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Summary 

1.  Population viability analysis is an important tool for wildlife ecologists, geneticists and managers, 

which is used for the assessment of extinction risks, the evaluation of threatening processes, and the 

establishment of conservation targets .  

2.  Vortex is among the leading population modelling software and the latest release includes an 

automated sensitivity test module. However, an equivalent automation of the post-simulation data 

inspection and analysis is currently missing.   

3. vortexR is an R package to automate the analysis and visualisation of outputs from the population 

viability modelling software Vortex. vortexR facilitates collating Vortex output files, data visualisation and 

basic analyses (e.g. pairwise comparisons of scenarios), as well as providing more advanced statistics, such 

as searching for the best regression model(s) from a list of predictors to investigate the main effect and 

the interaction effects of the variables of interest.  
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4.  This package speeds up and greatly facilitates the reproducibility and portability of post-simulation 

analysis results. 

 

Tweetable Abstract 

vortexR is an R package to automate the statistical analysis and visualisation of outputs of the PVA 

software Vortex. 

 

Introduction  

Population viability analysis is an important tool for wildlife ecologists, geneticists and managers. The 

use of population modelling includes the assessment of extinction risks (Lindenmayer et al. 1995; 

Fordham et al. 2014), the evaluation of the importance of threatening processes   (e.g. Carrete et al. 

2009; Manlik et al. 2016), and the establishment of conservation targets (Traill et al. 2009; Himes Boor 

2014). Indeed, modelling of wildlife populations is a commonly required task, which is nowadays 

facilitated by the improved computation capacity of modern computers and increased availability of 

software to develop population viability models. Among these, one of the most commonly used is 

Vortex (Lacy 2000; Lacy & Pollak 2013) . Vortex (http://www.vortex10.org/Vortex10.aspx) is an 

incredibly versatile tool that is used to explore a large number of ecological and genetic questions. First 

developed in the early 1990s (Lacy 1993), Vortex became very popular as a result of being a free, highly 

flexible, user-friendly software. One of the most important changes in version 10 is that the sensitivity 

test module is almost entirely automated. The user can now set ranges for the parameters that need to 

be included in the sensitivity test and Vortex automatically generates the relevant combinations. This 

allows for a quick and easy setup of scenarios to evaluate the effect of individual parameters, as well as 

the interaction of parameters on the model forecast. As a result, a large number of data-files are 

generated and it rapidly becomes unpractical to manually analyse them. Even the simple graphical 

http://www.vortex10.org/Vortex10.aspx
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inspection of the trajectories may become a time consuming task. Therefore, an equivalent 

automation of the post-simulation data inspection and analysis was also required.  

We introduce here vortexR: an R package that executes several operations on various Vortex outputs, 

including collating Vortex output files, generating plots and conducting basic analysis (e.g. pairwise 

comparisons of scenarios) and more advanced statistics such as searching for the best regression 

model(s) given a list of predictors. We included tasks of common interest to Vortex's user community 

to facilitate the evaluation and analysis of Vortex simulations. A summary of vortexR functionalities in 

comparisons with Vortex is presented in Table S1. The use of this package will facilitate a more 

standardised analytical approach and make studies more comparable. At the same time, vortexR 

exports Vortex data into a simple, machine-readable format (.csv), which lowers the barrier towards 

running analyses outside vortexR’s built-in ones. While we acknowledge that some limitations exist in 

terms of reproducibility because Vortex runs only on Windows operating system, vortexR provides an 

automated, cross-platform analytical framework that will ensure reproducibility of results starting from 

simulated data, which is considered a minimal standard in research fields that involve computer 

science (Peng 2011). 

Description 

We discuss vortexR's functionalities by grouping them in three components (Figure 1): data handling, 

visualisation and analysis.  We provide worked examples in the supplementary material; further 

documentation is accessible from the package using the R command ?vortexR. 

The data handling component of vortexR is a collection of functions that either collate the results 

stored in different Vortex outputs or standardise their format for subsequent analyses.  

Typically, Vortex stores data from different scenarios (or Sensitivity Testing – ST– samples) in different 

text files (that is, each parameter configuration is stored in one file) and different data types are stored 

in different files. For example, mean parameter values are saved in files with extension .dat or .stdat. 
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Demographic data for each iteration are located in files with the extension .yr while final expected 

heterozygosity is stored in files with the extension .run and so forth. When the simulations include 

multiple populations, data for these are stored in separate blocks within the same file. 

By design, Vortex splits up its output into lots of small files with a nested structure. This design benefits 

manual inspection of individual files; however, it complicates the task of combining many Vortex 

outputs into a single tabular structure. 

To facilitate the cumbersome task of combining the fragmented Vortex output, vortexR provides a set 

of ‘collate’ functions (collate_one_dat; collate_dat; collate_run; collate_yr). 

The function collate_proc_data collates data generated with different Vortex modules. For 

example, running one simulation using the 'normal' Vortex module and one with the new ST module, 

these cannot be viewed or plotted together within Vortex's graphical user interface. 

collate_proc_data combines these data for use in other vortexR functions, or for export into a 

simple, machine-readable format (.csv). 

 

The data visualisation functions generate line plots of multiple variables across simulated years, dot 

plots of mean values with standard deviation bars or matrix of pairwise scatter plots. This family of 

functions facilitate the creation of plots and their preparation in a high resolution, publication-ready 

format. The user can restrict analysis to a subset of populations or simulated time period as 

appropriate. Some manipulations of the plot aesthetics are offered within vortexR functions. However, 

vortexR's plotting functions return ggplot objects (Wickham 2009), which can then be extensively 

manipulated as required. 
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The data analysis functions either calculate specific parameters or carry out statistical analysis. One 

function (Ne) automates the calculations of the effective population size (Ne) based on the loss of 

genetic diversity (expected heterozygosity) using the temporal approach: 

     
 

 
  
  

 

 
  

  

   
 

 
 

Where Hi and Hf are, respectively, the initial and final expected heterozygosity and τ is the number of 

generations that occurred between the indicated time interval. A second function (Nadults) 

 calculates the effective number of adults (using demographic data) allowing estimation of Ne : N ratio 

(more information and examples for these functions are available in vortexR's vignette).  

A third function (pairwise) conducts pairwise comparisons of the simulated scenarios against a 

baseline scenario using sensitivity coefficients (SC, Drechsler, Burgman & Menkhorst 1998) and strictly 

standardised mean difference (SSDM, Zhang 2007). This may be relevant if the user is interested in 

testing the effect of one parameter at the time. It is possible to specify more than one simulated point 

in time and compare several parameters at once.  

The sensitivity coefficients are calculated as (Drechsler, Burgman & Menkhorst 1998): 

    
     

  
 

where Vi  and VB are the mean value of the variable of interest in the i-th and the baseline scenarios, 

respectively. 

The logit is used for probabilities (e.g. probability of extinction) (Drechsler, Burgman & Menkhorst 

1998): 
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The strictly standardised mean difference is calculated as (Zhang 2007): 

      
     

    
    

  

 

 

with s being the standard deviations of the parameter being estimated. For probabilities, the formula 

becomes: 

      
     

    
    

  

 

Note that the direction of the changes is inverted if either of the statistics is calculated for 

probabilities. This provides a more intuitive result because, assuming that Vortex users are mainly 

interested in the probability of extinction, a negative result reflects an increased probability of 

extinction on the basis of a given scenario relative to the baseline scenario. 

It should be also noted that, when SC is calculated for probabilities and one of these is zero, it has little 

meaning. Also, SC and SSMD cannot be computed if the baseline variable is zero or both s are zero, 

respectively. 

We included the commonly used SC in pairwise to allow comparisons with previous work, but the 

SSMD offers some advantages: most importantly, it allows for a statistical test and considers the 

variability of the results, but it is not influenced by the sample size. These points are better illustrated 

with an example. Considering a baseline scenario with mean population size Nb = 5,000,  sb = 500, and 

aiming to compare two simulations where N1 = N2 = 4,000, but s1 = 100 and s2 = 450.  Using SC the two 

coefficients are the same: 

SC1 = SC2 = (4,000 - 5,000)/5,000 = -0.2 

Using SSMD we obtain two different values reflecting the larger N fluctuations in the second scenario: 
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SSMD1 = (4,000 - 5,000)/√(1002+5002) = 1.961 

SSMD2 = (4,000 - 5,000)/√(4502+5002) = 1.487 

Moreover, we can test the detected difference and verify that there is a statistical difference between 

N1 and the baseline scenario (p = 0.025) while there is no statistical difference at all (p = 0.069) with 

the second scenario. Note that if we were to use a t-test, assuming that the user generated the results 

using (the quite standard) 1,000 iterations, both t-tests would result in p<0.0001, providing very little 

insight into the potentially important biological differences between these scenarios with the baseline. 

This results from the statistical significance of the t-test being influenced not only by the mean 

difference, but also by the sample size, which is typically large in simulation studies. 

Additionally, pairwise provides the scenarios' rank based on the absolute value of the statistics (SC 

and SSMD) for each population. Lastly, the Kendall's coefficient of concordance (which ranges from 0 

to 1, representing no agreement or complete agreement, respectively) is calculated to test whether 

the order of ranked scenarios is statistically consistent across the chosen points in time and 

parameters. For example, if the user simulated 100 years and used pairwise with 

yrs=c(50,100)and selected two parameters, say params=c("Nall", "Het"), the 

consistency of ranking will be tested across the four raters (i.e. Nall at year 50, and 100, and Het at 

year 50 and 100).  

Depending on the simulation settings, pairwise can also evaluate the overall 'mean' effect of 

simulation parameters on the outcome variables of interest (i.e. the user is interested in the 

parameters' ranks, rather than scenarios' ranks). In these cases, vortexR will first compare all the 

scenarios against the baseline scenario and then, following Conroy and Brook (2003), calculate the 

mean SC and SSMD for each group and provide the ranks accordingly (see the package's vignette for 

details).  
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Vortex reports the probability of extinction on a per-year basis in the .dat (or .stdat) files, which are 

processed by vortexR. However, it may be relevant to calculate the cumulative probability of 

extinction. That is, the probability that a population may go extinct in any moment during the 

simulations (which is reported in the .sum files by Vortex, but not read in by vortexR). The function 

Pextinct calculates the cumulative probability of extinction and carries out a pairwise comparison 

with a baseline scenario using SSMD.  

Pacioni et al (2017) defined the recovery rate as the mean growth rate over a period of time and used 

this as indication of the capacity of the population to recover from low density. vortexR calculates this 

parameter with the function rRec. This function also conducts statistical pairwise comparisons with a 

baseline scenario using SSMD. Examples for these functions are available in vortexR's vignette. 

The last function in this group is fit_regression, a first attempt to automate a general work-flow 

to explore the interactions of factors, and not only their main, independent effect. From a list of 

potential predictors, this function will conduct a search of the best regression model(s) using the R 

package glmulti (Calcagno & de Mazancourt 2010) for one or more populations. 

In the initial fit of the model, the main and interactions effects are included and adequacy of the error 

distribution or link function (see below) is checked. Subsequently, the best model is sought limiting the 

search to the main effects only or all pairwise effects based on the user's selection.  

The regression model fitted depend on the dependent variable. When this is a count (e.g. N) the 

function will fit a Generalized Linear Model. The first fit is attempted with a Poisson error distribution 

and if the dispersion parameter (c^ =  
                

  
 ) is larger than 1.5, the model will be refitted with 

a quasipoisson error distribution. If the dependent variable is a proportion (i.e. heterozygosity or 

inbreeding), then the function uses a Beta regression (using the R package betareg, Cribari-Neto & 

Zeileis 2010). In the latter case, vortexR tests different link functions and selects the one with the 

lowest AIC value.  Beta regression models offer the dual advantage of adequately modelling data that 
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are expressed in proportions and handling skewness in the distribution of the dependent variables. The 

trade-off is that, at least currently, they cannot handle analysis of data when the dependent variable 

takes value of either exactly 0 or 1 (Cribari-Neto & Zeileis 2010). 

The function returns a glmulti object from which the user can extract model average estimates and 

other relevant information, as we show in the following examples. 

 

Examples 

When vortexR is installed, several examples can be retrieved by using the common R functions 

help() or example(). Further examples can be found in Pacioni et al (2017) and Campbell et al 

(2015) and in vortexR's vignette. In the supporting information (Appendix S1), we demonstrate vortexR 

usage using example data from these publications that are available when the package is installed.  

 

Conclusions and future development 

vortexR is, to our knowledge, the first attempt to automate the post-simulation analysis of the data  

generated by the very commonly used software Vortex. It provides a flexible tool to carry out quality 

check and data analysis, facilitate reproducible research and it is a mean to standardise analysis across 

projects. Possible future developments include parallelising some of the functions (especially reading 

multiple Vortex output files) to further improve the speed, and the inclusion of other output files that 

are not currently used by vortexR. Also, we envisage that the addition of zero-inflated models and 

generalised linear mixed models to fit_regression could further improve the suitability of this 

package to a wider range of analyses. vortexR is available under GPL-3 license from CRAN. To install 

from source, follow the instructions at https://github.com/carlopacioni/vortexR. The authors welcome 

feature requests, bug reports, and contributions via pull requests. 

https://github.com/carlopacioni/vortexR.git
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Data accessibility 

Data for the examples in this paper and the package's help documents and vignette are subsets of 

simulated data from Pacioni et al (2017) and Campbell et al (2016) and are stored in the R data 

package vortexRdata(https://CRAN.R-project.org/package=vortexRdata), which is 

available from CRAN and it is installed along side with vortexR. The data available can be retrieved with 

standard R commands: 

 

# A list of data available 
data(package="vortexRdata") 
 
# Load the data in current R session 
data("dataname") # dataname is the name of the dataset of interest 
 
# Retrieve the path where the raw data are stored 
pac.dir <- system.file("extdata", "pacioni", package="vortexRdata") 
cam.dir <- system.file("extdata", "campbell", package="vortexRdata") 
 
 

https://cran.r-project.org/package=vortexRdata
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Supporting information 

Table S1. Table summarising comparison of functionality between Vortex and vortexR. 

Appendix S1. Worked examples demonstrating vortexR usage. 

Figure legends 

Figure 1. A possible workflow using vortexR. After Vortex has generated the output files, the data are 

collated into one R object. Plots are generated to visualise trends and inspect the behaviour and 

performance of Vortex's models. Lastly, the analysis of the data is carried out and relevant plots may 

be revisited to modify them for publications or reports. Some functions (e.g. fit_regression) will 

also generate separate plots to visualise results and diagnostics. 
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vortexR: an R package for post Vortex simulation analysis 

Appendix: vortexR examples 

Pacioni C. and Mayer F. 

Introduction 

This document showcases vortexR's Data handling, Data visualisation, and Data 
analysis of Vortex output using included sample data from two real-world use cases. 

vortexR initially parses a number of Vortex output files into a single R object which can be 
saved as R data and text files (save2disk=TRUE) and then further visualised and analysed. 
Because 'vortexR' reads in the data from Vortex, all parameters will be named as for default 
by Vortex (e.g. Nall, Next, Het, etc.). It is assumed that the reader is familiar with Vortex 
definition of parameter, if not, please refer to Vortex manual. 

Installation 

vortexR can be installed using: 

install.packages("vortexR") 

 

Alternatively, vortexR can be installed from source using devtools: 

library(devtools) 
install_github("carlopacioni/vortexR") 

 

The example data 

When vortexR is installed, the package vortexRdata is also installed. The latter contains a 
few files that can be used to run the example presented here and in the package 
documentation. 

To limit the amount of downloaded data when the package is installed, the 'pacioni' data 
are a subset of Pacioni et al (2017), containing only three runs for 120 time-steps, and only 
the scenarios 'ST_Classic' and 'ST_LHS', so the results do not match exactly the ones 
reported in the original publication. In this work, the authors developed a baseline PVA 
model for the woylie (Bettongia penicillata). They conducted a sensitivity analysis by 
varying the carrying capacity, the mortality rates for each age class, the standard deviation 
of these rates, the mate monopolization and the initial population size using the Single-
Factor option of the ST module in Vortex. They evaluated the individual impact of each of 
these parameters (each parameter is modified one at the time) as well as at their 

http://cran.r-project.org/web/packages/devtools/README.html


interactions. For the latter, they used the Latin Hypercube Sampling to vary parameters 
concurrently. 

Campbell et al (2015) investigated the cost-benefit ratios of different control levels 
(scenarios 'control_09', 'control_11', 'control_D09'), with or without the inclusion of new 
technology (scenarios ending with the suffix 'Tech') for the starling (Sturnus vulgaris) in 
Western Australia. They also evaluated whether the variation of the geographical extent of 
the application of control measures would alter the cost-benefit ratio of the control 
program (scenarios ending with the suffix 'Border' and 'SC'). Lastly, they evaluated 
whether the cyclical application of intense control ('Major Reduction'), would be more cost-
effective than sustaining a constant level of investment. The latter component was 
modelled with a ST module in Vortex, while the previous were developed using the 
standard Vortex interface. 

Data handling 

This section describes vortexR's data handling capabilities, leading from a number of 
Vortex output files to a single R object, and optionally a spreadsheet. 

collate_dat 

In the following example, a Sensitivity Test module (ST) was used in a Vortex project, 
which generates files with extension .stdat. collate_dat requires the ST project's and 
scenario's names ("Pacioni_et_al" and "ST_Classic") as parameter. As with all other R 
functions, ?collate_dat will show detailed documentation including required function 
parameters and example usage. The consolidated dataset is stored in the object 
woylie.st.classic. 

library(vortexR) 
pac.dir <- system.file("extdata", "pacioni", package="vortexRdata") 
woylie.st.classic <- collate_dat("Pacioni_et_al", 3, scenario = "ST_Classic", 
                            dir_in = pac.dir, save2disk=FALSE, verbose=FALSE) 

The first five rows and fist five columns of the dataset should look like the following: 

woylie.st.classic[1:5, 1:5] 

##       scen.name     pop.name Year PExtant SE.PExtant. 
## 1 ST_Classic(1) Population 1    0       1           0 
## 2 ST_Classic(1) Population 1    1       1           0 
## 3 ST_Classic(1) Population 1    2       1           0 
## 4 ST_Classic(1) Population 1    3       1           0 
## 5 ST_Classic(1) Population 1    4       1           0 

collate_yr 

collate_yr collates all .yr files of the Vortex project and the specified ST scenario (here 
ST_Classic), and returns a list that we name here yr.st.classic. 



yr.st.classic <- collate_yr(project="Pacioni_et_al", scenario="ST_Classic", 
                            dir_in = pac.dir, save2disk=FALSE, verbose=FALSE) 

  



Again, we can inspect the first few rows and columns of the first element of the list with: 

yr.st.classic[[1]][1:5, 1:8, with=FALSE] 

##         Scenario Iteration Year Npop1 AMpop1 AFpop1 Subadultspop1 Juvpop1 
## 1: ST_Classic(1)         1    0   300     97    117            24      62 
## 2: ST_Classic(1)         2    0   300     97    117            24      62 
## 3: ST_Classic(1)         3    0   300     97    117            24      62 
## 4: ST_Classic(1)         1    1   361    116    137            28      80 
## 5: ST_Classic(1)         2    1   357    115    136            29      77 

The second element of the list includes the same data averaged across iterations. The 
averaged data show the mean number of animals that moved between populations (e.g. 
migration or translocations), or subclasses of individuals (e.g. by gender or age): 

yr.st.classic[[2]][1:5, 1:7, with=FALSE] 

##         Scenario Year    Npop1   AMpop1   AFpop1 Subadultspop1   Juvpop1 
## 1: ST_Classic(1)    0 300.0000  97.0000 117.0000      24.00000  62.00000 
## 2: ST_Classic(1)    1 362.0000 117.0000 138.0000      28.66667  78.33333 
## 3: ST_Classic(1)    2 433.6667 141.0000 172.3333      34.00000  86.33333 
## 4: ST_Classic(1)    3 500.6667 165.0000 200.0000      35.66667 100.00000 
## 5: ST_Classic(1)    4 481.3333 166.6667 202.6667      40.66667  71.33333 

lookup_table 

Lastly, lookup_table obtains a summary of the parameters' values used in the ST scenario 
that was collated before. 

lkup.st.classic <- lookup_table(data=woylie.st.classic, 
project="Pacioni_et_al", 
                   scenario="ST_Classic", pop="Population 1", 
                   SVs=c("SV1", "SV2", "SV3", "SV4", "SV5", "SV6", "SV7"), 
                   save2disk=FALSE) 
head(lkup.st.classic) 

##         Scenario  SV1 SV2 SV3 SV4 SV5 SV6 SV7 
## 1: ST_Classic(1)  500   1   1   1 0.1  80 300 
## 2: ST_Classic(2) 1000   1   1   1 0.1  80 300 
## 3: ST_Classic(3) 2000   2   1   1 0.1  80 300 
## 4: ST_Classic(4) 2000   3   1   1 0.1  80 300 
## 5: ST_Classic(5) 2000   4   1   1 0.1  80 300 
## 6: ST_Classic(6) 2000   5   1   1 0.1  80 300 

The variable names originate from Vortex outputs and may have little meaning outside the 
particular Vortex project. For readability, we will replace them with concise, but 
meaningful mnemonics. 

library(data.table, quietly=TRUE) 
library(gridExtra, quietly=TRUE) 
setnames(lkup.st.classic, c("Scenario", "K", "Ad.Mor", "Juv.Mor",  



                          "PY.Mor", "SD.Mor", "Mate.mon", "Init.N")) 
grid.table(lkup.st.classic, rows=NULL, 
           theme=ttheme_default(core=list(bg_params=list(fill="white")))) 

 

Where: 

• K: carrying capacity, 

• Ad.Mor: adult mortality, 

• Juv.Mor: juvenile mortality, 

• PY.Mor: pouch young mortality, 

• SD.Mor: standard deviation of mortality rates, 

• Mate.mon: mate monopolization, and 

• Init.N: initial population size. 



These data are now available for further data analysis either with vortexR or other 
software. 

Data visualisation 

This section demonstrates vortexR's data visualisation capabilities. Recall that all 
parameters are identified as for default by Vortex (e.g. Nall, Next, Het, etc.). If uncertain, the 
reader is referred to Vortex manual. 

dot_plot 

The following will generate a dot plot of mean values with standard deviations for specific 
years (here: faceted for year 80 and 120). Parameter values are on the Y-axis and scenarios 
are on the X-axis. dot_plot uses data prepared by collate_dat and Vortex parameter 
names. 

dot <- dot_plot(data=woylie.st.classic, project="Pacioni_et_al",  
                scenario="ST_Classic", yrs=c(80, 120), params="Nall",  
                save2disk=FALSE) 

 

Figure S1. Dot plot of mean values with standard deviations for year 80 and 120. Parameter 
values are on the Y-axis and scenarios are on the X-axis 



line_plot_year & line_plot_year_mid 

The following two plots visualise changes of population size through time. The only 
difference between the two is that the time window in the second plot is limited between 
the beginning of the simulation and a yrmid year, in this case 50. 

lineplot.st.classic <- line_plot_year(data=woylie.st.classic, 
project="Pacioni_et_al", 
                         scenario="ST_Classic", params="Nall", 
save2disk=FALSE) 

 

Figure S2. Line plot of mean population size values (Y-axis) over simulated years. Each colour 
represent a different scenario. 

Although these plots are crowded by the multitude of scenarios, but they can be useful to 
give an overview. It is also very easy to subset the dataset based on parameter values or 
specific scenarios. To demonstrate this point, we include in the second plot only scenarios 
where the adult mortality is different from the baseline scenario. 

lineMidPlot.st.classic <- 
line_plot_year_mid(woylie.st.classic[woylie.st.classic$SV2 > 1, ],  
                                             project="Pacioni_et_al", 
scenario="ST_Classic",  



                                             yrmid=50, params="Nall", 
save2disk=FALSE) 

## Warning: `panel.margin` is deprecated. Please use `panel.spacing` property 
## instead 

 

Figure S3. Line plot of mean population size values (Y-axis) over simulated years. Note how 
the time window from the beginning of the population to the year 50 (as set by the yrmid 
argument). Each colour represent a different scenario. 

m_scatter 

For brevity, the last type of plot (m_scatter) will be discussed together with the function 
fit_regression. 

Data analysis 

We focus our attention on pairwise and fit_regression, and refer the user to the package 
documentations for examples on the functions for the calculation of the effective 
population size (Ne and Nadults), the probability of extinction (Pextinct) and the recovery 
rate (rRec). 



pairwise 

We use pairwise to compare the scenarios of the sensitivity test 'ST_Classic' against its 
baseline scenario. This function returns a list with several elements that contained the 
results. We start exploring the first three, which include the sensitivity coefficients (SC), the 
strictly standardised mean difference (SSMD), and the p-values associated with SSMD. 

pairw<-pairwise(data=woylie.st.classic, project="Pacioni_et_al", 
scenario="ST_Classic", 
                params=c("Nall", "Het"), yrs=120, ST=T, type="Single-Factor", 
                SVs=c("SV1", "SV2", "SV3", "SV4", "SV5", "SV6", "SV7"), 
                save2disk=FALSE) 
pairw[[1]] 

##          Scenario   Population   SC_Nall120     SC_Het120 
## 1   ST_Classic(1) Population 1 -0.745396246 -0.0197640415 
## 2   ST_Classic(2) Population 1 -0.545881126 -0.0075627710 
## 3   ST_Classic(3) Population 1  0.047095933 -0.0012100434 
## 4   ST_Classic(4) Population 1  0.054223149 -0.0028234345 
## 5   ST_Classic(5) Population 1 -0.101840459 -0.0038318040 
## 6   ST_Classic(6) Population 1 -0.043623566 -0.0063527276 
## 7   ST_Classic(7) Population 1 -0.106882169 -0.0129071292 
## 8   ST_Classic(8) Population 1  0.075599583  0.0000000000 
## 9   ST_Classic(9) Population 1 -0.110703858 -0.0003025108 
## 10 ST_Classic(10) Population 1  0.034760167 -0.0008066956 
## 11 ST_Classic(11) Population 1 -0.055615224 -0.0028234345 
## 12 ST_Classic(12) Population 1 -0.995135558 -1.0000000000 
## 13 ST_Classic(13) Population 1  0.049880083 -0.0006050217 
## 14 ST_Classic(14) Population 1  0.030933264 -0.0004033478 
## 15 ST_Classic(15) Population 1  0.025547445  0.0001008369 
## 16 ST_Classic(16) Population 1 -0.035974974  0.0003025108 
## 17 ST_Classic(17) Population 1  0.096105318  0.0002016739 
## 18 ST_Classic(18) Population 1  0.008342023 -0.0006050217 
## 19 ST_Classic(19) Population 1  0.000000000 -0.0001008369 
## 20 ST_Classic(20) Population 1 -0.035453597 -0.0004033478 
## 21 ST_Classic(21) Population 1  0.063779979 -0.0003025108 
## 22 ST_Classic(22) Population 1  0.114353493 -0.0003025108 
## 23 ST_Classic(23) Population 1  0.062737226 -0.0063527276 

pairw[[2]] 

##          Scenario   Population SSMD_Nall120   SSMD_Het120 
## 1   ST_Classic(1) Population 1  -8.26099855    -7.4508020 
## 2   ST_Classic(2) Population 1  -5.59253479    -2.7477874 
## 3   ST_Classic(3) Population 1   0.41904660    -2.6832816 
## 4   ST_Classic(4) Population 1   0.58029707    -3.4729726 
## 5   ST_Classic(5) Population 1  -0.66510998    -5.9346030 
## 6   ST_Classic(6) Population 1  -0.41449553    -4.9805873 
## 7   ST_Classic(7) Population 1  -0.95694624   -10.9357780 
## 8   ST_Classic(8) Population 1   0.83068382     0.0000000 



## 9   ST_Classic(9) Population 1  -1.18040589    -0.5303301 
## 10 ST_Classic(10) Population 1   0.36870131    -1.4142136 
## 11 ST_Classic(11) Population 1  -0.54150939    -2.0586009 
## 12 ST_Classic(12) Population 1 -10.99812985 -2479.2500000 
## 13 ST_Classic(13) Population 1   0.48193240    -0.6708204 
## 14 ST_Classic(14) Population 1   0.18928233    -0.6246950 
## 15 ST_Classic(15) Population 1   0.26307009     0.2000000 
## 16 ST_Classic(16) Population 1  -0.31656651     0.3721042 
## 17 ST_Classic(17) Population 1   1.06177944     0.3535534 
## 18 ST_Classic(18) Population 1   0.07427443    -0.5570860 
## 19 ST_Classic(19) Population 1   0.00000000    -0.1386750 
## 20 ST_Classic(20) Population 1  -0.22067003    -0.3713907 
## 21 ST_Classic(21) Population 1   0.44096584    -0.6708204 
## 22 ST_Classic(22) Population 1   1.17067958    -0.3354102 
## 23 ST_Classic(23) Population 1   0.63823134    -7.0436141 

pairw[[3]] 

##          Scenario   Population SSMD_Nall120  SSMD_Het120 
## 1   ST_Classic(1) Population 1 7.222942e-17 4.638725e-14 
## 2   ST_Classic(2) Population 1 1.118891e-08 2.999945e-03 
## 3   ST_Classic(3) Population 1 3.375910e-01 3.645179e-03 
## 4   ST_Classic(4) Population 1 2.808572e-01 2.573640e-04 
## 5   ST_Classic(5) Population 1 2.529901e-01 1.472787e-09 
## 6   ST_Classic(6) Population 1 3.392556e-01 3.169580e-07 
## 7   ST_Classic(7) Population 1 1.692972e-01 3.886815e-28 
## 8   ST_Classic(8) Population 1 2.030761e-01 5.000000e-01 
## 9   ST_Classic(9) Population 1 1.189194e-01 2.979415e-01 
## 10 ST_Classic(10) Population 1 3.561752e-01 7.864960e-02 
## 11 ST_Classic(11) Population 1 2.940783e-01 1.976624e-02 
## 12 ST_Classic(12) Population 1 1.950695e-28 0.000000e+00 
## 13 ST_Classic(13) Population 1 3.149270e-01 2.511675e-01 
## 14 ST_Classic(14) Population 1 4.249358e-01 2.660856e-01 
## 15 ST_Classic(15) Population 1 3.962483e-01 4.207403e-01 
## 16 ST_Classic(16) Population 1 3.757863e-01 3.549076e-01 
## 17 ST_Classic(17) Population 1 1.441679e-01 3.618368e-01 
## 18 ST_Classic(18) Population 1 4.703960e-01 2.887343e-01 
## 19 ST_Classic(19) Population 1 5.000000e-01 4.448535e-01 
## 20 ST_Classic(20) Population 1 4.126747e-01 3.551733e-01 
## 21 ST_Classic(21) Population 1 3.296189e-01 2.511675e-01 
## 22 ST_Classic(22) Population 1 1.208638e-01 3.686578e-01 
## 23 ST_Classic(23) Population 1 2.616615e-01 9.365822e-13 

Let us focus on the table with p-values of the scenario comparisons with SSMD (the 
element 3 of the list). To make it easier, we round the p-values to the fourth decimal digit. 

pval<-pairw[[3]] 
pval$SSMD_Nall120<-round(pval$SSMD_Nall120, 4) 
pval$SSMD_Het120<-round(pval$SSMD_Het120, 4) 
pval 



##          Scenario   Population SSMD_Nall120 SSMD_Het120 
## 1   ST_Classic(1) Population 1       0.0000      0.0000 
## 2   ST_Classic(2) Population 1       0.0000      0.0030 
## 3   ST_Classic(3) Population 1       0.3376      0.0036 
## 4   ST_Classic(4) Population 1       0.2809      0.0003 
## 5   ST_Classic(5) Population 1       0.2530      0.0000 
## 6   ST_Classic(6) Population 1       0.3393      0.0000 
## 7   ST_Classic(7) Population 1       0.1693      0.0000 
## 8   ST_Classic(8) Population 1       0.2031      0.5000 
## 9   ST_Classic(9) Population 1       0.1189      0.2979 
## 10 ST_Classic(10) Population 1       0.3562      0.0786 
## 11 ST_Classic(11) Population 1       0.2941      0.0198 
## 12 ST_Classic(12) Population 1       0.0000      0.0000 
## 13 ST_Classic(13) Population 1       0.3149      0.2512 
## 14 ST_Classic(14) Population 1       0.4249      0.2661 
## 15 ST_Classic(15) Population 1       0.3962      0.4207 
## 16 ST_Classic(16) Population 1       0.3758      0.3549 
## 17 ST_Classic(17) Population 1       0.1442      0.3618 
## 18 ST_Classic(18) Population 1       0.4704      0.2887 
## 19 ST_Classic(19) Population 1       0.5000      0.4449 
## 20 ST_Classic(20) Population 1       0.4127      0.3552 
## 21 ST_Classic(21) Population 1       0.3296      0.2512 
## 22 ST_Classic(22) Population 1       0.1209      0.3687 
## 23 ST_Classic(23) Population 1       0.2617      0.0000 

It is evident that the changes in K have a significant effect because both scenarios 1 and 2 
are statistically different for both parameters (Nall and Het) from the baseline (refer to the 
lookup table generated above to identify the variable that have been changed in each 
scenario). Changes in the adult mortality rate (scenarios 3 to 7) are responsible for a 
significantly reduced heterozygosity. When the mortality rate of juveniles is increased by a 
factor of five or six (scenario 11 and 12), the differences are significant in one or both 
parameters (it can be noted from the dot plot above that in scenario 12 the population goes 
extinct). Lastly, when initial population size is changed to 100 individuals, the final 
heterozygosity is also significantly reduced. 

Next in the list pairw there are: the scenario ranks based on SC and SSMD, and the results 
of the Kendall's coefficient of concordance test. In this example, we used the population 
size (Nall) and heterozygosity (Het) at year 120 to compare the scenarios. The headings of 
the columns with the ranks synthesise the information. 

pairw[[4]] 

##       Population       Scenario SC_Nall120 SC_Het120 
##  1: Population 1  ST_Classic(1)          2       2.0 
##  2: Population 1  ST_Classic(2)          3       4.0 
##  3: Population 1  ST_Classic(3)         15      10.0 
##  4: Population 1  ST_Classic(4)         13       8.5 
##  5: Population 1  ST_Classic(5)          7       7.0 
##  6: Population 1  ST_Classic(6)         16       5.5 
##  7: Population 1  ST_Classic(7)          6       3.0 



##  8: Population 1  ST_Classic(8)          9      23.0 
##  9: Population 1  ST_Classic(9)          5      17.0 
## 10: Population 1 ST_Classic(10)         19      11.0 
## 11: Population 1 ST_Classic(11)         12       8.5 
## 12: Population 1 ST_Classic(12)          1       1.0 
## 13: Population 1 ST_Classic(13)         14      12.5 
## 14: Population 1 ST_Classic(14)         20      14.5 
## 15: Population 1 ST_Classic(15)         21      21.5 
## 16: Population 1 ST_Classic(16)         17      19.0 
## 17: Population 1 ST_Classic(17)          8      20.0 
## 18: Population 1 ST_Classic(18)         22      12.5 
## 19: Population 1 ST_Classic(19)         23      21.5 
## 20: Population 1 ST_Classic(20)         18      14.5 
## 21: Population 1 ST_Classic(21)         10      17.0 
## 22: Population 1 ST_Classic(22)          4      17.0 
## 23: Population 1 ST_Classic(23)         11       5.5 
##       Population       Scenario SC_Nall120 SC_Het120 

pairw[[5]] 

##       Population       Scenario SSMD_Nall120 SSMD_Het120 
##  1: Population 1  ST_Classic(1)            2           3 
##  2: Population 1  ST_Classic(2)            3           8 
##  3: Population 1  ST_Classic(3)           15           9 
##  4: Population 1  ST_Classic(4)           11           7 
##  5: Population 1  ST_Classic(5)            9           5 
##  6: Population 1  ST_Classic(6)           16           6 
##  7: Population 1  ST_Classic(7)            7           2 
##  8: Population 1  ST_Classic(8)            8          23 
##  9: Population 1  ST_Classic(9)            4          16 
## 10: Population 1 ST_Classic(10)           17          11 
## 11: Population 1 ST_Classic(11)           12          10 
## 12: Population 1 ST_Classic(12)            1           1 
## 13: Population 1 ST_Classic(13)           13          13 
## 14: Population 1 ST_Classic(14)           21          14 
## 15: Population 1 ST_Classic(15)           19          21 
## 16: Population 1 ST_Classic(16)           18          17 
## 17: Population 1 ST_Classic(17)            6          19 
## 18: Population 1 ST_Classic(18)           22          15 
## 19: Population 1 ST_Classic(19)           23          22 
## 20: Population 1 ST_Classic(20)           20          18 
## 21: Population 1 ST_Classic(21)           14          12 
## 22: Population 1 ST_Classic(22)            5          20 
## 23: Population 1 ST_Classic(23)           10           4 
##       Population       Scenario SSMD_Nall120 SSMD_Het120 

pairw[[6]] 

## $SC 
##  [1] "Rank comparison of sensitivity coefficients "    
##  [2] "$`Population 1`"                                 



##  [3] "$method"                                         
##  [4] "[1] \"Kendall's coefficient of concordance Wt\"" 
##  [5] ""                                                
##  [6] "$subjects"                                       
##  [7] "[1] 23"                                          
##  [8] ""                                                
##  [9] "$raters"                                         
## [10] "[1] 2"                                           
## [11] ""                                                
## [12] "$irr.name"                                       
## [13] "[1] \"Wt\""                                      
## [14] ""                                                
## [15] "$value"                                          
## [16] "[1] 0.7238178"                                   
## [17] ""                                                
## [18] "$stat.name"                                      
## [19] "[1] \"Chisq(22)\""                               
## [20] ""                                                
## [21] "$statistic"                                      
## [22] "[1] 31.84798"                                    
## [23] ""                                                
## [24] "$p.value"                                        
## [25] "[1] 0.08002493"                                  
## [26] ""                                                
## [27] "attr(,\"class\")"                                
## [28] "[1] \"irrlist\""                                 
## [29] ""                                                
##  
## $SSMD 
##  [1] "Rank comparison of SSMD "                        
##  [2] "$`Population 1`"                                 
##  [3] "$method"                                         
##  [4] "[1] \"Kendall's coefficient of concordance Wt\"" 
##  [5] ""                                                
##  [6] "$subjects"                                       
##  [7] "[1] 23"                                          
##  [8] ""                                                
##  [9] "$raters"                                         
## [10] "[1] 2"                                           
## [11] ""                                                
## [12] "$irr.name"                                       
## [13] "[1] \"Wt\""                                      
## [14] ""                                                
## [15] "$value"                                          
## [16] "[1] 0.7109684"                                   
## [17] ""                                                
## [18] "$stat.name"                                      
## [19] "[1] \"Chisq(22)\""                               
## [20] ""                                                
## [21] "$statistic"                                      



## [22] "[1] 31.28261"                                    
## [23] ""                                                
## [24] "$p.value"                                        
## [25] "[1] 0.09047599"                                  
## [26] ""                                                
## [27] "attr(,\"class\")"                                
## [28] "[1] \"irrlist\""                                 
## [29] "" 

Because multiple parameters are changed one at the time, vortexR also calculates 
automatically the mean effect of each of the modified parameter during the ST run. These 
results are returned as additional elements of the list and follow the same order as the 
above. We will only look at the ranks of the parameters with SSMD. To identify in what 
element these are contained, we can look at their names. 

names(pairw) 

##  [1] "coef.table"              "SSMD.table"              
##  [3] "SSMD.table.pvalues"      "ranks.SC"                
##  [5] "ranks.SSMD"              "Kendall"                 
##  [7] "mean.coef.table"         "mean.SSMD.table"         
##  [9] "mean.SSMD.table.pvalues" "ranks.mean.SC"           
## [11] "ranks.mean.SSMD"         "Kendall.means" 

The first three additional elements (elements 7 to 9) refer to the mean value of SC and 
SSMD (for example, looking at the p-values of the mean SSDM, it is confirmed that the 
parameters 'Pouch young mortality', 'SD', and 'Mate monopolization' are not significantly 
affecting the final Nall and Het). The third last element of the list (ranks.mean.SSMD) 
reports the rank for these parameters based on the mean of the strictly standardised mean 
difference. We can explore these results as we did above. 

pairw[[11]] 

##      Population  SV SSMD_Nall120 SSMD_Het120 
## 1: Population 1 SV1            1           4 
## 2: Population 1 SV2            6           3 
## 3: Population 1 SV3            2           1 
## 4: Population 1 SV4            5           7 
## 5: Population 1 SV5            7           6 
## 6: Population 1 SV6            4           5 
## 7: Population 1 SV7            3           2 

Interestingly, the effects of these parameters, in terms of changes in the demography and 
heterozygosity of the population, are inconsistent (which is also confirmed by the non-
significant Kendall's test). For example, note how the Adult Mortality (SV2) has a 
substantial effect on the final heterozygosity of the population, but not on the demography. 



fit_regression 

To evaluate the main and interaction effects of some of the parameters used in the 
simulations, we used the function fit_regression. First, we have to prepare the data 
obtained with the Latin hypercube sampling to be analysed with fit_regression with the 
following: 

# Collate all .run  
run <- collate_run(project="Pacioni_et_al", scenario="ST_LHS", 1, 
dir_in=pac.dir, save2disk=FALSE, verbose=FALSE) 
 
# Remove base scenario from the output in long format 
lrun.ST_LHS.no.base <- run[[2]][!run[[2]]$Scenario == "ST_LHS(Base)", ] 

We also need to prepare a data.frame to match the scenarios with the parameter values 
used to set the simulations. We do that with lookup_table (we have to do this because we 
are using data collected in the .run Vortex outputs --- N --- and these do not contained the 
'SV' variables used to run the simulations. To obtain the latter, we use the .stdat files). To 
save space, vortexR comes with the collated .stdat files in order to reduce the size of the 
package, so there is no need to run collate_dat for the LHS simulations, but we can 
directly load the data. 

# Load the already collated .stdat data 
data(pac.lhs) 
# Remove base scenario 
stdat.ST_LHS.no.base <- pac.lhs[!pac.lhs$scen.name == "ST_LHS(Base)", ] 
 
# Create the lookup table 
lkup.ST_LHS <- lookup_table(data=stdat.ST_LHS.no.base, 
project="Pacioni_et_al", scenario="ST_LHS", pop="Population 1",   
SVs=c("SV1", "SV2", "SV3", "SV4", "SV5", "SV6", "SV7"), save2disk=FALSE) 

We can graphically inspect the data with the function m_scatter. 

scatter.plot <- m_scatter(data=stdat.ST_LHS.no.base[1:33], data_type="dat", 
                         lookup=lkup.ST_LHS, yr=120, popn=1, param="Nall", 
                         vs=c("SV1", "SV2", "SV3"), save2disk=FALSE) 
scatter.plot 



 

Figure S4. Scatter plot matrix of pairs of selected variables, named as for Vortex output on 
the diagonal. Correlation coefficients are reported above the diagonal. 

If we are happy with how the simulations were carried out, we can carry out the analysis. 
In this example, fit_regression will fit a GLM. Just before the beginning of the search for 
the best model(s), a summary of the dependent variable is printed on the screen so that the 
user can check whether there is any problem or error. For the same reason, the distribution 
of the dependent variable is plotted. In this example, it is clear that there are lots of zeros. 
Indeed, in the original publication the authors used a zero-inflated model, but because here 
we are simply demonstrating the use of fit_regression, we will ignore this. 

reg <- fit_regression(data=lrun.ST_LHS.no.base, lookup=lkup.ST_LHS, census=F, 
                  project="Pacioni_et_al", scenario="ST_LHS", popn=1, 
                  param="N", vs=c("SV1", "SV2", "SV3"), l=2,  ncand=30,  
                  save2disk=FALSE) 

## summary of N 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##     0.0     0.0   380.5   441.7   779.8  1544.0 

## Fitting a GLM... 



## Initialization... 
## TASK: Diagnostic of candidate set. 
## Sample size: 150 
## 0 factor(s). 
## 3 covariate(s). 
## 0 f exclusion(s). 
## 0 c exclusion(s). 
## 0 f:f exclusion(s). 
## 0 c:c exclusion(s). 
## 0 f:c exclusion(s). 
## Size constraints: min =  0 max = -1 
## Complexity constraints: min =  0 max = -1 
## Your candidate set contains 64 models. 

## Overdispersion was detected in the data. 

## Setting overdispersion parameter to: 160.960271847589 

## NOTE: the Information Criterion for model search was changed to QAIC 

## confsetsize set to 30 

## Search method set to g 

## Search for best candidate models using level = 2 started... 

## TASK: Genetic algorithm in the candidate set. 
## Initialization... 
## Algorithm started... 
## Improvements in best and average IC have bebingo en below the specified 
goals. 
## Algorithm is declared to have converged. 
## Completed. 

## Done! Elapsed time: 



 

Figure S5. Bar plot of the distribution of the dependent variable values. 

##    user  system elapsed  
##    0.67    0.01    0.58 

Once the search is concluded, there are several information that can be retrieved. Detailed 
explanations and examples are in the documentations of the R package glmulti and we 
only report below a few examples. 

It is possible to inspect the plot of the information criterion of the evaluated models. This is 
saved to disk if save2disk=TRUE, otherwise it can be called from the glmulti object: 

plot(reg, type="p") 



 

Figure S6. Profile of the Information Criterion (IC) values (QAIC, y-axis) of the different 
models that were tested (x-axis). 

In our case, it is clear that one model (the full model) is markedly better that the others. 
The formula of the best model can be obtained with: 

reg@formulas[1] 

## [[1]] 
## N ~ 1 + SV1 + SV2 + SV3 + SV2:SV1 + SV3:SV1 + SV3:SV2 
## <environment: 0x00000000174e0b28> 

Possible additional information the user may be interested into are, for example, the list of 
the best 5 models retained: 

reg@formulas[1:5] 

## [[1]] 
## N ~ 1 + SV1 + SV2 + SV3 + SV2:SV1 + SV3:SV1 + SV3:SV2 
## <environment: 0x00000000174e0b28> 
##  
## [[2]] 
## N ~ 1 + SV1 + SV2 + SV2:SV1 + SV3:SV1 + SV3:SV2 
## <environment: 0x00000000174e0b28> 
##  
## [[3]] 
## N ~ 1 + SV1 + SV3 + SV2:SV1 + SV3:SV1 + SV3:SV2 



## <environment: 0x00000000174e0b28> 
##  
## [[4]] 
## N ~ 1 + SV1 + SV3 + SV3:SV1 + SV3:SV2 
## <environment: 0x00000000174e0b28> 
##  
## [[5]] 
## N ~ 1 + SV1 + SV2:SV1 + SV3:SV1 + SV3:SV2 
## <environment: 0x00000000174e0b28> 

The information criterion values: 

reg@crits 

##  [1] 179.1871 195.0635 196.1317 198.8619 199.0479 200.6671 202.1502 
##  [8] 204.0119 204.7767 206.3085 206.5311 207.7941 208.4381 208.8112 
## [15] 209.7318 210.1835 210.2785 210.4264 210.5629 211.7618 211.8596 
## [22] 212.1689 212.2513 212.7004 213.2967 213.7967 214.2563 214.6940 
## [29] 216.1124 216.6124 

The regression coefficients of the best model: 

coef(reg@objects[[1]]) 

##   (Intercept)           SV1           SV2           SV3       SV1:SV2  
##  3.3744446279  0.0038676565  0.6612178819  0.8109509263 -0.0005148349  
##       SV1:SV3       SV2:SV3  
## -0.0007254374 -0.2078712635 

The model averaged coefficients across the best 30 models: 

library(glmulti, quietly=TRUE) 
coef.glmulti(reg) 

##                  Estimate Uncond. variance Nb models Importance 
## SV3          0.8104692557     2.581781e-04        16  0.9995753 
## SV2          0.6608555431     1.562960e-04        16  0.9996768 
## SV1:SV2     -0.0005146110     7.445170e-11        16  0.9999082 
## SV1:SV3     -0.0007251422     1.277369e-10        15  0.9999924 
## SV1          0.0038662260     2.780616e-09        16  0.9999987 
## (Intercept)  3.3764680272     4.311802e-03        30  1.0000000 
## SV2:SV3     -0.2078325984     6.717802e-06        30  1.0000000 
##             +/- (alpha=0.05) 
## SV3             3.176133e-02 
## SV2             2.471229e-02 
## SV1:SV2         1.705597e-05 
## SV1:SV3         2.234072e-05 
## SV1             1.042340e-04 
## (Intercept)     1.297981e-01 
## SV2:SV3         5.123334e-03 

The plot of model averaged importance of terms: 



plot(reg, type="s") 

 

Figure S7. Model-averaged importance of terms included in the models. Relative variable 
importance is obtained by summing the weights of the variables from the models where these 
appear on the sum of weights. The red line indicates the commonly accepted threshold at 0.8. 
For further information see documentation from the R package gmulti. 

 

In this case though, all terms have a model-averaged importance of 1. 

Conclusions 

vortexR is a flexible tool to facilitate and speed up data handling and analysis of Population 
Viability Analysis projects carried out with Vortex. 

vortexR work-flows make the analysis of Vortex output reproducible. Combining vortexR 
analysis with explanatory prose into live notebooks such as Sweave (Leish 2002) or 
RMarkdown (Allaire et al 2016) allows creating reproducible research and quickly 
generating and updating reports and documents. For examples, this Appendix is written in 
Rmarkdown. 

Here, we have briefly described the main functionalities of the package. More examples are 
available through: help(package="vortexR") or in the package's vignette. Report any 
issues or lodge feature requests at https://github.com/carlopacioni/vortexR/issues. 

https://github.com/carlopacioni/vortexR/issues


References 

Allaire, J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen, J., Wickham, H., Atkins, A. & 
Hyndman, R. (2016) rmarkdown: Dynamic documents for R. 

Leisch, F. (2002) Sweave: Dynamic generation of statistical reports using literate data 
analysis. Compstat, pp. 575-580. Springer. 



Table S1. Comparison between Vortex and vortexR functionality. 

Function Vortex vortexR 
Data handling   
collate_dat - √ 
collate_one_dat - √ 
collate_proc_data - √ 
collate_run - √ 
conv_l_yr - √ 
lookup_table -† √ 

   
Data visualisation   
dot_plot - √ 
line_plot_year √ √ 
line_plot_year_mid - √ 
m_scatter - √ 

   
Data analysis   
Pairwise - √ 
fit_regression - √ 
Nadults - √ 
Ne -* √ 
Pexinct √ √ 
rRec - √ 

† While Vortex does not generate a summary table like lookup, the same information can be 
extracted manually by other summary tables from Vortex 
* Vortex calculates Ne across the whole simulated time, but it does not currently allow to limit the 
time window to a specific interval 
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