: [’29 Jan 2015 3:47:38pm’],

12 ’name’: [’Tony’]

13 },

14 {

15 ’other’: [],

16 ’content’: [’@Tony:\nTony Abbott displayed all of his

head kicking prowess as...’],↪→

17 ’datetime’: [’29 Jan 2015 4:17:03pm’],

18 ’name’: [’JohnC’]

19 },

20 {

21 ’other’: [],

22 ’content’: [’Like’],

23 ’datetime’: [’29 Jan 2015 6:07:58pm’],

24 ’name’: [’Arthur’]

25 },

26 ]

Figure 39: Data extracted from a document using the wrapper generated in
Fig. 38

This wrapper can then be used to extract data from other pages

made from the same templates. The extraction process automatically

injects the data into appropriately-named fields, as seen in Fig. 39.

This data can then move on to additional processing, cleaning and

use in analysis.
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5.4.4 XPath Extension Types

Several algorithms detailed in this chapter make use of custom

XPath extension types. XPath (Clark and DeRose, 1999) is a

language designed to locate and extract elements within structural

XML documents, including HTML. It can select the attributes or

values of single or multiple tags at any depth within the XML tree,

using direct paths or searching by predicates. XPath is a

commonly-used scraping tool, and are often used in data extraction

wrappers due to their simplicity. This section introduces an

extended use of XPath that is particularly useful for data extraction.

5.4.4.1 Structural XPaths

A structural XPath can locate elements in a DOM tree based on a

minimal set of available elements. This provides the ability to find

objects within the DOM tree that match certain tag layouts, which

is useful for tree-matching algorithms. An example of a structural

XPath is shown in Fig. 40, which also illustrates that the structural

XPath can be generated to different tree depths.

1 // li [ count(a)=1 and count(h3)=1 and count(p)=3 ]

2 // li [ count(a)=1 and count(h3)=1 and count(p)=3 and p [

count(span)=2 ] ]↪→

Figure 40: Two example structural XPaths: to depth [1, 2]

An algorithm to generate a structural XPath is presented in Listing

41. At each level of the tree, the tag types of children are counted. By

using the XPath predicate ‘count()‘, elements that contain a precise

number of certain tag types can be selected. By going deeper into the

tree, more complex structures can be selected because only elements

that exactly match the predicate in each branch of the tree will satisfy
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the search. Leniency is allowed for structures that contain tags not

mentioned by the predicates, as only tags mentioned in a ‘count()‘

predicate are checked.

1: function RecursiveStructureXPath(tag,depth, level = 0)
2: if tag.children and level 6= depth then
3: child_count← count of children by tag type
4: path_parts ← list("count(child.type)=child.count" for
child in sorted(child_count))

5: recursed_children← list(RecursiveStructureXPath(child,depth, level+
1) for child in tag.children)

6: children_xpath← join(path_parts, " and ")
7: if children_xpath then
8: children_xpath← "[ children_xpath ]"
9: end if

10: end if
11: if children_xpath then
12: return "tag.name children_xpath"
13: end if
14: end function
15: function StructureXPath(tag, depth)
16: return "// " + RecursiveStructureXPath(tag, depth)
17: end function

Figure 41: Generating a Structural XPath to a specific depth

Once generated, a structural XPath can be given to an XPath engine

and used to locate elements that match the structure described. For

data extraction, these XPaths are used to locate elements that match

the generated wrapper, and fields can then be derived from those

elements using relative XPaths, described in the following section.

5.4.4.2 Relative XPath

Relative XPath can be used to navigate from one element to another,

if elements are ancestrally related. This provides a simple way of

expressing particular fields within a parent element, which is useful

for data extraction. An example of relative XPaths are shown in Fig.

42.
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1 ul[1]/li[1]/h3[1]

2 li[1]/a[1]

3 span[2]/p[4]/li[2]

Figure 42: Three example relative xpaths, navigating from one point in the
tree to another

An algorithm to generate a relative XPath is presented in Listing

43. Starting at the child, the sibling position of the tag is determined

before walking up the tree. Once the parent is reached, the XPath is

developed. In order to support a broader range of returned data than

standard XPath, the retrieval engine is extended to include several

more options, such as inner_text and string.

1: function RelativeXPath(tag, target)
2: path_components← list()
3: loop
4: if tag == target then
5: break()
6: else
7: if tag.parent then
8: path_components += SiblingPosition(tag)
9: tag← tag.parent

10: else
11: path_components += tag.name
12: break()
13: end if
14: end if
15: end loop
16: xpath← path_components joined by "/"
17: return xpath
18: end function

Figure 43: Generating a relative XPath from one tag to a parent

5.4.4.3 Identifying XPath

An identifying XPath can be used to locate a specific element in the

DOM tree, even if the element is not otherwise unique. While some

wrappers use tag position to select elements, this is not always

reliable - selecting the 15th element in a list won’t work on a data
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structure that only has 13 elements. To work around this, the nearest

unique ancestor is located and a relative XPath is derived from that

element. A couple of examples are shown in Fig. 44.

1 //ul[@id="comments"]/li[3]

2 //ul[contains(@class, "comments-paginate") and

contains(@class, "page")]/li[2]↪→

Figure 44: Two example identifying XPaths, from one point to its nearest
unique parent

Similar to relative XPaths, the creation of an identifying XPath

starts at the child and walks up the tree until a unique parent is

discovered. This can be an element with an ID attribute (which are

unique) or a set of classes that are likely to be unique - or at least

fairly discerning. In some cases, this may be the element itself - in

which case, the identifying XPath is quite simple. In others, a unique

parent may be several levels up. An algorithm to generate

identifying XPaths is presented in Listing 45.
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1: function IdentifyingXPath(tag, target)
2: path_components← list()
3: loop
4: if tag == target then
5: break()
6: else
7: if tag.id then
8: path← "tag.name[@id=’tag.id’]"
9: path_components += path

10: break()
11: else if tag.classes then
12: class_paths← list("contains(@class, ’cls’)" for cls in

tag.classes)
13: path← "tag.name[class_paths joined by ’and’]"
14: break(
15: else)
16: if tag.parent then
17: path_components += SiblingPosition(tag)
18: tag← tag.parent
19: else
20: path_components += tag.name
21: break()
22: end if
23: end if
24: end if
25: end loop
26: xpath← join elements in path_components with "/"
27: return xpath
28: end function

Figure 45: Generating a identifying XPath from one tag to a parent

Identifying XPaths are particularly useful for finding and locating

specific elements, rather than similar structures. They can be used to

express and locate buttons, links or pagination elements.

5.5 discussion

One of the key research areas for potential improvement identified

in Section 2.6 is the ability to access currently-inaccessible social

data. This data, such as comments on a news website or reviews on

an eCommerce site, often contains valuable information - and
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without an API provided to access it, remains unusable without the

development of manual wrappers. Since these wrappers incur

significant development cost and must be individually written

per-site, an automated process for extracting this data could provide

significant value to both academic and commercial applications.

The CFH-NS algorithm solves this problem through a number of

key functions. Firstly, it allows easy access to data on dynamically-

generated sites that do not provide APIs by emulating a browser and

automatically stepping through any pagination present. Secondly, it

infers a data wrapper specifically for social data (though provides

expansion to any kind of data). Thirdly, it uses this wrapper to extract

social data from the site and returns it in a known structure, which

can then be integrated into the SMAAS framework like any other

data.

Because the SMAAS framework provides distributed collection,

integration and post-processing, the CFH-NS algorithm can be used

much like any of the other data sources, operating over unstructured

web pages. Hence, any cross-platform linkages (such as users that

share links to news websites over Twitter) can be evaluated by

CFH-NS and have data automatically extracted - which, in turn, may

contain cross-platform linkages to other sources. This recursive

seeking and scraping capability allows the SMAAS framework to

perform very broad cross-platform searches for data and sources,

and provide the entire set of social events back for presentation and

post-processing.
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5.6 conclusion

This chapter proposed a new process for the automatic extraction of

generic social data from the web, involving three main components:

a new method for automatically navigating generic sites to extract

social data, a new algorithm for discovering and extracting nested

social data structures, and a new technique for typing and

classifying social data fields. CFH-NS, a social data extraction

algorithm, represents a new state-of-the-art algorithm in

automatically extracting user-generated content from generic web

pages and significantly improves recall compared to existing data

extraction algorithms. The user emulation and interaction techniques

can significantly increase the amount of social data collected from

generic web pages by allowing for generic navigation of the deep

web. Finally, the data typing and classification algorithms provide a

standardised interface to user-generated content on pages, and can

be expanded easily to other types of data structures.

The combined use of these three techniques increases the reach of

social data mining into pages containing generic user-generated

content, including news articles and comments, forums and other

sites that do not provide an API for retrieving data. This data is

made accessible through a standard interface that provides simple

integration into analytical applications.

The CFH-NS algorithm in this chapter, as well as the intelligent

sourcing algorithm from Chapter 4 and the SMAAS framework from

Chapter 3 are empirically evaluated in the following chapter.
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E VA L U AT I O N

6.1 overview

Chapter 3 described the design of the SMAAS framework, which

aims to source, collect, integrate, query and present social data. This

framework enables the use of diverse social data platforms as

sources for sensor networking and analytics, and enables collection

of user-generated content from previously inaccessible sources such

as generic Web 2.0 sites. The framework also uses new techniques to

source social data in an efficient fashion, intelligently targeting only

relevant data and using the machine learning and natural language

processing techniques introduced in Section 4.4 to optimise search

queries in an iterative fashion.

This chapter presents evaluations of the major contributions of

this thesis: the collection, integration and analytics framework

defined in Chapter 3, the intelligent sourcing algorithm described in

Chapter 4 and the generic user-generated content extraction

algorithms described in Chapter 5.

Section 6.2 evaluates each of the requirements in Chapter 3 to

determine whether the framework satisifies the original design goals.

Section 6.3 performs an in-depth evaluation of the intelligent

sourcing algorithm described in Chapter 4. Section 6.4 evaluates the

effectiveness of the user-generated content extraction algorithm by

proposing a new testbed that more accurately represents the current

137
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state of the Internet and performing an empirical comparison of the

proposed algorithm against other web data extraction algorithms.

Finally, Section 6.5 evaluate the use of the SMAAS framework in two

real-world scenarios: an implementation and evaluation of an event

detection algorithm using the real-time analytical pipeline, and

using existing analytical tools to perform off-line analysis of a

political event.

6.2 requirements evaluation

Chapter 3 defined a set of requirements that each represented the

need for a solution to the challenges facing the use of social data in

sensor networking. To evaluate the proposed framework’s suitability

for use in social data mining and analytics, each of these

requirements must be satisfied. These requirements are composed of

both functional and non-functional requirements, and represent a

minimum set of functionality required for the SMAAS framework to

perform and support collection, integration and analytics of social

data.

The following section will discuss how the SMAAS framework

satisifies each of the defined requirements.

6.2.1 Sourcing

R1. Must be able to locate application-relevant social data sources in

an efficient and extensible manner.

Social Networking Sites (SNS) and social media provide an

enormous amount of data from users on a broad range of topics. To
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perform efficient collection, integration and analysis of this data, a

method of intelligently locating relevant data sources was developed

and described in Chapter 4.

The evaluation for this component is more fully described in

Section 6.3. It was determined that the algorithm provides a

significant increase in the number of relevant data sources over

existing search methods. It also introduces an amount of irrelevant

noise, but significantly less than collecting all available data. After 4

iterations of the sourcing algorithm, approximately 40% of

discovered sources are relevant for the specified topic, compared to

an estimated <1% relevancy for the collect-all approach.

6.2.2 Collection

R2. Must be able to collect data from identified sources (both SNS

and other media) in a generic and extensible manner, regardless of

platform.

In order to enable generic social data mining and analytics, the

SMAAS framework is required to support the integration of

disparate social data sources. While some platforms require the

development of an API wrapper, others can use the generic

user-generated content extraction method described in Chapter 5.

The API wrappers are evaluated in this section, while the

user-generated content extraction techniques are evaluated in

Section 6.4.

Social data sources that provide an API can be accessed by the

proposed framework through the use of an API wrapper, as

described in Chapter 3. Due to the development lifecycle of APIs
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and adherence to backwards-compatibility, these wrappers require

minimal development and maintenance. Only three components

require development; authentication, API interaction and data

integration.

Each wrapper function can interface with existing

community-maintained platform libraries, often dramatically

reducing the amount of code required. As the platform libraries

abstract the API itself, maintenance of the wrappers is simplified

and primarily handled by the developers of the platform APIs. By

combining the use of existing authentication and platform libraries,

each wrapper requires a minimal amount of code to implement all

required functionality for each platform. The length of these

wrappers is illustrated in Table 1, which shows that a very small

amount of code is required to provide access to a platform, greatly

reducing complexity of wrappers.

Auth Get Search Stream Integrate Total

Twitter 13 9 18 39 29 108

Facebook 14 66 31 38 35 184

Reddit 14 24 8 37 58 141

Google 13 3 29 [Uses HTML] 45

RSS 8 19 32 59

HTML 24 [Uses Google] 35 26 85

Table 1: Source lines of code per function in each interface wrapper required
to establish functionality for use in the SMAAS framework

The framework is also able to generically collect user-generated

content and social data from generic data sources, such as HTML

pages. By utilising the new algorithms presented in Chapter 5,

significant amounts of data can be acquired from generic sources

with no prior knowledge of the format. These results are presented

in Section 6.4, and show that the CFH-NS algorithm represents the
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state-of-the-art at unsupervised collection of user-generated content

from generic pages, outperforming existing algorithms.

6.2.3 Post-processing

R3. Must support extensible data cleaning and post-processing

methods to ensure integrity of collected data.

Post-processing is an important part of the SMAAS framework

that allows for additional processes to enrich social events before

they are persisted for long-term analysis. Post-processing steps are

not performed for real-time analytics, due to the amount of time

added by this process. However, fully post-processed data is

available to SMAAS filters through an additional pipeline, in

addition to any method of serialisation used.

Each post-processing filter is isolated and performs a single

enrichment task, so that filters can be executed over a cluster of

worker resources. These tasks range from gender detection of social

nodes to detailed semantic analysis of text content, but can also

include cleaning tasks that would impact performance if they were

to be included in the integration process. For example, a

post-processing filter can be used to enrich a Facebook event with

the user’s location from their profile, which is not provided by the

Facebook API. To include this in the integration process would

dramatically increase the time taken to collect and integrate events

and possibly affect real-time analytics, hence it is completed in a

delayed fashion.

Due to the bus-based nature of the SMAAS framework, filters are

run in sequence, with an event considered "completed" once all
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relevant filters have been executed, depicted in Fig. 46. To improve

processing efficiency, each post-processing filter can process many

events concurrently through the use of worker pools.

Gender 
Detection

Entity 
Extraction

Sentiment 
AnalysisEvent

Completed
Event

Figure 46: Process flow of post-processing filters within the SMAAS
framework.

Fig. 47 shows an event that has undergone post-processing and

contains the results of sentiment analysis, entity extraction and

gender determination embedded. The gender detection filter

operates over the user’s given or username. The sentiment

dictionary shows positive, negative and neutral sentiment for the

whole comment, though other algorithms can break sentiment down

into smaller granularity.

1 {

2 "origin": {

3 "person": {

4 "given_name": "Jennifer",

5 "gender": "fem"

6 }

7 },

8 "sentiment": {

9 "pos": 0.45,

10 "neg": 0.23,

11 "neu": 0.3

12 },

13 "entities": ["Abbott", "Liberal", "Australia", "school"]

14 }

Figure 47: A SMAAS event with data enriched through post-processing,
including gender, sentiment and entities.
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6.2.4 Integration

R4. Must support the integration of heterogeneous data sources,

such that applications are not required to manually handle data

from different sources.

The SMAAS framework handles integration of heterogeneous data

sources during the collection phase, as described in Chapter 3. This

unified schema is presented to requesting applications, requiring no

additional code in client applications to handle data from difference

sources. Fig. 48 presents a sample ElasticSearch aggregated output of

the "‘headers.interface field"’, representing the source interface that

the event came from, detailing the variety of different interfaces and

sources used by the framework when collecting data.

Figure 48: Event count per interface of a sample collection run by the
SMAAS framework for three days, consisting of data from
approximately 17.5 million unique nodes - each node being a
page, a Twitter user, a Facebook page or the like.

Additional collection or cleaning work required for certain sources

can be implemented during the post-processing phase, allowing a

the integrated set of data to reach the real-time processing pipeline
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as quickly as possible while also persisting the most complete version

of the event to the chosen serialisation pathway.

To evaluate the ability of the framework to handle the integration

of heterogenuous data sources, a pipeline was created. This pipeline

consisted of the following:

collection A set of collection workers were executed and

instructed to stream real-time data from all available APIs.

This consisted of: Facebook1, Github, Reddit, Twitter and a

recursive intelligent sourcing streaming algorithm, as

described in Section 4.4.

integration All events produced by the collection workers were

integrated into a standard format.

post-processing Events underwent sentiment and gender

analysis.

serialisation Events were then stored in ElasticSearch.

Some 33 million events were stored as a result of this collection

process, running for approximately two days. The integrated data

set had a consistent schema as described earlier in the thesis, with

variations as expected by variables reported by APIs (e.g. Twitter

reports location if enabled, while location will never be present for

Facebook messages).

1 While Facebook no longer provides a real-time public Stream API, such functionality
can be emulated by actively monitoring popular public Facebook pages,
e.g. news pages. In this instance, a number of these pages were monitored:
’9news’, ’abcnews.au’, ’theaustralian’, ’news.com.au’, ’SkyNewsAustralia’,
’SBSWorldNewsAustralia’, ’abcnews24.au’, ’abc’, ’theguardianaustralia’, ’mediaspy’,
’ConversationEDU’, ’7NewsAustralia’, ’bbcnews’, ’nbcnews’, ’cbsnews’, ’abcnews’,
’nytimes’ and ’wsj’.
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6.2.5 Real-Time and Delayed Processing

R5. Must provide unprocessed data in real-time and post-processed

data historically, with advanced querying available to historical data.

Both real-time and delayed processing are possible with the

SMAAS framework, isolated as two separate processing pipelines.

The real-time processing pipeline is provided with the base social

event (prior to any post-processing) immediately after integration, to

lessen latency introduced by the post-processing phase. As

post-processing can contain a number of network and

processing-heavy tasks, the reduction in latency can be significant -

particularly if post-processing workers are overtasked, as seen in

Section 6.2.7. Real-time analytics can be performed through the use

of a filter, as described in Chapter 3 and demonstrated in Section 6.5.

Delayed processing is available in two forms: through a filter (as

with real-time analytics) or through the available serialisation

pathway. Filter-based delayed processing operates in a similar

manner to real-time analytics, but all post-processing is completed

and the enriched data is available for use. The post-processed data

can also be passed through the serialisation pipeline into software

suited for analysis, such as Elasticsearch Kuc and Rogozinski (2013)

and Kibana Elasticsearch BV (2015a). Understandably, both of these

options introduce additional latency compared to real-time

analytics.
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Real-time 
Filters

Delayed 
Filters

Serialisation

Collection & 
Integration

Post-Processing

Latency
A B

Figure 49: Latency increases at each step of the processing pipeline.

Fig. 49 shows the increase in latency as the pipeline progresses.

(A) denotes the phase during which events are provided in real-time,

without post-processing. (B) denotes the phase during which fully

processed events become available for use in analysis, including

during serialisation and delayed filters. For an evaluation of the

latency over the different sections of the framework, see Section

6.2.7.

6.2.6 Presentation

R6. Must be able to present data in extensible formats for

compatibility, including standard formats (XML/JSON) and more

complex methods (AMQP, event-passing).

The SMAAS framework supports any kind of data serialiser for

querying, storage and presentation by using an intermediary daemon

that consumes events from the bus and persists them to the engine

of choice. The events can be serialised in any fashion suitable for the

data sink - from a relational model for use in RDBMS to a JSON

document for Document Storage Engines, as pictured in Fig. 50.
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1 {

2 "headers": {

3 "id": "653964760610926593",

4 "locale": "en",

5 "interface": "twitter"

6 },

7 "payload": {

8 "content": "Forget Frieze...go to @rownhamshouse nr

Soton. Super new work by @Matt_Forster, Alison

Orchard and Kate Richardson

http://t.co/UfHBorc02c.",

↪→

↪→

↪→

9 },

10 ...

11 }

Figure 50: Example JSON serialisation of a SMAAS event.

An example serialiser implementation has been provided for

ElasticSearch (Kuc and Rogozinski, 2013), which enables persistent

clustered document storage and querying. Similarly, serialisers can

be written for AMQP, relational databases or NoSQL databases such

as MongoDB (Chodorow, 2013), allowing for different types of

storage and analysis to be used, and supports integration with

existing analytical suites.

During the test run used to collect data in Section 6.2.4, 33 million

events were serialised into ElasticSearch and made available for

analysis.

6.2.7 Scalability

R7. Must be able to scale to a wide range of hardware, from high-

resource clusters to commodity hardware.

A major requirement of the SMAAS framework is the ability to

scale, from low-throughput deployments on commodity hardware to

high-throughput deployments across processing clusters. This
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allows for the use of small deployments to monitor a small number

of interfaces or a subset of available data from interfaces, while also

being capable of handling real-time data firehoses from a number of

interfaces simultaneously.

To evaluate the scalability of the SMAAS framework, a number of

experiments were performed using simulated social data to test the

performance of post-processing - the most processing-intensive task

performed by the framework. For the framework to operate at full

effectiveness, it must be able to post-process tasks at a rate equal

to collection. If it is unable to do so, only unprocessed events are

available for use in real-time analytics.

For this experiment, three post-processing filters were enabled:

entity extraction using a custom NLTK pipeline (Bird, 2006), gender

detection using SexMachine2 and sentiment analysis using

VaderSentiment (Gilbert, 2014). Entity extraction performs natural

language processing (NLP) of event content to extract stemmed and

lemmatized Named Entities3. Gender detection attempts to

determine the gender of an event origin by analysing the user’s

name or identifier. Sentiment analysis determines the event’s

sentiment towards certain entities within the content.

Table 2: Test platform instance types, running on Amazon Elastic
Computing Cloud.

Single Small Large

Event Bus

M4.4XLarge

M4.2XLarge
Logserver T2.Medium
Serialiser M4.XLarge
Collectors 4x T2.Large

Post-Proc 4x C4.2XLarge
4x M4.2XLarge

2 Available at https://github.com/MarcSalvat/sexmachine
3 Named Entities in this context include nouns, proper nouns and other identifying

words, not including any stopwords.



6.2 requirements evaluation 149

The tests were conducted on three test platforms, shown in Table

2. The first was using a single Amazon EC2 M4.4XLarge instance

running Ubuntu 14.04, RabbitMQ 3.5.6 with Erlang R16B03 for an

event bus, Redis 2.8.4 as a job queue, ElasticSearch 1.7.2 to serialise

and query processed data and the development version of SMAAS

using Python 3.4.0. The second was a small cluster, consisting of an

M4.2XLarge instance for the event bus running RabbitMQ and Redis,

an M4.XLarge instance running ElasticSearch, a T2.Medium instance

running a network logserver and 4x C4.2XLarge instances, each

running 8 post-processing worker processes. The third was a larger

cluster, consisting of the same resources as the small cluster but with

an additional 4x M4.2XLarge post-processing instances.

Each test consisted of the following steps:

1. Initialise EC2 resources with default configurations

2. Execute server, logger and worker processes

3. Execute simulate.py script to start pushing events into the bus

at a defined rate

4. Log post-process task queue / start / end times

5. Stop simulate.py script after 10 minutes

6. Wait until post-processing has completed

7. Store, parse and analyse logs for performance data

8. Terminate and delete EC2 instances

This process, including the initialisation and destruction of EC2

resources, was automated using Python and the Amazon AWS API.

The steps were repeated on each platform for different rates of event

production: 25, 50, 100 and 1000 events per second (EPS). Hence,
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each test resulted in different total numbers of events produced:

15,000, 30,000, 60,000 and 600,000. Data in each event was partially

randomised, presenting a similar level of computational difficulty

for the post-processing algorithms. Times were logged for a number

of checkpoints in the process: the time each task entered the queue

(usually just prior to processing), the time it took to start processing

the task, and the time taken to complete processing.

Figures 51a through 52c present the time each task spent in the

work queue for each platform and EPS rate, represented as a rolling

mean across the lifetime of the processing work. More detailed

graphs are available in Appendix A, including processing time.
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(a) Time tasks spent in work queue, 25 events per second

(b) Cluster processing speed, 25 events per second

(c) Time tasks spent in work queue, 50 events per second

(d) Cluster processing speed, 50 events per second

Figure 51: Post-processing performance at different EPS.
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Unsurprisingly, the queue is susceptible to datacenter and

hypervisor-level/virtualisation latency, resulting in better

performance for low EPS rates on the single-instance platform, as

seen in Fig. 51a. As the event bus and workers exist on the same

resource, there is little latency and no network-related latency spikes,

with the queue only affected by hypervisor-level lag. By contrast,

both clusters have both increased and more variable queue times

due to the additional latency involved in workers requesting,

retrieving and responding to the event bus present on a different

logical (and possibly physical) resource.

Fig. 51b shows that at 25 EPS, all platforms are able to complete

assigned tasks at the same rate that they are presented.

At 50 EPS, the single instance is no longer sufficient to process

all available tasks in time, shown in Fig. 51d. Both clusters are able

to keep up, but the single instance can only process approximately

27 EPS. As a result, the single instance takes nearly 35% longer to

process the full set of 30,000 tasks. However, Fig. 51c shows that tasks

still spend less time in the queue due to the additional latency and

overhead required to use a remote worker pool.
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(a) Time tasks spent in work queue,
100 events per second

(b) Cluster processing speed, 100

events per second

(c) Time tasks spent in work queue,
1000 events per second

(d) Cluster processing speed, 1000

events per second

Figure 52: Post-processing performance at different EPS.

At 100 EPS, some of the processing latency resulting from multi-

tenancy on EC2 instances appears, present in Fig. 52a and Fig. 52b.

The single instance suffers from a drop in processing resources after

processing approximately 30% of jobs, and a temporary drop after

80%. The other platforms suffer minor spikes in available resources.

While both clusters are able to handle 100 EPS, the single instance

performs poorly. Fig. 52b shows the additional time required for the

single instances to complete all assigned tasks, nearly a 160% increase

over the clusters.

Generating 1000 EPS shows the true scalability of the framework.

While none of the test platforms are able to cope with the enormous

load, Fig. 52d shows the maximum processing rates for each. While

the small cluster achieves a throughput of approximately 105 EPS,

the larger cluster with an additional four worker instances manages

an average of 200 EPS. The small drop in efficiency is accounted for
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in the difference between resources used - while both use C4.2XL

instances (which have 31 Elastic Compute Units 4(ECU) available), the

larger cluster also uses four slightly less powerful M4.2XL instances

(26 ECU).

Table 3: The scalability of SMAAS components, either by the framework or
dependent on choice of implementation.

Component Scalable by SMAAS Scalable by Impl.

Sourcing x

Collection x

Integration x

Post-Processing x

Event Bus x

Serialisation x

Presentation x

Logging

The SMAAS framework was designed to be highly scalable, in

order to cope with varying levels of data throughput. The ability to

scale different SMAAS components is presented in Table 3, which

shows components that are scalable as part of the framework, or

those that are dependent on the selected implementation. For

example, the Sourcing, Collection and Integration components are

all scalable through the use of a SMAAS worker pool, such as those

evaluated above. The scalability of the Bus, Serialisation and

Presentation components depends on the technology selected for

those components - the default Bus implementation using RabbitMQ

is scalable, for example, as is ElasticSearch for Serialisation and

Presentation. The only component of the framework not scalable by

default is the Logging server, which has a very limited amount of

work - in the event that more processing resources were needed, a

4 A measure of the amount of processing resources available to an Amazon instance.
They are an indicator of the maximum processing power attainable, but are not
necessarily always available due to shared tenancy. https://aws.amazon.com/ec2/
faqs/

https://aws.amazon.com/ec2/faqs/
https://aws.amazon.com/ec2/faqs/
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more powerful instance could be used before any horizontal scaling

was required.

These results indicate that the SMAAS framework scales well to

different throughput, with the large cluster able to handle the data

collected by all generic streaming interfaces currently implemented5.

To handle additional data streams, it is trivial to add additional

processing resources.

6.3 intelligent sourcing evaluation

One of the prominent and novel advantages of the SMAAS

framework over existing methods of social data collection is the use

of on-demand social data sourcing. Effective data analytics relies on

the presence of quality data sources, so this is an important goal.

The evaluation in this section emphasises data sourcing, and

examines the relevance and quality of data sources discovered.

6.3.1 Experimental Setup

The sourcing algorithm was implemented as a SMAAS collection task,

taking advantage of the Natural Language ToolKit (Bird et al., 2009)

library for text mining. The sourcing algorithm was executed on an

Amazon EC2 m3.medium instance, and individual experiments were

conducted in a single run to ensure that the available social data did

not dramatically change between runs. All experiments in this section

were conducted in August 2014.

5 While this amount varies depending on the time of day, event throughput from
the generic streaming interfaces of Reddit, Twitter, Facebook and a subset of RSS
feeds averages approximately 120-180 EPS. Twitter’s public streaming API delivers
a sample portion of data created, which is variable.
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The algorithm used the SMAAS platform APIs to search and collect

data, as well as a generic web scraper used to further build keyword

lists from sources. Most services are subject to API search throttling

limits, and these limits are taken into account during the sourcing

process 6.

The process for each experiment consists of a series of iterations.

A single iteration consists of the following steps (subject to

configuration values):

1. Search using initial seed keyword7

2. Generate target source list

3. Retrieve content from list of sources

4. Mine content for commonly-occurring keywords and metatags

(URLs, Usernames, Emails)

5. Further add to source and keyword lists

6. If [broad_search]: Search using metatag lists (ie. Twitter users)

and add to sources

7. Iterate using expanded keyword set

There are a number of possible configuration options for each

experiment, which are explained below:

broad_search Whether the sourcing algorithm should also take

sources from collected content

max_search_results The number of results to return from a

search (important to avoid API throttling)

6 Most APIs place limits on searches and other functionality, while not limiting access
to real-time streams.

7 It is worth noting that a typical manual search on social media equates to only
performing this first step.
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The broad search algorithm also collects special metatags from

content, such as usernames and hashtags on Twitter, and email

addresses or URLs in static content. These metatags are then used to

broaden the search scope, discovering additional search vectors and

providing a significantly higher number of data sources while being

subject to much higher noise levels. These searches are examined in

the following section.

6.3.2 Results

6.3.2.1 Relevance

The relevance of discovered data sources is an important metric in

evaluating the usefulness of this sourcing algorithm. In order to

evaluate this, the algorithm was given a broad seed keyword

("Australian politics") and let to run over multiple iterations. The

source list was exported to a comma-separated value file and each

source was manually evaluated for relevance to the topic. This

process was executed twice: once as a normal search, and once with

the additional broad searching options enabled.

Sources are considered relevant and useful based on the following

set of criteria:

• Whether the source provides data containing one of the given

query keywords,

• Whether the source will continue to provide links and other

sources into the future, and

• Whether the source provides data that is of high enough

quality to be useful without requiring significant

platform-specific cleaning.
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By using these criteria and weighting them depending on

application parameters, each potential source can be scored to

evaluate relevance. If a source surpasses a predefined relevance

score, it is considered relevant. All other sources, including those

recorded as a result of algorithmic mishaps8, are deemed as

irrelevant. Relevance is a therefore a boolean result.

Each sourcing iteration consists of a single query to a data source,

followed by a period of post-processing. Hence, the cumulative

results collected by the algorithm on the fourth iteration have

required a total of four queries.

8 This includes results that are misparsed due to malformed HTML and useless
sources such as embedded advertising servers, both of which are considered failures
of the algorithm.
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(a)

(b)

Figure 53: Cumulative relevance of data sources; a) standard, b) broad

The most relevant sources are quickly and easily found by a

normal search with a low percentage of irrelevant results in the first

sourcing iteration, as seen in Fig. 53a. This is to be expected, as the

search APIs provided by platforms are usually quite good at

locating the small amount of most relevant information quickly. The

broad search finds a higher number of relevant sources, but with a

significantly higher number of irrelevant sources, shown in Fig. 53b.

In both instances, these sources are expanded and new keywords are
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derived, and additional relevant sources continue to be found at a

lessening rate.

(a)

(b)

Figure 54: Relevance of data sources; a) standard, b) broad

After the first two iterations, new sources continue to be found at

a relatively linear rate. The relevance of discovered sources decline

steadily relative to the total after the second iteration, but still

maintain an acceptable rate of discovery. Fig. 54b shows a steep

increase in irrelevant sources during the fourth iteration, as the

search space expands out beyond any semblance of relevance. The
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broad search maintains a much more even percentage of relevant

results over the search space.

6.3.2.2 Keywords

The search keywords (initially seeded as "Australian politics") are

expanded based on discovered content and the most relevant

keywords float to the top of the list. The first iteration of both

searches immediately expand the keyword set to contain mostly

relevant keywords, as seen in Table 55. Successive iterations narrow

the search space down to a specific set of topics that accurately

frame Australian politics. Interestingly, the broad search (which

relies more heavily on static page content rather than real-time social

networks) contains a higher number of historical keywords. A

number of these keywords from a broad search relate to the

government as of 2013, whereas those from the normal search relate

more to the state of Australian politics, circa 2014.

The difference in keyword sets between the search types also

affects the relevancy of discovered sources after successive iterations.

The iterative improvement of the search space during broad

searchers potentially explains why even the third and fourth

iterations of searching still contain a relatively high percentage of

relevant results, as seen in Fig. 54b. The normal search relies on a

much smaller set of newer content from which to derive keywords,

resulting in a lower discovery rate of historical data sources.
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Iterations

1 2 3 4

politics abbott abbott abbott
australia australia government tony
government government australia australia
australian news tony government
university australian news news
party minister minister minister
minister party party party
abbott politics people people
news tony pm politics
media people politics australian

(a)

Iterations

1 2 3 4

politics australia australia abbott
australia government abbott australia
australian politics government rudd
government party rudd labor
party australian party government
news abbott minister party
media minister labor minister
world labor australian news
minister rudd politics australian
abbott pm news election

(b)

Figure 55: Top 10 keywords used for searches; a) standard, b) broad

6.3.2.3 Signal-to-Noise

The signal-to-noise ratio of each search type was also examined,

relative to the total number of sources discovered. A normal search

discovers relevant data sources at a ratio of over 7:1 during the first

iteration, seen in Fig. 56a, but immediately drops to a very low

success rate in successive iterations. By comparison, Fig. 56b shows

that the broader search starts with a much lower success rate of
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(a) (b)

Figure 56: Signal-to-Noise Ratio of data sources; a) standard, b) broad

approximately 2.5:1, but maintains a steadier ratio well into later

iterations, providing a more steady flow of new relevant sources. As

explained in Section 6.3.2.2, this is likely due to the broader search

touching on a larger source of historical data sources due to

differences in keyword selection.

6.3.2.4 Analysis

The results of the sourcing algorithm indicate that the search

methods (normal and broad) operate along different parameters.

Normal searches rely more heavily on new data provided by

real-time sources such as Twitter and Reddit, while the broad

searches derive keywords primarily from older data sources such as

newsfeeds and articles found by Google. As a result, the training of

keyword sets tend toward two different trends: modern and

historical, but could also indicate a disconnect in discussion between

traditional media and social media. Both of these search types are

useful, depending on the desired application. Overall, both search

types provided a significant number of relevant data sources and

ultimately achieved their goal - to optimise the collection of social

media data.

These sources can then be passed directly into the collection and

streaming components of the SMAAS framework, allowing for
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continuous collection from relevant sources. This ensures that

relevant data is collected while not requiring a massive amount of

resources to monitor a very wide array of (potentially static) content.

There are a number of improvements that could be made to the

sourcing algorithm. One would be to increase the use of training to

include potential sources, preferring those new sources that had

multiple existing links to discovered sources. A second involves a

combination of both approaches, using historical keywords to search

social media sources and modern keywords to search historical data

sources.

6.3.2.5 Limitations

While the intelligent sourcing algorithm performs well at retrieving

additional relevant data sources than a normal search while keeping

a relatively low signal-to-noise ratio, it has a number of limitations.

It relies on the presence of an initial keyword that gathers enough

results to be able to iteratively improve the search space. If the initial

keyword is rarely used or not well-linked to the desired material, it

is unlikely to gather many additional sources. This also implies that

an initial focus area can be selected for wide-ranging event detection

using generic real-time streams are far more effective. Additionally,

due to API limits on most social APIs, using extremely broad seed

keywords is likely to gather only a fraction of available data.

Sources that come from a platform API (such as Twitter) can be

directly collected by using said API, but there are no APIs provided

for static content and web pages heavily featuring user-generated

content, such as comment-enabled news articles. The SMAAS

framework provides a method to extract data from these pages,

which is evaluated in the following section.
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6.4 generic collection evaluation

The Canopied Feature Hashing with Nested Structure detection

(CFH-NS) algorithm in Section 5.4.2 was developed for use with the

SMAAS framework to enable the extraction of user-generated

content from static and dynamic pages that are not accessible

through an API or other interface. This allows the framework to

collect from a much broader range of data sources than previously

accessible. This section presents an evaluation of this algorithm, and

evaluation of the automated interaction and social filtering

techniques presented in the same chapter.

The effectiveness of the CFH-NS algorithm presented in Section

5.4.2 is evaluated by comparing it with similar algorithms from

previous research, in keeping with previous evaluations of data

extraction algorithms (Liu et al., 2003; Thamviset and

Wongthanavasu, 2014a; Jindal and Liu, 2010). To test these

algorithms, each was run against a testbed of HTML data and

extracted structures were counted to determine recall and precision.

To evaluate the effectiveness of automated interaction algorithms,

the amount of data collected using traditional HTTP requests was

compared with the data collected using the interaction and

rendering techniques.

Testbeds for web data extraction algorithms already exist, such as

TBDW (Hirokawa Lab, 2004), ViNTs (Liu et al., 2005) and others.

Each of these testbeds contains a set of pages that contain data

records, such as Search Record Results or List Records. Evaluating

an algorithm against these testbeds is relatively simple - the

algorithm is run against the pages and the number of detected data
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records is compared with the number that are known to exist on

each page.

Two testbeds commonly-used in previous research (TBDW and

ViNTs) were compiled in 2004 and 2005 respectively, and

represented typical web design techniques for that time. However,

web design has dramatically changed in the time since then. HTML

standards and design paradigms have evolved to encourage better

structure while introducing higher complexity, which significantly

alters the requirements for web data extraction algorithms. Modern

pages also rely heavily on dynamic DOM interaction to render

content, making the collection mechanisms implemented in many

WDE algorithms non-functional.

These changes have effectively rendered the standard evaluation

testbeds inappropriate, as they no longer represent the state of

design on the Internet. Regardless, they would be unsuitable for

evaluation in this context: user-generated content was seldom

embedded into pages during the time period in which the testbeds

were compiled. The only sites that tended to contain UGC were

message boards or forums, whereas the shift to Web 2.0 approaches

has driven the expansion of primarily user-generated content pages.

These fundamental changes required not only the development of

new extraction techniques, but also of new evaluation techniques.

6.4.1 Methodology

To test the CFH-NS algorithm against existing solutions, a new

testbed was compiled that is significantly more representative of the

current state-of-the-art in web design and development

methodologies.
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A set of candidate URLs was crowdsourced, with participants

directed to provide sites that they commonly visited that used UGC

in some way. The candidate URLs provided covered news sites,

social media, blogs and online stores. The list was then filtered and

URLs excluded based on several criteria:

• the presence of an inappropriate amount of UGC (either not

enough to provide an appropriate sample, or so much as to

cause difficulty in storage);

• multiple sites with duplicate structures, e.g. blogs operating on

the same software with similar design themes;

• very obscure sites or those that are unrepresentative of the

state of the Internet, e.g. sites that have not undergone design

upgrades in the last decade; and

• sites on unreliable servers that did not always return page data

in a timely fashion.

The candidate list was culled in this fashion to a total of 49 URLs.

The pages require various amounts of interactivity to retrieve data,

consisting of different types of pagination and expand/redirect link

types and covering a wide range of design strategies for these

elements. The page designs also vary, with some using tag types in

structures (such as list elements), and others preferring to use DIVs

for everything (which can make extraction significantly more

difficult). The site designs represent modern web design, and are

representative of current and popular content on the Internet.

Some pages require dynamic DOM parsing, while others provide

content statically. This means that algorithms that perform their own

data collection must be able to handle dynamic content, else the

content is unavailable. In instances where it was possible, we have
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directly supplied the data to the algorithm, reducing its

responsibility to structure detection.

While the older testbeds are unsuitable for use in this evaluation,

the algorithms themselves are not. Although they are designed to

detect data records such as search results and e-commerce data

tables, UGC constructs share many of the same qualities and WDE

algorithms should be able to detect (but not necessarily isolate) UGC.

Hence, we only evaluate the effectiveness of structure detection for

other algorithms.

The full list of URLs selected is presented in Appendix A.

6.4.2 Results

6.4.2.1 Social Data Extraction

Web Data Extraction algorithms come in two broad types: those

designed to operate on single pages, and those designed to operate

on sets of similar pages. As the CFH-NS algorithm is designed to

operate on a single page, it was benchmarked against other

algorithms of this type.

The acquisition of the code for several WDE algorithms was

attempted by directly contacting the authors of previous research,

but limited replies were received. Few algorithms are provided

online, and a number of those are now non-functional. Hence, the

algorithms being evaluated are DEPTA (Zhai and Liu, 2005) and

BUW (Thamviset and Wongthanavasu, 2014a), both of which are

publicly available.

CFH-NS is able to split up fields into their appropriate type and

identify fields relevant to social data, which neither DEPTA nor

BUW was designed to do, so this functionality was not evaluated.
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The DEPTA and BUW algorithms are evaluated slightly differently.

Neither algorithm provides the ability to filter social data, so this

process was performed manually upon the various record types

returned by each algorithm. If a discovered record represented a

single social comment that contained the necessary fields outlined in

Section 5.4.3, it was deemed a successful extract. Any records that

contained nested data, did not contain the necessary fields or

represented a field within a record were considered a failed extract.

Records that were unrelated to social data were discarded and not

included in the evaluation, and are not reflected in recall or

precision.

DEPTA provides a Java binary that can be operated on a set of

collected data, but BUW only provides a live web interface and

performs its own collection.DEPTA was able to be passed a full set

of post-rendered and interacted content, but BUW was unable to

perform these duties on its own. To account for these problems, two

sets of tests were completed. Using data procured, interacted and

rendered by CFH-NS, performance of both CFH-NS and DEPTA

were evaluated for extracting social data structures. Then, using

their own collection mechanisms, DEPTA and BUW were evaluated.

In keeping with evaluation practices in previous research, two sets

of results were provided for recall and precision: "All Results"

describes recall and precision if including collection or WDE failures

as part of the results, while "Success Only" excludes failures and

only determines recall and precision for pages in which at least one

result was found.

Recall represents the number of relevant records available on a

page that were successfully discovered, while precision represents

the number of discovered elements that were relevant. F-score is
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Table 4: Summary of Experimental Results
AR-P CFH-NS DEPTA AR DEPTA-L BUW-L

Total 3155 3454/2981 853/764 1675 149/124 704/593

All Results:

Recall 94.5% 24.2% 7.4% 35.4%
Precision 89.2% 89.6% 83.2% 84.2%
F-score 0.92 0.38 0.14 0.50

Success Only:

Recall 94.5% 48.1% 48.1% 71.6%
Precision 89.2% 89.6% 83.2% 84.2%
F-score 0.92 0.63 0.61 0.77

calculated using a standard balanced algorithm that represents the

harmonic mean of precision and recall, seen in Eq. 1.

F1 = 2 · precision · recall
precision + recall

(1)

A summary of these results are presented in Table 4, while the full

results table can be viewed in Appendix A, in Section A.1. AR-P is

the number of available results from the paginated dataset,

produced by CFH-NS. AR is the number of available results without

any interaction required. The figures in each algorithm’s column

represent the total number of results found and the number of

relevant results. DEPTA-L and BUW-L are the "live" versions of each

algorithm, and represent the results if the algorithms perform their

own data collection rather than using CFH-NS’s collected set.

As seen in the table, CFH-NS provides a significant increase in

recall compared to DEPTA using the paginated set, while retaining

similar precision. This also represents a significant improvement in

both recall and precision compared to BUW, though BUW performs

well when only counting successful tests. When comparing all results,

CFH-NS represents a major improvement in F-score.
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A large part of the difference in recall between CFH-NS and the

live versions of DEPTA and BUW is due to dynamic DOM parsing.

Neither algorithm is able to render the DOM dynamically, and are

unable to retrieve the social data on pages. By counting the URLs

in which both DEPTA and BUW fail to retrieve data, the number of

pages that use dynamic DOM injection to render social content can

be determined. 51% of sites tested require dynamic DOM parsing to

retrieve social data, indicating that algorithms without the ability to

deal with this problem are unable to collect significant amounts of

social data.

Each algorithm presented was built with a specific purpose in

mind, but have often been cross-applied to different usages. The

DEPTA algorithm was designed primarily to extract eCommerce

data from table structures, while BUW was designed more

generically to read complex tabular data from pages. CFH-NS was

designed primarily to extract social data, and hence performs much

better at this task than previous algorithms. The principles used in

CFH-NS apply fairly generically, and it should perform well for

extracting eCommerce and tabular data from pages - however, this

functionality was outside the scope of this research and not tested.

CFH-NS represents a major improvement in the ability to collect

social data and user-generated content from rich-text web pages.

Integrated into the SMAAS framework, this improves the

accessibility of data that was previously unavailable for use, and

broadens the scope of data available for social data analytics. While

manually-written wrappers are far more accurate at performing this

data extraction, the cost of developing them is prohibitive - this

automated algorithm significantly reduces cost while providing a

significant amount of data.
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6.4.2.2 Dynamic Interaction

To test the effectiveness of automatic dynamic interaction, the

number of records available on a page without interaction was

compared against the number of records available using interaction.

Some pages in the dataset normally used pagination, but there was

not enough social data present to be paged. Of 49 pages, 10 pages

(20.5%) had data hidden behind pagination or expansion links.

Table 5: Additional data retrieved through automated interaction

URL AR AR-P Increase

newsfeed.gawk. . . 20 42 210.0%
the-toast.net. . . 27 41 151.9%
www.adelaiden. . . 50 101 202.0%
www.cracked.c. . . 34 592 1741.2%
www.dailytele. . . 50 72 144.0%
www.destructo. . . 50 219 438.0%
www.dpreview.. . . 176 193 109.7%
www.smh.com.a. . . 10 47 470.0%
www.theage.co. . . 10 545 5450.0%
www.tripadvis. . . 10 20 200.0%

Totals 437 1872 428.4%

These pages and the results of automated interaction are

presented in Table 5. AR-P represents the number of results available

using automated interaction, while AR represents the number of

results available without interacting with the page. As presented in

the table, using automated interaction provided 428% more social

data with these pages than without using interaction, a substantial

increase.

Pages that take advantage of pagination often do so by necessity,

due to heavy traffic or an abundance of present social data. These

sites, by offering platforms for large amounts of user-generated
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content, thereby represent very useful data sources for social data

mining. Being able to access this previously-unavailable data is a

significant step forward, and allows for more extensive mining of

user-generated content across the deep web.

6.4.2.3 Limitations

The three techniques presented in this chapter all have limitations

that would provide a good basis for future work.

The automated interaction algorithm expects certain phrases or

design styles being used in the source code of the pages, and does

not function well outside these general cases - a more robust method

of detecting expansion and redirection links could provide access to

significantly more data. For example, locating a set of pagination

controls involves looking for elements that use words related to

pagination, followed by a search for a certain tag structure indicating

a pagination toolbar (e.g. a series of links that consist only of

consecutive numbers), followed finally by searches for a dropdown

box containing a series of consecutive numbers - all of which would

indicate page controls.

The CFH-NS algorithm does not perform well with very loose tag

structures, particularly those that rely heavily on inline HTML tags

(such as B, P and SPAN tags). It was developed to work with

well-designed page structures, which causes performance to suffer

on legacy designs. Combination of the algorithm with those that

perform text-based context extraction (such as BUW (Thamviset and

Wongthanavasu, 2014a)) could improve recall and precision on

certain sites.

Finally, the probabilistic datatype determination described in

Section 5.4.3 could benefit from the use of more reliable statistical
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methods, though the accuracy of the current model performs quite

well.

Despite these limitations, the use of these algorithms to improve

collection and integration of user-generated content in the SMAAS

framework assists in enabling the analysis of social data. The use

of this data in real-world scenarios is demonstrated in the following

section.

6.5 scenario evaluations

6.5.1 Scenario 1: Burst Feature Detection in Generic Social Streams

A common practical application of analysing social data sources lies

in event detection and emergency management. Social media has

previously been used in emergency detection, management and

response (Sakaki et al., 2010; Cameron et al., 2012; Robinson et al.,

2013), using a number of different event detection algorithms

(Amruthalingam, 2015; Fung et al., 2005; Ozdikis et al., 2012; Weng

and Lee, 2011; Guille and Favre, 2014). Early warnings can make a

significant difference to disaster mitigation (de León et al., 2006),

and hence there is a need for event detection with the lowest

possible latency - requiring optimised frameworks that prioritise

real-time event detection.

As presented in Chapter 3, the SMAAS framework is designed to

be used in both delayed and real-time scenarios. All events that come

in are immediately integrated and passed to the real-time event bus

as quickly as possible, allowing for immediate use in event detection

algorithms prior to post-processing, which can take additional time.
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This prioritisation significantly lowers the latency involved in event

detection by entirely bypassing post-processing.

This section presents two evaluations. The first evaluates the

improvement in latency using the real-time prioritisation pipeline

within the SMAAS framework, in comparison to the standard

pipeline that includes post-processing. The second is an

implementation of bursty feature detection in integrated social data

streams, demonstrating the SMAAS framework’s ability to perform

event detection generically across multiple social networks in a

simple fashion, dramatically improving accessibility of social data.

6.5.1.1 Real-Time Prioritisation

Real-time data processing can be a significant challenge when

dealing with social data, particularly due the variance in flow rates.

Significant public events can cause social media usage to spike

dramatically, potentially overwhelming server resources allocated to

processing the incoming data. Twitter noted that during some

nation-wide events, incoming data rates can spike to 25 times

greater than normal (Kirkorian, 2013). Hence, event detection

systems operating on social data streams are required to operate

even under heavy (and unexpected) load, rendering traditional

collect-process-analyse sensor systems vulnerable to significant

latency at the times they could be needed most. In this section, the

SMAAS framework is evaluated to determine its ability to retain

functional real-time processing during periods of unexpected loads.

In this scenario a single node setup was used to drive the SMAAS

framework 9, As previously noted, the single-node setup was able

to process approximately 36-37 events per second (EPS). In order to

9 The single-node setup consists of an Amazon EC2 M4.4XLarge instance running
all required software, including the SMAAS framework, RabbitMQ, ElasticSearch,
Redis and the logging server.
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facilitate repeatable results, simulated social data was used for the

following experiments.

Each of the following tests was operated using the same

methodology:

1. Execute realtime processing filters

2. Execute simulate.py script to start pushing events into the bus

at a defined rate

3. Log event creation time, and the time taken for the event to

reach real-time analysis and serialisation

4. Stop simulate.py script after 150 seconds

5. Wait until post-processing has completed

6. Store, parse and analyse logs for performance data

7. Clear accumulated data and restart all worker processes and

filters

The EPS rate for each test was modified for each test, with every

second test featuring a data rate "burst", in which the incoming

event rate was increased temporarily. This burst rate was set at 200%

- while Twitter noted a 25,000% burst at certain times, such bursts

are exceedingly rare and are unlikely to represent a real-world

emergency scenario. Emergency events tend to be significantly more

localised to the region they occur, while high-burst events tend to be

global and visible events (such as the Football World Cup Finals).
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(a) Latency comparison at 25 events per second, near the processing limit of
available resources.

(b) Latency comparison at 25 events per second, bursting to 200%.

(c) Latency comparison at 50 events per second, beyond the capability of
available resources.

(d) Latency comparison at 50 events per second, bursting to 200%.

Figure 57: Event availability latency at different EPS rates.
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Fig. 57a shows that at 25eps, the server is capable of processing

incoming data with approximately 33% resources free. This test

gives some indication of the overhead involved in post-processing

and serialisation while the server is not under load. Even during

normal operation, use of the prioritised real-time analysis pipeline

results in a 99.28% reduction in latency over the standard

post-processed pipeline. While latency is still relatively low for

emergency event detection, applications requiring much lower

latency to operate can take full advantage of this. One such

application is low-latency trading (Hasbrouck and Saar, 2013),

which could use the SMAAS framework to take advantage of

low-latency social media sensing.

When under burst conditions pushing the server approximately

30% beyond its allocated resources, the serialisation time suffers. Fig.

57b shows the dramatic increase in post-processing latency to over 4

seconds during the burst period, while real-time analytics remains

under 2 milliseconds. This level of latency may be acceptable for

some emergency scenarios, but excludes its use for any low-latency

applications.

Increasing the baseline event rate to 50 EPS causes the

post-processing time to increase to 32 seconds, as shown in Fig. 57c.

In an emergency scenario, a 30 second early warning can make a

significant difference to disaster mitigation (Sakaki et al., 2010).

Under burst conditions at 50 EPS, Fig. 57d shows the serialisation

time reach 41.2 seconds, while real-time analysis sits just under 2

milliseconds - a very small increase of latency over the 25 EPS test.

These results show that the scalability of the real-time analysis

pipeline retains functionality even under heavy load, making it

suitable for low-latency sensing applications.
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Table 6: Mean time for an event to move from collection to real-time event
detection and serialisation.

Real-Time Serialisation

25 EPS 1.56ms 216.01ms
25 EPS w/ burst 1.62ms 4222.39ms
50 EPS 1.81ms 32004.26ms
50 EPS w/ burst 1.89ms 41259.3ms

Table 6 summarises the results of the latency tests. As noted, the

real-time prioritisation pipeline results in a dramatic decrease in

latency for event detection during bursty periods, at the cost of

having unprocessed (but fully integrated) data. This ensures that the

SMAAS framework is useful for low-latency event detection

scenarios, and enables it for use with low-latency applications.

6.5.1.2 Bursty Feature Analysis

Social media can be very useful for discovering events in real-time

by observing user-generated content, as discussed in Chapter 2.

However, while much research mentions applicability to multiple

data sources (Xu et al., 2016; Rosser et al., 2017; Amento et al., 2003),

very few utilise more than a single source in experiments. To verify

that the SMAAS framework can be used in this capacity, a real-time

bursty feature detection filter was developed based on the

Parameter-Free Bursty Event Detection algorithm (Fung et al., 2005).

This algorithm has previously been used in a number of other

studies, such as for emergency response (Cameron et al., 2012;

Robinson et al., 2013). Both the algorithm and filter are described

below, and the ability of the filter to detect events in real-time is

evaluated.

Feature Detection
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The Parameter-Free Bursty Event Detection algorithm (Fung et al.,

2005) detects events by modelling the probability that a given feature

appears within a windowed subset of the data. Hence, windows in

which the feature is more likely to occur are considered to be

"bursting", and signify that the feature represents part of an event.

Each feature is a token from event payloads, representing a single

word within a social media post that is stemmed or lemmatised 10.

Each feature, fj is contained within a number of time-interval

windows, each denoted as Wi, where the number of documents

containing fj within a window is denoted as ni,j. Using a generative

probabilistic model, the probability of the number of documents

containing fj in Wi can be computed as Pg(ni,j).

Pg(ni,j) can be modeled in a computationally efficient manner

using a binomial distribution, as seen in Equation 2.

Pg(ni,j) =

(
N

ni,j

)
p
ni,j
j (1− pj)

N−ni,j (2)

N is the number of documents in a time window. pj is the expected

probability of the documents that contain the feature fj in a random

time window, and is therefore the average of the observed probability

of fj in all time windows containing fj, shown in Equation 3 and 4.

Po(ni,j) =
ni,j

N
(3)

10 Stemming is a heuristic process used to truncate the ends of words in an attempt
to reduce them to their base form. Lemmatising is a natural language processing
technique that uses morphological analysis to more accurately identify the base
form of each word, at significant performance expense. Both methods are used
in an attempt to group together feature words (so that "bicycle" and "bicycles" are
considered to be the same feature).
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pj =
1

L ′

L ′∑
i=0

Po(ni,j) (4)

The distribution is then divided into three main regions across the

x-axis (the number of documents): RA, RB and RC. RA is from 0 to the

x value where Pg(x) is the maximum, RB is from the x value where

Pg(x) becomes zero again, and RC is the region following RB. For

efficiency purposes, the region line dividing RB and RC is calculated

using SciPy’s (Jones et al., 2014) fast binomial interval function, which

locates the x values that bound α percent of the distribution - for these

purposes, α is defined as 99%.

The position on this distribution Pg(ni,j) that ni,j falls defines the

probability of whether the word is non-bursty, bursty or a stopword

11. Hence, the probability of feature fj bursts in the window Wi is

Pb(i, fj), dependent on the three options below:

• When ni,j is in RA, it suggests that the probability of feature

fj in Wi is less than or equal to the probability that fj is drawn

randomly. This is considered to be non-bursty, and Pb(i, fj) = 0.

• When ni,j is in RC, it suggests that fj exhibits an abnormal

behaviour in Wi and is considered bursty, letting Pb(i, fj) = 1.

• When ni,j is in RB, there are three possibilities. When ni,j

approaches the boundary of RB and RC, the feature fj will be

bursty; when it approaches the boundary of RB and RA, fj will

be non-bursty; and when ni,j is on the mid-point of RB, fj can

be bursty or non-bursty.

11 A stopword is a frequently-occurring word in a language that is of little significance
and not included in indexing operations.
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A sigmoid function can be used to determine whether fj is bursty

or not when ni,j is in the region RB, as shown in Equations 5

and 6.

x = Pg(ni,j) · θ− q (5)

Pb(i, fj) =
1

1+ e−x
(6)

When Pb(i, fj) > 0.5, feature fj is considered to be bursting in

window Wi, and both variables are logged for further analysis.

Experiment

For this experiment, the SMAAS framework was run as a large

cluster 12 set to generically collect streaming data. The burst

detection filter was installed and enabled as part of the low-latency

real-time processing pipeline and operated on a dedicated Amazon

EC2 C4.XLarge instance. The filter was configured to group features

into time windows at an interval of one minute, designed to provide

better response time than an hourly window. The bursty feature

algorithm was set to run once each time a new window was created -

once an entire minute-long window was completed, the algorithm

would run over that window using all previous windows as its

dataset. The filter is shown in Fig. 58.

12 A large cluster consists of an M4.2XLarge instance running RabbitMQ and Redis,
a T2.Medium running the logging server, an M4.XLarge running ElasticSearch, 4x
T2.Large instances as collector workers, and both 4x C4.2XLarge instances and 4x
M4.2XLarge instances operating as post-processing workers.



6.5 scenario evaluations 183

1 WINDOWS = collections.defaultdict(lambda:

collections.defaultdict(int))↪→

2

3 def process(event):

4 global WINDOWS

5 # accumulate buckets to date

6 bucket = event.time.detected.replace(second=0,

microsecond=0)↪→

7 # tokenise and grab unique tokens

8 for word in set(event.payload.content.split(’ ’):

9 if bucket not in WINDOWS:

10 old_bucket =

event.time.detected.replace(second=0,

microsecond=0) -

datetime.timedelta(minutes=1)

↪→

↪→

↪→

11 if old_bucket in WINDOWS:

12 for word in WINDOWS[old_bucket]:

13 feature_detection(old_bucket, word)

14 # automatically create a new bucket

15 WINDOWS[bucket][word] += 1

16 return event

Figure 58: The bursty feature detection filter, based off the algorithm
described in (Fung et al., 2005).

Data was collected between 13th October 2015 12:00:00 UTC and

16th October 2015 6:00:00 UTC (approximately 66 hours), covering a

number of national-level events. One of the prominent events that

occurred within the period was the US Democratic Party

presidential debate, on October 13th 2015. The debate involved five

candidates; Hillary Clinton, Bernie Sanders, Jim Webb, Martin

O’Malley and Lincoln Chafee.

Fig. 59 shows the bursting nature of the candidates and the debate

itself, and also illustrates the nature of conversation surrounding the

debate. The algorithm grouped burst values per hour, with a value

of 60 implying that a feature was bursting for every single minute in

an hour window. The stemmed feature "debat" was extremely bursty

during the period of the debate, achieving burst values of 58, 60 and

55 for the three hours of the debate, respectively. All candidates
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were considered bursty during the duration of the debate, to varying

extents - while candidates Clinton and Sanders were bursting for the

majority of the debate at values between 40-55 periods per hour, the

other candidates sat significantly lower at 20-35 periods per hour.

This reflects the tendency of online conversation to favour campaign

front-runners in ongoing discussion, while the other candidates were

only discussed during periods that they were actively speaking.

While candidates Webb, O’Malley and Chafee are discussed

thoroughly during the debate itself, interest on social media fades

quickly upon its conclusion. By contrast, candidates Clinton and

Sanders both enjoy significant bursty online discussion for the

subsequent days, implying that the two candidates are front-runners

in the Democratic Presidential race, and enjoy similar levels of

discussion online.

Figure 59: Aggregated bursty feature detection results capture the US
democratic debate, clearly showing the significant spike in
activity upon commencement of the debate and the ensuing
conversation over the subsequent days.

Another significant event detected was the reaction to a media

release by Australian Minister for Environment Greg Hunt,
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declaring that the controversial Adani Carmichael coal mine had

been approved for a second time. Fig. 60 shows the dramatic spike

in online conversation related to the minister shortly after the

release, wherein the Minister’s name bursts between 50-60 periods

per hour for the following 3 hours, but conversation quickly fades

off as the news cycle progresses.

Figure 60: Aggregated bursty feature detection results demonstrating the
large spike in activity upon Australian Minister for Environment
Greg Hunt’s approval of the controversial Carmichael Adani coal
mine.

The filter is able to detect a range of different bursty topics,

including popular culture events. Fig. 61 pinpoints the moment that

former LA Lakers basketball player Lamar Odom was discovered

unconscious in a Nevada brothel. The event featured prominently

across traditional and social media, in large part due to Odom’s

former marriage to reality television star Khloe Kardashian. The

lower burst values (approximately 20 periods per hour) reflect the

lower level of interest compared to the more significant national

events seen previously.
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Figure 61: Aggregated bursty feature detection results illustrate the reaction
to former basketball player Lamar Odom being discovered
unconscious in a brothel in Nevada.

These results show that the SMAAS framework is capable of

detecting a range of bursty events across different cultural

subdivisions and nations. The selected event detection algorithm

operates minute-to-minute in real-time, but the filter shows how

easily other algorithms can be used. The filter operates in its own

thread, using the real-time event processing pipeline. This means

that virtually any algorithm (including very elaborate and complex

event-detection frameworks) can be used to enable the SMAAS

framework to detect events in real-time by simply cloning the event

pipeline and using it to feed additional filters.

6.5.2 Scenario 2: Political Sentiment Analysis

The SMAAS framework is designed to allow for collected, integrated

and post-processed data to be serialised and analysed in a delayed

fashion. This section demonstrates how the SMAAS framework can
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be used to collect and process a greater range of generic social data

for use in sentiment analysis.

The framework, running on a large cluster as per Section 6.2.7,

was set to collect social data covering the US Democratic Party

presidential debate, on October 13th 2015. 52,172 relevant social

events were collected from multiple social platforms 13 that contain

viewer reactions to candidates, topics and general chatter. This

number is limited to events that occurred during the debate

(between approximately 00:48am to 3:12am UTC) and are related to

either a candidate or the debate in general.

The ability of the SMAAS framework to serialise and integrate

with any analytical tool dramatically simplifies analysis. To analyse

the data in this scenario, the framework serialised all processed data

to Elasticsearch (Kuc and Rogozinski, 2013), and Kibana

(Elasticsearch BV, 2015a), Python (Python Software Foundation,

1990) and Plotly (Plotly, 2012) were used for analysis. The footage of

the debate was manually analysed to determine "points of interest"

within the timeline, which could then be cross-analysed with the

collected data. For reference, this timeline is available in Appendix 9.

Table 7 shows the results of a "Significant Term" 14 query on the

collected data, which shows that the most popular significant terms

are candidate names and metatags used to discuss the debate (such

as the #demdebate hashtag on Twitter). This query can be used to

detect trending terms within a given timeframe in a simplified

manner, allowing for more complex follow-up queries.

13 32,772 from Twitter, 19,273 from Reddit and 127 from Facebook. Facebook does not
provide a real-time event stream, meaning that streamed collection comes from a
number of pre-defined Facebook Pages, so all events on personal pages or pages not
in the predefined list were missed.

14 Elasticsearch’s significant term query uses a modified version of the TF-IDF (Neto
et al., 2000) relevance algorithm called JLH, which adds additional features to scoring
such as field length normalisation and query clause boosting. (Elasticsearch BV,
2015b)
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Table 7: Most popular significant terms used in social events about the
debate.

Term Number of Events

demdebate 16,857

bernie 11,645

hillary 8,642

sanders 7,199

webb 6,894

debate 6,568

clinton 5,280

chafee 2,925

jim 2,537

o’malley 2,073

Sentiment analysis is used to determine whether the opinions in a

piece of text can be categorised as positive, neutral or negative. The

SMAAS framework has a sentiment analysis post-processing filter

that assesses social event content in this manner. By locating spikes

in event activity and referencing the timeframe of these spikes

against both the debate topic timeline in the Appendix A and the

average sentiment of posts, general viewer opinion towards certain

topics can be inferred. This is made more effective by the SMAAS

framework’s ability to broaden data demographics and collect data

from a wider range of sources, lessening any potential bias that

could be incurred from using a single social data source.
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Figure 62: Aggregated event count and associated sentiment related to
Hillary Clinton during the debate, per minute.

Fig. 62 shows the number of events collected and average sentiment

related to Hillary Clinton, grouped per minute. This allows us to

see spikes in activity, which can then be cross-referenced against the

debate topic timeline.

At 1:15-1:17am, Clinton attacks Sanders in relation to his history

on gun control legislation, causing a significant spike in traffic for

Clinton. While activity increases, sentiment dramatically decreases -

indicating that many observers take issue to the line of attack and

support Sanders. While discussing foreign policy at 1:22-1:35am

(historically a strong point for Clinton, as the Secretary of State) she

sees increased activity and sentiment as viewers respond to her

experience in the area. Discussion of the Clinton email scandal

(Hartmann, 2015) results in a small drop in sentiment and a large

increase in activity for both Clinton and Sanders.

The ability of the SMAAS framework to provide high-quality,

timely data allows for easy synchronisation of data to the debate
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timeline, enabling simple identification of popular topics and

associated sentiment.

Figure 63: Count of events for each candidate, per minute.

Similar patterns are observed for Sanders. A noted highlight of

the debate (Swanson, 2015) is seen at 1:48am, with both Sanders and

Clinton’s activity dramatically spiking (seen in Fig. 63), marking the

moment Sanders said "I think the American people are sick and

tired of hearing about your damned emails," to a standing ovation

and handshake between the candidates. These spikes in activity and

sentiment can be automatically detected using burst detection filters

similar to those described in the previous section, facilitated by the

SMAAS framework. This would allow for real-time feedback on

discussion topics during events such as these, even allowing

candidates to receive feedback and tailor their performances in

real-time.

As demonstrated, the SMAAS framework is able to collect,

integrate, serialise and present data in formats able to be integrated

into specialised analytics tools. This allows us to perform useful
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analysis related to current events, and can illustrate online sentiment

towards topics - a process useful for a range of fields, including

political analysis and marketing. This also enables studies that

would otherwise operate on a single platform (due to integration

difficulties) to instead use data from multiple platforms, vastly

expanding demographics and alleviating geographical and cultural

barriers to analytics.

6.6 conclusion

This chapter presented an evaluation of the SMAAS framework

against defined requirements and in real-world scenarios to

determine practical usability. Firstly, it was determined that each of

the requirements in Chapter 3 was met. More detailed evaluations

were presented for the intelligent sourcing techniques presented in

Chapter 4 and the user-generated content extraction algorithms in

Chapter 5. Finally, the framework was used in two real-world

scenarios to detect events across integrated social streams and also

perform more detailed analytics for a specific event.

The SMAAS framework was used several times to collect large

amounts of social data, integrate it and serialise it for later

presentation. Running on 15 Amazon EC2 instances of various types,

it collected social data from 5 heterogeneous data sources and

performed entity detection, gender and sentiment analysis across 23

million events, serialising the results to ElasticSearch. During this

process, various benchmark data was collected - from the latency of

events passing the real-time and serialisation marks, to how the

cluster handled scalable workloads.
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The results indicate that the SMAAS framework is useful for a

range of potential applications, with low latency during processing

enabling its use in low-latency trading algorithms, to emergency

crisis management and political analytics using sentiment analysis.

The framework is scalable to cope with very high data throughput

while also retaining the ability to run as a small single-instance

setup for bespoke applications and analysis. It is able to extensibly

handle data inputs from a range of sources (with seven data

interfaces provided) and perform any type of post-processing - with

sentiment, gender and entity analysis provided. Finally, it is able to

source, collect, integrate, clean, serialise, query and present social

data from disparate sources in a generic manner, greatly easing the

accessibility of social data as a broader medium.

The next chapter summarises the contributions of the thesis to the

field of data integration, mining and sensor networking and

concludes.



7
C O N C L U S I O N

7.1 overview

This chapter concludes the research into social sensing (Ali et al.,

2011) described in this thesis. Social sensing attempts to repurpose

data already created and made available by social media users for

use in sensor networking. This has a wide range of possible

applications in environmental monitoring, event detection, disaster

mitigation, urban planning and more, and is able to act as a sole

data source or augment bespoke deployments.

Accessing, collecting and integrating social data for use in sensor

networking can be extremely difficult, considering the sheer scale of

data. The work described in this thesis aims to alleviate these issues

and significantly ease the accessibility of social data for use in sensor

networking. This PhD thesis has made several contributions to the

field of social data mining and sensing by developing a framework to

ease the sourcing, collection, integration, cleaning and serialisation of

social data, and developing new algorithms for efficient social data

sourcing and user-generated context extraction.

The following sections summarise the main research contributions

and how the main research aims of this thesis were met, followed by a

discussion of the limitations of the research. Finally, the implications

of the findings are discussed.

193
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7.2 development of the smaas framework

Social media is a plentiful source of relevant real-time data that can

be used for sensor networking. However, while Social Networking

Sites (SNS) often provide APIs to enable data access, standard web

pages containing user-generated content have no accessible interface

for data collection. Even for sites that provide APIs, integration of

disparate social data sources is a complex task. Commercial systems

exist that provide this service (Gnip, 2008; DataSift, 2010), but

operate as large Extract-Transform-Load (ETL) warehouses that

often do not provide processed data in real-time. This is primarily

due to the scale of social data being created, and the level of

processing resources needed to collect, integrate and clean the data

in real-time, particularly during bursty periods. As such, many of

these systems cannot be used for low-latency real-time sensing

applications. Additionally, the services that provide social data are

can be prohibitively expensive depending on the type and amount

of data being accessed and are unable to be modified to suit bespoke

usages.

In Chapter 3, a set of functionality requirements was defined that

aim to solve these problems. The Social Media As A Sensor

(SMAAS) framework was then proposed as a design to meet those

requirements. The framework supports extensible sourcing,

collection, post-processing, enrichment, cleaning and integration,

with each component replaceable. It divides real-time and delayed

processing into individual pipelines, enabling low-latency

applications to receive events as soon as they are integrated rather

than having to wait for them to undergo post-processing. The
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framework is scalable to all levels of hardware and can automatically

scale up and down if required.

In Chapter 6, it is demonstrated that it also improves collection

efficiency by implementing the intelligent sourcing algorithm

described in Chapter 4, enabling it to handle a higher throughput of

data without sacrificing a significant amount of accuracy. It

improves genericity through the use of the CFH-NS user-generated

content extraction algorithm described in Chapter 5, which enables

the unsupervised collection of social data from identified sources. It

leaves serialisation, querying and presentation to existing data

management platforms (such as RDBMS or Document Storage

Engines) by providing an extensible output interface, which also

allows for integration with existing sensor networking

implementations and data analysis suites.

The SMAAS framework was empirically evaluated in Chapter 6 to

determine its conformity to the defined requirements. It was

determined that the framework is able to source, collect, integrate,

clean and serialise social data from generic sources extensibly. It

provides the ability to perform low-latency analysis even in

high-stress and bursty environments. The framework was then used

in two real-world demonstrations, when it was determined that the

framework is useful for real-time event detection in the manner of a

sensor network, and delayed analysis. It could also be used in

further research to evaluation new techniques for social data mining

and analytics, such as new data extraction and analysis algorithms,

in a repeatable manner operating over disparate data sources. This

allows research to be completed with reduced demographic and

cultural associated with the use of a single social platform.
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7.3 intelligent sourcing

Social media is a plentiful source of data for sensor networking and

analysis, with an enormous amount of data being produced daily.

However, integrating, processing and analysing this data presents a

number of challenges, primarily due to scale. To alleviate these

problems, it is desirable to filter the initial set of data as much as

possible to remove irrelevant data and reduce the amount of

unnecessary integration work performed.

While a substantive amount of research has been performed into

using query expansion for improving precision in social data

searches (Lau et al., 2011; Massoudi et al., 2011; Bandyopadhyay

et al., 2012), the primary focus of the previous research is to improve

both recall and precision for social searches - specifically, microblog

(e.g. Twitter) searches. However, using social data as a basis for

sensor networking requires that the incoming dataset be quite broad,

rather than extremely precise - there’s little point in improving

precision for a search that is intentionally wide. Hence, some

method of expanding recall at the expense of precision was

necessary.

This filter was developed as an intelligent social data sourcing

module for the SMAAS framework, detailed in Chapter 4. The

intelligent sourcing algorithm uses natural language processing

techniques (such as part-of-speech tagging (Ratnaparkhi and others,

1996)) to iteratively train search queries in order to find additional

relevant and semi-relevant social data. The algorithm intentionally

sacrifices precision for a significant expansion in recall, to provide a

useful base for sensor networking while still reducing the incoming

dataset. Once queries have been formed, the SMAAS framework
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platform APIs described in Chapter 3 are used to execute the queries

and collect resulting data.

The efficacy of the intelligent sourcing algorithm was evaluated in

Chapter 6, which determined that it significantly increased the

amount of relevant social data collected over a simple search,

leading to an increase in recall and associated drop in precision. It

also significantly reduced the signal-to-noise ratio of the collect-all

approach, providing a marked reduction in the amount of social

data requiring collection, integration and post-processing. This

opens up new applications in social sensing, as it significantly

reduces the amount of processing resources required.

7.4 user-generated content extraction

Social data is currently collected using a number of different

methods. Typical collection involves locating a source that provides

an API and writing a wrapper to interface with the API. However,

the API for nearly every site is different and return results in

different formats, requiring manual wrapper development. In

addition, many sites containing social data (such as news sites and

blogs) do not provide APIs to access user-generated content featured

on the site. This data is inaccessible unless an interface wrapper is

written, which requires the development of a new wrapper for every

individual site being used as a source. This is generally infeasible

unless only a small number of sources are being used. To counter

these problems, unsupervised data extraction algorithms have been

developed, but none collect social data or user-generated content

(Liu et al., 2003, 2010; Ferrara et al., 2014; Kao and Chen, 2010; Xia,
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2009; Arasu and Garcia-Molina, 2003; Muslea et al., 1999; Cao et al.,

2008).

Chapter 5 presented a new unsupervised user-generated content

extraction algorithm: Canopied Feature Hashing with Nested

Structure Detection (CFH-NS). This algorithm is designed to

intelligently access user-generated content on web pages in an

unsupervised manner. It also handles pages that dynamically inject

content using AJAX by expanding methods developed by previous

research (Mesbah et al., 2012; Baumgartner and Ledermiiller, 2005;

Xia, 2009), which make up an increasing proportion of pages on the

Internet. It uses heuristics to locate repeating structures that contain

user-generated content and extracts the data from them before

integrating the result into a common format. It also contains

heuristic-based methods for automatically navigating and

interacting with pages in order to expose the greatest possible

amount of social data, previously hidden behind pagination

systems.

The user-generated content extraction algorithm is empirically

evaluated in Chapter 6. A new testbed is developed that is more

consistent with current Internet design and development standards.

The CFH-NS algorithm is determined to provide best-in-class

performance for extracting user-generated content from generic web

pages. The automated interaction component significant improves

access to additional data, gathering more data per source than

previously available. Additionally, the dynamic rendering

components used in the algorithm allow data to be collected from

modern pages that require client-side scripting to be enabled, which

is rarely implemented in web scraping solutions.
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The CFH-NS algorithm provides a consistent interface to generic

web pages, regardless of their design or the format of the

user-generated content. No manual wrapper development is

required, nor any regular maintenance when page designs change.

This means that access of social data on these pages is through a

single interface. The SMAAS framework implements this algorithm

as a collector, which can then be used to collect data from any

web-based sources identified by the intelligent sourcing algorithm

described in the previous section without any need for additional

code.

7.5 research aims

In Section 1.3, a number of research aims are introduced that outline

a high-level set of goals that this thesis aims to address. Each of these

aims is addressed below:

aim 1 : Develop and evaluate methods of efficiently collecting

and integrating generic social data for analysis.

In Chapter 4, an intelligent sourcing algorithm is described that

aims to reduce the entry requirements for large-scale social data

mining by isolating relevant data sources, rather than adhering to a

collect-all approach. In Section 6.3, this algorithm is evaluated and

determined to provide a large amount of relevant data while

significantly reducing noise, satisfying this research aim to a high

level of success.
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aim 2 : Develop new techniques to access alternative and

untapped social data sources for use in social data mining.

In Chapter 5, the CFH-NS algorithm is described, which is

designed to automatically and without supervision develop data

extraction wrappers that can extract social data from

previously-unavailable sources. In Section 6.4, the performance of

CFH-NS is evaluated against several current state-of-the-art

algorithms and is determined to be a significant improvement for

the extraction of social data, satisfying this research aim to a high

level of success.

aim 3 : Develop and evaluate a framework that integrates

work from the previous two aims to provide an extensive and

generic social data sourcing, collection and querying framework.

In Chapter 3, the SMAAS framework is described, which aims to

provide an extensive toolkit for social data mining. It allows the

construction of a pipeline taking social data from sourcing and

collection through cleaning and integration and into presentation.

By combining both intelligent sourcing and the CFH-NS algorithm,

cross-platform social data mining can be quickly and easily

performed for academic and commercial applications with a high

degree of flexibility. In Section 6.5, the SMAAS framework is used to

perform social sensing in two real-world scenarios and is highly

successful, satisfying this research aim to a high level of success.
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7.6 limitations and future research

The SMAAS framework was designed to be fully extensible, and acts

as both a practical platform for operating social analytics as well as a

testbed for evaluating algorithms in each extensible space, such as

sourcing, integration or event detection experiments. Future research

can be put into each of these challenges, examining better ways to

source data, generically collect it, automatically integrate it or

perform analysis upon it.

The intelligent sourcing algorithm could be expanded to more

fully direct searches across different networks, rather than relying on

search interfaces on individual networks. While the SMAAS

framework provides search functionality to most platforms, the

users of each platform may use slightly different terminology or

metatag formats, so using a singular search query across all

interfaces may not produce an optimal result. Additionally, more

research effort could be put into identifying relevant data within

collected content, rather than analysing the entire set of content

retrieved - this could significantly reduce noise.

The user-generated content extraction algorithm could be

improved to increase precision and recall, and the automated

interaction algorithm could definitely be improved through more

complex methods of locating redirection and expansion links.

Additionally, the type discovery algorithm used within CFH-NS

could use more complex and accurate probabilistic models to

determine field types. This algorithm, while highly experimental,

was successful at extracting UGC from most page designs - but had
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limited success operating on pages that heavily relied on in-line

HTML tags 1 or used simple DIV elements for all page structures.

There would be significant value in the automatic generation of

social graphs from social events collected, especially in visualisation.

Academic applications spend quite some time creating basic

visualisations to illustrate links between social events. This has the

additional benefit of being a solid analytical base to perform

machine learning upon; by using ML to cluster users, can we

identify users more likely to respond in certain ways to certain

events? This has large implications for some applications,

particularly in health/mental health, and is an exciting prospective

research field.

The SMAAS framework itself also has room for improvement -

auto-scaling of workers would significantly reduce cost while not

affecting search/collection efficiency. Likewise, the interface to the

system could be improved and integrate with existing analytical

tools, which could provide significant business value.

7.7 research implications

The development of the SMAAS framework and of the

user-generated content extraction algorithm CFH-NS both have

significant implications for the research in the fields of social data

mining and social sensing, as well as social data extraction.

In Section 1.1, it was stated that only 4% of papers citing three

well-known social event detection papers used more than a single

SNS in their experiments. These studies that currently operate on a

single platform to alleviate collection and integration difficulty are

1 Such as paragraph (<p>), span (<span>) and line-break (</br>) tags.
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now able to use the SMAAS framework and abstract away the

difference between social platforms. This aids in reducing bias

between platform demographics and also opens up the possibility of

cross-platform research - e.g. studies that are designed to merge

social graphs across networks.

The SMAAS framework also allows for new applications in sensor

networking backed by social data sources without bespoke

deployments, reducing the barrier to entry for new research into

social sensing. The framework eliminates any effort required by

researchers to find, collect and integrate social data, and provides

access to previously-inaccessible social data sources such as

comment sections from news websites and blogs.

There are additional research opportunities that this thesis makes

available, particularly in automated interaction, social data

extraction and query expansion. Section 6.4.2.2 notes that 20% of

sites tested had additional social data made inaccessible without the

use of automated interaction techniques. There are also further

improvements to be made to social data extraction in both recall and

precision, and the query expansion algorithms can be improved to

provide additional relevant data.

7.8 practical implications

On a practical level, the SMAAS framework can be used to perform

industrial analysis of social data for marketing, sentiment analysis

or event detection. This does not break new ground - solutions exist

already that are able to do so. However, the intelligent sourcing and

CFH-NS algorithms are both entirely new work that do not currently

exist in systems, and both provide substantial new data sources to
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work with over existing solutions. This expands the reach of social

analytics into sources of social data not currently accessible, which

opens up new possibilities in real-time analysis and social sensing.

In conclusion, the research described in this thesis represents

significant progress towards making social data more accessible and

thereby opening new opportunities for the use of social sensing and

its integration into society. Social sensing can harness data already

being produced by everyday people to investigate, describe and

improve many aspects of our environment, lifestyle and

infrastructure.
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a.1 user-generated context extraction results

Table 8: Experimental results.

URL AR-P CFH D AR D B-L

9to5mac.com/2. . . 20 13/13 10/8 20 0/0 6/6

bbs.boingboin. . . 18 18/18 6/6 18 5/2 0/0

clubtroppo.co. . . 30 30/30 25/10 30 0/0 19/11

games.on.net/. . . 13 13/13 13/13 13 13/13 13/13

homeserversho. . . 60 55/55 21/21 60 0/0 44/34

larvatusprode. . . 220 240/220 27/27 220 0/0 220/220

news.national. . . 50 51/50 15/13 50 0/0 0/0

newsfeed.gawk. . . 42 82/42 0/0 20 0/0 0/0

packetlife.ne. . . 18 12/12 10/6 18 10/6 0/0

pivotallabs.c. . . 5 5/5 16/4 5 16/4 5/5

submicron.dev. . . 8 8/8 4/4 8 4/4 0/0

techcrunch.co. . . 18 10/10 0/0 18 0/0 0/0

theconversati. . . 115 115/115 52/46 115 0/0 111/111

the-toast.net. . . 41 26/26 0/0 27 0/0 5/5

www.adelaiden. . . 101 57/52 0/0 50 0/0 0/0

www.amazon.co. . . 3 3/3 3/3 3 3/3 3/3

www.autocar.c. . . 7 7/7 6/6 7 6/6 7/6

www.canonrumo. . . 15 24/15 5/5 15 5/5 26/14

www.courierma. . . 45 45/45 0/0 45 0/0 0/0

Continued on next page
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Table 8 – Continued from previous page

URL AR-P CFH D AR D-L B-L

www.cracked.c. . . 592 543/543 123/123 34 0/0 0/0

www.crymore.n. . . 78 109/70 55/23 78 0/0 26/12

www.dailytele. . . 72 54/54 0/0 50 0/0 0/0

www.destructo. . . 219 220/219 72/72 50 0/0 0/0

www.dpreview.. . . 193 205/193 72/72 176 0/0 0/0

www.engadget.. . . 4 4/4 0/0 4 0/0 0/0

www.escapistm. . . 5 10/5 0/0 5 0/0 0/0

www.gamespot.. . . 24 24/24 9/9 24 0/0 24/0

www.gizmodo.c. . . 10 10/10 3/3 10 0/0 9/8

www.joystiq.c. . . 45 51/45 18/15 *

www.kotaku.co. . . 23 23/23 5/5 23 0/0 13/8

www.layer9.or. . . 23 23/23 0/0 23 0/0 0/0

www.macrumors. . . 10 10/10 0/0 10 0/0 10/10

www.macworld.. . . 36 44/36 8/8 36 0/0 0/0

www.mortgageb. . . 2 4/2 0/0 2 0/0 0/0

www.neatorama. . . 7 7/7 10/5 7 10/5 5/5

www.pcworld.c. . . 12 20/12 4/4 12 0/0 9/7

www.rocketthe. . . 10 20/10 5/5 10 5/5 10/10

www.rockpaper. . . 64 64/64 16/16 64 16/16 43/18

www.smh.com.a. . . 47 47/47 25/25 10 2/2 9/9

www.theage.co. . . 545 545/545 138/138 10 3/3 9/9

www.tripadvis. . . 20 20/20 0/0 10 0/0 10/10

www.urbanspoo. . . 26 22/22 6/6 26 6/6 0/0

www.windowsce. . . 27 64/27 8/8 27 8/8 18/9

gigaom.com/2. . . 9 17/9 2/2 9 0/0 0/0

productforum. . . 21 42/21 3/3 21 0/0 0/0

vimeo.com/98. . . 17 17/17 3/3 17 0/0 0/0

www.indiegog. . . 5 5/5 12/5 5 0/0 0/0

Continued on next page
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Table 8 – Continued from previous page

URL AR-P CFH D AR D-L B-L

www.kickstar. . . 50 45/45 25/25 50 25/25 50/50

www.ozbargai. . . 44 44/44 12/11 44 12/11 0/0

www.theguardi. . . 86 107/86 6/6 86 0/0 0/0
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a.2 additional scalability graphs

Time Tasks Spent in Queue

Figure 64: Single EC2 M4

4XLarge, 25eps

Time Tasks Spent Processing

Figure 65: Single EC2 M4

4XLarge, 25eps

Figure 66: 4x EC2 C4 2XLarge,
25eps

Figure 67: 4x EC2 C4 2XLarge,
25eps

Figure 68: 4x EC2 C4 2XLarge and
4x M4 2XLarge, 25eps

Figure 69: 4x EC2 C4 2XLarge and
4x M4 2XLarge, 25eps
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Time Tasks Spent in Queue

Figure 70: Single EC2 M4

4XLarge, 50eps

Time Tasks Spent Processing

Figure 71: Single EC2 M4

4XLarge, 50eps

Figure 72: 4x EC2 C4 2XLarge,
50eps

Figure 73: 4x EC2 C4 2XLarge,
50eps

Figure 74: 4x EC2 C4 2XLarge and
4x M4 2XLarge, 50eps

Figure 75: 4x EC2 C4 2XLarge and
4x M4 2XLarge, 50eps
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Time Tasks Spent in Queue

Figure 76: Single EC2 M4

4XLarge, 100eps

Time Tasks Spent Processing

Figure 77: Single EC2 M4

4XLarge, 100eps

Figure 78: 4x EC2 C4 2XLarge,
100eps

Figure 79: 4x EC2 C4 2XLarge,
100eps

Figure 80: 4x EC2 C4 2XLarge and
4x M4 2XLarge, 100eps

Figure 81: 4x EC2 C4 2XLarge and
4x M4 2XLarge, 100eps
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Time Tasks Spent in Queue

Figure 82: Single EC2 M4

4XLarge, 1000eps

Time Tasks Spent Processing

Figure 83: Single EC2 M4

4XLarge, 1000eps

Figure 84: 4x EC2 C4 2XLarge,
1000eps

Figure 85: 4x EC2 C4 2XLarge,
1000eps

Figure 86: 4x EC2 C4 2XLarge
and 4x M4 2XLarge,
1000eps

Figure 87: 4x EC2 C4 2XLarge
and 4x M4 2XLarge,
1000eps
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a.3 cfh-ns testbed urls

1. http://9to5mac.com/2015/03/08/apple-campus-2-drone-flyover/

2. http://bbs.boingboing.net/t/act-now-congress-wants-to-fast-track-

the-trans-pacific-partnership/52776

3. http://clubtroppo.com.au/2015/02/12/stem-part-culture-war-part-

cargo-cult-my-latest-fin-column/

4. http://games.on.net/2015/03/league-of-legends-ai-toxic-players/

5. http://homeservershow.com/hp-proliant-n40l-microserver-build-and-

bios-modification-revisited.html

6. http://larvatusprodeo.net/archives/2011/01/brisbane-flood-maps-and-

up-to-date-flood-information/

7. http://news.nationalgeographic.com/news/2015/03/150302-black-hole-

blast-biggest-science-galaxies-space/

8. http://newsfeed.gawker.com/terror-owl-gleefully-tearing-apart-its-

victims-in-the-1688525383/+jparham

9. http://packetlife.net/blog/2014/nov/18/mac-address-aggregation-and-

translation/

10. http://pivotallabs.com/rspec-elasticsearchruby-elasticsearchmodel/

11. http://submicron.deviantart.com/art/Soulsequencer-Series-Hemocyte-

Green-481438108?q=gallery%3Asubmicron%2F23534542&qo=8

12. http://techcrunch.com/2014/05/15/soldsie-the-service-that-lets-

you-shop-via-facebook-and-instagram-comments-raises-4-million/

13. http://theconversation.com/we-are-all-suspects-now-thanks-to-

australias-data-retention-plans-38223

14. http://the-toast.net/2015/02/10/gal-science-ant-lab/

15. http://www.adelaidenow.com.au/news/south-australia/sa-

public-servant-paid-out-to-quit-at-age-of-76/story-fni6uo1m-

1227255760836

16. http://www.amazon.com/dp/B00I15SB16

17. http://www.autocar.co.uk/car-news/detroit-motor-show/next-

mercedes-benz-glk-spotted-ahead-2015-launch

18. http://www.canonrumors.com/forum/index.php?topic=25434.0

http://9to5mac.com/2015/03/08/apple-campus-2-drone-flyover/
http://bbs.boingboing.net/t/act-now-congress-wants-to-fast-track-the-trans-pacific-partnership/52776
http://bbs.boingboing.net/t/act-now-congress-wants-to-fast-track-the-trans-pacific-partnership/52776
http://clubtroppo.com.au/2015/02/12/stem-part-culture-war-part-cargo-cult-my-latest-fin-column/
http://clubtroppo.com.au/2015/02/12/stem-part-culture-war-part-cargo-cult-my-latest-fin-column/
http://games.on.net/2015/03/league-of-legends-ai-toxic-players/
http://homeservershow.com/hp-proliant-n40l-microserver-build-and-bios-modification-revisited.html
http://homeservershow.com/hp-proliant-n40l-microserver-build-and-bios-modification-revisited.html
http://larvatusprodeo.net/archives/2011/01/brisbane-flood-maps-and-up-to-date-flood-information/
http://larvatusprodeo.net/archives/2011/01/brisbane-flood-maps-and-up-to-date-flood-information/
http://news.nationalgeographic.com/news/2015/03/150302-black-hole-blast-biggest-science-galaxies-space/
http://news.nationalgeographic.com/news/2015/03/150302-black-hole-blast-biggest-science-galaxies-space/
http://newsfeed.gawker.com/terror-owl-gleefully-tearing-apart-its-victims-in-the-1688525383/+jparham
http://newsfeed.gawker.com/terror-owl-gleefully-tearing-apart-its-victims-in-the-1688525383/+jparham
http://packetlife.net/blog/2014/nov/18/mac-address-aggregation-and-translation/
http://packetlife.net/blog/2014/nov/18/mac-address-aggregation-and-translation/
http://pivotallabs.com/rspec-elasticsearchruby-elasticsearchmodel/
http://submicron.deviantart.com/art/Soulsequencer-Series-Hemocyte-Green-481438108?q=gallery%3Asubmicron%2F23534542&qo=8
http://submicron.deviantart.com/art/Soulsequencer-Series-Hemocyte-Green-481438108?q=gallery%3Asubmicron%2F23534542&qo=8
http://techcrunch.com/2014/05/15/soldsie-the-service-that-lets-you-shop-via-facebook-and-instagram-comments-raises-4-million/
http://techcrunch.com/2014/05/15/soldsie-the-service-that-lets-you-shop-via-facebook-and-instagram-comments-raises-4-million/
http://theconversation.com/we-are-all-suspects-now-thanks-to-australias-data-retention-plans-38223
http://theconversation.com/we-are-all-suspects-now-thanks-to-australias-data-retention-plans-38223
http://the-toast.net/2015/02/10/gal-science-ant-lab/
http://www.adelaidenow.com.au/news/south-australia/sa-public-servant-paid-out-to-quit-at-age-of-76/story-fni6uo1m-1227255760836
http://www.adelaidenow.com.au/news/south-australia/sa-public-servant-paid-out-to-quit-at-age-of-76/story-fni6uo1m-1227255760836
http://www.adelaidenow.com.au/news/south-australia/sa-public-servant-paid-out-to-quit-at-age-of-76/story-fni6uo1m-1227255760836
http://www.amazon.com/dp/B00I15SB16
http://www.autocar.co.uk/car-news/detroit-motor-show/next-mercedes-benz-glk-spotted-ahead-2015-launch
http://www.autocar.co.uk/car-news/detroit-motor-show/next-mercedes-benz-glk-spotted-ahead-2015-launch
http://www.canonrumors.com/forum/index.php?topic=25434.0
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19. http://www.couriermail.com.au/news/mh370-disappearance-towelette-

that-washed-up-on-wa-beach-being-tested-for-connection-to-missing-

malaysia-airlines-plane/story-fnii5s41-1227256204320

20. http://www.cracked.com/article_22116_6-popular-games-that-were-

meant-to-be-totally-different.html?wa_user1=2&wa_user2=Weird+

World&wa_user3=article&wa_user4=feature_module

21. http://www.crymore.net/2015/02/06/the-4-best-animes-youre-missing-

out-on-winter-2015-edition/

22. http://www.dailytelegraph.com.au/news/national/toxic-tuna-daily-

telegraph-investigation-reveals-the-smelly-and-messy-conditions-

at-thai-tuna-factories-linked-to-poisoned-fish/story-fnpn0zn5-

1227255781943

23. http://www.destructoid.com/police-officer-killed-during-gamestop-

robbery-288794.phtml

24. http://www.dpreview.com/reviews/sony-alpha-7-s?utm_campaign=

internal-link&utm_source=features-default&utm_medium=homepage-

block&ref=features-default

25. http://www.engadget.com/2015/03/09/apple-macbook/

26. http://www.escapistmagazine.com/articles/view/video-games/columns/

extra-punctuation/13550-When-Remastering-Classic-Games-Stay-True-

to-the-Originals

27. http://www.gamespot.com/videos/sid-meier-s-starships-ori-and-the-

blind-forest-hot/2300-6423773/

28. http://www.gizmodo.com.au/2014/09/kindle-voyage-this-is-what-a-

200-e-reader-looks-like-its-gorgeous/

29. http://www.joystiq.com/2015/02/03/there-is-no-end/

30. http://www.kotaku.com.au/2015/03/remember-this-735/

31. http://www.layer9.org/2014/10/session-3-paper-1-reclaiming-

brain.html

32. http://www.macrumors.com/2015/03/06/hands-on-with-the-textblade-

keyboard/

33. http://www.macworld.com/article/2894575/apples-radical-12-inch-

macbook-air-is-the-slimmest-lightest-mac-ever.html
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http://www.engadget.com/2015/03/09/apple-macbook/
http://www.escapistmagazine.com/articles/view/video-games/columns/extra-punctuation/13550-When-Remastering-Classic-Games-Stay-True-to-the-Originals
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http://www.escapistmagazine.com/articles/view/video-games/columns/extra-punctuation/13550-When-Remastering-Classic-Games-Stay-True-to-the-Originals
http://www.gamespot.com/videos/sid-meier-s-starships-ori-and-the-blind-forest-hot/2300-6423773/
http://www.gamespot.com/videos/sid-meier-s-starships-ori-and-the-blind-forest-hot/2300-6423773/
http://www.gizmodo.com.au/2014/09/kindle-voyage-this-is-what-a-200-e-reader-looks-like-its-gorgeous/
http://www.gizmodo.com.au/2014/09/kindle-voyage-this-is-what-a-200-e-reader-looks-like-its-gorgeous/
http://www.joystiq.com/2015/02/03/there-is-no-end/
http://www.kotaku.com.au/2015/03/remember-this-735/
http://www.layer9.org/2014/10/session-3-paper-1-reclaiming-brain.html
http://www.layer9.org/2014/10/session-3-paper-1-reclaiming-brain.html
http://www.macrumors.com/2015/03/06/hands-on-with-the-textblade-keyboard/
http://www.macrumors.com/2015/03/06/hands-on-with-the-textblade-keyboard/
http://www.macworld.com/article/2894575/apples-radical-12-inch-macbook-air-is-the-slimmest-lightest-mac-ever.html
http://www.macworld.com/article/2894575/apples-radical-12-inch-macbook-air-is-the-slimmest-lightest-mac-ever.html
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34. http://www.mortgagebusiness.com.au/breaking-news/8218-frydenberg-

concerned-about-smsf-lending?utm_source=Mortgage+Business&utm_

campaign=Mortgage_Business_Newsletter02_03_2015&utm_medium=email

35. http://www.neatorama.com/2015/02/27/The-Girl-Who-Gets-Gifts-from-

Crows/

36. http://www.pcworld.com/article/2893647/gnome-2-is-back-ubuntu-

mate-is-now-an-official-flavor.html

37. http://www.rockettheme.com/forum/general-discussion/147147-page-

with-modules-only-no-mainbody-apart-from-home-page

38. http://www.rockpapershotgun.com/2015/02/26/rimworld-alpha-review/

39. http://www.smh.com.au/federal-politics/political-opinion/

inequality-at-the-heart-of-rejection-of-gonski-program-20131130-

2yi54.html

40. http://www.theage.com.au/federal-politics/political-news/asylum-

seeker-torture-report-united-nations-special-rapporteur-juan-

mendez-responds-to-tony-abbott-criticism-20150310-13zrwz.html

41. http://www.tripadvisor.com.au/Restaurant_Review-g1076168-d3418528-

Reviews-Blend_Cafe_and_Pizza_Bar-Melville_Greater_Perth_Western_

Australia.html

42. http://www.urbanspoon.com/r/338/1430837/restaurant/Perth/Blend-

Cafe-and-Pizza-Bar-Melville

43. http://www.windowscentral.com/gdc-2015-quick-look-siegecraft-

commander-coming-xbox-one-summer

44. https://gigaom.com/2015/03/08/how-i-manage-my-creative-process-on-

an-11-inch-macbook-air/

45. https://productforums.google.com/forum/#!category-topic/hangouts/

Xfh-RfpGBP4%5B1-25%5D

46. https://vimeo.com/98201214

47. https://www.indiegogo.com/projects/rocketbook-cloud-integrated-

microwavable-notebook#comments

48. https://www.kickstarter.com/projects/1853707494/pancakebot-the-

worlds-first-pancake-printer/comments

49. https://www.ozbargain.com.au/node/185655
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a.4 debate topic timeline

Table 9: US Democratic Party presidential debate timeline of issues, 13th
October 2015. Times in UTC.

Time Candidate Topic

0:48:00 Chafee Opening statements.

0:50:00 Webb Opening statements.

0:52:30 O’Malley Opening statements.

0:55:00 Sanders Opening statements.

0:57:30 Clinton Opening statements.

1:00:30 Clinton Flip-Flop, Expediency, "Stand my ground!"

1:03:00 Sanders "Socialist in the White House", How can you win?

1:05:45 Clinton Follow-up: Is anyone else here not a capitalist? Save

capitalism from itself.

1:06:45 Sanders Re-follow-up: "Entrepeneurial nation!", "Growth doesn’t

mean anything if it’s inequal."

1:07:15 Chafee "You’ve been a republican, etc, why should voters trust

that you won’t change again?"

1:08:30 O’Malley "Baltimore blames your zero-tolerance policy for the

riots."

1:11:15 Webb Affirmative Action, "Aren’t you out of step?"

1:12:45 Sanders Guns. You supported gun owners, but now say

otherwise? Do you want to shield gun companies from

prosecution?

1:14:45 Clinton Follow-up: Is Sanders tough enough on guns? "No."

Attack on Sanders by Clinton.

Continued on next page
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Table 9 – Continued from previous page

Time Candidate Topic

1:15:45 Sanders Re-follow-up: "All the shouting in the world isn’t going

to keep guns out of the hands of people that shouldn’t

have them."

1:16:30 O’Malley Obama couldn’t pass gun laws, how did you? "We didn’t

look at polls."

1:18:00 Sanders Follow-up: "I think O’Malley gave a very good example

of weaknesses in the laws, but rural and urban disagree

on this issue."

1:18:45 O’Malley Re-follow-up: "It’s not about rural vs urban."

1:19:00 Sanders Re-re-follow-up: "You haven’t been in congress!"

1:19:15 Webb You had an A rating from the NRA.

1:20:45 Chafee You have an F rating from the NRA. "Gun lobby!"

1:21:30 O’Malley "I wrote back to the NRA! They didn’t dare petition it to

referendum."

1:22:00 Clinton Russia. Foreign policy. Did you underestimate them?

"Stop bullying us and others. We need to take

leadership."

1:23:15 Sanders "Syria? Quagmire."

1:24:30 Chafee Only republican in senate to vote against Iraq. Clinton

said her support was a mistake - why isn’t that enough?

1:25:15 Clinton He’s questioning your judgement. "Obama valued my

judgement. Namedrop situation room."

1:26:30 Sanders Voted against wars. Under what circumstances would

you use force? "No-fly is dangerous." "Kosovo I voted

for."

1:28:30 O’Malley Is Clinton too quick to use force? "No commander-in-

chief should take military action off the table."

Continued on next page
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Table 9 – Continued from previous page

Time Candidate Topic

1:30:15 Clinton Follow-up: "Happy when O’Malley endorsed me.

Consider him a friend. We’re already flying in Syria.

Tough decisions."

1:31:45 Webb "Three strategic points. Iraq. Arab Spring. Iran

fascination."

1:33:30 Sanders "I think Putin will regret what he’s doing."

1:34:15 Clinton Should you have seen Benghazi coming? "There was

about to be a massacre. Europe was begging us."

1:36:15 O’Malley "There are lessons to be learned from Benghazi. We need

better HUMINT."

1:36:45 Webb "This was not about Benghazi, it was about the

inevitability of something occurring."

1:37:30 Webb Sanders was a conscientous objector. Can he be

commander in chief? "Everyone should follow the legal

process and I respect that."

1:38:30 Sanders Why can you be CiC as a conscientous objector? "Thanks

Webb."

1:40:00 Chafee "Iran deal. No Webb, you’re wrong."

1:40:15 Webb "The signal we sent was that we are accepting Iran’s

greater position in the balance of power."

1:41:00 Chafee Greatest threat to national security? "Chaos in the

middle east."

1:41:10 O’Malley "Nuclear Iran."

1:41:20 Clinton "Spread of nuclear proliferation."

1:41:30 Sanders "Climate change."

1:41:40 Webb "Cyberwarfare."

Break.

Continued on next page
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Table 9 – Continued from previous page

Time Candidate Topic

1:45:30 Clinton Emails. "I’ve taken responsibility and said it was a

mistake. What I did was allowed."

1:48:00 Sanders "I think the American people are sick and tired

of hearing about your damned emails." *handshake*

*standing ovation*

1:49:15 Chafee You said email was a huge issue. "Absolutely. American

credibility."

1:49:45 Clinton Do you want to respond? "No." *cheers*

1:50:00 O’Malley Emails. "I believe that we don’t care anymore because

debates. We can talk about other issues."

1:51:15 Sanders "Black lives matter. We need to combat institutional

racism." *cheers*

1:52:15 O’Malley "We have undervalued black lives."

1:53:00 Clinton "I think Obama has been a visionary on this issue.

Reform criminal justice."

1:54:30 Webb *complaint about time* "All lives matter. I’ve had a long

history working with African-Americans."

1:55:45 Sanders How can you combat inequality when Obama couldn’t?

"We’ve created jobs. We need to create more by building

public infrastructure, raise minimum wage, etc."

1:57:00 Clinton You’re part of the 1%, how can you represent the middle

class? "We’ve worked really hard. I want to make sure

everyone has the same opportunity."

1:57:45 O’Malley "We raised the minimum wage and invested in

infrastructure. We need Glass-Steagall."

1:59:00 Clinton Glass-Steagall? "We need to deal with banks too big to

fail. Shadow banks. Put attention on them, empower

regulators to break them up."

Continued on next page
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Time Candidate Topic

2:00:00 Sanders "Greed and reckless behaviour of Wall St, where fraud is

a business model, helped destroy the economy."

2:01:00 Clinton Follow-up: "I respect passion and intensity. I told Wall St.

to cut it out! I have thought deeply about what we want

to do."

2:02:00 Sanders "Congress does not regulate Wall St, Wall St regulates

Congress."

2:02:30 Clinton "I think Dodd Frank was a very good start."

2:03:00 O’Malley "After the repeal of Glass-Steagall, the big banks went

from controlling 15% of our GDP to 65%."

2:03:30 Clinton "Everyone changes their mind."

2:04:30 Sanders Told without the 2008 bailout, you were told the country

could collapse. You voted against it. "How about the

people that caused the problem pay to fix it? (Goldman

Sachs)

2:05:30 Webb Is the system rigged? *complaining about time*

2:07:00 Chafee You voted to make banks bigger. "My dad had just died

and I just started."

2:08:45 Sanders Do you think taxpayers should pay for rich kids’

degrees? "They’ll be paying more tax. Every kid should

get it, regardless of parental income."

2:10:00 Clinton Sanders says college and medicare should be free. "We

want to reduce interest rates on student loans. Want

students to work 10h/wk."

2:11:15 Clinton "We fully support social security."

2:12:15 Sanders "When you have poor pensioners, you lift social security,

not lower it."

Continued on next page
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Table 9 – Continued from previous page

Time Candidate Topic

2:13:15 Sanders Immigration. Why should latino voters trust you when

you betrayed them? "SPLC said the provisions were semi-

slavery."

2:14:30 Clinton "I want immigrants to buy in to exchanges under the

ACA."

2:15:15 O’Malley "We are a nation of immigrants and made stronger by

them."

2:16:00 Webb "I wouldn’t have a problem with immigrants getting

Obamacare."

2:17:00 Clinton Follow-up: "The republicans demonise immigrants."

2:17:45 Clinton Undocumented immigrants should get state education?

"Yes."

2:18:00 O’Malley "We did this. It worked well. Trump is a clown."

2:19:00 Sanders Why did it take so long for the Senate to respond to VA

problems? "We put 15b into it."

2:20:00 Chafee You voted for the Patriot act? "99-1 vote. It got broadened

out of scope. I’d repeal parts of it."

2:20:30 Clinton Regret vote on Patriot? "No. It was necessary."

2:21:30 Sanders Only one to vote against. Would you shut down the NSA

surveillance program? "Yes. We have the right to be free."

2:22:15 Chafee Snowdon: traitor or hero? "I’d bring him home."

2:22:30 Clinton "He broke the laws."

2:23:00 O’Malley "He broke the law."

2:23:15 Sanders "He broke the law, but what he did for us should be

taken into account."

2:23:30 Webb "I’d leave his judgement to the legal system, but the NSA

have overreached."

Continued on next page
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Time Candidate Topic

2:24:30 Chafee Name the way your administration would not be a third

Obama term? "I’d change our approach to the middle

east."

2:25:00 O’Malley "I’d follow through on the promise to protect the

mainstream economy, Glass-Steagall."

2:25:30 Clinton "First female president." Is there a policy difference?

*non-answer*

2:26:15 Sanders "Corporate America is so great that the only way to

transform is through a political revolution."

2:26:45 Webb "Executive authority."

2:27:45 Sanders Revolution? "We need a larger voter turnout. Improve

transparency. Improve engagement."

2:28:15 O’Malley "Green Energy Revolution!"

Break.

2:33:30 Clinton Why should democrats embrace an insider? "First female

president. Lifetime of experience. I get things done."

2:34:30 O’Malley "I’ve travelled everywhere, people say two things: New

leadership. Get things done."

2:35:00 Clinton Follow-up: "Don’t vote based on name, look at what I’ve

accomplished."

2:35:45 Sanders "Only one without a SuperPAC."

2:36:30 O’Malley Climate change? "Green energy!!"

2:37:45 Webb You’re pro-coal, oil, etc. Out of step? "I voted for all kinds

of energy including renewable."

Continued on next page
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Table 9 – Continued from previous page

Time Candidate Topic

2:39:00 Sanders Better than Clinton? "We need to move boldly.

Introduced Carbon Tax legislation. Campaign finance

reform - fuel industry funding republicans."

2:39:45 Clinton "We’ve been trying to get to the Chinese about climate

change."

2:41:00 Clinton Paid family leave? "Republican scare-tactics. We can

design and pay for a system that doesn’t burden small

business. Make the wealthy pay for it."

2:43:15 Sanders "We are an international embarassment that we don’t

pay family leave. "

2:44:00 O’Malley "In my state, we did this."

2:44:45 Sanders Recreational marijuana? "I would vote yes. Too many

lives destroyed for non-violent offenses. Wall St CEOs

walk away yet we give jail to young people that smoke

weed."

2:45:45 Clinton "Not ready to take a position. Wait and see."

2:47:00 Sanders How will you work with republicans? "They’re total

obstructionists. Get millions of people to vote for us, so

republicans don’t control the house or senate."

Break.

2:53:00 Chafee Enemy you’re most proud of? "Coal lobby."

2:53:15 O’Malley "NRA."

2:53:30 Clinton "Everyone, basically. Republicans."

2:53:45 Sanders "Everyone. Wall St and Pharma."

2:54:00 Webb "Enemy soldier that wounded me but he’s not around."

Continued on next page
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Time Candidate Topic

2:54:15 Chafee Closing statements.

2:55:45 Webb Closing statements.

2:57:00 O’Malley Closing statements.

2:58:45 Sanders Closing statements.

3:00:15 Clinton Closing statements.
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